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SUMMARY
Preterm birth correlates with brain dysmaturation and neurocognitive impairment. The gut microbiome asso-
ciates with behavioral outcomes in typical development, but its relationship with neurodevelopment in pre-
term infants is unknown.We characterize fecal microbiome in a cohort of 147 neonates enriched for very pre-
term birth using 16S-based and shotgun metagenomic sequencing. Delivery mode strongly correlates with
the preterm microbiome shortly after birth. Low birth gestational age, infant sex assigned at birth, and anti-
biotics associate with microbiome composition at neonatal intensive care unit discharge. We integrate these
data with term-equivalent structural and diffusion brain MRI. Bacterial community composition associates
with MRI features of encephalopathy of prematurity. Particularly, abundances of Escherichia coli and Kleb-
siella spp. correlate with microstructural parameters in deep and cortical gray matter. Metagenome func-
tional capacity analyses suggest that these bacteria may interact with brain microstructure via tryptophan
and propionatemetabolism. This study indicates that the gut microbiome associates with brain development
following preterm birth.
INTRODUCTION

Globally, pretermbirth, definedasbirth before 37weeksof gesta-

tion, affects around 10% of pregnancies.1 People born preterm

are at an increased risk for atypical brain development, termed

encephalopathy of prematurity (EoP),2which can lead to cerebral

palsy, neurodevelopmental and cognitive impairments, autism,

and psychiatric disorders.3 There are no treatments for EoP,

partly because themechanisms linking preterm birth with altered

cerebral development are incompletely understood.

The second and third trimesters of pregnancy are crucial pe-

riods in brain development. During this time, preterm birth and

its co-exposures and -morbidities impose a risk of injury and

dysmaturation to the developing brain, leading to disturbances

in regional brain growth, diffuse white matter disease, abnormal

cortical and deep gray matter (dGM) development, and struc-

tural dysconnectivity.4 These features of EoP are apparent on

structural and diffusion magnetic resonance imaging (MRI) in

the neonatal period,4 and because they are associated with sub-

sequent neurocognitive development,5–8 they serve as interme-
Cell Reports Medicine 5, 101845, Decem
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diate phenotypes to investigate the upstream determinants of

brain development.

Fundamental neurodevelopmental processes occurring in

early life coincide with the acquisition and progression of the

gut microbiota. Evidence from preclinical and human observa-

tional studies implicates the gut microbiome in modulating neu-

ral functions via the microbiota-gut-brain axis.9,10 Specifically,

the rapid parallel development of the brain and the gut micro-

biota in early life has led to the hypothesis of ‘‘nested sensitive

periods’’ whereby brain development interacts with gut micro-

biota development to shape cognition and behavior.11,12 The

hypothesis has gained traction from a growing body of literature

reporting associations between gut microbiota features and

cognitive, language, motor, and socio-emotional development

in childhood.13

Preterm infants may be particularly vulnerable to disruptions in

the microbiota-gut-brain axis due to altered microbiota develop-

ment, which can arise from the early exposure of the immature

gastrointestinal tract to microbial colonization.14,15 Although

the general pattern of microbiota development in the first months
ber 17, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
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of life appears similar in term and preterm infants,16–18 the pre-

term infant gut has lower bacterial diversity and abundances of

essential microbes like Bifidobacterium and higher levels of

opportunistic pathogens such as Klebsiella, Enterobacter,

Enterococcus, and Staphylococcus.14 This may be a result of

routine exposure to potent modifiers of the pioneering micro-

biota, including maternal and neonatal antibiotic treatments,19

and variable nutritional exposures20,21 during the first months

of life in a neonatal intensive care unit (NICU) setting. However,

there are discrepancies between studies about the effect size

and direction of these modifiers in preterm neonates,22 which

leave considerable uncertainty about the importance of specific

clinical variables for shaping microbiota development following

preterm birth.

Although the preterm population has a high burden of

neurocognitive impairment and alterations in the gut microbiota,

only a few recent studies have investigated gut microbiota in

direct relation to preterm infant neurodevelopment23–27 or overt

parenchymal brain injuries.28 Though most of these studies

have been small and directions of effects vary, there is some

consensus that abundances of Bifidobacteriaceae, Enterococ-

caceae,Enterobacteriaceae (Escherichia/Shigella, Enterobacter,

and Klebsiella), Clostridium, and Veillonella may correlate with

outcomes. However, because EoP is the prevailing form of brain

dysmaturation after preterm birth, moving beyond assessing

overt parenchymal injuries and complex behavioral traits to

study designs that include multimodal brain MRI data is crucial

to elucidate the understanding of microbiome-brain interactions

in this vulnerable population. The gut microbiota is intrinsically

modifiable by mode of feeding and enteral supplements; thus,

this knowledge could offer potential new avenues for perinatal

neuroprotection. We investigated the microbiota-gut-brain axis

by integrating data from microbiota profiling and multimodal

brain MRI. We aimed to characterize neonatal gut microbiota

profiles in a richly phenotyped cohort of term and preterm neo-

nates at birth and at NICUdischarge, to determine themost influ-

ential clinical drivers of the pretermmicrobiota during NICU care,

and to link gut microbiota diversity and community composition

with MRI features of EoP.

RESULTS

Sample characteristics
The gut microbiome was sampled at two time points (TP1:

meconium and TP2: a fecal sample prior to discharge from

NICU) in very preterm infants born at <32 completed weeks of

gestation, and at TP1 in term-born controls, who were recruited

to the Theirworld Edinburgh Birth Cohort.29 Clinical and demo-

graphic characteristics of the study group are shown in Table 1

and Table S1; see Figure S1 for flowchart.

Overview of microbiota profiles
We first characterized neonatal intestinal microbiome profiles

using 16S ribosomal RNA (rRNA) gene sequencing in 12 term

and 58 preterm infants at TP1 and in 103 preterm infants at

TP2. Shotgun metagenomic sequencing data were available

for 23 preterm infants at TP1 and 97 preterm infants at TP2.

Throughout the paper, 16S-based data are described at ampli-
2 Cell Reports Medicine 5, 101845, December 17, 2024
con sequence variant (ASV) level, while shotgun taxonomic

data are described at species level.

The majority of TP1 samples were dominated by an ASV from

the genus Staphylococcus, but some had high relative abun-

dances of ASVs belonging to genera Streptococcus, Escheri-

chia/Shigella, Enterococcus, or Klebsiella (Figure 1A). The most

abundant species (shotgun data) in the subset of TP1 samples

were Escherichia coli, Enterococcus faecalis, Staphylococcus

epidermidis and S. haemolyticus, and Raoultella planticola (Fig-

ure S2A). At TP2, most samples had high relative abundances

of ASVsbelonging toBifidobacterium,Enterobacteriaceae, orEs-

cherichia/Shigella, while some had high relative abundances of a

Klebsiella ASV (Figure 1A). Shotgun sequencing showed similar

profiles but allowed better species-level resolution, showing

high abundances of Bifidobacterium spp. (B. breve, B. longum,

and B. dentium), E. coli, E. faecalis, or Klebsiella spp

(K. pneumoniae and K. oxytoca; Figure S2A).

Collectively, we observed amarked shift in the preterm gut mi-

crobiota community composition between birth and term-equiv-

alent age (TEA) when analyzed at the ASV or species level

(permutational analysis of variance [PERMANOVA] R2 =

14.59%, p = 9.993 10�4 [Figure 1B]; R2 = 3.31%, p = 0.002 [Fig-

ure S2C], respectively). Differences in the microbiota between

the two time points in preterm infants were also reflected in

increasing alpha diversity (Figure 1C; linearmixed-effectsmodel;

F2,112.86 = 47.244, q = 2.48 3 10�15 for Shannon index [pairwise

comparison: q = 4.00 3 10�14]; F2,151.99 = 22.876, q = 2.06 3

10�9 for observed ASVs [pairwise comparison: q = 6.88 3

10�9]). Microbiome functional capacity captured by gut meta-

bolic modules (GMMs; Figure S2B), similarly to taxonomic

composition, also differed between the two time points in pre-

term infants (PERMANOVA R2 = 4.17%, p = 9.99 3 10�4;

Figure S2D).

Comparison of preterm infants with a small sample of term-

born controls at TP1 revealed weak evidence for a small differ-

ence in bacterial community composition at ASV level (R2 =

2.75%, p = 0.082; Figure 1B). This primarily manifested in lower

bacterial richness (observed ASVs, q = 7.75 3 10�5; Figure 1C)

and higher relative abundances of ASVs belonging to Escheri-

chia/Shigella (q = 0.189) and Streptococcus (q = 0.223) genera

in the preterm group, while term infants had a higher abundance

of a Corynebacterium ASV (q = 0.131; Figure 1D).

