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Abstract
Multiple sclerosis (MS) is defined as an inflammatory disorder that chronically affects the central nervous system of young 
people mostly and is distributed globally. It is associated with degeneration and demyelination of the myelin sheath around 
the nerves, resulting in multiple neurological disability symptoms ranging from mild to severe cases that end with paralysis 
sometimes. MS is one of the rising diseases globally that is unfortunately associated with reduced quality of life and add-
ing national economic burdens. The definite MS mechanism is not clearly defined; however, all the previous researches 
confirm the role of the immune system as the master contributor in the pathogenesis. Innate and adaptive immune cells are 
activated peripherally then attracted toward the central nervous system (CNS) due to the breakdown of the blood–brain bar-
rier. Recently, the gut-brain axis was shown to depend on gut metabolites that are produced by different microorganisms in 
the colon. The difference in microbiota composition between individuals is responsible for diversity in secreted metabolites 
that affect immune responses locally in the gut or systemically when reach blood circulation to the brain. It may enhance or 
suppress immune responses in the central nervous system (CNS) (repeated short forms); consequently, it may exacerbate 
or ameliorate MS symptoms. Recent data showed that some metabolites can be used as adjuvant therapy in MS and other 
inflammatory diseases. This review sheds light on the nature of MS and the possible interaction between gut microbiota and 
immune system regulation through the gut-brain axis, hence contributing to MS pathogenesis.
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Introduction and Background

Multiple sclerosis (MS) is a chronic neurodegenerative dis-
ease that is characterized by inflammation, demyelination of 
the protective layer (myelin sheath) surrounding nerve cells 
[1]. The most affected parts are the periventricular region, 
optic nerve, brainstem, spinal cord, proximal cortex, and 
cerebellum [2]. The affected CNS parts lead to weakness 
in extremities, sensation abnormalities, vision disorders, 
dyssynergia, and psychiatric disorders in addition to other 
neuronal complications [3]. Approximately 2.8 million per-
sons between the age of 20 and 40 years all over the world 
were diagnosed with MS; however, a pediatric-onset MS was 
reported during childhood [4].

Recent researches highlight the correlation between 
integrity of gut microbiota, microorganisms that colonize 
the gastrointestinal tract (GIT), and host functions, includ-
ing metabolism, immunity, nutritional responses, circa-
dian rhythmicity [5], as well as central nervous system 
(CNS) function in diseased and healthy people. Microbiota 
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composition differs from person to person due to multiple 
factors such as location, sex, age, diet, race, therapies (par-
ticularly antibiotics), smoking, gastrointestinal infections, 
stress, and other individual factors [6, 7].

Nature of MS, role of different cytokines in its pathogen-
esis, and impact of microbiota on CNS disorders are dis-
cussed in previous review articles [8]. In the current review 
article, we discussed deeply the pathogenesis of MS and role 
of immune cells, and eventually correlate the impact of gut 
microbiota and its metabolites with MS onset and prognosis.

Nature and Etiology of MS

Till now, the onset of MS and the full pathological pathways 
are not fully understood [1]; there is a debate whether MS is 
immune-mediated or autoimmune disease due to the absence 
of the primary criteria of autoimmune diseases which is the 
presence of a specific auto-antigen [9]. Autoimmune dis-
ease occurs when adaptive immunity is directed against self-
antigens, causing the body to mistakenly attack normal cells 
[10]. However, MS is classified as an organ-specific disease 
(infects the brain and spinal cord specifically) with immune-
mediated myelin damaging etiology, but it lacks specific 
autoantigen. Indeed, till now there is no proven implication 
of an infectious agent as a cause of immune cross-reactivity 
in MS patients [9].

The autoimmune reaction against myelin as a full etiolog-
ical explanation for MS has been challenged due to a number 
of observations [11]. Firstly, some studies showed that the 
early events of MS are characterized with oligodendrocytes 
and myelin loss, as well as T cells and B cells absence, 
implying that MS pathology may depend on a process “other 
than cell-mediated immunity” [12, 13]. Secondly, the pres-
ence of large myelin loss lesions in pyramidal and sensorial 
pathways, mostly caused by infiltrating immune cells [14, 
15]. Thirdly, demyelinating lesions seen in MS patients 
after autologous bone marrow transplantation have few or 
no T cells, suggesting that an intrinsic pathological process 
in the CNS is the cause of these lesions [16].

Finally, the inside out theory, recent studies highlighted 
the involvement of peripheral T and B cells that pass through 
impaired blood–brain barrier to CNS attacking the myelin 
sheath. On the contrary, inside the CNS accumulation of 
biochemical changes due to metabolic dysfunction in the 
CNS leads to demyelination that triggers release of inflam-
matory mediators [17, 18].

Collectively, there are heterogeneous inflammatory 
and immune episodes that happen in MS, but the relation 
between MS and antibodies against the myelin oligodendro-
cyte glycoprotein (MOG) as well as myelin or non-myelin 
directed autoantibodies has been intensively studied but with 
inconsistent results [19, 20].

