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Abstract 

Senescence is a hot topic nowadays, which shows the accumulation of senescent cells and inflammatory factors, 
leading to the occurrence of various senescence-related diseases. Although some methods have been identi-
fied to partly delay senescence, such as strengthening exercise, restricting diet, and some drugs, these only slow 
down the process of senescence and cannot fundamentally delay or even reverse senescence. Stem cell-based ther-
apy is expected to be a potential effective way to alleviate or cure senescence-related disorders in the coming future. 
Mesenchymal stromal cells (MSCs) are the most widely used cell type in treating various diseases due to their poten-
tials of self-replication and multidirectional differentiation, paracrine action, and immunoregulatory effects. Some 
biological characteristics of MSCs can be well targeted at the pathological features of aging. Therefore, MSC-based 
therapy is also a promising strategy to combat senescence-related diseases. Here we review the recent progresses 
of MSC-based therapies in the research of age-related diseases and the challenges in clinical application, proving 
further insight and reference for broad application prospects of MSCs in effectively combating senesce in the future.
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Introduction
Senescence is one of the hot topics at the moment, which 
is accompanied by the problem of aging population [1, 
2]. Senescence has a variety of adverse effects on the 
body and is the most critical pathogenic factor of senile 
diseases. For example, senescence causes skin senes-
cence. As a barrier of the body, skin can undergo aging 
or pathological changes with senescence [3], which may 
result from the accumulation of senescent cells. In addi-
tion, senescence can lead to the aging of the immune 
system, disrupting the homeostasis of macrophages [4] 

and increasing morbidity and mortality in the elderly [5]. 
Diabetes mellitus, especially type 2 mellitus, is a common 
disease associated with senescence [6]. With the progress 
of senescence, the incidence of some neurodegenera-
tive diseases also increases, such as Alzheimer’s disease 
(AD) and Parkinson’s disease (PD). AD is a severe neu-
rodegenerative disorder that is the most common form 
of dementia [7] as well as a senescence-related disease 
that increases exponentially with age [8]. PD is a com-
mon neurodegenerative disease characterized by degen-
erative death of dopaminergic neurons in the substantia 
nigra of the midbrain. And it is more common in the 
elderly, which has been proved to be a major senescence-
related disease [9]. In addition, multiple sclerosis (MS) 
[10], obesity [11], cardiovascular diseases (CVDs) [12], 
and hematopoietic dysfunction [13] are also diseases 
associated with senescence. To date, researchers have 
been searching for effective treatments for senescence-
associated diseases, such as appropriate nutritional inter-
vention [14, 15], caloric restriction (CR) [16], dietary 
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restriction (DR) [17], maintenance of iron homeostasis 
[18, 19], and drug therapy [20, 21]. However, the effect of 
these methods on delaying senescence or treating senes-
cence-associated disorders is not very ideal. Therefore, 
we urgently need to seek a better way to delay or even 
reverse senescence. It is known that senescence is often 
accompanied by cellular senescence [22]. Accordingly, a 
connection between stem cells and senescence has been 
recently proposed, and cell-based therapy is emerging as 
an innovative approach for senescence, especially mesen-
chymal stromal cell (MSC)-based therapy. According to 
previous studies, stem cells have great advantages in the 
treatment of a variety of diseases, and they also have a 
certain effect on senescence. Currently, MSCs are prom-
ising candidates for stem cells therapy for senescence 
due to their unlimited proliferation and multiple differ-
entiation potentials, migration and homing ability, and 
immunoregulation properties. In this review, we mainly 
summarize the role and latest progress of MSCs in the 
treatment of senescence, as well as the current status 
and challenges of MSCs in clinical research are also dis-
cussed, providing new insight into MSC-based therapy 
for anti-senescence and associated diseases.

Overview of senescence
Senescence occurs with age, which may be caused by 
multiple factors, such as telomere shortening [23, 24], 
DNA damage [25, 26], mitochondrial dysfunction [27], 
epigenetic changes [28–32], and oxidative stress [33]. 

All of these are interrelated, eventually leading to senes-
cence. It has been proven that senescence is often accom-
panied by cellular senescence, which is a key mechanism 
of senescence [22] (Fig.  1). Evidence is mounting that 
intracellular reactive oxygen species (ROS) can trigger 
cellular senescence [34] Cellular senescence is a cell state 
triggered by stressful insults and certain physiological 
processes, which is characterized by cell cycle arrest [35], 
macromolecular modifications, the secretory phenotype 
and deregulated metabolism [36, 37]. Cell cycle arrest is 
a common feature of senescent cells and is often irrevers-
ibly arrested in the G1 or G2 phase [37, 38]. Macromo-
lecular modifications include altered DNA methylation, 
aberrant histone modifications, loss of heterochromatin, 
disordered 3D genome architecture, and deregulated 
RNA modifications [38]. Senescence-associated secre-
tory phenotypes (SASPs) refer to a large number of solu-
ble factors synthesized and secreted by senescent cells, 
including pro-inflammatory cytokines, chemokines, 
angiogenic factors, growth modulators, and matrix met-
alloproteinases [37, 39–42]. As the number of senescent 
cells increases during senescence [43], it can promote 
some inflammations through SASP. SASP is a prominent 
feature of all senescent cells, which can trigger chronic 
inflammation to cause pro-aging consequences [36, 38], 
such as atherosclerosis, neurodegeneration, and myocar-
dial fibrosis [44, 45]. This type of diseases has certain dif-
ferences and connections with other senescence-related 
diseases. Other senescence-related diseases can also be 

Fig. 1  Senescence is often accompanied by cellular senescence, which caused by multiple factors, such as telomere shortening, DNA damage, 
mitochondrial dysfunction, epigenetic changes, and oxidative stress. And senescence leads to the occurrence of age-related diseases
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caused by inflammation, but in addition to inflammation, 
there are other factors included. For example, in addition 
to inflammatory factors, decreased bone mineral density 
and increased bone fragility are also major factors for 
osteoporosis [46]. In addition, there are some senescence-
related diseases caused by mutations or drugs. Deregu-
lated metabolism is closely related to senescence, and 
researchers have verified seven age-related metabolites, 
such as NAD, AKG, tryptophan, methionine, spermidine, 
triglyceride, and cholesterol [38]. Deregulated metabo-
lism can cause metabolic stress, which can be transmit-
ted through metabolic signaling, through a variety of 
signaling pathways, and ultimately lead to aging [28]. 
Cellular senescence can be caused by a variety of fac-
tors. The types of cellular senescence include oncogene-
induced senescence, replicative senescence, oxidative 
stress-induced senescence, therapy-induced senescence 
[36]. Oncogene-induced senescence can be caused by a 
variety of oncogenes, and it is associated with telomere 
dysfunction [47]. Replicative senescence is defined as 
the depletion of proliferative potential and irrevers-
ible growth arrest. It is mainly associated with telomere 
shortening during DNA replication [36]. When telomeres 
shorten to the Hayflick limit, irreversible cell cycle arrest 
is triggered. Oxidative stress-induced senescence mani-
fests as cellular senescence caused by oxidative prod-
ucts or oxidants of cell metabolism. Senescence-related 
oxidative damage continues to accumulate in the body, 
exceeding the removal ability of body. These accumulated 
reactive oxygen species aggravate senescence-related 
DNA damage and accelerate cell senescence [48–50]. 
Therapy-induced senescence refers to the fact that anti-
cancer drugs can induce the senescence of cancer cells 
[36, 51–53]. In conclusion, senescent cells have a great 
impact on the body and accelerate the process of aging. 
On the one hand, senescent cells will have reduced differ-
entiation capacity. For example, the ability of senescent 
myoblasts to differentiate to committed cells is weak-
ened, leading to loss of muscle mass and function, which 
reduces the quality of life of the elderly [54]. On the other 
hand, senescent cells release some factors to promote the 
senescence of the body. For example, Chang-Jun Li et al. 
reported in 2021 that with the onset of senescence, pro-
inflammatory and senescence subtypes of immune cells, 
including macrophages and neutrophils, accumulate and 
release granular calcains (GCA), which promote bone 
senescence [55].