Covariates shaping preterm infant gut microbiome
We then sought to identify perinatal covariates associated with

microbiota communities in our preterm cohort, focusing on vari-

ables known from literature to associate with microbiota compo-

sition in infancy (gestational age [GA] at birth,17,18 age at sam-

pling,18,30,31 birthweight,20 delivery mode,32–34 antibiotics,35–37

and breastmilk exposure20,30,38) and common preterm neonatal

co-morbidities (sepsis,37,39 necrotizing enterocolitis [NEC],40

and bronchopulmonary dysplasia41,42). Although biological

sex, i.e., sex assigned at birth, is not often investigated in asso-

ciation with early-life gut microbiota development and previous

studies report mixed findings to the extent that sex associates

with infant microbiota,30,43,44 we included this variable because

male and female infants differ in susceptibility to mortality and

major morbidities following preterm birth.45



Table 1. Baseline characteristics of the study group

Variablea Level Full-term Preterm

p valueb (term

vs. preterm)

Preterm with

matching MRI

Sample size – 12 135 – 79

GA at birth, weeks (median [range]) – 40.00

[37.71, 42.00]

29.14

[22.14, 32.86]

<0.001 29.86

[22.14, 32.86]

Time point 1: number of samples – 12 58 – –

Time point 1: postnatal age, days

(median [range])

– 1 [1, 3] 6 [1, 13] <0.001 –

Time point 1: GA, weeks

(median [range])

– 40.14

[37.86, 42.00]

29.14

[24.43, 33.57]

<0.001 –

Time point 2: number of samples – – 103 – 79

Time point 2: postnatal age, days

(median [range])

– – 46 [9, 151] – 45 [9, 151]

Time point 2: GA, weeks

(median [range])

– – 36.14

[29.43, 46.14]

– 35.85

[32.43, 46.14]

Female infants (%)c – 9 (75.0) 64 (47.4) 0.078 36 (45.6)

Birthweight, g (mean [SD]) – 3,530

[2,740, 4,420]

1,190

[370, 2510]

<0.001 1,282

[370, 2510]

Birthweight Z score (median [range]) – 0.843

[�0.818, 2.331]

0.212

[�3.023, 2.141]

0.011 0.153

[�2.520, 2.141]

GA at MRI, weeks (mean [SD]) – – – – 40.56 (1.8)

Weeks between fecal sample

collection and MRI (mean [SD])

– – – – 3.81 (2.65)

Vaginal delivery (%) – 11 (91.7) 41 (30.4) <0.001 21 (26.6)

Labor antibiotics (%) – 1 (8.3) 89 (65.9) <0.001 48 (60.8)

Bronchopulmonary dysplasia (%) – – 41 (30.4) – 24 (30.4)

Necrotizing enterocolitis (%) – – 7 (5.2) – 3 (3.8)

Sepsis (%) – – 41 (30.4) – 19 (24.1)

Antibiotics <72 h of life (%) – – 106 (78.5) – 62 (78.5)

Antibiotics >72 h of life (%) – – 77 (57.0) – 38 (48.1)

Proportion of days receiving antibiotics

during NICU stay (median [range])

– – 0.094

[0.000, 0.843]

– 0.091

[0.000, 0.708]

GA at discharge (median [range]) – – 37.57

[30.57, 48.43]

– 37.43

[34.43, 48.43]

Breastmilk exposure <75% inpatient days – 73 (54.1) – 43 (54.4)

– R75% inpatient days – 62 (45.9) – 36 (45.6)
aCategorical variables are shown in absolute numbers with percentages (%); continuous, normally distributed variables as means with standard de-

viations (SD); continuous, non-normally distributed variables as medians with ranges.
bTwo-sample t tests were used to compare the means of normally distributed continuous variables between term and preterm infants; Wilcoxon rank-

sum tests were applied to compare medians of non-normally distributed continuous variables; and Fisher’s exact test was used to test for significant

differences in categorical variables.
cThis research concerns neonates; thus, any indications to sex throughout this paper implies biologically attributable characteristic, which was as-

signed at birth and obtained from neonatal medical records. GA, gestational age; NICU, neonatal intensive care unit. Additional characteristics are

provided in Table S1. See Table S7 for participant metadata with regards to TP2 sampling and MRI ages and Figure S1 for flowchart.
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In univariablemodels, ASV-level bacterial community composi-

tionatTP1significantly associatedwith themodeofdelivery,birth-

weight Z score, and postnatal age at sample collection (Figure 2A

left panel). Using shotgun sequencing, the different perinatal fac-

tors had relatively stronger correlations with species-level com-

munity composition, though most did not remain significant after

adjustment for multiple comparisons (Figure 2A middle panel).

At TP2, we observed the strongest associations for ASV-level

bacterial community composition with the degree of prematu-
rity, followed by postnatal age and GA at sample collection,

antibiotic exposure, and sex (Figure 2A left panel). Using

shotgun sequencing, none of the tested covariates were statis-

tically significantly associated with community composition,

though ranking of the effect sizes was similar (Figure 2A middle

panel).

Using 16S-based ASV-level data (Tables S2 and S3), Micro-

biome Multivariate Association with Linear Models (MaAsLin246)

revealed that delivery mode (Figure 2B top panel) associated,
Cell Reports Medicine 5, 101845, December 17, 2024 3



Figure 1. Overview of microbiota profiles

in neonates based on 16S rRNA gene

sequencing

(A) Relative abundances of the 20 most abundant

amplicon sequence variants (ASVs) identified

across the dataset are visualized per sample, with

all other ASVs grouped together as residuals.

Samples are ordered based on hierarchical clus-

tering of the Bray-Curtis dissimilarity matrix using

average linkage (see dendrogram).

(B) Non-metric multidimensional scaling (NMDS)

plot based on Bray-Curtis dissimilarity between

samples; data points, and ellipses are colored by

sample type. The ellipses denote the standard

deviation of data points belonging to each sample

type, with the center points of the ellipses calcu-

lated using the mean of the coordinates per group.

(C) Microbiota alpha diversity measured by Shan-

non index (left) and observed ASVs (right) pre-

sented as boxplots and individual data points. ***

indicates q < 0.001 in pairwise comparisons using

emmeans following linear mixed effects model

comparing alpha diversity indices between the

groups and time points.

(D) Differentially abundant ASVs in association with

preterm status at time point 1. Bar plots depict

MaAsLin2 analysis results. ASVs present with at

least 1% of abundance in at least 5% of samples

were analyzed (10 ASVs) and significant results

are shown (Benjamini-Hochberg [BH] corrected

p < 0.25 as default). Lengths of the bars corre-

spond to the MaAsLin2 model coefficient, which

relates to the strength of the association. Error bars

indicate the standard error (SE) of the model co-

efficient. MaAsLin2 models were adjusted for

postnatal age at sampling. Sample sizes: term time

point 1 = 12, preterm time point 1 = 58, preterm

time point 2 = 103. See Figure S2 for overview of

microbiome profiles in preterm neonates arising

from shotgun sequencing.
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among others, with the abundances of Escherichia/Shigella (q =

0.172) andStaphylococcus (q = 0.023). BirthweightZ score nega-

tively correlated with the abundance of Staphylococcus (q =

0.217), but not when adjusting for delivery mode (Figure 2B bot-

tom panel). At TP2 (Figure 2C), the fecal samples of extremely

compared to very preterm infants hadhigher relative abundances

of different Veillonella ASVs (q range 0.008–0.078) and Klebsiella

(q = 0.160) and lower levels of Staphylococcus (q = 0.037; Fig-

ure 2C left panel). Male and female infants differed in the relative

abundancesofVeillonella (q = 0.216),Bifidobacterium (q = 0.171),

and Streptococcus (q = 0.011), and antibiotic-exposed infants
4 Cell Reports Medicine 5, 101845, December 17, 2024
had a higher relative abundance of Klebsi-

ella (q = 0.110). The main results of the

full mutually adjusted model (Figure 2C

right panel) paralleled those of the base-

line model. Species-level analyses from

shotgun sequencing showed similar top

hits to those observed with ASVs from

16S (Tables S4 and S5), including the

higher abundance of Veillonella parvula in
extremely preterm infants and lower levels of Streptococcus ves-

tibularis in females at TP2.

