
IN A NUTSHELL

Rejuvenating aged stem cells: therapeutic strategies to
extend health and lifespan
Francesca Matteini1,2 , Sara Montserrat-Vazquez1,2 and M. Carolina Florian1,2,3,4

1 Stem Cell Aging Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain

2 Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), Barcelona, Spain

3 Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain

4 The Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain

Correspondence

M. C. Florian, Stem Cell Aging Group,

Regenerative Medicine Program, The

Bellvitge Institute for Biomedical Research

(IDIBELL), Av. Granvia n.199, 08908,

L’Hospitalet de Llobregat, Barcelona, Spain

Tel: +34 936073815

E-mail: mflorian@idibell.cat

(Received 23 October 2023, revised 3

February 2024, accepted 7 March 2024,

available online 11 April 2024)

doi:10.1002/1873-3468.14865

Edited by Eleni Katsantoni

Aging is associated with a global decline in stem cell function. To date,

several strategies have been proposed to rejuvenate aged stem cells: most of

these result in functional improvement of the tissue where the stem cells

reside, but the impact on the lifespan of the whole organism has been less

clearly established. Here, we review some of the most recent work dealing

with interventions that improve the regenerative capacity of aged somatic

stem cells in mammals and that might have important translational possibili-

ties. Overall, we underscore that somatic stem cell rejuvenation represents a

strategy to improve tissue homeostasis upon aging and present some recent

approaches with the potential to affect health span and lifespan of the whole

organism.
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Physiological aging is associated with a general impair-

ment in stem cell function [1]. Recent evidence shows

that this process does not occur at the same speed in

every organ, and this is strongly associated with

increased mortality and age-related diseases [2]. Inter-

estingly, many of the current therapeutical approaches

to limit or delay aging target the effects arising from

decreased aged stem cell function. For this reason, tar-

geting directly aged somatic stem cells might represent

a more effective strategy to improve tissue homeostasis

over time, and in some circumstances, may also

improve health and lifespan in the elderly (Fig. 1).

The strategies proposed to rejuvenate tissue-resident

aged stem cells to date mainly involve physical

exercise, diet manipulation and fasting, or target

senescence, autophagy, epigenetic reprogramming, cir-

culating blood factors or stem cell polarity (Fig. 2).

Here, we briefly review some of the most recent strate-

gies identified to improve function of aged

tissue-resident somatic stem cells in mammals and dis-

cuss their possible translational applications.

Exercise and diet interventions

The beneficial effect of exercise on health has been

known for a long time [3]. Many studies on this topic

have focused on the changes induced by exercise on

the skeletal muscle, as this is the most directly affected

tissue. It has been shown that moderate intensity run-

ning for 30 min per day for 8 weeks increases the
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number of skeletal muscle stem cells (MuSC, also

known as satellite cells) in old mice, which are lost

with aging [4]. A similar increase was detected in aged

humans after a 12-week resistance exercise training [5].

Free access to a running wheel during 3 weeks did not

increase the number of MuSCs in aged mice, but

improved their regenerative capacity, giving rise to

new muscle fibers in the presence of an injury [6]. In

mice, it has also been reported that there is a recovery

of intercellular interactions in the MuSC niche and a

downregulation of genes involved in inflammation

after 5 weeks of voluntary running [7]. However, the

rejuvenating effects on MuSCs seem to disappear once

the mice stop exercising [6].

The brain is another organ that is affected by exer-

cise. Neurogenesis increases in mice transplanted with

plasma from exercised aged mice, that had access to a

running wheel for 6 weeks, compared to sedentary

counterparts, improving spatial learning and memory

[8]. However, although some studies reported an

increase in the number of neural stem cells (NSC)

[7,9], a rejuvenating effect in their transcriptome [10],

and a recovery of the intercellular interactions with the

NSC niche [7] after voluntary running for several

weeks, the mechanistic link between these changes and

the increase in neurogenesis has yet to be clearly

proved.