There are many ways to characterize aging in general. 
The detection methods of aging can be based on physi-
ological characteristics, histological characteristics, and 
biomarkers of aging. Among them, many kinds of physio-
logical characteristics can be detected such as skin, mus-
cle, metabolism, motor, spatial, cognitive, and memory 

abilities. For the histological characteristics, we can 
detect them including hypothalamus, kidney, liver and 
heart. And senescence markers such as p16, lipofuscin, 
and γH2AX can be detected to characterize aging. First, 
in the detection of aging based on physiological charac-
teristics, the most intuitive manifestations are the skin 
state, hair, action, etc. Then, other indicators can also 
be measured to characterize senescence. For human, we 
can detect the strength of muscle by grip strength test 
[56] and distinguish the young and senescent adults by 
gait indicators [57]. And other physiological measures 
such as heart rate and blood pressure are also related to 
senescence, in addition, brain, kidney, cardiovascular, 
and bone play roles in predicting senescence, and these 
indicators need to be considered together normally [58]. 
The AARC-10 SF and AARC-50 cognitive functioning 
subscale can capture a number of senescence-related 
changes including physical, psychological, and cognitive 
aspects [59]. For mice, we can measure respiration and 
metabolism used by the metabolic cage and through the 
respiratory exchange ratio (RER) [60] to determine the 
degree of senescence or used by metabolic treadmill in 
research [61]. In addition, we can test strength and mus-
cle of mice through small animal handgrip dynamometer 
[62] or a wire suspension test [63, 64]. For the measure-
ments of bone and fat, we can measure the volume of 
visceral and subcutaneous fat and analyze the the cortical 
bone and trabecular bone of the mice by bone imaging 
[61]. There are differences in motor, coordination, and 
endurance between young and senescent mice; thus, it is 
feasible to judge senescence by track test [65] and wood 
rod test [64]. According to previous studies, mice exhibit 
higher anxiety like behaviors [66] with senescence. So it 
is a basis for assessing motor activity and anxiety behav-
ior in mice [67] by the open field test [68] to determine 
the degree of senescence. Moreover, spatial, cognitive, 
and memory abilities are also important indicators of 
senescence [57, 69–71], which can be assessed by fear 
conditioning [72], Y or T maze [63], the Barnes maze 
test [68, 73], and Morris water maze experiment [72]. 
In addition to assessing aging based on the physiologi-
cal characteristics described above, the status of aging 
can also be measured based on histological characteris-
tics and biomarkers of aging. Astrocytes and microglia 
are mediators of innate immune responses in the central 
nervous system (CNS) that become over-activated with 
age [73]. It was reported that glial fibrillary acidic pro-
tein (GFAP) is a specific marker of astrocytes and IBA1 
is a marker of microglia [31]. GFPA is a specific marker 
of astrocytes, which is a major intermediate filament of 
astrocytes [74] and contributes to astrocytic differen-
tiation and reactivity [75]. The accumulation of GFAP in 
astrocytes causes increased apoptosis of astrocytes and 
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their surrounding neurons [75]. IBA1 is an actin-cross-
linking protein in microglia [76]. It plays a key role in 
microglia activity [77]; thus, IBA1 is a specific marker of 
microglia [78]. The activation status of microglia can be 
reported by IBA1 immunity, which indicates the role of 
microglia in the central nervous system, especially in the 
maintenance of brain homeostasis [79]. Senescent micro-
glia and astrocytes are often detected in the senescent 
brain [80, 81]. Therefore, senescence can be character-
ized by examining astrocytes and microglia. In addition 
to the markers of senescence listed above, the detection 
of several factors and the proportion of senescent cells in 
organs can also accurately determine senescence, such as 
hypothalamus, kidney, liver, and heart. It was found that 
senescent mice had increased hypothalamic inflamma-
tion and increased levels of various saturated fatty acids 
in the hypothalamus. Meanwhile, hypothalamic nuclei 
such as arcuate nucleus (ARC), ventromedial hypotha-
lamic nucleus (VMH), and lateral hypothalamic nucleus 
(LH) also showed higher number of COX-2-positive 
cells and higher COX-2 immunoreactivity [82]. For kid-
ney, SA-β-gal staining can be used to determine senes-
cence, showing that the proportion of senile positive cells 
increased significantly with the increase of senescence 
[67]. γH2AX as a marker of senescence can be detected 
in mouse kidney to characterize senescence by using 
immunoblotting [67]. What else, researchers performed 
histological analysis of the kidney, using hematoxylin 
and eosin (h&E) staining and Masson’s trichrome (MT) 
staining to observe the renal structure and renal fibro-
sis. It was found that the positive area of renal fibrosis 
increased significantly in the elderly group and the levels 
of serum BUN and Cr, which can be used to assess age-
related renal dysfunction, were significantly increased in 
the elderly group [83]. Also, for the liver, Sabira Moham-
med et  al. [84] isolated hepatocytes and liver mac-
rophages from senescent mice and found that markers of 
M1 macrophages, expression of pro-inflammatory fac-
tors (TNFα, IL-6, and IL1β), and markers of fibrosis were 
significantly upregulated in the liver with increasing age. 
In addition, they demonstrated that immunofluorescence 
staining of the livers of young and senescent mice and 
confirmed that the expression of P-MLKL was increased 
in the liver of senescent mice compared with young mice. 
Several other markers of senescence have also been used 
to characterize the senescence of liver, such as p16 [85], 
lipofuscin, and γH2AX [67, 86], in which we can detect 
the expression of lipofuscin and γH2AX by SBB staining 
and western blot separately [67]. Moreover, it is known 
that the occurrence of cardiovascular diseases is greatly 
related to senescence, such as cardiac failure [87–89], 
arrhythmia [90], coronary artery dysfunction [91], ath-
erosclerosis, and myocardial infarction [92]. We can 

detect amyloid deposition and lipofuscin accumulation 
to characterize cardiac senescence [90]. Also, it is found 
that mTOR phosphorylation is detected to increase in 
the heart of senescent mice [93], which is a key regulator 
of autophagy [94]. In summary, all research results indi-
cated us that there are many characterization methods to 
detect senescence, and we can characterize whether the 
treatment used is effective in treating senescence accord-
ing to different senescence indicators.

The above is a small summary of the causes of senes-
cence and cellular senescence, and the characteriza-
tion of senescence in mice (Table  1). Microscopically, 
stem cell depletion is the root cause of the appearance 
of senescence [32, 42, 95–97]. Stem cells are divided 
into embryonic stem cells and adult stem cells accord-
ing to their developmental stages, and according to the 
developmental potential of stem cells, they are divided 
into three categories: totipotent stem cells (TSCs), pluri-
potent stem cells, and unipotent stem cells. Of interest, 
delaying cellular senescence or increasing the number of 
stem cells may greatly delay senescence. In this regard, 
stem cell-based cell therapies have been proposed for the 
treatment of senescence. Among them, MSCs as a kind of 
pluripotent stromal cells that have the potential of unlim-
ited proliferation, differentiation, migration, homing, and 
immune regulation properties. And MSCs can be derived 
from various tissues, including bone marrow, bone, 
umbilical cord, and adipose tissue, of which transplanta-
tion has received extensive attention as a more promising 
treatment method for anti-senescence.

MSCs therapy for anti‑senescence and senescence‑related 
diseases
MSCs are multipotent cells, which can give rise to mes-
enchymal and non-mesenchymal tissues in  vitro and 
in  vivo and have the properties including self-renewal 
and multi-directional differentiation capacity. It is well 
established that MSCs can be obtained from different 
tissues and organs [98]. Moreover, MSCs should meet at 
least three criteria: adherent growth, some specific anti-
gens expressed on the cell surface and the ability to dif-
ferentiate into adipocytes, osteoblasts, and chondrocytes. 
Many studies have reported that MSCs can delay senes-
cence and treat senescence-related diseases. In addition, 
the therapeutic effects of MSCs from different age donors 
and different passages of MSCs are compared; the follow-
ing content will describe them in detail.