Bacterial alpha diversity minimally correlated with the perinatal

covariates (Table S6): no significant correlations were found at

TP1, while at TP2, bacterial richness correlated positively with

age at sampling (postnatal and GA) and birthweight Z score,

and bacterial richness was higher in extremely compared to

very preterm infants and in infants diagnosed with NEC.

Complementary analysis of the functional capacity of the mi-

crobiome using the GMMs (Figure 2A right panel) revealed nomi-

nally significant associations for birthweight z-score and labor



Figure 2. Covariates associated with preterm infant gut microbiota

(A) Univariable PERMANOVA results showing the association between perinatal variables and the gut bacterial community composition at each time point and for

each data type. Left: ASV from 16S rRNA sequencing, middle: species from shotgun sequencing, and right: gut metabolic modules (GMMs) calculated from

KEGG orthologs arising from shotgun sequencing. The variance explained is estimated for each variable independently and is indicated by a percentage/blue

shades. Significance of PERMANOVAwas based on 1,000 permutations andwas adjusted for multiple comparisons using the Benjamini-Hochberg (BH) method;

asterisks denote statistical significance (̂ q % 0.1, *q % 0.05, **q % 0.01).

(B and C) Differentially abundant ASVs in association with perinatal factors at time point 1 (B) and 2 (C). Bar plots depict MaAsLin2 analysis results. ASVs present

with at least 1% of abundance in at least 5% of samples were analyzed (14 ASVs for time point 1 and 21 for time point 2) and significant results are shown (BH-

corrected p < 0.25 as default). Bars are colored according to the covariate they are associated with. Lengths of the bars correspond to the MaAsLin2-model

coefficient, which relates to the strength of the association. Error bars indicate the standard error (SE) of themodel coefficient. In baselinemodels, we adjusted for

postnatal age (time point 1), or GA at birth and sample collection (time point 2); in full adjusted models, all covariates with q value <0.1 from univariable

PERMANOVAs were tested simultaneously. Here, GA at birth was dichotomized to group the infants into extremely (GA at birth <28 completed weeks) and very

(GA at birth <32 completed weeks) preterm. Sample sizes for 16S rRNA sequencing: preterm time point 1 = 58, preterm time point 2 = 103; sample sizes for

shotgun sequencing: preterm time point 1 = 23, preterm time point 2 = 97. See Tables S2, S3, S4, and S5 for detailed MaAsLin2 results and Table S6 for alpha

diversity associations.
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antibiotics at TP1, though these relationships did not remain sig-

nificant after adjustment for multiple comparisons. At TP2, none

of the covariates tested had statistically significant associations

with community composition at the functional GMM level.

Gut microbiota associations with MRI features of EoP
Following characterization of the preterm infant microbiota, we

investigated associations between the gut microbiome and

MRI biomarkers of EoP at TEA in 79 infants; brain MRI scans

were conducted, on average, 3.81 weeks after the collection of

TP2 sample (Table S7).

We first sought to reduce the multidimensionality of the data

into a meaningful set of variables capturing the variation in the

microbiota compositional data. We extracted four principal co-

ordinates (PCo-s) calculated from ASV-level Bray-Curtis dissim-

ilarity matrix; these together explained 40.9% of variance in the

microbiota community composition data. Correlation analysis

between the relative abundance of ASVs and the four PCo-s re-

vealed that PCo1 mainly indicated lower relative abundances of

Bifidobacterium and Cutibacterium and, though with a weaker

correlation coefficient, higher abundances of Staphylococcus

and a set of Enterobacteriaceae; PCo2 indicated lower relative

abundances of Escherichia/Shigella and higher abundances of

an unidentified ASV in Enterobacteriaceae family; PCo3 mainly

indicated lower abundances of Klebsiella and, to lesser extent,

higher abundances of Enterobacteriaceae; and PCo4 indicated

lower abundances of Enterococcus and interestingly, but to a

lesser extent, both higher and lower abundances of different Bi-

fidobacterium ASVs (Figure 3). These PCo-bacteria correlations

were confirmed using metagenomic sequencing (Figure S3),

though simultaneously providing better species resolution.

Notably, PCo2 indicated higher abundances of K. oxytoca, sug-

gesting a species specification to the unnamed Enterobacteri-

aceae ASV from 16S-based sequencing. From 16S data, we

calculated the Shannon index and number of observed ASVs

as two complementary measures of alpha diversity. The PCo-

s were orthogonal and showed very weak rank correlations

with one another (Spearman r range 0.03–0.19), suggesting

that each of them captures an independent aspect of the vari-

ance in gut bacterial community composition. The two alpha di-

versity indices were, as expected, moderately correlated with

one another (Spearman r = 0.63); furthermore, observed ASVs

had a moderate negative correlation with PCo1 (Spearman

r = �0.49).

The four beta diversity PCo-s and two alpha diversity indices

were then used as the main predictors of interest in studying the

relationships between gut microbiota and MRI biomarkers of

EoP. We focused on whole-brain imaging metrics capturing

brain size (tissue volumes), microstructure derived from diffu-

sion tensor imaging (fractional anisotropy [FA] and radial diffu-

sivity [RD]) and neurite orientation dispersion and density imag-

ing (NODDI; neurite density index [NDI], orientation dispersion

index [ODI], and isotropic volume fraction [ISO]), and cortical

morphometry (gyrification index, thickness, sulcal depth, curva-

ture, and surface area). For contextualization of the image fea-

tures in respect to GA at birth and at scan, please see Table S8.

PCo1 negatively associated with total brain tissue and abso-

lute white matter volume and positively with relative dGM vol-
6 Cell Reports Medicine 5, 101845, December 17, 2024
ume (Figure 4A). The incremental R2 upon adding the PCo1 to

a null model was 2.6% for total brain tissue, 5.4% for white mat-

ter, and 8.3% for dGM relative volume. There was also a nomi-

nally significant association between relative cortical volume

and PCo2 (incremental R2 2.6%). However, no volumetric asso-

ciation remained statistically significant after multiple compari-

son adjustment.

In contrast, there were statistically significant associations be-

tween the microbiota and dMRI features of EoP after correction

for multiple tests (Figure 4B). PCo2 associated with dGM micro-

structure (incrementalR2was6.4%forODI and2.3%forNDI) and

ODI in the cortex (incremental R2 7.8%); PCo3 associated with

measures of global white matter microstructure (gRD, gNDI,

and gISO; incremental R2 was 5.6%, 2.7%, and 6.0%, respec-

tively); and PCo4 associated with cortical complexity (thickness;

incremental R2 5.2%) and microstructure (ODI; incremental R2

7.5%). Microbiota richness (number of observed ASVs) also

associated with dGM microstructure (incremental R2 was 3.9%,

3.4%, 4.3%, and 2.7%, for FA, NDI, ODI, and RD, respectively)

as well as ODI in the white matter (incremental R2 4.3%).

The statistically significant microbiota-brain associations after

false discovery rate correction (except for the association be-

tween observed ASVs and gODI) remained significant in sensi-

tivity analyses where we adjusted for birthweight Z score and

sex and excluded infants with NEC (data not shown).

PCo-s capture complex patterns of variation within bacterial

communities; therefore, to better understand how specific bac-

terial biomarkers may be related to brain features, we performed

post hoc analysis using MaAsLin2 for those MRI features that

showed statistically significant associations with gut microbiota

in PCo- and alpha diversity-based analyses. These results were

partially in line with those obtained using the microbial commu-

nity PCo-s (Figure 5; Table S9). Bifidobacterium, the strongest

driver of the PCo1, was not significantly associated with any of

the brain microstructural measures tested. In line with the

PCo2-dGM microstructure findings, Escherichia/Shigella, the

strongest negative driver of PCo2, showed significant associa-

tions with FA (q = 0.204), NDI (q = 0.004), and ODI (q = 0.061)

in dGM. Also in line, Enterobacteriaceae, the strongest positive

driver of PCo2, correlated significantly with dGM ODI (q =

0.025). Klebsiella, the strongest negative driver of PCo3, was

ranked at the top of the list of associations with gRD (q =

0.328) and was interestingly significantly associated with NDI

(q = 0.089) and ODI (q = 0.162) in dGM. In contrast, Entero-

coccus, the strongest negative driver of PCo4, was not signifi-

cantly associated with any of the MRI markers.

These analyses revealed further relationships between brain

MRI features and bacterial taxa beyond the main drivers of the

community composition variance. Notably, different Veillonella

ASVs positively correlated with dGM FA/NDI (q range 0.018–

0.209) and negatively with ODI (q range 0.083–0.115).