The Clinical Course of MS

The clinical course of MS is categorized into four cat-
egories: (1) Clinically isolated syndrome (CIS); the first 
neurologic symptoms occur due to neuronal inflamma-
tion and demyelination in CNS that must extend to 24 h 
or more, and it may or may not develop to MS [21]. (2) 
Relapsing–remitting MS (RRMS); the most prevalent 
category, in which new or increased neurological attacks 
(relapses) happen [21]. These attacks are followed by par-
tial or complete recovery periods (remission). (3) Second-
ary progressive MS (SPMS); this category is characterized 
by the development of permanent neurological deteriora-
tion with prominent clinical disability progression disease 
form followed by a phase of relapses and remissions [22]. 
(4) Primary progressive MS (PPMS); this category is char-
acterized by increasing disease progression from the start 
of the disease course [21] (Fig. 1).

MS Immunopathogenesis: Interaction Between 
Innate and Adaptive Immunity

MS is considered a result of interaction between adaptive 
and innate immunity in the periphery through myeloid cells, 
B cells, T cells, and the CNS through resident cells such as 
microglial cells and astrocytes [23]. The later cells secrete 
diverse neurotoxic inflammatory molecules (as reactive 
oxygen species (ROS), many chemokines and cytokines) 
that induce the recruitment of different inflammatory cells 
toward the CNS [24]. Different immune cells released 
cytokine and their impact on MS are listed in (S1).

Fig. 1   The clinical categories of MS onset; secondary progressive 
MS (SPMS), primary progressive MS (PPMS), relapsing–remitting 
MS (RRMS), and clinically isolated syndrome (CIS)
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Role of Adaptive Immunity Role in MS

Impact of T cells. The activated T cells (CD4+  +and CD8 ‏
T cells) can pass the BBB, initiating a series of reactions 
through cytokines secretion to exert their effector functions 
and recruit additional immune cells to start the inflamma-
tory process and formation of an inflammatory demyelinat-
ing lesion [25]. T cells are classified into two main subsets, 
CD4+ helper T cells and CD8+ cytotoxic T cells; CD4+ 
helper T cells identified subsets are Th1, Th2 cells, Th17, 
Th22, the regulatory type 1 cells (Tr1), induced T-regulatory 
cells (iTreg), T helper 9 (Th9), and follicular helper T cell 
(Tfh) [26, 27]. Several studies, on experimental autoimmune 
encephalitis model (EAE) [28], have proven the central role 
of CD4+  ;T lymphocytes in MS initiation and development ‏
mainly CD4  T helper 1 (Th1), T helper 17 (Th17) cells +‏
[29], and CD4+ Th2 cells are implicated in MS pathogenesis 
[30].

Activated T cells, Th1 and Th17 subsets, secrete pro-
inflammatory cytokines such as interferon (IFN)-γ, tumor 
necrosis factor (TNF)-α, Granulocyte–Macrophage Colony-
Stimulating Factor (GM-CSF), and IL-17, leading to inflam-
mation, demyelination, and axonal damage [31]. Th1 cells 
activate macrophages and microglia, while interfering oli-
godendrocytes survival and differentiation [32]. Th17 cells 
have a role in disrupting the BBB that facilitates inflamma-
tory immune cells infiltration, also interfere with glial cells 
functions, and stimulate axonal damage and neurodegen-
eration [33]. Pathogenic IFN-γ + IL-17 + TH17 cells have 
been shown to be increased in MS relapses, and increased 
IL-10 + IL-17 + TH17 cells in stable RRMS patients [34]. 
IL-23 promotes the conversion of intestinal non-pathogenic 
TH17 cells into pathogenic CXCR6 + TH17 cells in EAE 
[35, 36] and observed that GM-CSF produced by pathogenic 
T cells in MS and EAE promotes differentiation of Ly6Chi 
monocytes into inflammatory macrophages in presence of 
IFN-γ [32], and stimulate disease-promoting astrocyte sub-
sets differentiation [33].

Regarding CD8 + T cells, it is considered the predominant 
T cell population in MS lesions [33].

CD8+ T cells cause axonal dissection by releasing cyto-
lytic granules that aggravate the demyelination process 
[37]. IFN-γ- and IL-17 secreted by activated T cells can 
activate resident immune cells of the CNS (as astrocytes 
and microglial cells) [38]. Besides, CD8+ T cells also can 
induce cytokine-mediated death of both endogenous mye-
lin-producing cells [39] and oligodendrocytes leading to 
neuronal damage once reach the CNS [40]. This activates 
antigen-presenting cells (APCs), releasing reactive nitrogen 
species (RNS)and ROS as well as increasing the produc-
tion of more cytokines [41]. Some CD8+ T cells in response 
to a specific antigen exhibit oligoclonal expansion; these 
oligoclonal expanded cells were shown to be present in the 

CSF and CNS, as well as the blood of a small number of 
investigated patients with MS [42].

Recently, tissue-resident CD8 + T cells were identified 
as putative drivers of compartmentalized autoimmune CNS 
damage [43]; recent studies have re-invigorated the study of 
CD8 + T cells in EAE [44].