Some other aged stem cells also benefit from exer-

cise, such as tendon stem cells [11]. On the contrary,

hematopoietic stem cells (HSC) do not change in num-

ber or improve their regenerative capacity in the aged

bone marrow (BM) after mice are given free access to

a running wheel for 4–7 weeks, although osteogenic

and lymphoid progenitors are increased [7,12,13]. It is

Fig. 1. Cartoon summarizing the effects of aging on several human somatic stem cells [5,7,17,76,80–100]. The strategy proposed in the

cartoon suggests the use of rejuvenated stem cells as a therapeutic tool to improve the homeostasis of the entire tissue/organ by restoring

the stem cell regenerative potential. For this reason, stem cell rejuvenation can represent a promising approach to simultaneously

rejuvenate several organs and to globally improve organism health and lifespan in the elderly. Aging effects on stem cells are written in gray

when they have been proven in mice, but not in human. Graphics created with Biorender.
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worth noting that many variables need to be taken

into account when studying the effects of exercise,

such as sex, age, and initial weight of the individuals

included in the study and in the control groups [7].

The use of inbred strains is recommended to minimize

the genotypic differences [14]. Moreover, the type of

exercise performed, its duration and, in the case

of skeletal muscle, the muscle analyzed, can affect the

rejuvenating effects [5]. Overall, exercise ameliorates

the regenerative capacity of some tissues and is a clear

strategy to improve health in the elderly. Nevertheless,

it remains unclear if exercise alone is able to increase

lifespan [14].

Calorie restriction (CR) and fasting are two other

strategies that have been largely studied for their reju-

venating capacities. Intestinal stem cells (ISC) increase

Fig. 2. Cartoon depicting interventions to rejuvenate aged somatic stem cells. Several strategies to increase stem cell function and lifespan

have been described so far. This cartoon summarizes the interventions proposed to rejuvenate aged somatic stem cells and their effect,

specifying the stem cell type where the intervention has been experimentally applied, and highlighting when the described intervention had

an effect in extending the organism lifespan. A question mark indicates cases with contradictory results. Graphics were created with

Biorender.
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in number and replicate more after CR [15] and

fasting-mimicking diet (FMD) [16], and their capacity

to form organoids is improved after fasting [17]. In the

skeletal muscle, MuSCs seem to enter a deep quiescent

state after fasting, which is not recovered by re-feeding

[18]. This slows muscle regeneration but improves the

survival of these stem cells [18], effects which are also

observed using CR [19]. FMD followed by re-feeding

showed an increase in MuSC number to more youthful

levels, with an improvement in the locomotor abilities

of the aged mice [20].

Other types of somatic stem cells, like mesenchymal

stem cells (MSC) or hair follicle stem cells (HFSC),

showed rejuvenating effects after FMD and CR,

respectively [20,21]. On the other hand, the effect of

fasting and CR on the hematopoietic system is more

controversial. A 30% dietary restriction decreased the

number of HSCs, which accumulate with aging,

increasing their repopulating capacity after transplan-

tation [22], and prolonged fasting reverted the

lymphoid-myeloid bias that characterizes aged HSCs

[23]. However, the number of HSCs was not changed

after life-long CR, with no improvement in their

regenerative capacity nor recovery of the myeloid bias

[12,24]. Moreover, 30% dietary restriction decreased

differentiation towards the lymphoid lineage [12,22,24]

and CR impaired T-cell function, increasing mice mor-

tality after infection [25]. Contradictory results have

also been found regarding the effects on lifespan, with

an increase in median but not maximum lifespan

detected with FMD [20], and increased lifespan depen-

dent on sex, strain, and percentage of caloric restric-

tion observed with CR [26]. In addition, the

pharmacological compound rapamycin, which mimics

dietary restriction, has the ability to extend lifespan in

mice, but with some side effects that need to be con-

trolled by adjusting the treatment strategy or using

analog compounds [27,28]. Altogether, although some

stem cell rejuvenating effects have been described, the

lack of consistent results across the different fasting

and CR strategies in the different organs, together

with the variability described in some studies as for

sex, strain, and age of onset of the diet [19,29], make

it difficult at present to define a clear diet to achieve

holistic stem cell rejuvenation and lifespan extension.