Analyses using the shotgun data showed similar bacteria-

brain associations (Table S10). Importantly, these replicated

the E. coli,Klebsiella spp. (oxytoca,michiganensis, and pneumo-

niae), and Veillonella parvula correlations with dGM microstruc-

ture and E. coli correlations with cortical ODI. Interestingly, using

these data, Bifidobacterium breve positively correlated with FA

in the dGM.



Figure 3. Dimensionality reduction of the microbiota community composition data

Bacterial ASV correlations with the first four orthogonal principal coordinates (PCo-s), showing the top 20 strongest correlations for each PCo. The percentage

refers to the variance explained by each of the PCo-s. Red indicates positive and blue negative correlations between the PCo-s and relative abundances of ASVs.

Sample size n = 79 (linked MRI and microbiome data). See Figure S3 for bacterial species (shotgun sequencing) correlations with the PCo-s.
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Bacterial functional capacity and brain microstructure
To probe potential functional implications of the bacteria-brain

relationships, we calculated gut-brain modules47 (GBMs) from

the shotgun data. Among themost abundant GBMswere several

related to excitotoxic pathways including glutamate and quino-

linic acid metabolism (Figure 6A).

PCo1correlated thestrongestwithmodules related toquinolinic

acid and menaquinone synthesis; PCo2 correlated with modules

related to degradation of tryptophan and inositol; PCo3 correlated
with modules for the synthesis of S-adenosylmethionine (SAM)

and degradation of tryptophan; and PCo4 correlated with GABA

and inositol degradation (Figure 6B).

We then studied the relationships between GBM abundances

and thoseMRI markers that were identified as significantly asso-

ciated with the gut microbiota PCo-s or alpha diversity using

MaAsLin2. This revealed the strongest associations between

modules related to the capacity of propionate and tryptophan

metabolism and NODDI measures in the deep and cortical
Cell Reports Medicine 5, 101845, December 17, 2024 7



Figure 4. Microbiota associations with MRI features of encephalopathy of prematurity

(A) Regression results for brain volumetric measures.

(B) Regression results for brain microstructural measures. Models are adjusted for gestational age at birth and at scan; microbiota PCo-s and alpha diversity metrics

were adjusted for gestational age at sampling via linear regression, retaining the residuals. Points correspond to the standardized model coefficient. Error bars

indicate the SE of the model coefficient. Full color points indicate nominal p value <0.05; asterisks (*) indicate Benjamini-Hochberg (BH) method-adjusted p value <

0.25. Red indicates positive and blue negative associations. Relative volumes are calculated by normalizing to total tissue volume (the sum of the volumes of cortical

graymatter, whitematter, deep graymatter, cerebellum, brainstem, hippocampi, and amygdalae). FA, fractional anisotropy; RD, radial diffusivity; NDI, neurite density

index; ODI, orientation dispersion index; ISO, isotropic volume fraction; cGM, cortical gray matter; dGM, deep gray matter, CB, cerebellum; sulc, sulcal depth; GI,

gyrification index; g, general factor; SE, standard error. Sample sizes (total n = 79): volumetric and cortical structural complexity analysis = 76, white matter

microstructure analysis = 74, and cortical and deep graymatter and cerebellar microstructural diffusion analysis = 74. See Table S8 for contextualization of the image

features in respect to GA at birth and at scan, Tables S9 and S10 for ASV- and species-level MaAsLin2 results, and Figure S5 for representative brain maps.
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gray matter (Figure 6C, Table S11). dGM microstructure addi-

tionally associated with modules related to caseinolytic pepti-

dase B (ClpB), SAM, and glutamate synthesis—three most

abundant GBMs identified.

Lastly, to understand which bacteria could contribute to the

brain-associated GBMs, we studied the associations between

species and module abundances as well as the species-strati-

fied module abundances. In line with PCo-GBM correlations

(Figure 6C), we found correlational evidence that E. coli is the

strongest contributor to the modules related to the capacity of

tryptophan and propionate degradation, and Klebsiella spp.

have high contributions to the capacity of propionate synthesis

(Figure S4). Bifidobacterium spp. were among the main contrib-

utors to the most abundant GBMs.

DISCUSSION

We characterized the gut microbiome of preterm infants using

16S rRNA gene and shotgun metagenomic sequencing and

determined the most influential clinical drivers of the pretermmi-

crobiota during NICU care. Thereafter, we integrated metage-

nome data with multimodal brain MRI to uncover associations

betweenmicrobiota community composition, diversity and func-

tional capacity, and the EoP.
8 Cell Reports Medicine 5, 101845, December 17, 2024
Neonatal microbiota development
Consistent with previous reports of a dynamic development of

the gut microbiota over the neonatal period in preterm in-

fants,30,48 there was a substantial shift in microbiota diversity

and community composition between preterm birth and hospital

discharge. Shortly after birth, the microbiota of the majority of in-

fants was dominated by the facultative anaerobe Staphylo-

coccus. By the time of NICU discharge, the microbiota diversity

had increased and infants had gut microbiota profiles with high

relative abundances of either Bifidobacterium or Enterobacteri-

aceae, mainly Klebsiella spp.; community compositions high in

Escherichia/Shigella or Enterococcus were also prevalent.

Differences in the meconium microbiota of term and
preterm infants
There were small differences in bacterial community composi-

tion between term and preterm meconium with a higher abun-

dance of Escherichia/Shigella and Streptococcus in the preterm

group—a profile that has been reported previously.49 The higher

microbiota richness in preterm meconium might reflect the

slightly higher postnatal age at sampling in the preterm group

due to delayed passage of meconium in preterm infants and is

consistent with a decrease in alpha diversity in the first days of

life due to environmental filtering before a gradual increase



Figure 5. Taxa-level analyses correlating brain microstructural features with the relative abundances of ASVs

Analyses were conducted using MaAsLin2, testing for differences in ASVs present with at least 1% of abundance in at least 10% of samples (n = 13 ASVs). ASVs

are ordered by the strength of association with each brain imaging feature. Lengths of the bars correspond to theMaAsLin2model coefficient, which relates to the

strength of the association. Error bars indicate the standard error (SE) of the model coefficient. Full color bars and asterisks (*) indicate Benjamini-Hochberg (BH)

method-adjusted p value <0.25. Red indicates positive and blue negative associations. Sample size: white matter microstructure analysis = 74, and cortical and

deep graymatter microstructure analysis = 74. ASV, amplicon sequence variant;MaAsLin,MicrobiomeMultivariate Associationwith LinearModels; FA, fractional

anisotropy; RD, radial diffusivity; NDI, neurite density index; ODI, orientation dispersion index; cGM, cortical gray matter; dGM, deep gray matter; g, general

factor; SE, standard error. See Tables S9 and S10 for ASV- and species-level MaAsLin2 results.
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coinciding with actual colonization.30,50 An important technical

consideration for interpreting meconium microbiota data is that

only a small proportion of term infant meconium samples had

sufficient bacterial biomass for sequencing. Yet, it has been re-

ported previously that meconium has low bacterial DNA,51,52

with relatively higher detection in preterm infants.51 Even among

the preterm group, only a minority of meconium samples had

sufficient DNA yield for shotgun sequencing. Thus, the profiles

may not be representative of the majority of meconium samples;
this could explain some of the differences observed in the results

with 16S-based vs. shotgun sequencing.

Drivers of the preterm gut microbiota at birth and at
NICU discharge
In line with studies in term infants,33,34 delivery mode had the

strongest correlation with the bacterial community composition

shortly after birth. There is variability in the preterm literature

about the impact of mode of delivery22; these data provide
Cell Reports Medicine 5, 101845, December 17, 2024 9
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additional information from a new cohort. At TP2, delivery mode

was not associated with microbiota composition, which could

reflect either ‘‘recovery’’ of gut microbiota profiles33 or an over-

shadowing by prematurity-related co-exposures. Indeed, low

birth GA was the strongest covariate correlating with bacterial

community composition at TP2, which suggests there is an allo-

static load of prematurity-related co-exposures shaping the pre-

term microbiota. Extremely preterm infants had higher abun-

dance of Veillonella—a signature taxa in the 4-month-old term

infant microbiota, associated with reduced oxygen concentra-

tion and utilization of lactic acid.32 Given that low GA also asso-

ciated negatively with the abundance of Staphylococcus, these

findings suggest a ‘‘younger-looking’’ microbiota at the time of

NICU discharge in infants born at a higher GA. Infant sex and

antibiotic exposure also contributed to microbiota composition

at TP2. Only a few studies have investigated the role of biological

sex in microbiota development, yielding mixed results.30,44,53,54

We found the strongest evidence for higher abundance of Strep-

tococcus in male babies. Sex differences in this context are

interesting because preterm boys have a higher risk of major

morbidities than preterm girls.45 In line with previous studies,36

we report higher abundance of Klebsiella in infants exposed to

antibiotics during their NICU stay; Enterobacteriaceae, including

Klebsiella spp., correlate with increased antimicrobial resistance

genes in antibiotic-exposed preterm infants.19,35 Similarly, sup-

porting previous findings,36 exposure to antibiotics rather than

length of exposure associated with microbiota composition in

preterm infants, suggesting an exquisite sensitivity of the pre-

term microbiota to antimicrobial treatment.