Regulatory T cells In contrast to the harmful effect of the 
inflammatory T cell subsets, there are other T cell subsets 
that can regulate immune activation reactions and control 
the development of autoimmunity; regulatory T cells (Treg) 
cells have a protective role in MS [45]. In MS, two subsets 
of CD4+ Treg cells have been identified and investigated. 
CD4+ FoxP3+ Tregs are one of the Treg cells subsets that 
have the capability to decrease the proliferation of T cells 
in vitro through the expression of the Forkhead box protein 
3 (FoxP3) (transcription factor), in addition to a variety of 
inhibitory surface molecules [46].

Tr1 cells are another type of CD4+ Treg cell with prolif-
eration inhibition ability through IL-10 secretion [47]. For 
example, the transfer of Treg cells specific for myelin oligo-
dendrocyte glycoprotein provided protection against EAE 
that is achieved in a dose-dependent way [48]. Many studies 
demonstrate that inflammation in MS may be a result of Treg 
cell number reduction [49, 50], or functionality [51, 52].

Role of B cells Various studies have proven that B cells’ 
role in MS is not antibody dependent, but rather depends on 
cellular immunological interactions in the periphery with 
their capacity to recruit and activate myeloid cells and T 
cells in the CNS (Li et al., 2018b). These effects were caused 
by a change in the cytokine secretion pattern, an increase 
in pro-inflammatory cytokines such as IL-6 [53], TNF-α, 
and lymphotoxin-α (LT), and production of inflammatory 
cytokines IL-35 and IL-10 [23] and granulocyte–mac-
rophage colony-stimulating factor (GM-CSF) [54] and aid 
in the development of Th1 and Th17 cells [54]. Besides a 
decrease in the regulatory cytokines like IL-10, IL-35, and 
transforming growth factor-β (TGFβ) and presentation of 
antigen to T cells IL-21 secreted by pathogenic Th17 cells 
might promote memory B cell survival and proliferation 
[55]. Therefore, memory B cells in MS have the ability to 
induce the activation of T cells and exhibit enhanced pro-
inflammatory properties [55]. Mature naive B cells in MS 
showed abnormal proliferation and activation [56].

Implication of B cell Populations in MS

The B cells implication in MS relapses development has 
discovered after the remarkable outcomes of using selec-
tive B cell-–targeting treatments (such as anti-​CD20 antibod-
ies) in MS; however, 95% of MS patients have an abnormal 
increase of CSF-​restricted IgG oligoclonal bands (OCBs) 
within the CNS that generated from clonally expanded Ig-
secreting cells that does not express CD20 [57]. The success 
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in relapses decreases after anti-​CD20 antibodies therapies 
were not associated with reduction of CSF Ig profile in MS 
patients [58], that may indicate that antibodies are not the 
sole contributor in disease pathology and the role of B cells 
in MS relapses is not antibody dependent [59]. Indeed, 
some researchers showed that antibodies can be used diag-
nostically for some time but are not pathognomonic in MS 
[59, 60]. Conversely, Roshan et al. believed that antibody-
dependent mechanisms may influence disease pathology 
[61]; in addition, it was shown that IgG bound specifically 
to myelinating oligo dendrocytes [62], and the complement-
dependent demyelination by IgG was found in around 30% 
of MS patients [63].

The role of B cells in MS may depend on cellular immu-
nological interactions in the periphery with their capacity 
to recruit and activate myeloid cells and T cells in the CNS 
[23].

B cells can cross BBB to lymph node–like follicles in 
the meninges, close to demyelinating lesions, and become 
CNS residents’ immune cells [64]; moreover, accumulation 
of B cells has been observed in the brain and spinal cordin 
EAE models [65]. In CSF of active MS patients, the B cell 
chemoattractant, CXCL13, is highly increased [66], and 
accumulation of CD80 and CD86 expressing inflammatory 
memory B cell has been observed [67]; it may be due to the 
production of some soluble factors via inflammatory astro-
cytes that promote CD86 expression on B cells [68].

The role of B cells as APCs and T cells activator may 
be a key in MS pathogenesis; some studies demonstrated 
that mice with B cells that lacked MHC-II failed to present 
antigen to T cells, and did not develop EAE when stimu-
lated with recombinant human myelin oligodendrocyte gly-
coprotein (rhMOG), with diminished Th1 and Th17 T cell 
responses [69].

Depletion of B cells caused significant inhibition of the 
peptide encompassing the extracellular domains of myelin 
proteolipid protein (PLPECD) ability to induce EAE with 
inhibiting CD4+ T cell proliferation, activation, and secre-
tion of pro-inflammatory cytokine [70]. According to Wu 
et al., treating RRMS with teriflunomide reduces MS patho-
genicity due to expression downregulation of B cell CD80 
and CD86 [71]. B cells can contribute in MS pathogenesis 
through its pro-inflammatory mediator role as B cells can 
cause changes in the cytokine secretion pattern, increase 
in pro-inflammatory cytokines such as IL-6 [53], TNF-α, 
lymphotoxin-α (LT), and GM-CSF [54, 72], and a decrease 
in regulatory cytokines like IL-10, IL-35, and transform-
ing growth factor-β (TGFβ) [73–75]. GM-CSF production 
from B cells can be enhanced by STAT5 and STAT6. B 
cells produce less IL-10 and more GM-CSF in MS patients 
compared to healthy subjects. GM-CSF enhances IL-12 and 
IL-6 secretions from myeloid cells and aids in the develop-
ment of Th1 and Th17 cells [54]. Also, IL-21 secreted by 