Therapeutic effects of MSCs on skin, hair growth, 
and prolonging lifespan
Hair loss and graying are the direct representation of 
senescence. Currently, alopecia can be treated with 
drugs and surgery. However, these methods face many 
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challenges; the treatment of drugs is not very effective 
and has side effects [99]. For surgical treatment, the effect 
is related to the different surgical skills, and the number 
of surgical treatments for the same patient cannot be 
more than three times [100]. Therefore, a more effective 
treatment for alopecia needs to be developed. Accord-
ing to the literature reviewed, alopecia is related to hair 
follicle degeneration, and hair follicle stem cells (HFSCs) 
can promote hair follicle regeneration and hair growth 
[101, 102]. The hair growth cycle includes the growth 
phase, the decline phase, and the resting phase [103], and 
senescent HFSCs increase the resting phase of hair folli-
cles and shorten the growth phase. Nuclear factor of acti-
vated T cell cytoplasmic 1(NFATc1) plays an important 
role in osteoclast differentiation [104]. The accumulation 
of NFATc1 was shown to prolong the resting phase, even-
tually leading to hair loss. However, surprisingly, NFATc1 
inhibitor was proved that can reactivate the senescent 
HFSCs and promote hair growth [105]. Therefore, Nfatc1 
can coordinate HFSCs to restore their excellent function 
of hair regeneration. MSCs also play a role in hair regen-
eration, which depends on the ability of migration, hom-
ing, and differentiation. Moreover, MSCs have paracrine 

effect to release trophic factors, including cytokines and 
various growth factors, which plays an important role in 
hair regeneration and repair [99]. Bone marrow-derived 
MSCs (BMSCs) have been proved that they can pro-
mote the proliferation of HFSCs and lead to the transi-
tion of hair follicles from the resting phase to the growth 
phase, thereby promoting hair follicle regeneration and 
hair growth [101]. Hair follicular dermal papilla cells are 
key components of hair follicles. Human umbilical cord-
derived MSCs (hUC-MSCs) have been proved that have 
the capacity to protect hair follicular dermal papilla cells 
to treat alopecia [106]. Others, such as dental-derived 
MSCs, hair follicle-derived MSCs, and amniotic fluid-
derived MSCs, also can accelerate hair regeneration in 
a similar way [100, 107, 108]. All of these indicate that 
the various types of MSCs have therapeutic effect on 
alopecia.

The change of skin status is also one of intuitive mani-
festations of senescence. The skin is made up of three 
main layers including the epidermis [109, 110], the der-
mis [111] and the subcutaneous tissue [112]. According 
to some studies, it is shown that skin senescence is asso-
ciated with collagen loss, increased oxidative activity, and 
increased matrix metalloproteinases. MSCs can secrete 
factors required for skin regeneration, increase collagen 
synthesis, and inhibit the expression of mechanical met-
alloproteinases, which has a good application prospect 
in skin regeneration [113]. In addition, studies demon-
strated that young BMSCs have the potential to regener-
ate the skin of senescent rats, which mainly utilizes the 
antioxidant properties of BMSCs to improve oxidative 
stress in senescent skin of rats and promote regeneration 
of senescent skin [114]. Additionally, UV radiation is also 
one of the key factors of skin senescence, which is easy 
to damage the dermis of skin and destroy fibrous tissue, 
called light aging. MSCs can promote skin regeneration 
by increasing cell proliferation and neovascularization, 
being able to produce collagen and elastin fibers and 
inhibit the activation of metalloproteinases, in addition 
to protecting against UV radiation-induced senescence 
by tissue structural regeneration [113, 115].

Moreover, scientists have conducted numerous experi-
ments to prove that MSCs have an effect on prolonging 
life span. For example, Li Jun et  al. tried transplanting 
fetal rat MSCs into senescent mice and according to the 
morphology, mental state and activity of the mice, the 
changes of heart, spleen, kidney, lung, colon, skin and 
other tissues, it was proved that fetal mouse MSCs had 
anti-senescence effects, which may be through differ-
entiation to replace some cells, or may be by improving 
blood supply pathways or cytokines secreted by stem 
cells [116]. Amyotrophic lateral sclerosis (ALS) is a neu-
rodegenerative disease; it has been proven that human 

Table 1  A variety of methods to characterize the senescence of 
mice

↑ = elevated; γH2AX, p16 and lipofuscin are markers of senescence

Characterization of senescence Methods

Skin

 Hair

 Action

Respiration and metabolism Metabolic cage (RER), metabolic 
treadmill

Strength and muscle Small animal handgrip dynamom-
eter, wire suspension test

Bone and fat Measure the volume of visceral 
and subcutaneous fat, bone 
imaging

Motor, coordination, and endurance Track test, wood rod test

Anxiety-like behaviors Open field test

Spatial, cognitive, and memory 
abilities

Fear conditioning, Y or T maze, 
the Barnes maze test, morris water 
maze

Astrocytes and microglia GFAP↑ IBA1↑
Hypothalamus Inflammation↑ various saturated 

fatty acids↑ COX-2 positive cells↑
Kidney SA-β-gal positive cells↑ γH2AX↑ 

BUN↑ Cr↑
Liver Markers of M1 macrophages↑ 

pro-inflammatory factors (TNFα, 
IL-6 and IL1β) ↑ P-MLKL↑ p16↑ 
lipofuscin↑ γH2AX↑

Heart Amyloid deposition↑ lipofuscin↑ 
mTOR phosphorylation↑
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adipose tissue-derived stem cells (ASCs) can prolong the 
life span of amyotrophic lateral sclerosis mice [117]. And 
it was researched that adipose-derived  mesenchymal 
stem cells (ADSCs) treatment can promote mitophagy 
to improve the characteristics of senescence and demon-
strated for the first time that allogeneic stem cell therapy 
can improve senescence-related signs and phenotypes 
through mitochondrial quality control. These suggest the 
importance of stem cells in senescence-related diseases 
[118]. In the study of aging, we usually use senescent 
animal models, which are generally divided into natural 
senescence animal models and accelerated senescence 
animal models. Moreover, in order to demonstrate the 
anti-senescence effect of MSCs more quickly and intui-
tively, researchers have invented accelerated senescence 
mouse models, which play a significant role in the study of 
senescence experiments. The therapeutic effects of drugs 
or MSCs can be verified by characterizing the acceler-
ated senescent mouse. Commonly accelerated senescent 
mouse models include d-galactose-induced senescence 
model [119, 120], doxorubicin-induced senescence mice 
[67, 121], senescence-accelerated mouse/prone (SAMP) 
[122, 123], total body irradiation (TBI) model [124, 
125], ozone-induced senescence model [126, 127], etc. 
In addition, there are several genetic mutant mice that 
have been widely studied in premature aging. Klotho 
mouse is caused by defective expression of klotho gene, 
which resulting in a syndrome similar to human aging 
[128]. Bmi-1−/−mouse is an animal model of premature 
aging, showing retarded growth, decreased cell prolif-
eration, increased apoptosis, and premature aging [129]. 
Xpg−/−mouse is a model of accelerated senescence; it is 
characterized by shortened lifespan, significant neuropa-
thy, and other senescence-related abnormalities [130]. 
Werner syndrome is a rare autosomal recessive disor-
der characterized by accelerated aging [131, 132], so the 
mouse model of Werner Syndrome is a model of aging 
[133]. Ercc1−/Δ mice represents an accelerated model of 
aging-related peripheral neuropathy, which can help to 
discover the molecular mechanism of peripheral nerve 
degeneration and screen out treatments to prevent, delay, 
or reverse peripheral neuropathy [134]. Moreover, dros-
ophila and Caenorhabditis elegans are also recognized 
animal models for senescence studies [131, 135]. For 
instance, drosophila model of Werner syndrome exhibits 
physiological signs of aging, such as shortened lifespan, 
increased incidence of tumors, muscle degeneration, and 
behavioral changes [136]. Numerous senescence models 
are helpful to reveal the mechanisms of aging, achieve 
the purposes of anti-aging, and treat senescence-related 
diseases. A study reported that mesenchymal progenitor 
cells (MPCs) were implanted into accelerated senescence 
mouse model; it was observed that the transplanted mice 

had improved cortical bone mass and alleviated osteopo-
rosis compared with the control group. And the average 
life span was about 30% longer than that of nontransplan-
tation control group [137]. In addition, Bmi1-deficient 
mice is an accelerated senescence mouse model, and it is 
confirmed that the premature senility phenotype can be 
ameliorated after the transplantation of amniotic mem-
brane mesenchymal stem cells (AMSCs) [129].