Microbiota-brain interactions: Relevance to EoP
We took two complementary approaches to study associations

between the gut microbiome and brain structure: we applied

dimensionality reduction55 to construct latent variables

capturing the main variance of bacterial composition, followed

by post hoc MaAsLin2 analyses.

Results from both methods suggested the strongest correla-

tions between the relative abundances of Escherichia/Shigella

(E. coli from shotgun sequencing) and dGM and cortical micro-

structure, particularly measures derived from NODDI, and

between Enterobacteriaceae (Klebsiella spp. using shotgun

sequencing) and dGMmicrostructure. This suggests that gut mi-

crobiota associates with cellular and dendritic morphology as

previously demonstrated in rodent models of microbiota disrup-

tions.56 Morphological changes in dGM nuclei are commonly

observed in preterm infants57–59; these associate with reduced
Figure 6. Gut-brain modules in association with brain microstructure i

(A) Mean relative abundance of the GBMs reflecting functional potential of the m

GBMs were detected in the microbiome-MRI matching dataset (n = 77); all are p

(B) GBM correlations with the first four orthogonal principal coordinates (PCo-s

correlations for each PCo. The percentage refers to the variance explained by eac

PCo-s and GBMs.

(C) GBMs in correlation with brain microstructural features. Analyses were conduc

samples (n = 34 modules). Modules are ordered (left to right) by the prevalence in t

the strength of the association, with blue indicating negative and red positive c

p value <0.25. Sample size n = 77 (linked MRI and metagenomic shotgun data). F

orientation dispersion index; cGM, cortical gray matter; dGM, deep gray matter;

and Figure S4 for species contribution to GBMs.
microstructural integrity in the white matter and poorer neurode-

velopmental outcomes.5 In addition, preterm birth associates

with alterations in cortical microstructure and morphology at

TEA.60 Escherichia/Shigella and Klebsiella have been linked

with neurodevelopment previously, primarily with better and

worse outcomes, respectively.24,26,28,61 Thus, the current bacte-

ria-brain findings are intriguing, given the age- and birth GA as-

sociations for the NODDI parameters (Table S8). For example,

dGM NDI is positively and ODI negatively associated with GA

at scan, suggesting that decreased abundance of Escherichia

and increased abundance of Klebsiella spp. associate with

microstructural markers related to more mature dGM micro-

structure. However, the functional/behavioral implications of

microstructural changes in the neonatal gray matter are not yet

established, leaving uncertainty in the assignment of positive/

negative valence to the bacteria-brain relationships. Neverthe-

less, these findings contribute to the literature highlighting the

importance of these prevalent bacteria in the microstructural

development of deep and cortical gray matter in preterm infants.

Post hoc analyses also revealed bacteria-brain relationships

that were not captured by the first four beta diversity PCo-s.

Specifically, Veillonella parvula, which associated with the de-

gree of prematurity, correlated with dGM microstructural

parameters, following the same direction of effect as GA

at scan (Table S8). Veillonella has been associated with

neurobehavioral outcomes, including motor and temperament

development.13 Veillonella could play different roles in brain

function and behavior at different developmental phases, and

it remains to be established to what extent these relationships

may be mediated by brain microstructure around the time of

birth.

Calculation of GBMs allowed functional interpretation of the

bacteria-brain relationships. In particular, the PCo indicated by

the abundances of Escherichia and Enterobacteriaceae/Klebsi-

ella oxytoca correlated the strongest with the capacity for trypto-

phan degradation. Indeed, MaAsLin2 analyses showed that this

module’s abundance correlated with the microstructure in dGM

and cortex. Based on species-stratified gene annotations and

species-module correlations, E. coli was the most substantial

contributor to this functional property of themicrobiome. Trypto-

phanmetabolismhasbeen suggested as one of the key gut-brain

communication mechanisms in preclinical and human observa-

tional studies.10 E. coli degrades tryptophan into indole, which

regulates gut epithelial cell function and immune response,62 as

well as central nervous system inflammation via astrocytes.63

Thus, our results suggest that E. coli may interact with brain
n preterm infants

etagenome; bars are colored by the prevalence of the modules. 42 out of 56

resent in at least two samples.

) calculated from 16S rRNA beta diversity data, showing the top 20 strongest

h of the PCo. Red indicates positive and blue negative correlations between the

ted using MaAsLin2, testing for differences in GBMs present in at least 10% of

he dataset. Color corresponds toMaAsLin2 model coefficient, which relates to

orrelations. Asterisks (*) indicate Benjamini-Hochberg (BH) method-adjusted

A, fractional anisotropy; RD, radial diffusivity; NDI, neurite density index; ODI,

g, general factor; GBM, gut-brain module. See Table S11 for MaAsLin2 results
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microstructural development via tryptophan metabolism, but

future mechanistic work and studies incorporating metabolome

analysis are needed to further study this relationship.

Synthesis and degradation of the short-chain fatty acid (SCFA)

propionate correlated with ODI in dGM and cortex, respectively.

The strongest contributors to these modules were Klebsiella

spp. and E. coli, respectively. Propionate, acetate, and butyrate

are among themost abundant SCFAs in the human body. SCFAs

have wide-ranging functions,64 including (neuro)immune modu-

lation, and propionate has been demonstrated to impact the

blood-brain barrier.65 Future studies, including metabolomics,

are required to validate the current findings and to identify to

what extent bacterial-derived propionate directly interacts with

the brain.

Bifidobacterium is the predominant bacterium in vaginally

delivered breastfed infants during the first year of life, and several

studies have identified positive correlations between Bifidobac-

terium abundance and neurobehavioral outcomes,13 including in

preterm infants.25 It is sometimes used as a probiotic to prevent

NEC in preterm infants, though clinical efficacy is uncertain and

we are not aware of studies of its impact, if any, on neurodevel-

opment.66 We found some suggestive evidence that the primar-

ily Bifidobacterium-driven PCo1 correlates with total brain and

white matter volume and with relative dGM volume, reflecting

improved brain growth in association with higher abundance of

Bifidobacterium. We also found that Bifidobacterium spp. were

one of the main contributors to the three most abundant GBMs

in this preterm dataset, which significantly correlated with dGM

microstructure: ClpB, SAM, and glutamate synthesis. This may

suggest that Bifidobacterium involvement in metabolic path-

ways may be important for brain structural development. How-

ever, these potential relationships between Bifidobacterium

and brain structure need to be replicated in an independent

cohort. A recent Cochrane review66 concluded that further large,

high-quality trials are needed to inform clinical practice about

probiotic use for the prevention of NEC in preterm infants. Our

data indicate that assessment of neurodevelopment should be

incorporated into future studies of safety and efficacy of probiot-

ics in preterm infants.

The main strength of this study is the linked microbiome-MRI

dataset. There is a scarcity of metagenomics data alongside

multi-modal neuroimaging, particularly in the neonatal popula-

tion, making this a valuable contribution to the microbiota-neu-

roimaging field. We evaluated infants born at <32 weeks’

gestation, who are at an especially high risk of adverse neuro-

cognitive outcomes. The clinical profile of the cohort, the

absence of major parenchymal lesions, and the similarities of

microbiota community composition with other studies suggest

that it is representative of the majority of survivors of neonatal

intensive care.