pathogenic Th17 cells might promote memory B cells sur-
vival and proliferation [55]. Therefore, memory B cells in 
MS have the ability to induce the activation of T cells and 
exhibit enhanced pro-inflammatory properties [55]. Mature 
naive B cells in MS showed abnormal proliferation and acti-
vation [56]. Interestingly, CD137+ B cells, that produce IL-6 
production extensively with CD137L stimulation, have been 
investigated to accumulate in meningeal infiltrates from MS 
patients [76]. Anti-CD20 therapies decrease T cells count 
in the CSF and blood by 50% and 20%, respectively, and 
reduced the capacity of the remaining T cells to produce 
IFN-γ and IL-17 also [77, 78]. A recently discovered non-
conventional pathway of B cells implication in MS is via 
secreting pathogenic microvesicles or exosomes that pro-
mote cultured oligodendrocytes and neuron death [79].

Implication of Regulatory B cells and Neuroprotec-
tive Effect Regulatory B cells (Bregs) are a subset of B 
cells population that acts to put down and control immune 
reactions. Bregs have the ability to produce IL-10 [80], 
TGFβ1 [80], and IL-35 [81] in MS and EAE. IL-10 + gut-
derived IgA + plasma cells are a population of B cells that 
are observed to clearly enter the CNS in MS and EAE [82].

In vitro, B cells isolated from MS patients exhibit defi-
cient IL-10 production than in B cells isolated from healthy 
controls [83]. In MS patients, IL-10-producing Breg cells 
are reduced during relapses compared with in remission 
[84], while other researchers cannot confirm the alteration 
of these cells frequency in MS [85]. Further research is 
required to validate this assumption.

Indeed, despite that, not all B cell–targeted treatments 
have a good outcome in MS treatment [86]. As mentioned 
about anti-CD20 therapies that cause selective loss of B cells 
express CD20, CD20+ B cells expressed on B cell lineages 
from pre-B cell to memory B cell, but not on pro B cell or 
plasma blast and plasma cells [87]. Atacicept, another B cell 
targeting drug, causes elimination of specific B cells subsets 
(plasma blasts and plasma cells) without affecting memory 
B cells [88]. This resulted in an increased pro-​inflammatory 
B cells activity and exacerbated CNS inflammation due to 
memory B cell activation enhancement that ends with dis-
ease exacerbation [88]. These results have explored the com-
plicated B cells role in MS pathogenesis and further research 
is required for a better explanation of their exact role.

Role of Innate Immunity in MS

Innate immunity is believed to have a crucial role in MS 
initiation and progression by influencing the B and T cells to 
activate innate immune cells to express cytokines and other 
markers [89, 90].

Dendritic cells (DCs) are “professional antigen-present-
ing cells” that stimulate natural killer (NK) cell–mediated 
cytotoxicity [91] and promote naïve T cell differentiation 
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and activation into either regulatory T cells (natural Tregs 
and induced Tr1 cells) or effector T cells (Th1, Th2, and 
Th17 cells) [92]. DCs also secrete osteopontin, a glycopro-
tein that participates in immune cells activation, differentia-
tion, and chemotaxis. Indeed, increased osteopontin expres-
sion in brain lesions has been reported during EAE [93].

Phagocytes in the CNS can be descended from peripheral 
monocytes, which are macrophages, or from local microglial 
activation and are frequently difficult to distinguish from 
blood-borne phagocytes in tissue sections. Microglial cells, 
the most prevalent immune cells in the CNS, are considered 
CNS-resident macrophages with different activities such as 
the production of cytokines, phagocytosis, and antigen pres-
entation [94]. It has a critical role in acute inflammatory 
response initiation and clearance of damaged tissues [89]. 
Infiltrating immune cells and resident glial cells have a role 
in neurodegeneration and proved to contribute to MS pro-
gression [95]. Astrocytes encourage recruitment of mono-
cytes to the CNS; these monocytes are correlated with EAE 
severity [95].

Microglial cells also express TLRs (TLR 1–9) that make 
them essential for neuroimmune reactions generation [96]. 
Additionally, activated microglial participates in EAE wors-
ening via increasing IL-6 production, macrophage inflamma-
tory proteins, neurotropic factors, nitric oxide, and adhesion 
molecules [97]. Moreover, TNF-like weak inducer of apop-
tosis (TWEAK)–expressing microglial cells are responsible 
for severe myelin loss, neuronal injury, and vascular abnor-
malities in cortical lesions [98].

Natural killer (NK) cells “bridge” the gap between adap-
tive and innate immunity; CD56dim and CD56bright are the 
major NK cell subsets in humans. While the CD56bright NK 
cell fraction produces anti-inflammatory cytokines that have 
“regulatory” activity, the CD56dim NK cell subset mainly 
performs cytotoxic functions [99]. Till now, the exact role of 
NK cells in CNS autoimmunity is not clear. Further research 
is needed to explore how they contribute to immune regula-
tion and inflammation [100].