Stem cells have also been shown to be effective in clini-
cal treatment. It was verified that repeated intravenous 
administrations of autologous ADSCs improved the 
symptoms of ALS patients without any adverse effects 
[138]. Hutchinson–Gilford progeria syndrome (HGPS) 
is a rare and fatal genetic disorder of accelerated senes-
cence in children that shows symptoms of senescence 
at an early stage, resulting in slow growth, hair loss, and 
a heightened voice [139]. It was reported that a case of 
HGPS patients showed significant growth in weight and 
height after receiving allogeneic haploidentical trans-
plants of adipose SVF containing MSCs, along with 
about 50% increase in IGF-1, which may prolong the life 
of HGPS patients [140]. Senescence refers to the gradual 
physical degeneration of the body with the increase of 
age. Similar to senescence, frailty is the result of multi-
level degradation of interacting physiological systems, 
which is characterized by decreased physiological reserve 
and decreased resistance to stress, involving physiologi-
cal changes in the neuromuscular system, metabolism, 
and immune system. Such changes increase the risk of 
disability, delirium, falls, and even death in the elderly 
[141]. Frailty is the main phenotype of accelerated senes-
cence, which describes multiple organ dysfunction or 
multiple diseases in the elderly, as well as increased sus-
ceptibility to other diseases [142]. The main clinical fea-
tures of frailty are reduced muscle mass, anorexia, weight 
loss, and decreased energy expenditure [143]. Chronic 
inflammatory response can accelerate the occurrence 
and development of frailty syndrome. IL-6, CRP, TNFα, 
and CXCL-10 are inflammatory factors; the levels are 
elevated during frailty. Therefore, they can serve as 
inflammatory markers related to frailty syndrome [142, 
143]. There was a randomized and double-blind study of 
allogeneic human mesenchymal stem cells (allo-hMSCs) 
transplanted into frail patients compared with placebo. 
After several months, the two frailty syndrome meas-
ures, including the physical fitness measure and the vali-
dation marker, were found to improve [144]. Moreover, 
allo-hMSCs had been shown to reduce frailty, improve 
cardiovascular function, reduce inflammation, prolong 
life span, and improve quality of life in frail patients 
[95], and it was confirmed that intravenous injection of 
allo-hMSCs had great safety, which provided support 
for the treatment of frail elderly people [145]. These 
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studies indicate that MSCs have great potential in delay-
ing senescence, and young MSCs seem to have a better 
therapeutic effect than senescent MSCs.

Therapeutic effects of MSCs on osteoporosis
We all known that osteoporosis becomes common as 
aging occurs. Osteoporosis is a progressive systemic bone 
disease associated with age, which is characterized by low 
bone mass and large bone fragility [46]. In osteoporosis 
patients, MSCs have a reduced ability to differentiate into 
osteoblasts and an increased ability to differentiate into 
adipocytes, resulting in reduced bone formation [146]. 
In particular, most elderly patients have substantially 
increased morbidity and mortality [147, 148]. Although 
there are some drugs for the treatment of osteoporosis, 
these drugs may have adverse reactions and these treat-
ments are not completely effective for all patients [46]. 
Therefore, more effective treatments for osteoporosis 
are needed. As is known that MSCs not only have the 
ability to differentiate into adipocytes, osteoblasts, and 
chondrocytes [148, 149], but also secrete factors involved 
in bone repair [46]. So, MSCs can be used as an alterna-
tive therapy for age-related osteoporosis. There are two 
approaches to MSCs transplantation for the treatment of 
osteoporosis, including systemic and local transplanta-
tion. Both methods have certain drawbacks, local trans-
plantation can lead to poor cell survival, while systemic 
transplantation can cause cells to accumulate in the lung 
or in areas of inflammation. To address these defects, 
the transplanted MSCs can be genetically modified to 
improve the therapeutic efficacy of osteoporosis, such 
as activating cytokines and transcription factors [150, 
151]. At present, a large number of studies have demon-
strated the potential role of MSCs from various sources 
in the treatment of osteoporosis. hUC-MSCs have been 
shown to have broad application prospects in the treat-
ment of osteoporosis. UC-MSCs were loaded into a 
biomimetic artificial bone scaffold material, and then, 
the bone scaffold material was implanted into BALB/c 
nude mice subcutaneously. The results showed that UC-
MSCs could effectively induce bone formation [147, 
152]. SAMP6 mouse is an accelerated senescence mouse 
model that develops osteoporosis at an early stage. A 
study showed that normal allogeneic mouse BMSCs were 
locally injected into SAMP6 mice, and it was found that 
such MSCs could increase trabecular bone and bone 
remodeling, alleviate bone mineral density loss, and pre-
vent osteoporosis [46, 153]. It was reported that BMSCs 
transplantation could not only alleviate the loss of bone 
mineral density (BMD) in the knee joint of aged recipi-
ent mice, but also increase the trabecular meshwork 
and BMD of the mice, which proved that BMSCs could 
effectively restore bone structure and BMD in senescent 

mice. In addition, this study demonstrated that aged mice 
transplanted with BMSCs had a longer life span com-
pared with the control group, which reflecting the link 
between MSCs and aging [154]. In addition, Maf as a fac-
tor has been shown to regulate and promote osteogenic 
differentiation of MSCs [155]. Therefore, it is possible 
that Maf may have the ability to assist MSCs in the treat-
ment of osteoporosis.

In addition, there was also a clinical study on the treat-
ment of osteoporosis. It was a randomized, open-label 
and phase I/IIa study, which conducted by twenty sub-
jects with osteoporotic vertebral compression fractures 
(OVCFs) that were randomly assigned to three groups to 
confirm the feasibility, safety, and effectiveness of Whar-
ton’s jelly-derived mesenchymal stem cells (WJ-MSCs) 
and teriparatide in OVCFs. Although there were some 
possible MSC-related complications such as pulmonary 
embolism and tumor formation during the study, the 
result showed that their combination therapy was tol-
erable and feasible, which could help to promote bone 
healing in clinical [156]. Collectively, these clinical stud-
ies indicate that MSCs are promising for the treatment of 
senescence-related osteoporosis.

Therapeutic effects of MSCs on CVDs
It has been mentioned before that senescence can lead to 
the occurrence of CVDs, such as myocardial infarction 
(MI), heart failure, and arteriosclerosis. It was reported 
that the transplantation of multipotent germline stem 
cells (mGSCs) derived from neonatal mouse tests into the 
hearts of mice with ischemic heart failure can improve 
cardiac function by promoting angiogenesis and delay-
ing cellular senescence [157]. It was proven that embry-
onic stem cells (ESs) can be induced to differentiate into 
spontaneously beating cardiomyocytes in  vitro [158]. 
Based on this characteristic, in 2020, researchers devel-
oped a method to generate cardiac organoids that were 
very similar to internal organs by using mouse embry-
onic stem cell-derived embryoid bodies under the condi-
tion of FGF4 and extracellular matrix [159], which was of 
great interest for the treatment of CVDs. In short, ES has 
been shown to alleviate heart failure models [160] and 
regenerate the cardiovascular system [161]. MSCs are 
more potential cells for treatment, it has been reported 
that it can repair infarcted myocardium, and pretreat-
ment of aged MSCs under glucose depletion conditions 
has been shown to improve cardiac function after MI. In 
addition, it was observed that the potential of MSCs to 
repair senescent infarcted myocardium decreased with 
age [162]. Autologous Ad-MSCs were determined that 
they can significantly improve the levels of HDL, LDL, 
and residual particle (RLP) cholesterol, which were safe 
and effective in the treatment of arteriosclerosis [163]. 
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In order to further explore the mechanism of stem cell 
therapy for CVDs, Rosalinda Madonna et  al. designed 
an experiment and demonstrated that active microcarri-
ers (PAM), which can release vascular endothelial growth 
factor (VEGF) combined with adipose tissue mesenchy-
mal stromal cells (AT-MSCs), can exert paracrine effects, 
inhibit cell apoptosis, reduce fibrosis, increase arterial 
generation, and improve myocardial shortening, which 
may have therapeutic effects [164].

Analysis of the reported trials of MSCs in the clini-
cal treatment of acute myocardial infarction (AMI) 
showed that MSCs therapy was associated with a sig-
nificant improvement in left ventricular ejection frac-
tion (LVEF) increased by 2.62% in patients transplanted 
with 107–108 MSCs, and the effect was maintained for up 
to 24 months. In addition, there were no adverse events 
caused by MSCs treatment found [165]. Moreover, MSCs 
as regenerative treatments for heart failure were deter-
mined to be safe and effective. Due to the self-renewal 
differentiation capacity and immunomodulatory prop-
erties, MSCs transplantation significantly improved 
LVEF and reduced left ventricular end-systolic vol-
ume (LVESV) and left ventricular end-diastolic volume 
(LVEDV). In different origin, the therapeutic effect of 
UC-MSCs seemed to be better than BM-MSCs, and the 
injection dose of (1–10) × 108 cells had a better therapeu-
tic effect [166].