Low-biomass samples, such as those collected from neo-

nates, are at an increased risk for biases due to possible bacterial

DNA contamination from processing reagents and environ-

ment.67 We included control samples, which enabled to investi-

gate the environmental background and remove contaminant

taxa from the dataset. Furthermore, the inclusion of shotgun

metagenomic sequencing alongside 16S enabled us to investi-

gate within-study replicability and probe functional capacity.
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Limitations of the study
The study has some limitations. While the sample size was larger

than that of previous work integratingmicrobiota with neuroimag-

ing in infancyandchildhood,28,55,68–72 it is still a limitationgiven the

high inter-individual variation both in brain microstructural as well

as in the microbiota development in preterm infants. Small sam-

plesandhighheterogeneity coupledwith themultidimensionalna-

ture of both microbiota sequencing and neuroimaging datasets

and high analytic freedom are the main limitations of microbiota-

neuroimaging studies, leading to reduced power and variability

in the results. To reduce dimensionality, we focused on whole-

brain measures capturing EoP. However, this may have hindered

the detection of more specific brain regions associated with mi-

crobiota; future studies with larger sample sizes are needed to

investigate the regional specificity of the observed global effects.

PCo analysis and calculation of GBMs from the microbiome data

allowed for a principled way of data reduction. There is rapid

development of the gut microbiota in the neonatal period; thus,

the wide age range of sampling could have introduced noise in

the microbiota-brain relationships; to mitigate this, we always

adjusted for age at microbiota sampling. The sample size was

not sufficiently powered for age- or sex-stratified analyses.

While shotgun metagenomic sequencing allows evaluation of

the functional capacity of themicrobiome, future studies including

metabolomics measurements are needed to confirm whether

gene abundances equate to differences in metabolite levels.

Additionally, our interpretation of bacterial species’ contributions

to GBMs was based on species-GBM abundance correlations

and species-stratifiedGBMannotations; thus, futuremechanistic

workusing in vitroor animalmodels are needed to confirm the val-

idity of these findings.

Finally, the microbiota-brain association analysis was cross-

sectional with the time points chosen to capture EoP and the al-

lostatic load of prematurity on the gut microbiome. However,

this limits causal inference: the relationships observed could

reflect a separate process causally linked to the development

of both the gut microbiome and brain structure. Nevertheless,

preclinical data show that colonization of germ-free mice with

preterm microbial communities associates with poor growth,

systemic and neuroinflammation, delayed neuronal develop-

ment and myelination, disrupted brain microstructural connec-

tivity, and behavioral deficits,73,74 supporting a causal relation-

ship. Future studies with longitudinal microbiome sampling

over the NICU period are needed to clarify the critical time win-

dow for the strongest influence of the gut microbiome on brain

microstructural development. This is important to identify the

optimal time for microbiome modification-based therapies for

brain health following preterm birth.

In conclusion, the results contribute to understanding micro-

biota-brain associations following preterm birth and suggest

that microbiota modification is a potential new avenue for neuro-

protection during neonatal intensive care.
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This study did not generate new unique reagents.

Data and code availability

d All data generated in this study are stored at the University of Edinburgh.

The data are not part of an open repository due to the terms of the

informed parent/guardian consent, which stipulates that the use of ano-

nymized data is for studies of perinatal health that have been approved

by regulatory bodies. All raw 16S and shotgun data and their derivatives

used for analysis alongside with participant clinical data, sample meta-

data, and neuroimaging data derivatives used in this work are deposited

in Edinburgh DataVault75 (https://doi.org/10.7488/e65499db-2263-4d

3c-9335-55ae6d49af2b). Requests for access will be considered under

the study’s Data Access and Collaboration policy and governance pro-

cess (https://www.ed.ac.uk/centre-reproductive-health/tebc/about-te

bc/for-researchers/data-access-collaboration, James.Boardman@ed.

ac.uk). Requests for raw neuroimaging data will similarly be considered

under the study’s Data Access and Collaboration policy and gover-

nance process: https://www.ed.ac.uk/centre-reproductive-health/teb

c/about-tebc/for-researchers/data-access-collaboration.

d Code used for the data analysis in this paper is available on GitLab

(https://git.ecdf.ed.ac.uk/jbrl/neonatal-microbiota-and-brain-

dysmaturation) and has been deposited at Zenodo; DOI is listed in the

key resources table.

d Any additional information required to reanalyze the data reported in this

work paper is available from the lead contact (James.Boardman@ed.ac.

uk) upon request.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Participants were preterm infants (GA at birth <33 weeks) and term-born controls recruited as part of a longitudinal cohort study de-

signed to investigate the effects of preterm birth on brain structure and long-term outcome.29 Recruitment, sampling andMRI acqui-

sition were at the Royal Infirmary of Edinburgh, UK, between 2016 and 2021. The study was conducted according to the principles of

the Declaration of Helsinki, and ethical approval was obtained from the UK National Research Ethics Service (South East Scotland

Research Ethic Committee 16/SS/0154). Parents provided written informed consent.

Exclusion criteria were death during neonatal period, major congenital malformations, chromosomal abnormalities, congenital

infection; infants with overt parenchymal lesions (cystic periventricular leukomalacia, haemorrhagic parenchymal infarction), post-

haemorrhagic ventricular dilatation, or contra-indications to MRI were excluded fromMRI analyses. Term-born infants who required

admission to the NICU were also excluded.

All infants were cared for in the Neonatal unit of the Simpson Center for Reproductive Health, Royal Infirmary of Edinburgh, with

standardised feeding, antibacterial and antifungal guidelines. Preterm infants admitted to the NICU in the Simpson Center for Repro-

ductive Health are not routinely administered any pro- or prebiotic supplements. Clinical data was collected from antenatal and

neonatal electronic patient records.

Clinical variable definitions Incidence of neonatal sepsis (early or late onset) was defined as detection of a bacterial pathogen from

blood culture, or physician decision to treat with antibiotics for R5 days in the context of growth of coagulase negative Staphylo-

coccus from blood or a negative culture but raised inflammatory markers in blood. Necrotising enterocolitis (NEC) was defined as

stages II or III according to the modified Bell’s staging for NEC which required medical treatment forR7 days or surgical treatment,

respectively.98 Bronchopulmonary dysplasia (BPD) was defined as the requirement for supplemental oxygen or respiratory support

at 36 weeks gestational age. Retinopathy of prematurity (ROP) was defined as requiring treatment with laser therapy or anti-VEGF.

Birthweight z-scores were calculated according to International Fetal and Newborn Growth Consortium for the 21st Century

(INTERGROWTH-21st) standards for preterm infants.99

Antibiotic exposure was assessed by three composite variables: (i) exposure to antibiotics during the first three days of life, (ii)

exposure to antibiotics at any other time during the NNU stay, and (iii) proportion (%) of antibiotic exposure days during NNU stay

(total number of antibiotic treatment days was divided by the number of days in NNU). The antibiotic treatment for all preterm infants

with suspected and confirmed neonatal sepsis conformed to the following principles: babies up to 72 h of age were commenced on

benzylpenicillin and gentamicin, babies >72 h of age were commenced on piperacillin/tazobactam and vancomycin. To reduce un-

necessary exposure to antibiotics, treatment was stopped after 48 h if blood cultures were negative and the clinician had a low sus-

picion about infection. Some infants in the cohort were also treated with azithromycin, cefotaxime, co-amoxiclav, flucloxacillin, line-

zolid, meropenem and metronidazole according to symptoms and diagnostic results.

Daily nutritional intake for preterm infants was collected from birth until discharge. Each day was categorised as consisting of

exclusive maternal breast milk feeds, exclusive formula milk feeds, exclusive donor expressed milk feeds, or any combination of

these feeding types. Data was available as the sum of each feeding type over the entire duration of NNU stay. As previously,100,101

exclusive breast milk exposure was defined as the % of inpatient days that infants received exclusive breast milk feeds, which

included both maternal and/or donor breast milk. Infants were categorised into two groups based on breast milk exposure: high

breast milk exposure was defined as exclusive breast milk feeds for R75% of inpatient days and low breast milk exposure was

defined as exclusive breast milk feeds for <75% of inpatient days.

This research concerns neonates, thus any indications to sex throughout this paper implies the biologically attributable character-

istic that was assigned at birth and obtained from neonatal medical records.

METHOD DETAILS

Fecal sample collection and processing
Fecal material was collected from dirty diapers by parents, NICU staff or research team. The samples were frozen at �20�C directly

after sample collection prior to transfer to a�80�C freezer in the Queens Medical Research Institute (QMRI, University of Edinburgh)

until further analyses; no preservation buffers were used. Fecal material was collected from the first bowel movement (meconium;

TP1) from term and preterm infants, and a second fecal sample was collected from preterm infants prior to discharge from the

NICU (pre-discharge sample; TP2), which was around TEA. When preterm infants were transferred to another NICU prior discharge,

the second sample was collected prior to transfer. A total of 143 meconium (TP1) and 107 pre-discharge samples (TP2) were

collected during the study period; 44 preterm infants had both samples obtained.