Effect of Gut Microbiota and Its Derived Metabolites on CNS

There are over 100 trillion microbes in the gastrointesti-
nal tract (GIT), mostly in the colon [101]. This mixture of 
microbial communities, known as the GIT or GUT micro-
biota, consists of bacteria, fungi, eukaryotes, archaea, and 
viruses [7, 102]. Gut microbiota represents one of the envi-
ronmental factors affecting health and any alteration in their 
composition is either to protect or increase susceptibility to 
chronic diseases [103]. Recently, it was observed that the 
gut microbiome can affect the CNS functions through bidi-
rectional communication [104, 105]. Gut metabolites are 
defined as the end products or intermediates of the metab-
olism of its microbiota. These metabolites can reach the 

blood circulation, and some can pass blood–brain barrier 
(BBB) and affect CNS pathways and regulatory functions 
[102]. These metabolites have a role in neuroinflammatory, 
neuropsychiatric disorders, and neurodegenerative such as 
Parkinson’s disease (PD), autism spectrum disorders (ASD), 
Alzheimer’s disease (AD), and also multiple sclerosis (MS); 
their ability to ameliorate or aggravate some neuronal disor-
ders has been reported as shown in Fig. 2 [106–109]. Dys-
biosis means changes in gut microbiota balance; for exam-
ple, the enrichment of specific pathogenic bacteria over the 
beneficial bacteria leading to release of some dangerous 
metabolites with a pro-inflammatory effects that compro-
mise healthy gut barrier [110], and development of systemic 
inflammation via interaction with immune cells and modu-
lates its behavior such as T cells, B cells, dendritic cells 
(DCs), and macrophages [111]. Additionally, gut dysbiosis 
has been associated with MS [112].

Gut microbiota produces three main metabolites that are 
associated with CNS health, short-chain fatty acids (SCFAs), 
aromatic amino acids (AAA), and trimethylamine N-oxide 
(TMAO).

Firstly, SCFAs such as butyrate, acetate, and propion-
ate are produced from the fermentation of non-digestible 
carbohydrates such as starch from oats, beans, and legumes 
[113, 114]. Supplementation with SCFAs can alter several 
brain functions, inhibiting neuroinflammation via reducing 
the production of pro-inflammatory cytokines like TNF-α 
and IL-1β, and reducing IL-6 mRNA levels [115]. Moreo-
ver, SCFAs are ligands for free fatty acid receptors 2 and 3 
(FFA2/FFA3) on several immune cells, and can modulate 
several pro-inflammatory cytokines secretion that induce 
neuroinflammation [116].

In germ-free (GF) mice, the morphological and genetic 
phenotypes of immature microglia were recovered partially 
through supplementation of the three major SCFAs (butyric 
acid, acetic acid, and propionic acid) [117]. Supplement-
ing propionate to therapy naïve MS patients significantly 
increases Tregs and a decrease in Th1 and Th17 cells; also, 
it can reduce the annual relapse rate in those patients [118]. 
In addition, SCFAs play a role in ameliorating sensorimotor 
and communicative defects, decreasing anxiety-like behav-
ior, reducing oxidative stress, regulating BBB, and improv-
ing memory loss associated with neuroinflammatory dis-
orders [119]. In MS, both total SCFA production and the 
SCFA profile are altered and characterized by decreases in 
either acetate, butyrate, or propionate [120].

The second group is AAA which includes tryptophan, 
phenylalanine, and tyrosine; they have a crucial role in 
the microbiome gut-brain axis (MGBA) and also act as pre-
cursors to many secondary metabolites that work as neuro-
transmitters and affect the brain health [121]. For instance, 
tryptophan is the precursor of serotonin or 5-hydroxy-
tryptamine (5-HT), indole, vitamin B3, and redox co-factors 
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such as NAD(P)+ [122], while phenylalanine is the precursor 
of dopamine, norepinephrine, and epinephrine [123].

Studies reported that kynurenine, a tryptophan derivative, 
can decrease the activity of dendritic cells (DCs) and the 
natural killer (NK) in the CNS; however, its concentration in 
the brain leads to schizophrenia as well as depression [124]. 
Feeding mice with tryptophan-rich diet results in slowing 
brain aging through the regulation of NF-κB pathways and 
AMP-activated protein kinase (AMPK), thereby reducing 
inflammation and oxidative stress [125]. Phenylalanine pro-
duces amino acids such as aspartate, glutamate, and glycine 
that affect neurotransmission [126]. Aspartate and gluta-
mate play as excitatory neurotransmitters, while glycine is 
an inhibitory neurotransmitter [127].

Finally, TMAO is a third gut metabolite that affects CNS 
health; they are produced from the fermentation of dietary 
constituents such as L-choline-rich food like meat, poul-
try, fish, dairy products, and eggs that may be a cause for 
dementia as a result of CD68 expression induction, which 
is dementia-associated marker [128]. It results in neuronal 
aging, increasing oxidative stress, and disrupting mito-
chondrial functions [127]. A study observed that increasing 
TMAO concentrations was correlated with increased astro-
cyte activation and pro-inflammatory cytokines [129].