Taken together, MSCs transplantation can ameliorate 
a variety of CVDs by increasing angiogenesis, reducing 

fibrosis, reducing infarct size, improving myocardial 
shortening, and exerting paracrine effects, which has 
great potential for ameliorating senescence (Fig. 2).

Therapeutic effects of MSCs on neurodegenerative 
diseases
Senescence is a major risk factor for neurodegenera-
tive diseases. And the secretion of inflammatory factors 
increases because of the SASP. The increased inflam-
mation is associated with the generation of senescence 
and neurodegenerative diseases [167]. With the onset of 
senescence, PD and AD increase, which may be related 
to the decrease in the number and activity of neural 
stem cells (NSCs). NSCs can generate new neurons [168] 
to improve the function of CNS. In the study of NSCs, 
nicotinamide adenine dinucleotide (NAD+) was found  
to not only maintain healthy mitochondria, but also pro-
tect NSCs, muscle stem cells (MuSCs), and melanocyte 
stem cells (McSCs) from senescence. Nicotinamide ribo-
side (NR) as a NAD+ precursor was proved to delay the 
senescence of NSCs and McSCs as well as prolonging the 
life span of mice [169]. Therefore, the supplementation of 
NAD+ contributes to the effects of NSCs. As mentioned 
above, the hippocampus is associated with learning and 
memory. In addition, the decrease in the number and 
maturity of neurons in the hippocampus are also closely 
related to neurodegenerative diseases [170]. MSCs can 
derive functional neurons such as dopaminergic neurons 
[171–173], which makes MSCs have greater prospects in 

Fig. 2  Senescence contributes to CVDs and MSCs have the ability to improve the treatment of CVDs
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the treatment of neurodegenerative diseases. In addition, 
transplanted MSCs have the potential of migration and 
homing [174, 175], which make MSCs play therapeutic 
role at particular sites. Moreover, MSCs have the ability 
to secret some anti-inflammatory, anti-apoptotic mol-
ecules, and nutritional factors [176–178]. All of the char-
acteristics of MSCs increase neuroprotection and make 
them have the function to improve neurodegenerative 
diseases. Therefore, MSCs are effective cell therapies for 
the treatment of brain deterioration (Fig. 3).

Based on these studies, researchers tried to apply 
MSCs to clinical studies. Kim et  al.  [179] conducted a 
phase I clinical trial in nine patients with mild-to-mod-
erate AD, and three repeated injections of MSCs were 
performed (4-week intervals) in all nine patients. While 
showing a certain therapeutic effect, it was found that 
the patients had an adverse symptom of fever [179]. To 
investigate the subject further, their team continued their 
research and showed that the symptom of fever was due 
to the increased level of pro-inflammatory cytokines in 
the cerebrospinal fluid of AD patients injected with hUC-
MSCs. However, the specific cause of inflammation after 
MSCs transplantation had not been clearly pointed out, 
which required a breakthrough in future studies and 
solutions to reduce fever and inflammation after MSCs 
transplantation to improve the effect of MSCs in the 
treatment of AD [180]. Moreover, other clinical trials 
researched that MSCs had some therapeutic effects on 
ALS [181] and PD [182]. In conclusion, two independent 

reviewers conducted a meta-analysis of 71 clinical trials 
on cell therapy for neurodegenerative diseases, assessing 
the safety and efficacy of regenerative cell-based thera-
pies in neurodegenerative diseases. Most reports proved 
that the application of regenerative cell-based therapies 
in patients was safe and feasible, and more extensive 
researches on different treatment strategies and dosing 
regimens are needed in the future [183].

Therapeutic effects of MSCs on premature ovarian failure 
(POF)
POF is a common endocrine disease, which can lead to 
female infertility. The causes of POF may be related to 
genetic defects, autoimmunity, and chemotherapy dam-
age. However, the pathogenesis of POF remains unclear. 
POF model can be induced with d-galactose, and in the 
process of senescence, the advanced glycation end prod-
ucts and ROS increase, then gradually impair the ovar-
ian function, and result in POF [184]. Thus, it can be seen 
that senescence is associated with POF, with increasing 
age, and most of the ovarian follicles deplete and ovar-
ian function damage, resulting in POF [185, 186]. At pre-
sent, the commonly used hormone replacement therapy 
cannot restore the function of the ovary. However, stem 
cell therapy brings hope for the treatment of POF [187]. 
hUC-MSCs are an easily accessible type of MSCs, which 
has been showed that can repair chemotherapy-induced 
premature ovarian failure [188]. Autocrosslinked hyalu-
ronic acid (HA) was reported that it not only prolonged 

Fig. 3  Senescence is a major risk factor for neurodegenerative diseases. MSCs have the ability of migration and homing to make them play a role 
in the aging brain, and they can treat neurodegenerative diseases by deriving functional neurons and the paracrine function
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the retention of UC‑MSCs in the ovary but also boosted 
the secretory function of UC-MSCs, which can promote 
follicular survival by activating the PI3K‑AKT path-
way. This will be of great help to the clinical application 
of MSCs in the treatment of ovarian diseases [189]. In 
addition, human embryonic stem cells (HESC-MSCs) 
[190] and BMSCs [191] also had been shown to improve 
POF. These reports indicated that the therapeutic effect 
of MSCs may be attributed to immunoregulation, which 
increased the release of anti-inflammatory factors and 
inhibited the production of pro-inflammatory factors.

In one study, the transplantation of UC-MSCs on 
collagen scaffold was documented for the first time. 
Patients were randomly divided into two groups: one 
group received UC-MSCs transplantation, while the 
other group received UC-MSCs combined with collagen 
transplantation. UC-MSCs or collagen/UC-MSCs were 
injected into the ovary of patients, and each patient was 
followed up for at least 1 year after the first transplanta-
tion. The results demonstrated that UC-MSCs partially 
improved the activation and growth of follicle, and UC-
MSCs on collagen scaffold contributed to the long-term 
recovery of ovarian function as well as improved fertility 
in POF patients [192]. All of these studies demonstrated 
the promising effects of MSCs in the treatment of POF.

Therapeutic effects of MSCs on premature aging disorders
Premature aging disorders are rare human disorders 
characterized by accelerated aging. Some of them are 
caused by mutations in genes encoding DNA repair pro-
teins, such as Werner syndrome (WS), Bloom syndrome, 
and Cockayne syndrome. Others are caused by mutations 
in genes encoding A-type laminas or lamina processing 
enzymes, such as HGPS and restrictive dermopathy. WS 
and HGPS are the two most widely studied human pro-
geria disorders so far. These two diseases have been the 
focus of researches in the field of aging in recent years, 
because the clinical characteristics of patients are similar 
to physiological aging, including alopecia, hair graying, 
growth retardation, osteoporosis, cataract, hearing loss, 
atherosclerosis, cardiovascular diseases, and early malig-
nant tumors [193, 194]. The pathogenesis of premature 
aging is mainly related to genomic instability, telomere 
attrition, loss of protein homeostasis, mitochondrial 
dysfunction, dysregulated nutrient perception, stem cell 
failure, cell senescence, and altered intercellular commu-
nication [193]. Firstly, WS is an adult-onset progeria syn-
drome caused by an autosomal recessive mutation, and 
patients present with premature aging symptoms such 
as gray hair, alopecia, skin atrophy, ulcers, and retarda-
tion of growth in their twenties [195]. In addition, WS 
patients also have a high incidence of cancer, and they 
are prone to soft tissue sarcoma and osteosarcoma. The 

most common causes of death are cancer and myocar-
dial infarction [196]. It was proven that WS was a stem 
cell dysfunction-associated disease, and significant 
senescence was observed in MSCs [197]. In a study, the 
NRF2 gene in the human embryonic stem cell model of 
WS was reprogrammed to obtain hMSCs with enhanced 
self-renewal and stress resistance. They had the abilities 
to delay cell senescence, improve engraftment efficiency 
and regeneration in  vivo, and had better anticancer 
effects, which provided a good prospect for the treatment 
of WS and other premature aging disorders [198]. Sec-
ondly, HGPS is caused by LMNA gene mutations, which 
is strikingly similar to the normal aging process and can-
not be diagnosed at birth, but prominent symptoms can 
be observed after 2 years of age. With the increase of age, 
the skin of patients becomes atrophic, and the main cause 
of death is cardiovascular disease [199]. The shortened 
life span and altered stem cells play important roles in the 
pathogenesis of premature aging syndromes. Therefore, 
the timely renewal of senescent or dysfunctional stem 
cells is required to protect patients [200]. As previously 
mentioned, after transplantation for MSCs, the weight 
and height of the patients increased significantly, and the 
patients may have a longer life [140].