Partial reprogramming

An exciting strategy that has been proposed for cell reju-

venation is reprogramming cells to a more undifferen-

tiated state by inducing expression of the Yamanaka

factors Oct4, Sox2, Klf4 and c-Myc (OSKM). Although

in vivo reprogramming by the OSKM factors has

resulted in the induction of teratomas [30,31], partial

reprogramming without achieving complete cellular

dedifferentiation does not appear to be associated with

tumorigenesis [32–34]. A cyclic induction of OSKM was

able to increase the numbers of MuSCs and HFSCs in

adult mice with progeria and to improve regeneration of

the skeletal muscle [32]. This improvement in muscle

regeneration was also observed upon transient expres-

sion of the reprogramming factors in aged mice [34] and

was shown to be driven by the effects of the reprogram-

ming on the muscle niche cells, which activated MuSCs

through downregulation of Wnt4 [35]. Partial repro-

gramming also rejuvenated MSCs at the transcriptome

level [36]. Other cells and tissues showed rejuvenating

effects after OSKM induction, such as the brain, show-

ing improved memory [37]; the retinal ganglion cells,

showing increased axon regeneration and a reversion of

vision loss in mice with glaucoma [34]; and some cell

types of the pancreas, liver, spleen, and blood, with

signs of rejuvenation at the transcriptome, epigenome

and metabolome level [38]. However, in these latter

examples, it was not determined if the functional

improvements were due to a rejuvenation of the

tissue-resident stem cells. Moreover, lifespan extension

after in vivo partial reprogramming in mammals has

only been described in progeria mice [32]. Hence, further

studies will be needed to better understand the effect of

reprogramming on stem cells and lifespan, and to define

an optimal treatment strategy to achieve rejuvenation

without the risk of cancer induction.

Senescence

Cellular senescence is characterized by a stable

cell-cycle arrest of dysfunctional cells which also pre-

sent with a senescence-associated secretory phenotype

(SASP) [39]. The accumulation of senescent cells upon

aging has been shown to limit lifespan and health span

in mice [40]. Clearance of senescent cells with senoly-

tics was shown to exert promising results on HSCs

and MuSCs [41,42] in mice and also on human MSCs

in vitro [43]. Clearance of senescent cells by ABT263

administration restores HSC function in mice. HSCs

from ABT263-treated aged mice showed a significant

increase in their clonogenic activity in vitro and

improved long-term and multilineage engraftment

upon BM transplantation. Similarly, ABT263 treat-

ment of MuSCs isolated from aged mice improved

their clonogenicity in culture, in association with a sig-

nificant reduction in the number of MuSCs expressing

p16, phosphorylated p38 and the DNA damage

marker c-H2AX, typical markers that accumulates

upon MuSC senescence [42].
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Recently, the rescue of the senescence-driven alter-

ation in mitochondrial dynamics and ROS production

[44,45] and in NADH dehydrogenase iron–sulfur pro-

tein 6 (Ndufs6) [46] has been proposed as a solution to

rejuvenate aged MSCs. Following up on this, trans-

plantation of rejuvenated MSCs has been suggested as

an anti-aging strategy counteracting senescence in dif-

ferent tissues [44,47–49]. Moreover, it has been

reported that NAD+ metabolism controls SASP pro-

duction [50]. The supplementation of NAD+ and of its

precursor rejuvenates MuSCs, melanocyte stem cells

and NSCs, and enhances lifespan in mice [51]. Further,

it has been shown that senescent human MSCs are

rejuvenated in vitro by rescuing the NAD+/NADH

redox alterations in their metabolism [52]. Interest-

ingly, CAR-T cells have been engineered to target

senescent cells, becoming novel senolytic drugs in aged

mice [53].