Collectively, there is a two-way interaction of gut micro-
biota with CNS disorders and there is a brain-gut commu-
nication [117]. Firstly, studies on GF mice or mice treated 
with antibiotics demonstrate how specific microbiota can 
affect CNS physiology and neurochemistry; they showed 

increased numbers of immature microglia in different brain 
areas such as the cortex, hippocampus, and cerebellum in 
GF mice than specific pathogen-free (SPF) mice [130]. Their 
microglia have a decreased expression of genes that are 
responsible for maturation to an active phenotype, highlight-
ing their immaturity and attenuation of several genes’ rel-
evant pro-inflammatory cytokines, interferon responses, and 
effector processes [131]. In addition, the 3 major SCFAs, 
butyrate, acetate, and propionate, oral supplementation 
helped in inducing microglia maturation [132, 133]. Sec-
ondly, GF mice have reduced lymphoid follicles and lower 
Peyer’s patches number in the gut-associated lymphoid 
tissues (GALT); these tissues became smaller and have a 
lower T cells number than controls [134]. GF mice show a 
reduced susceptibility to disease in models of spontaneous 
[130] and actively induced EAE [135], rheumatoid arthritis 
(RA) [136], and inflammatory bowel disease [137].

Suggested Mechanisms of MS Pathogenesis Due to Impact 
of Gut Microbiota

In a healthy condition, intestinal epithelial cells (IECs) bor-
der the gut and use tight junctional proteins to keep bacte-
ria and their byproducts apart from host cells and tissues. 
Nevertheless, dysbiosis may encourage a series of actions, 
such as the production of harmful toxins and the enrich-
ment of pathogenic bacteria, which could result in a dam-
aged gut barrier and a pro-inflammatory milieu production 
[138]. Pathogen-associated molecular patterns (PAMPs), 

Fig. 2   Schematic presentation for interaction between gut metabolites 
with immune system components. Short-chain fatty acids (SCFAs)—
Ac, acetate; But, buterate; prop, propionate—activate innate immu-

nity by increasing microglial cell maturation and decreasing tumor 
necrosis factor (TNF) and interleukins secretion while aromatic 
amino acid (AAAs) regulates NF-κB pathways
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such as LPS in gram-negative bacteria and other bacterial 
metabolites, play a significant role in systemic inflammation 
due to the increased gut permeability (leaky gut) [139]. We 
can summarize the potential pathogenic mechanism of gut 
microbiota as follows:

Chronic Inflammation  Proteobacteria, which raise oxida-
tive stress and cause the generation of pro-inflammatory 
cytokines, are the source of the majority of pro-inflamma-
tory stimulants such as LPS. The complex interacts with 
CD14 when LPS binds to the LPS binding protein, an acute 
phase protein. At the cell surface, this combination of CD14 
and LPS-LPS binding protein interacts with TLR4/Myeloid 
differentiation factor 2 (MD-2), which in turn activates the 
cell via the NF-kB signaling pathway and causes the release 
of pro-inflammatory cytokines such IFN-y, TNF-α, IL-1β, 
and IL-8 that directly damage the epithelial barrier locally 
[140]. It has been demonstrated that LPS derived from 
gut bacteria, particularly Bacteroides vulgatus, induces 
pro-inflammatory endotoxin tolerance by binding to the 
MD-2/TLR4 receptor complex in intestine lamina propria 
CD11c + cells [141]. All things considered, gut dysbiosis 
can change the makeup of microorganisms, which can have 
pro- or anti-inflammatory immunological effects depending 
on variations in LPS immunogenicity. This can impact the 
aggravation or prevention of MS/EAE.

Increased Intestinal Permeability (Leaky Gut)  Because gut 
dysbiosis alters the makeup of the gut microbiota, it can 
change the homeostasis at mucosal surfaces. The genera-
tion of harmful metabolites and pro-inflammatory cytokines 
may rise, leading to the breakdown of the intestinal epithe-
lial barrier with helpful compounds such as short-chain fatty 
acids (SCFAs) and other anti-inflammatory factors gener-
ated by gut microbiota are reduced [142]. Increased intesti-
nal permeability may also help the gut microbiota activate 
peripheral immune cells, particularly gut-associated lym-
phoid tissue (GALT), and transfer toxic compounds into 
the bloodstream. Gut-specific inflammation, which can be 
a symptom of neurological demylination conditions such 
as schizophrenia and Crohn’s, is a predisposing character-
istic of leaky gut [143]. In addition to gut dysbiosis, MS 
patients have elevated gut permeability and high levels of 
pro-inflammatory cytokines in their serum, such as IL-1β, 
TNF-α, and IL-6 to correlate with leaky gut [144].