In conclusion, MSCs have a wide application prospect 
in human aging disorders and a large number of studies 
are needed to conduct better treat premature aging dis-
orders in the future.

Therapeutic effects of MSCs on chronic kidney disease 
(CKD)
CKD is mainly caused by inflammation, oxidative 
stress, and premature aging, leading to decreased qual-
ity of life, poor health, and premature death [201, 202]. 
Therefore, we can focus on inflammation and prema-
ture aging to treat CKD. Although drugs and surgical 
treatment have certain effects, they cannot regenerate 
and restore the function of tissue, so better treatments 
are needed. The pluripotency and paracrine mechanism 
of MSCs make them have great advantages in the treat-
ment of CKD by the recovery of tissue damage and the 
suppression of inflammation [203, 204].

Diabetic nephropathy is one of the most serious 
complication of diabetes mellitus and the main cause 
of end-stage chronic kidney disease. A study demon-
strated that UC-MSCs were injected into STZ-induced 
DN rats via the tail vein. Two weeks later, the research-
ers measured the blood glucose, renal function, and 
cytokines in the kidney and blood. The results sug-
gested the improvement of renal function and showed 
that these functional parameters were significantly 
improved and the pro-inflammatory and pro-fibrotic 
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factors were also significantly reduced, which may be 
related to the inhibitory effects of UC-MSCs on inflam-
mation and fibrosis [205]. Camel Wharton jelly mes-
enchymal stem cells (CWJ-MSCs) were proved to have 
great potential in the treatment of canine models of 
CKD [206]. It was performed by injecting CWJ-MSCs 
into the kidneys of 5/6 nephrectomy dogs under ultra-
sound guidance, and the results showed a significant 
reduction in both serum urea and creatinine levels, as 
well as a decrease in NGAL, KIM-1 gene expression and 
an increase in VEGF, EGF gene expression, suggesting 
renal tissue repair. The study suggested that WJ-MSCs 
had good efficacy in canine CKD models [206].

Moreover, due to the risk of sensitization of alloge-
neic MSCs transplantation, autologous MSCs trans-
plantation seems to be more advantageous [207]. The 
first double-blind, placebo-controlled trial of allogeneic 
BMSCs in thirty patients with type 2 diabetic nephrop-
athy was used to evaluate the safety of MSCs infusion, 
and although the trial showed low efficacy, no adverse 
events related to the infusion were noted during the 
60-week study [208]. There was another single-arm 
study that seven patients with CKD caused by different 
etiologies were intravenously injected with autologous 
MSCs and followed up for 18 months. The final results 
showed that a single dose infusion of autologous MSCs 
was safe and well tolerated in patients with CKD [209]. 
In addition, many other clinical trials had confirmed 
the efficacy and safety of MSCs in the treatment of 
CKD [203]. Although MSCs have a promising efficacy 
in the treatment of CKD, their efficacy in the treatment 
of severe kidney disease is limited by the low survival 
rate [203, 210]. In order to increase the survival rate of 
MSCs to improve the function and therapeutic effects, 
MSCs can be pretreated. There are various pretreat-
ment methods, including the incubation of cytokines 
or compounds, such as DHA, SNP, DPO, atorvasta-
tin, melatonin, and the application of some supporting 
materials, such as thermosensitive hydrogel, chitosan-
based hydrogel, fucoidan [203, 211]. In summary, vari-
ous studies have shown that MSCs have promising 
safety and immunosuppressive effects in the treatment 
of CKD.

Therapeutic effects of MSCs on chronic obstructive 
pulmonary disease (COPD)
COPD is associated with systemic inflammation [212], 
which accelerates with age [213, 214]. Most patients 
with COPD are accompanied by chronic bronchitis and 
emphysema [215]. COPD can reduce the quality of life 
and shorten the life span of patients. Current treatments 
can only relieve symptoms but cannot fundamentally 

cure the disease. Recently, the paracrine and immu-
nomodulatory effects of MSCs make them have great 
application prospects in the treatment of COPD [215]. 
WJ-MSCs showed pulmonary regenerative effects in 
the COPD mouse model [212]. Daniel Weiss et  al. con-
ducted a study of sixty-two patients with moderate-
to-severe COPD who received intravenous infusion of 
allo-hMSCs or placebo. The patients received four infu-
sions per month and were followed up for 2  years after 
the first infusion, and no significant adverse reactions 
were observed. In addition, MSCs can reduce the inflam-
mation caused by COPD, which provide a clinical basis 
for the treatment of COPD [216]. A phase I, prospective, 
patient-blinded, randomized, placebo-controlled design 
was that placebo and unidirectional endobronchial valves 
in combination with MSCs were injected into 10 patients 
with severe emphysema. The results demonstrated the 
safety of the combination in the treatment of severe 
emphysema, and the treatment reduced systemic inflam-
mation and improved lung function in patients with 
severe COPD [217]. UC-MSCs had also been shown to 
have therapeutic effects on COPD. There was a study that 
allogeneic UC-MSCs were injected into twenty patients 
with COPD, followed up for 6  months after the first 
infusion [218]. Then, they evaluated safety, pulmonary 
function tests, and quality-of-life indicators. No adverse 
events related to UC-MSCs administration were found; 
however, C-reactive protein (CRP) and 6MWT values 
were not significantly decreased after treatment. In con-
clusion, the study demonstrated that UC-MSC therapy 
was safe and could improve the lives of patients with 
moderate-to-severe COPD [218].

With more and more researches on COPD, a study 
explained the effect of MSC infusions on lung function 
in COPD patients with high CRP levels [219]. Based on a 
study they previously reported, MSCs had a good safety 
profile but no functional efficacy was observed in the 
treatment of COPD [216]. The researchers conducted 
a post hoc analysis with stratification based on levels of 
CRP to determine the effects of MSCs administration 
in COPD patients with varying circulating CRP levels, 
with 4  monthly infusions of bone marrow-derived allo-
geneic MSCs and placebo. The results showed decrease 
of circulating CRP in patients treated with MSCs and 
improvement in lung and global functions of patients. In 
addition, no obvious adverse reactions were found dur-
ing the observation period of 2  years [219]. Numerous 
studies have demonstrated the role and safety of MSCs 
from different sources in the treatment of COPD [215, 
216, 220]. However, the long-term safety and efficacy of 
the treatment need to be verified by a large number of 
studies.
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Therapeutic effects of MSCs on atherosclerosis
Atherosclerosis is a group of senile diseases, which is 
associated with age and premature biological aging. 
Moreover, there is a growing evidence that organismal 
and cellular senescence promote atherosclerosis [221], 
induced by lipid deposition and inflammation [222–
224]. Atherosclerosis usually causes to the occurrence 
of CVDs, which has a great threat to human health. The 
vascular damage repair and inflammatory inhibition 
effects of MSCs make them widely used in the treatment 
of atherosclerotic diseases [222, 225–227]. Atheroscle-
rosis is a vascular complication of diabetes. An experi-
ment was conducted based on a diabetic model of rats 
as well as a cellular model of human endothelial cells. 
Researchers have investigated the effect of hUC-MSCs 
on diabetic endothelial cell injury, and the results showed 
that hUC-MSCs could not only improve blood glucose, 
but also protect vascular endothelial injury, which had a 
good therapeutic prospect [224]. Amniotic membrane 
mesenchymal stem cells (AMSCs), a kind of MSCs with 
immunomodulatory effect, have been proven to have 
therapeutic implications for early atherosclerotic plaque 
formation in apolipoprotein E-knockout mice by modu-
lating the function of macrophage to reduce immune 
response. It was detected that the pro-inflammatory 
cytokine tumor necrosis factor α and macrophages were 
decreased and interleukin-10 (IL-10) was increased 
in the AMSCs treatment group [228]. Another study 
demonstrated the effect of MSCs on atherosclerosis. 
In this study, skin-derived MSCs were injected into apo 
E−/− mice. The research showed an increased release of 
the anti-inflammatory cytokine IL-10, and a decreased 
release of inflammatory cytokines TNF-a and IL-1b, 
thereby exerting immunosuppressive effects to amelio-
rate atherosclerosis in mice [229].