Senescent cells form an inflamed niche that mirrors

the inflammation associated with aging by arresting

stem cell proliferation and regenerative potential. In

young and aged mice, the reduction of senescent cells

or of the inflammation associated with senescent

cells accelerates tissue regeneration. On the contrary,

transplantation of senescent cells delays regeneration

[41]. Mice treated with a bi-weekly administration of a

combination of the senolytics dasatinib and quercetin

starting at 24–27 months of age (equivalent to age 75–
90 years in humans) showed a significantly higher

median post-treatment lifespan and lower mortality

hazard. However, it remains unknown whether this

extension of murine median lifespan involves the reju-

venation of resident somatic stem cells upon clearance

of senescent cells [54]. Senolytic treatment of aged

human pluripotent stem cell-derived brain organoids

has been shown to alleviate physiological aging and

COVID-19 neuropathology [55], and currently, several

senolytics are used in clinical trials [56].

Autophagy

Autophagy is a highly conserved pathway that

degrades defective cellular organelles and aggregates of

misfolded protein through lysosomes. Compromised

autophagy is a hallmark of aging [57]. In vitro, inter-

ventions targeting autophagy have shown to improve

the function and to directly rejuvenate different

somatic stem cells [58–60]. Chaperone-mediated autop-

hagy (CMA) decreases in murine HSCs during aging,

impairing HSC activation. CMA blockage in young

HSCs partially phenocopies the proteome alterations

observed in aged HSCs, while both genetic and phar-

macological activation of CMA improve aged HSC

function by reducing oxidized protein levels, by restor-

ing GAPDH activity and by increasing the glycolytic

flux. Here we note that the administration of a CMA

pharmacological activator to CD34+ human hemato-

poietic stem and progenitor cells (HSPC) derived from

donors older than 59 years markedly increases the

multi-lineage potential and sustains the overall cell

output upon long-term culture of these cells [60]. A

direct effect of autophagy on lifespan has been exten-

sively studied in yeast, Caenorhabditis elegans and in

Drosophila melanogaster. However, it still remains

unclear whether direct modulation of autophagy, sys-

temically or in specific organs, has a causal role in life-

span extension in mammals, as in mammals the effect

of autophagy on lifespan extension is mostly evaluated

in association with or dependence to caloric restriction

[61]. Reduced survival compared to aged-matched con-

trols has been shown exclusively in a muscle-specific

autophagy-deficient mouse model (Atg7�/� mice), and

this is directly associated with autophagy impairment

in the tissue. Nevertheless, it remains unknown if this

effect depends on the direct alteration of autophagy in

MuSCs [60]. Despite these promising observations and

the ability to extend the lifespan of several mouse

models, many autophagy-targeting drugs have failed

to reproduce in humans the achievements obtained in

mice [61].

Circulating blood factors

Another rejuvenation strategy that systemically targets

the organism is parabiosis, which consists of the

exchange of blood circulation between heterochronic

animals, as systemic factors present in young blood or

plasma have been shown to have a protective effect

against age-related diseases in various tissues [62,63],

while blood or plasma from old mice induces senescence

and ages young tissues [64,65]. Administration of

young-derived blood products in humans is currently

under evaluation as a possible anti-aging strategy [66].

Parabiosis directly affects different somatic stem cells in

mice. The exposure of aged murine satellite cells to

young serum enhances the expression of the Delta fam-

ily of Notch ligands, increasing Notch activation and

enhancing proliferation in vitro. Similarly, heterochro-

nic parabiosis enhances proliferation of aged liver pro-

genitor cells and restores molecular determinants of

young liver regeneration [65]. Interestingly, one single

exchange of heterochronic blood reduces the number of

proliferating NSCs, severely decreasing hippocampal

neurogenesis in young mice, while the analysis of hippo-

campal neurogenesis in aged mice shows the absence of

a significant positive effect after exchange to young
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blood [65]. Single-cell transcriptomic atlas across aged