DNA isolation
The bacterial DNA from fecal samples was extracted at the QMRI as previously described33,102 involving phenol/bead beating in

combination with theMagMini DNA Isolation Kit (LGC genomics, Germany). Samples were thawed on ice for as little time as possible

to obtain one 10 mL inoculation loop of raw feces which was added to a 2 mL screwcap tubes containing a mixture of 150 mL lysis

buffer (Mag Mini DNA Isolation Kit, LGC genomics, Germany), 0.1 mm zirconium beads (BioSpec products, USA) in 650 mL lysis

buffer, and 500 mL of phenol saturated with Tris-HCl (pH 8.0; BioSpec products, USA). The samples were mechanically disrupted
Cell Reports Medicine 5, 101845, December 17, 2024 e3
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twice for 2 min at 2100 oscillations/minute using a bead beater (BioSpec products, USA). The samples were then centrifuged for

10 min at 5000 rpm at room temperature. Then, the aqueous phase was added to 1300 mL of binding buffer (Mag Mini DNA Isolation

Kit) with 10 mL magnetic beads (LGC genomics, Germany) in a sterile 1.5 mL Eppendorf tube and incubated for 30 min at room tem-

perature on a thermos shaker (Hettich lab technologies, USA) to allow DNA binding. Subsequently, the supernatant was discarded.

The magnetic beads were washed twice with wash buffer 1 (Mag Mini DNA Isolation Kit), once with wash buffer 2 (Mag Mini DNA

Isolation Kit), and air-dried for 15 min at 55�C. DNA was eluted in 50 mL elution buffer. The following adaptions were applied in

the standard DNA isolation procedure for TP1 samples due to low DNA yield and interference with extraction protocol: (i) two inoc-

ulation loops of feceswere used as inputmaterial; (ii) lysis buffer volumewas increased to 200 mL; (iii) addition of six 2mmglass beads

(Scientific Laboratory Supplies, UK) for more efficient mechanical sample disruption; (iv) to improvewater phase separation, the initial

centrifugation was increased to 15 min and an additional centrifugation for 5 min was performed for some samples to improve sep-

aration of the aqueous phase; however, when there was little separation of the aqueous layer, more volume from the other layers was

included in the next extraction steps; (v) the washing stepswere performedwith 400 mL of the buffers; (vi) the DNAwas eluted in a final

volume of 35 mL to increase final DNA concentration.

To avoid potential cross-contamination from high-abundant to low-abundant samples, DNA from TP1 and TP2 was isolated on

separate days. Each extraction was accompanied by negative (200 mL of lysis buffer) and positive controls (ZymoBIOMICSMicrobial

Community Standard [Zymo Research, USA] and/or a convenience saliva sample).

The amount of extracted bacterial DNA was determined by quantitative polymerase chain reaction (qPCR) as previously77,102 with

universal primers and probes targeting the 16S-rRNA gene (forward: 50-CGAAAGCGTGGGGAGCAAA-30, reverse: 50-GTTCGTACT

CCCCAGGCGG-30, TAMRA probe: 6FAM-ATTAGATACCCTGGTAGTCCA-MGB; Life Technologies, USA).

16S rRNA gene sequencing
Samples that yielded DNA concentration of >0.18 pg/mL were considered for 16S rRNA gene sequencing (Figure S1).

V4 hypervariable region of the 16S rRNA gene was amplified as previously103: amplicon libraries were generated by PCR using

barcoded primers (515F [50-GTGCCAGCAGCCGCGGTAA-3’[ and 806R [50-GGACTACCAGG-GTATCTAAT-3’]78), using 5mL of

DNA as template. Two mock DNA communities (see below) and a non-template control were included in each MiSeq PCR plate

and amplified alongside the samples and isolation positive and negative controls.

The DNA mock communities used alongside samples for the amplification of V4 hypervariable region of the 16S rRNA gene were:

equimolarly pooled bacterial DNA from eleven species (Bacteroides fragilis,Haemophilus influenzae, S. pneumoniae, Streptococcus

pyogenes, Klebsiella oxytoca, Klebsiella pneumoniae, haemolytic Streptococcus group A, Pseudomonas aeruginosa, Staphylo-

coccus epidermidis, Staphylococcus aureus andMoraxella catarrhalis); and the ZymoBIOMICSMicrobial Community DNA Standard

(Zymo Research, USA).

The amplified DNA concentration was quantified using Quant-iT PicoGreen dsDNA Assay Kit (Thermo Fisher Scientific, USA) and

visualised on gel electrophoresis to ensure successful amplification. The amplicons were pooled at equimolar amounts and purified

using a combination of agarose gel purification (GeneJET Gel Extraction and DNA Cleanup Micro Kit) and purification by AMPure XP

magnetic beads (Thermo Fisher Scientific, MA, USA).

As previously,103 16S rRNA gene sequencing was performed using the MiSeq Reagent Kit v2 on the Illumina MiSeq platform (Illu-

mina, USA). Sequencing was performed by Edinburgh Genomics (University of Edinburgh, UK) on a total of 191 samples, 23 negative

and 18 positive controls in one run.

Bioinformatic processing and quality control of 16S rRNA sequences
16S rRNA gene sequencing data processing was performed in R (version 4.2.1)104 as previously described.105 Paired-end raw reads

were filtered and trimmed (maxEE = 2; truncLen = 200/150 bp for forward and reverse reads, respectively), merged, denoised,

chimera filtered and binned into ASVs using the DADA2 (version 1.16.0) in R.79 Taxonomy was assigned using the DADA2 implemen-

tation of the naive Bayesian classifier using the Silva v138.2 reference database.76 Species-level annotations were added using the

addSpecies function. ASVs not assigned to the kingdom Bacteria or assigned to the family Mitochondria or class Chloroplast were

removed.

Contamination was assessed using decontam package in R80 (isContaminant function, ‘‘combined’’ method, default parameters),

combined with manual inspection of putative contaminating ASVs. Using decontam, DNA extraction blanks were used as negative

controls and values from 16S qPCRwere used for the measure of DNA concentrations. To ensure the accuracy of the method, these

contaminant ASVs (n = 72) were carefully inspected by plotting the 16s qPCR DNA concentration data against the relative abun-

dance. Second, in order to exclude ultra-rare taxa from the final dataset, the ASV table was filtered by removing ASVs that were iden-

tified at a relative abundance of <0.1% and present in less than two samples.106 Thereafter, the remaining list of ASVs were cross-

matched to those taxa identified as contaminants by Salter et al.107 These ASVs were manually inspected by plotting the 16s qPCR

DNA concentration data against the relative abundance per isolation batch. Contaminant species were defined as ASVs abundant

only in the lowest density samples in each isolation and/or only in isolation blanks. These additional contaminant ASVs (n = 27) were

then additionally removed from the raw ASV list after which filtering of the ultra-rare taxawas repeated. After excluding contaminating

and ultra-rare taxa, the number of remaining reads per sample was investigated. Samples that had a final read count of less than 5000

(n = 8) were excluded from the final dataset; these 8 samples also had >70% of the reads removed during the decontamination
e4 Cell Reports Medicine 5, 101845, December 17, 2024
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process, suggesting the remaining reads may not reliably represent the community composition. Duplicate samples (n = 4) were also

excluded from the final dataset. These quality control steps removed a mean of 3.75% of the raw reads from the dataset. Following

data quality control, the 16S-based sequencing produced a mean of 35416 reads (range 7534–109456) per sample. The ASV table

contained 174 ASVs.

In the final analytic sample, all participants with TP2 samples and 70/136 (51.5%) TP1 samples were included (Figure S1). Included

participants with TP1 samples were more likely obtained from preterm participants and were thus collected at a later gestational and

postnatal age.

Metagenomic shotgun sequencing and bioinformatic processing
Samples with 16S qPCR concentration >0.8 ng/ml (n = 121) alongside three saliva positive controls and eight isolation negative con-

trols were considered for shotgun metagenomic sequencing at Novogene facility (Novogene Co., Ltd, Cambridge, UK). Sequencing

was performed on the NovaSeq 6000 platform (Illumina) with a read length of 150-bp paired-end reads producing 9G raw data per

sample. Shotgun sequencing failed for all negative controls, indicating absence or very low abundance of biological material, and one

biological sample from TP1.