In addition to inhibiting inflammation and repair-
ing vascular damage, MSCs can treat atherosclerosis 
by reducing platelet activation, restoring endothelial 
function [226]. In a study, MSCs isolated from human 
term placenta were proven that they could express pro-
thrombotic and antithrombotic proteins, reduce CD36-
mediated platelet activation induced by oxidized LDL to 
treat atherosclerosis [230]. In addition, the restoration 
of endothelial function by MSCs also contributes to the 
improvement of atherosclerosis. MSCs were shown to 
improve endothelial function and plaque formation in 
high-fat diet-induced apoE−/− mice. And it was verified 
that MSCs exerted their therapeutic effects through par-
acrine action rather than differentiation [231].

In conclusion, MSCs-based therapy is an effec-
tive strategy for the treatment of atherosclerosis. In 
the future, if MSCs can be induced to differentiate into 

non-inflammatory cells or vascular endothelial cells 
in vivo, it will be better for the treatment of atheroscle-
rosis [232].

Taken together, numerous studies demonstrate that 
MSCs therapy has huge potential in delaying senes-
cence as well as treating diseases related to senescence 
(Table  2). The mechanism may be due to the immu-
nomodulatory effect of MSCs, which exerts its effect by 
the capacity of proliferation and differentiation, secret-
ing anti-inflammatory factors and inhibiting pro-inflam-
matory factors. Also noteworthy is that the young MSCs 
seem to have better effect in contrast to senescent MSCs. 
Thus, it is better to choose young MSCs as long as there 
are sufficient cells for transplantation. Then, we discuss 
the different stages of MSCs at the cellular level.

Young MSCs enhance the activity of senescent 
MSCs
It has been proven that with the senescence of hUC-
MSCs, the morphology of the cells changes from elon-
gated fusiform to large and flat (Fig. 4), and the ability of 
secreting factors also decreases with senescence, such as 
growth factors, cell adhesion and anti-inflammatory fac-
tors, manifested as decreased immunomodulatory capac-
ity [237]. Interestingly, Jinhui et al. discovered that mice 
injected with young BMSCs had a longer lifespan com-
pared with mice injected with senescent BMSCs [154]. 
Another study was shown to have a similar phenomenon. 
MSCs from senescent and young male donors were trans-
planted into senescent female mice, and they found that 
the transplantation of young MSCs significantly slowed 
the loss of bone mineral density, surprisingly, in addition 
to extending the life span of senescent mice [154, 238]. 
Therefore, it is better to transplant young MSCs rather 
than senescent MSCs.

There is evidence for co-culturing MSCs to enhance 
the activity of other cells. Previously, it was demonstrated 
that co-culture with MSCs can increase the prolifera-
tion and maintenance of hematopoietic progenitor cells, 
especially co-culture with early passage MSCs [239]. 
Many researchers have discovered that mesenchymal 
stromal cell-conditioned medium (MSC-CM) has the 
similar effect. MSC-CM can ameliorate fibroblast senes-
cence induced by high glucose (HG), and MSC-CM holds 
promise as an alternative therapy for chronic wounds 
[240]. Mohadese Hashem Boroojerdi employed micro-
array assay to analyze the HSCs co-cultured with hUC-
MSCs. And they reported that the cell death of HSCs 
reduced without disturbing the undifferentiated state 
of HSCs [241]. Moreover, Wang Lixue et  al. reported 
that extracellular vesicle (EVs) derived from hUC-MSCs 
can promote proliferation and migration of dermal 
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fibroblasts, increase elastic fibers, collagen expression, 
and reduce the production of matrix metalloproteinase-1 
(MMP-1) and matrix metalloproteinase-3 (MMP-3) 
[115].

As we known, compared with young MSCs, senes-
cent MSCs exhibit increased cellular senescence and 
decreased activity [242]. To enhance the activity of 
senescent MSCs, some researchers tried to stimulate 
senescent MSCs with exosomes derived from young 
UC-MSCs, and they found the activity of senescent 
MSCs enhanced, accompanied by the reduced activ-
ity of SA-β-gal and expression of senescence-related 
factors such as p53, p21, and p16. In addition, treated 
senescent MSCs were transplanted in the mouse model 
of MI to test the role, and then, they found and treated 
senescent MSCs to enhance the function of myocar-
dial repair. And their data suggested that exosomes 
from young MSCs can improve activities of senes-
cent MSCs and enhance their function for myocardial 
repair by transferring miR-136 and downregulating 
Apaf1 [243]. Similar to this study, Madhurima Das et al. 
treated senescent MSCs with the CM derived from 
young MSCs (Y-CM) and analyzed the expression of 
phenotypic markers CD90 and CD45 by flow cytom-
etry, which proved that the senescent stem cells could 
be rejuvenated [244]. The effect of CM derived from 
MSCs may have great relation to the role of cytokines 
secreted by MSCs. According to these studies, it is con-
cluded that co-culture of young MSCs or CM derived 
from young MSCs can restore the viability of senes-
cent MSCs, which may due to the ability of young 
MSCs such as reducing oxidative stress and restoring 
autophagy to rejuvenate senescent MSCs [244] (Fig. 5). 
Therefore, young MSCs can restore the activity of 
senescent MSCs, and the therapeutic effect of young 

MSCs may be better, so young MSCs should be selected 
as far as possible for clinical application.

The challenge of MSCs for senescence therapy 
in clinic
At present, the treatments of a variety of diseases based 
on MSCs, such as heart, bone, neurodegenerative dis-
eases, and immune diseases, have reached phase I and 
phase II clinical trials [245]. However, although MSCs 
have great potential in the treatment of many diseases 
and senescence, the current clinical treatment status of 
MSCs shows that MSCs still cannot be applied to clini-
cal treatment on a large scale. The clinical application of 
MSCs is still at an early stage, and extensive clinical trials 
are needed to verify [246] the safety and efficacy of MSCs 
[247]. For efficacy of MSCs, on the one hand, we know 
that the proliferation and differentiation ability of senes-
cent MSCs are significantly decreased, and thus, it cannot 
meet the large-scale dose of MSCs required for clinical 
application. On the other hand, most MSCs are trapped 
in the lung after intravenous infusion, and this kind of 
lung first-pass effect causes that a small number of MSCs 
can be detected in the target organ, thus requiring multi-
ple infusions at the time of treatment to improve the rate 
of MSCs transplantation [151]. It is known that the pre-
treatment of MSCs may help to improve the survival rate 
after transplantation and play a therapeutic role [248]. 
For example, MSCs need to be subjected to brief oxida-
tive stress before injection, usually treated at 20% O2 for 
48 h [249]. This kind of brief oxidative stress can improve 
the survival rate of MSCs after transplantation. There-
fore, for the clinical application of MSCs in the treatment 
of senescence, a large number of trials are still needed to 
determine the optimal and standard dose of transplanta-
tion to maximize the efficacy of MSCs [250].