Macrobiotic Induction of Pro‑inflammatory T cell  Self-reac-
tive, myelin-specific CD4 + T helper cells are believed to 
cause MS, with Th17 cells being the most implicated line-
age. Th17 cells are characterized by their production of the 
pro-inflammatory cytokine IL-17 and migrate to the CNS 
during active disease [145]. Therefore, deregulation of Th17 
cell growth and differentiation, mediated by gut microbiota, 

is thought to have a role in the development or progres-
sion of MS. Acinetobacter calcoaceticus and Akkermansia 
muciniphila are two bacterial species that have been linked 
to MS because they can stimulate Th17 induction and pro-
inflammatory activities [146]. Colonization by Akkerman-
sia muciniphila has also made EAE worse in vivo. These 
immunostimulatory bacteria can either directly or indirectly 
trigger Th17 cell responses by producing metabolites. By 
stimulating the aryl hydrocarbon receptor (AhR), Lactoba-
cillus reuteri metabolize tryptophan to boost CNS autoim-
munity and IL-17 production [147].

Pro‑inflammatory B cells Induction by  Microbiota  More 
than 90% of MS patients exhibit positive immunoglobu-
lin G (IgG) oligoclonal bands in their cerebrospinal fluid 
(CSF), indicating abnormalities in the amount and quality 
of immunoglobulins in the CSF due to infiltration of B cells 
[148]. In EBV or MS, the gut microbiota’s impact on patho-
genic B cell responses is controversial; the effectiveness of 
B cell depletion treatments in MS and the strong evidence 
that the development of clinical symptoms is associated 
with Epstein-Barr virus (EBV) infection and anti-EBNA 
antibody levels highlight the importance of these abnormal-
ities [149]. On the other side, B cells’ anti-inflammatory, 
gut microbiota–dependent function in multiple sclerosis has 
been clarified. IgA + plasma cells (PCs) are considerably 
diminished in the stomach during EAE, and crucially, the 
elimination of PCs and plasma blasts aggravated EAE [82]. 
Therefore, IgA + B cells exhibit selectivity for MS-associ-
ated immunostimulatory bacterial strains and can pass the 
blood–brain barrier during active multiple sclerosis, accord-
ing to a follow-up investigation. Nevertheless, these IgA + B 
cells do not cross-react with the self-antigen and were strong 
IL-10 producers [150].

Regulatory T cell Modulation by  Microbiota  Multiple 
research on GF mice have proved for the first time the link 
between the immune system and the gut microbiota in 
immune disease development [135, 151]; GF mice exhib-
ited weakened MS form with decreased pro-inflammatory 
cytokines and increased regulatory T cells (Treg) than 
normal colonized mice [151]. Early antibiotic administra-
tion in EAE rats disrupts the gut microbiota composition 
with reduced SCFAs levels, resulting in stronger immune 
response and EAE aggravation [152]. Offspring of mice 
inhabited with specific bacteria in GIT that mostly enhance 
the response of T helper 17 have a higher probability of 
suffering from neurodevelopmental diseases [153]. Other 
research groups observed also that changes in gut micro-
biota composition can influence the natural killer T (NK) 
cell populations [154].

In MS patients, gut microbiota is significantly changed in 
specific microbial taxa compared to healthy controls [155, 
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156] confirming gut microbiota role in MS development. 
The 16S ribosomal RNA sequencing of microbiota of MS 
patients in the relapse phase showed a decrease in phylum 
Bacteroidetes such as Bacteroides and Parabacteroides 

species and an increase in phylum Firmicutes such as Dorea 
and Blautia species if compared to healthy subjects or MS 
patients in remission period [146, 157]. Moreover, there was 
lower Prevotella, Bacteroidetes phylum, that produces the 

Table 1   The effect of immune components and responsible microbiota on MS pathogenesis

Immune system Types of cells Implication in MS patho-
genesis

Responsible microbiota Reference

A- Adaptive immunity Effector CD4+ T cells Th1 cells produce IL2, IFN-
γ, and TNF-α

• Clostridium species
• Bacteroides, Lactoba-

cillus, and Streptococ-
cus genera

• Legroux and Arbour (2015)
• Koji et al. (2013)
• Geuking et al. (2011)

• Th2 cells produce pro-
inflammatory IL-4, IL-5, 
and IL-13

• Parabacteroides dista-
sonis

• Akkermansia muciniphila

• Wang et al. (2020)
• Eagle et al. (2017)

• Th17 cells produce IL-17 • Segmented filamentous 
bacteria

• Escherichia coli, Bifi-
dobacterium adoles-
centis, Staphylococcus 
aureus, and Candida 
albicans

• Wang et al. (2020)
• Magarian et al. (2017)

Effector CD8+ T cells • Produce IL-17 and IFN-γ; 
cytotoxic function that 
causes axonal damage

• Lactic acid bacteria 
including Pediococcus 
acidilactici

• Larochelle et al. (2015a), 
Melzer et al. (2009)

B cells • Antigen-presenting cells 
for T cells

• Segmented bacteria • Schirmer et al. (2014)

• Production of CSF-​
restricted IgG OCBs

• IgA binding

• Eggerthella lenta 
and Bifidobacterium 
adolescentis

• Schirmer et al. (2014)

• Production of pro-
inflammatory cytokines 
GM-CSF, TNF-α, IL-6, 
and LT-α

• Bacteroidetes and Proteo-
bacteria phyla

• Li et al. (2015a), Bar-Or 
et al. (2010), Li et al. (2017, 
2016)