tissues and organs and their rejuvenation in heterochro-

nic parabiosis demonstrated the improvement of

aging-associated phenotypes in multiple tissues, with a

reduced accumulation of senescent cells in the spleen,

skin, liver, and brain, in association with a decrease in

the number of apoptotic cells in the spleen, skin, liver,

and skeletal muscle. Single-cell transcriptomic analysis

indicates that HSPCs are the most responsive cell type

to young blood exposure, showing of a restored youth-

ful transcriptional regulatory program and cytokine and

cell–cell communications. Moreover, the age-associated

decline of lymphopoiesis improves upon reintroduction

of the identified rejuvenating factors [62].

Interestingly, the effect of heterochronic parabiosis

is still very controversial as different groups are

observing opposite outcomes [12,62]. It has been

recently demonstrated that aged HSCs are extremely

resistant to bloodborne systemic rejuvenation

approaches. By transplanting murine aged HSCs into

young recipients, it has been observed that the

long-term exposure of old HSCs to a young BM

niche microenvironment doesn’t affect their

cell-intrinsic aged state. Despite recapitulating the

NSC rejuvenation, the exposure to young blood in

heterochronic parabiosis is unable to functionally

rejuvenate aged HSCs. In fact, regardless of exposure

to young blood, aged HSCs upon transplantation

show a reduced regenerative capacity and the persis-

tence of a myeloid-biased output compared with

young HSCs. Accordingly, the analysis of aged HSCs

homed in the BM of young recipients upon hetero-

chronic parabiosis showed that despite the relocation

of these cells to young BM niches, they are not reju-

venated as they maintain an unchanged aged pheno-

type and an aged transcriptomic profile. Interestingly,

aged HSCs appear to be refractory to other systemic

rejuvenation strategies, such as exercise and life-long

CR [12]. Surprisingly, in LmnaG609G/G609G and

Bub1bH/H progeroid mouse models, HSCs are nei-

ther prematurely aged nor delayed in acquiring aging

features in a long-lived mouse model in contrast to

other tissues [12].

Studies performed in humans highlight that the

rejuvenation effect of young blood administration is

conserved [66]. Rounds of therapeutic plasma

exchange promote a global shift to a younger sys-

temic proteome in different cell types, also showing

reduced cellular senescence and lower DNA damage

accumulation thanks to a more youthfully balanced

regulation of circulatory regulators of the JAK–
STAT, MAPK, TGF-beta, NF-jB, and Toll-like

receptor signaling pathways [66].

Cell polarity and Cdc42 activity

Cell polarization, defined as the uneven distribution of

RNAs, proteins, organelles, and cytoplasm, occurs in

many forms and the most widely known is the

apical-basal polarity of epithelial cells. The capacity of

establishing cell polarity, associated with the activity

or the expression of specific polarity proteins, appears

to be linked to aging of asymmetrically dividing cells

and organisms [67]. Over the years it has been shown

how polarity regulation is essential for homeostasis,

especially in the epithelial tissue [68,69].