Fig. 4  The morphology of hUC-MSCs: young hUC-MSCs at passage 5 (left) and senescent hUC-MSCs at passage 10 (right)



Page 16 of 24Wang et al. Stem Cell Research & Therapy          (2023) 14:260 

In addition to the above conditions that affect the 
therapeutic effect of MSCs, the heterogeneity of MSCs 
also has an impact on the efficacy. MSCs include vari-
ants from donors, tissues, subpopulations, and individual 
cells, termed heterogeneous [251]. MSCs are present in 
all organs and tissues, and their heterogeneity is related 
to many factors, showing heterogeneity at multiple lev-
els, such as donors and tissue sources, cell isolation 
techniques, culture conditions, and preservation condi-
tions [252, 253]. In conclusion, MSCs are heterogeneous 
cell population [254]. MSCs derived from different age, 
health status, gender, gene donors, and tissues show dif-
ferent characteristics. Even of MSCs are obtained from 
the same individual but at the different sampling loca-
tion, the properties of the obtained MSCs may be dif-
ferent. A meaningful study confirmed it in 2021 [255]. 
In this work, they conducted a number of experiments 
to investigate the different biological characteristics and 
heterogeneity among different donors of chorionic plate 
mesenchymal stem cells (CP-MSCs), AMSCs, and decid-
ual plate mesenchymal stem cells (DP-MSCs) isolated 
from human placenta. CP-MSCs, AMSCs, and DP-MSCs 
derived from five donors were studied by growth curve 
determination, the abilities of osteogenesis, chondrogen-
esis and adipogenesis, immunomodulatory function test, 
and Western blotting. Their results showed that MSCs 
derived from different types of placental tissue had differ-
ent biological characteristics, and the same type of MSCs 
from different individuals were also heterogeneous. This 

suggests that preselection of placenta-derived MSCs with 
specific biological advantages may improve the efficacy of 
cell therapy. Similarly, due to the heterogeneity of MSCs, 
optimal MSCs should be selected to improve the thera-
peutic effect. In addition, different cell isolation tech-
niques also can affect the purity and subsets of MSCs. 
Moreover, cell culture condition can have different effects 
on the expansion and status of MSCs, thus affecting their 
heterogeneity. With increasing age of donors, the abilities 
of multi-lineage differentiation, homing, immune regula-
tion, and oxidative stress regulation of MSCs gradually 
decrease to disappear. This also verifies that the differ-
ences between senescent and young MSCs are closely 
related to senescence-related heterogeneity. Currently, 
MSCs have been demonstrated to have a wide range of 
therapeutic potential in several experimental models. 
However, MSCs are heterogeneous cell population, and 
this heterogeneity of MSCs makes them hindered in 
therapy [251]; its heterogeneity is also a limiting factor 
for the clinical translation of MSCs therapy [253]. There-
fore, in order to avoid the differences in clinical treat-
ment caused by the heterogeneity of MSCs, firstly, MSCs 
should be obtained by using standardized cell prepara-
tion methods to avoid heterogeneity associated with 
culture conditions and cell isolation procedures. Then, 
the heterogeneity of MSCs can be analyzed by advanced 
single-cell RNA sequencing (scRNA-seq), and the imple-
mentation of a comprehensive single-cell map will help 
to better solve the heterogeneity [251]. In addition, 

Fig. 5  Senescent MSCs were cultured with the CM derived from young MSCs (Y-CM); the senescent stem cells could be rejuvenated by reducing 
oxidative stress and restoring autophagy
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appropriate pretreatment of the cell culture medium or 
genetic manipulation may change the characteristics and 
therapeutic potential of MSCs, which will play a key role 
in the future clinical MSCs therapy, through the different 
treatments of MSCs, personalize medicine for patients. 
In the future, we need to find a better method to accu-
rately analyze the heterogeneity of MSCs, so as to better 
solve the differences in therapeutic effects caused by het-
erogeneity and help to select the most effective MSCs for 
clinical research and treatment of diseases to obtain the 
maximum therapeutic effect.

According to previous studies, there are ethical and 
safety issues in the clinical transformation with stem 
cells [256]. Firstly, MSCs have a risk of generating tumors 
because of their ability of self-renewal. A study indi-
cated that analyzing the 42 studies and 32 reports, it was 
finally concluded that MSCs promoted cancer metasta-
sis and occurrence [257]. Then, MSCs have a risk of the 
formation of thrombus. In a phase I/IIa study of the use 
of WJ-MSCs to treat osteoporotic vertebral fractures, 
the complications that may be related to MSCs devel-
oped, such as pulmonary embolism and tumor forma-
tion, which suggested that we should pay attention to the 
complications that may occur during the clinical applica-
tion of MSCs [156]. An article reported that MSCs can 
promote the development and progression of cancer 
in various ways; however, MSCs can also participate in 
the induction and inhibition of cancer progression and 
metastasis mediated by some signaling pathways such as 
PI3K/AKT signaling pathway, JAK/STAT signaling path-
way, Wnt signaling pathway, Hippo signaling pathway, 
MYC signaling pathway, and NF-κB signaling pathway 
[258]. Therefore, for the safety of MSCs therapy, long-
term follow-up is needed to assess the oncologic safety 
of MSCs for widespread clinical application in the future 
[259]; furthermore, how to circumvent the pro-tumor 
effects of MSCs needs to be studied, which will provide a 
safe basis for the large-scale clinical translation of MSCs.

Conclusion and outlook
Senescence is age-related, which is characterized by cellu-
lar senescence and accompanied by increased inflamma-
tion. Senescence can cause different age-related diseases, 
such as osteoporosis, neurodegenerative diseases, POF, 
CVDs. Thus, it can be seen that senescence is very harm-
ful to human body. At present, it has been proved that 
exercise, appropriate nutritional intervention, CR, DR, 
maintenance of iron homeostasis, and some drug thera-
pies can alleviate senescence. However, these therapeutic 
effects are not as good as we expected; deeper under-
standing the cause of senescence and exploring more 
effective measures to delay or even reverse senescence 
are of great significance. Notably, aside from telomere 

shortening, DNA damage, mitochondrial dysfunction, 
epigenetic changes, and oxidative stress may contribute 
to senescence, endogenous stem cell exhaustion may also 
be involved in the process of senescence.

Stem cell-based cell therapy is becoming increasingly 
popular, especially MSCs. MSCs can be obtained from a 
variety of tissues and have strong abilities of self-renewal 
and differentiation. In addition, MSCs can secrete 
cytokines and exert immune properties, which make 
them have a great prospect in the treatment of senes-
cence. MSCs can improve the functions of various organs 
to achieve anti-senescence effect, which may be related 
to the fact that MSCs secrete soluble factors to affect 
the survival and proliferation of surrounding cells. UC-
MSCs represent an attractive and ethical cell source for 
stem cell therapy [260]. On the one hand, they are easy 
to extract materials, wide sources, isolated and cultured 
in  vitro, stable biological properties, low tumorigenicity 
and immunogenicity. On the other hand, culturing MSCs 
from umbilical cord does not have ethical problems, 
does not cause additional pain to the patient, and does 
not easily lead to the spread of the disease in the popula-
tion [247]. It seems to be a promising kind of MSCs for 
the treatment of senescence. At present, there have been 
some clinical trials based on MSCs in the treatment of 
senescence and senescence-related diseases, which have 
preliminarily proved the efficacy and safety of MSCs 
therapy.

Overall, it is of interest that MSCs therapy has great 
therapeutic prospects in regenerative medicine; how-
ever, it is far way to achieve satisfactory anti-senescence 
efficacy of MSC-based therapy. Therefore, it is great of 
potentials to reinforce therapeutic efficacy by specific 
gene modification in MSCs. The engineered gene-mod-
ified MSCs have more advantages, such as long-term 
and efficient expression of targeted molecules or effector 
molecules to enhance higher therapeutic effects. In addi-
tion, due to their targeting properties, MSCs are also very 
suitable to be used as vectors to deliver genes to the site 
of injury [261]. IL-10 is an anti-inflammatory cytokine, 
mainly secreted by immune cells, which can limit the 
proliferation of T cells and inhibit the production and 
expression of pro-inflammatory factors such as IL-2, IFN-
γ, IL-6, TNF-α [262]. Overexpressing IL-10 MSCs were 
found to increase autophagy and protect rats from neu-
ronal damage induced by traumatic brain injury [263]. 
There were many similar studies regarding IL-10-modi-
fied MSCs showing better therapeutic effects than naive 
MSCs. For example, IL-10 -modified human amniotic 
MSCs showed better effects in accelerating wound heal-
ing, promoting angiogenesis, regulating inflammation, 
and promoting extracellular matrix remodeling to pro-
mote wound healing and improve the quality of healing 
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[261]. Human IL-10-modified UC-MSCs also showed 
successfully alleviated high-fat diet (HFD) that induced 
the obesity in mice [60]. In the future, this kind of genetic 
engineering MSCs may provide a new idea and inspira-
tion for clinical treatment of senescence.

In summary, MSC-based therapy is a promising cell 
therapy for anti-senescence and will make a great con-
tribution to anti-senescence in the future. Specific 
gene-modified MSCs may have much better effects on 
anti-senescence and related diseases.
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