• Production of inflamma-
tory cytokines: transform-
ing growth factor β1, 
IL-35, and IL-10

• Bacteroides fragilis • Barr et al. (2012), Bar-Or 
et al. (2018)

• June et al. (2011)

B- Innate immunity Dendritic cells • T cells activation to effec-
tor T cells

• Candida kefyr • Gilliet and Liu (2002)

• NK cell–mediated cyto-
toxicity induction

• Bifidobacterium bifidus • Fernandez et al. (1999)

• Production of IL-6, IFN-
γ, TNF-α

• Bacteroidetes and Proteo-
bacteria phyla

• Huang et al. (1999)

• IL-23 and osteopontin Bifidobacterium bifidum • Vaknin-Dembinsky et al. 
(2008)

• Zhang et al. (2024)
Microglial cells/mac-

rophages
• Production of IL-6, IL-17, 

macrophage inflammatory 
proteins, neurotropic fac-
tors, nitric oxide, adhesion 
molecules, and TWEAK

• Expression of myeloper-
oxidases and ROS

• Actinobacteria • Kawanokuchi et al. (2008), 
Serafini et al. (2008)

• Gray et al. (2008), Raivich 
and Banati (2004)

NK cells • Cytotoxic activity toward 
oligodendrocytes

• Production IFN-γ and 
TNF-α.

• Bifidobacterium • Lünemann et al. (2008)
• Schleinitz et al. (2010)
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anti-inflammatory propionate [155, 156] and higher Strep-
tococcus mitis (S. mitis) and Streptococcusoralis (S. oralis), 
Firmicutes phylum, that promote Th17 cells differentiation 
[157] in MS patients compared to control. Relapsing–remit-
ting multiple sclerosis (RRMS) patients showed a lower 
prevalence of both Prevotella [158, 159] and Clostridium 
which is linked to Th17 cell expansion and enhances the pro-
duction of IL-10 (the anti-inflammatory cytokine) and Treg 
cells in peripheral compartments respectively [160, 161]. 
The presence of another gut microbiota residents a short 
filamentous bacteria called symbiont Bacteroides fragilis 
(SBF) which promote neurological inflammation through 
its metabolites via macrophages activation, that contribute to 
IL 23 synthesis, also play as APCs that induce differentiation 
of T cells into Th17 cells [162]. Taken together, these inves-
tigations reveal that the gut microbiota contributes directly 
to the pathological process of MS by controlling Th17 pro-
liferation at the gut level [163].

Interestingly, gut commensal can induce Tregs in the gut 
[164]; the most prevalent capsular polysaccharide produced 
by B. fragilis, polysaccharide A (PSA), drives the trans-
formation of CD4+ T cells to Foxp3 + Tregs which release 
IL-10 and suppress Th17 responses by activating Toll-like 
receptor 2 (TLR-2) and protects against MS [165]. Addi-
tionally, oral treatment of B. fragilis PSA has been linked to 
increased frequencies of CD39+ Tregs in the lymph nodes of 
CNS [166] and a lower MS “clinical” score in an IL-10- and 
TLR2-dependent manner [167].

Further examples for the pathogenic microbiota and their 
role on the immune components affecting the MS pathogen-
esis can be summarized in Table 1.

Potential Future Therapeutic Roles of Microbiome in MS

Targeted therapies that alter the gut microbiota to have a 
“healthier” makeup are still a promising treatment option. 
Numerous strategies, such as nutrition, probiotics, synbi-
otics, and fecal microbiome transplantation (FMT), are 
employed to alter gut microbiota and have promise in MS. 
Supplementing food with Prevotella histicola was demon-
strated to be just as effective as COPAXONE® in reducing 
inflammation and demyelination in the brain and improving 
EAE [168]. To encourage the growth of good gut flora, a 
combination of probiotic supplements and dietary changes—
known as synbiotic therapy—may also be crucial [169]. This 
strategy has showed potential in animal models of multiple 
sclerosis, where supplementing with Parabacteroides dis-
tasonis and Aldercrutzia equolifaciens together with a diet 
high in isoflavones reduced EAE. Another intriguing treat-
ment option with promise for GI disorders like Clostridium 
difficile infection is fecal microbial transplant (FMT) [170]. 

It is still difficult to define what makes up a “healthy” micro-
biome that has the capacity to reduce inflammation and mul-
tiple sclerosis.

Conclusion

This review discussed the significant role of the immune 
system through its two arms: the adaptive and innate 
immunity in MS pathology that ends with myelin sheath 
degeneration and axonal loss. Moreover, we discussed the 
insight of the gut microbiota composition and the impact 
of its metabolites on immune responses and MS severity. 
There are some microbiota members associated with MS 
exacerbation through enhancement of effector T cell prolif-
eration and inflammatory cytokines production. Genera like 
Dorea, Blautia, Streptococcus, Akkermansia, Pedobacteria, 
Methanobrevibacter, Flavobacterium, and Proteobacteria 
are higher in patients of MS than in healthy subjects. Con-
versely, others have a beneficial effect by enhancing prolif-
eration of Treg cells and aiding in relieving MS symptoms.
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