In the context of somatic stem cell rejuvenation,

targeting cell polarity represents a potential strategy

to improve tissue and organ regeneration. For exam-

ple, the small RhoGTPase Cdc42 is involved in the

establishment of cell polarity in many cell types and

its activity level increases over time, driving loss of

polarity and aging in stem cells [70–73]. Cdc42 activ-

ity can be efficiently targeted by using a specific

small molecule inhibitor named CASIN (Cdc42

activity-specific inhibitor) [74]. CASIN treatment has

been shown to rejuvenate different somatic stem cell

types [71,75–77]. In detail, systemic treatment of

aged mice with CASIN rejuvenates HFSCs by

restoring canonical Wnt signaling [75] and ISCs by

improving regeneration of aged crypts upon stress

[76]. Recently, we reported that systemic inhibition

of the activity of Cdc42 targets aged MuSCs and

HSCs in vivo, and further, we proved that transplan-

tation of CASIN-rejuvenated aged HSCs is sufficient

to extend the lifespan and health span of aged recip-

ient mice [73] (Fig. 3). CASIN treatment increases

locomotor activity, endurance, and strength, in asso-

ciation with an improvement of skeletal MuSC func-

tion in aged mice. Moreover, Cdc42 inhibition

increases myofiber cross-sectional area and MuSC

proliferation and activation upon injury, resulting in

improved tissue regeneration. Furthermore, CASIN

treatment rejuvenates aged HSCs in vivo by restoring

their epigenetic polarity and their localization within

the BM, without affecting HSC number and prolifer-

ation. Rejuvenated HSCs in aged CASIN-treated

mice are found closer to sinusoids, arteries, and end-

osteum compared to the stem cells in aged untreated

mice and, similarly to young HSCs, CASIN-

rejuvenated aged HSCs regenerate the hematopoietic

system more efficiently upon both primary and sec-

ondary transplantation, and differentiate more read-

ily into the B-lymphoid lineage compared to aged

control HSCs. Surprisingly, scRNA-seq analysis

reveals that CASIN treatment specifically alters the

transcriptome of aged HSCs by increasing the
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transcriptional heterogeneity lost with aging and by

restoring the connectivity across HSPC clusters, sug-

gesting an improvement in their commitment and

differentiation capacity. Despite the improvement in

aged HFSCs, ISCs and MuSCs upon CASIN treat-

ment, it was possible to demonstrate the direct link

with the health and lifespan extension only for blood

stem cells [73]. It would be intriguing to further

investigate the uniqueness of the ability of HSCs to

rejuvenate the entire body and the possible crosstalk

with other somatic stem cells.

Interestingly, cell polarity was also described in

HSCs from naked mole rats (NMR), the longest-lived

rodents. Remarkably, in NMRs the resilient pheno-

types are characterized by an increased quiescent

HSPC compartment and by absence of the age-related

decline in HSC polarity (for Tubulin not Cdc42),

which is not lost until 12 years of age [78].

Conclusions and perspectives

Collectively, these results provide the proof-of-concept

that somatic stem cell rejuvenation is a possible strat-

egy to improve the regenerative capacity of several tis-

sues upon aging and that in some instances, stem cell

rejuvenation globally improves the whole organism

health span and lifespan. Mice are extensively used as

model systems to recapitulate human physiology and

most of the data that we have described above are

based on murine studies. A few of these interventions

have now also been translated into the human system;

for example, senolytic treatments [54], blood transfer

[66], and autophagy-targeting drugs have been used in

patients [61]. Interestingly, it has been recently pub-

lished that, in line with the alterations occurring in

murine HSCs over time, Cdc42 activity also increases

in association with loss of cell polarity in human HSCs

Fig. 3. Cartoon summarizing the major findings described in Montserrat et al. [73]. Rejuvenation of skeletal muscle stem cells (MuSCs) and

hematopoietic stem cells (HSCs) with a short treatment with CASIN (Cdc42 activity-specific inhibitor) increases skeletal muscle function and

restores the hematopoietic differentiation output. CASIN treatment restores HSC epipolarity, increases transcriptional network connectivity

and restores HSC localization within the bone marrow to the same niches occupied by young HSCs. Importantly, the transplantation of

CASIN-rejuvenated HSCs is sufficient to increase heath and lifespan in immunocompromised aged recipients, directly linking stem cell

rejuvenation with lifespan extension. Graphics were modified from Servier Medical Art, licensed under a Creative Common Attribution 3.0

Generic License. http://smart.servier.com/.
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(hHSCs) upon aging [79,80]. Importantly, ex vivo

CASIN treatment of aged hHSCs restores polarity and

the engraftment profile to the levels of young hHSCs

in xenotransplantation experiments [80].

In conclusion, several lines of evidence suggest that

human somatic stem cell rejuvenation might represent

in the next future a promising potential therapeutical

strategy to comprehensively improve quality of life in

the elderly, paving the way for a new era of stem cell

anti-aging therapies.
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