Data pre-processing and annotation was performed by Edinburgh Genomics. Whole metagenome shotgun sequencing produced

a mean of 37410649 (range 2512236–81101422) raw reads per sample. The raw reads were cleaned using cutadapt (v3.5).83

Adapters were removed, reads were cut when the quality dropped below 30, and reads shorter than 50 bases were removed. Reads

belonging to the host were removed by bowtie2 (v2.4.1)84,85 using Homo Sapiens (GRCh38) as a reference. Files sequenced on mul-

tiple lanes but belonging to the same sample were merged into single forward and reverse files.

Taxonomic profiling was performed using MetaPhlAn (v3.1)86 with the standard database (mpa_v31_CHOCOPhlAn_201901).

Functional profiling was performed using HUMAnN (v3)86 with the default chocophlan (chocophlan.v201901_v31) and the uniref.

90 databases (uniref. 90_annotated_v201901b). As MetaPhlAn and HUMAnN do not use paired information of reads, all reads of

a sample were merged into a single file and used for taxonomical/functional assignment. As shotgun metagenomic sequencing

was performed on higher density samples, the relative contribution of potentially contaminant taxa is smaller, thus, no further

quality controls/decontamination on species/functional level were performed. Functional gene families data were grouped to

KOs using the humann_regroup_table function, both for community-level totals and species-stratified gene families. The KO

abundance data table was total-sum-scaled (TSS) to relative abundances using the humann_renorm_table function; the un-

mapped and ungrouped reads were taken into account for TSS-normalisation, but excluded from downstream statistical ana-

lyses. From the normalised KO table we computed GMMs88 and GBMs47 using the omixer-rpmR library87 using the default set-

tings for both community and taxon-stratified levels. Shotgun sequencing dataset contained a total of 223 species, 94 GMMs,

and 43 GBMs.

Magnetic resonance imaging data acquisition
Infants were scanned at TEA at the Edinburgh Imaging Facility, Royal Infirmary of Edinburgh, University of Edinburgh, UK, using a

SiemensMAGNETOMPrisma 3TMRI clinical scanner (Siemens Healthcare, Erlangen, Germany) and a 16-channel phased-array pe-

diatric head coil in natural sleep as previously described.108 Each acquisition was inspected contemporaneously for motion artifact

and repeated if there had been movement but the baby was still sleeping; diffusion MRI acquisitions were repeated if signal loss was

seen in three or more volumes.

MRI acquisition protocols are detailed in the study protocol paper.29 The following sequences were used in this study: a T2-

weighted (T2w) sampling perfection with application optimised contrasts by using flip angle evolution (SPACE) structural scan (repe-

tition time [TR] = 3200 ms, echo time [TE] = 409 ms, acquisition plane = sagittal, voxel size = 1 mm isotropic, FOV = 128 mm, acqui-

sition time = 2:13min), and amultishell axial diffusionMRI (dMRI) scan. dMRI was acquired in two separate acquisitions to reduce the

time needed to reacquire any data lost to motion artifacts: the first acquisition consisted of 8 baseline volumes (b = 0 s/mm2 [b0]) and

64 volumes with b = 750 s/mm2; the second consisted of 8 b0, 3 volumes with b = 200 s/mm2, 6 volumes with b = 500 s/mm2 and 64

volumes with b = 2500 s/mm2 (acquisition time = 4:29 + 5:01 min). An optimal angular coverage for the sampling scheme was

applied.109 In addition, an acquisition of 3 b0 volumes with an inverse phase encoding direction was performed (acquisition

time = 0:28min). All dMRI images were acquired using single-shot spin-echo echo planar imaging (EPI) with 2-fold simultaneousmul-

tislice and 2-fold in-plane parallel imaging acceleration and 2 mm isotropic voxels; all three diffusion acquisitions had the same pa-

rameters (TR/TE 3400/78.0 ms).

Structural images were reported by a pediatric radiologist with experience in neonatal MRI (AJQ). Images with evidence of post-

haemorrhagic ventricular dilatation, cystic periventricular leukomalacia or central nervous systemmalformation were excluded from

subsequent analysis.

Imaging data pre-processing
Details on dMRI processing have been previously published108 usingMRtrix393 and FMRIB Software Library (FSL).94 Briefly, for each

subject, the two dMRI acquisitions were first concatenated and then denoised using a Marchenko-Pastur-PCA-based algorithm110;

eddy current, head movement and EPI geometric distortions were corrected using outlier replacement and slice-to-volume registra-

tion111–114; bias field inhomogeneity correction was performed by calculating the bias field of the mean b0 volume and applying the
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correction to all the volumes.115 The structural images were processed using the minimal processing pipeline of the developing Hu-

man Connectome Project (dHCP)96 to obtain the bias field corrected T2w, brain mask, tissue segmentation and the different tissue

probability maps. Themean b0 EPI volume of each subject’s dMRI acquisition was co-registered to their structural T2w volume using

boundary-based registration using FMRIB’s Linear Image Registration Tool (FLIRT).116

From the diffusion images we calculated the DTI (FA, RD) and NODDI (NDI, ODI and ISO) maps. The DTI model was fitted in each

voxel using only the b = 750 s/mm2 shell. NODDI maps were calculated using all shells and the recommended values of the parallel

intrinsic diffusivity for neonatal brain tissues97,117 using the original NODDI MATLAB toolbox (http://mig.cs.ucl.ac.uk/index.php?

n=Tutorial.NODDImatlab).

Selection of image features
Volumes

We calculated the volumes of the total tissue, cortical gray matter, deep gray matter, white matter, cerebellum, and the ventricles

from the tissue parcellation obtained from the dHCP pipeline.96 For cortical gray matter, deep gray matter, white matter and the cer-

ebellum both raw and relative (i.e., normalised to total tissue volume) volumes were obtained to quantify absolute growth of the tis-

sues as well as that relative to total brain growth, respectively.

Gray matter microstructure

For cortical and deep gray matter and the cerebellum, the mean DTI and NODDI metrics were calculated, using the recommended

value for the parallel intrinsic diffusivity for neonatal gray matter (1.25 mm2/m) for NODDI map calculations.117 For the cortex, mean

gyrification index, thickness, sulcal depth, curvature and surface area as measures of cortical complexity/morphometry were also

calculated.96

White matter microstructure

To capture global white matter dysmaturation, we segmented 16 major tracts and derived general factors (g-factors) for each of the

DTI and NODDI metrics as described previously.108 The only difference with the previous work was that the tracts were brought from

ENA50 neonatal template space to native space via registration of the FA maps to ENA50 FA template using rigid, affine and sym-

metric normalization (SyN) implemented in Advanced Normalization Tools.95 For the tracts, the NODDImetrics were calculated using

the recommended values of the parallel intrinsic diffusivity for neonatal white matter (1.45 mm2/ms).117

For contextualisation of the image features, we performed linear regression modeling for each neuroimaging feature as the

outcome and GA at birth and at scan as the predictors (Table S8). Representative brain maps are provided in Figure S5.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed in R 4.2.1.104 Visualisations were plotted using the ggplot2,92 ggpubr118 and cowplot119 pack-

ages. Where necessary, distribution of variables and regression diagnostic plots were visually inspected to ensure approximate

conformation to assumptions; normal distribution was additionally assessed using Shapiro-Wilk’s test. P-values from statistical tests

were adjusted for multiple comparisons using the Benjamini-Hochberg method120 separately within each analysis type, producing

q-values (see details within each subsection).

Beta diversity and PERMANOVA
Beta diversity was calculated as the Bray-Curtis dissimilarity121 matrix based on the TSS-normalised (i.e., relative abundances) ASV,

species and functional GMMs tables using vegdist function (vegan package82). PERMANOVA, modeled by adonis2 (vegan pack-

age82) with 1000 permutations,was used to identify differences in overall bacterial community composition. Separate PERMANOVAs

were performed for all pairwise comparisons for the different sample types and timepoints; when comparing TP1 vs. TP2 composi-

tion within preterm infant group we adjusted for repeated measures by constraining the permutations within participant (strata =

participant ID). To assess the effects of perinatal covariates, univariable analyses were conducted for each covariate, separately

for the timepoints; p-values were adjusted for multiple comparisons across the models. Results with q-value <0.1 were considered

as statistically significant and followed up using differential abundance testing.

For visualisation purposes (Figure 1A and Figure S2A), we applied hierarchical clustering (hclust function) on the ASV- and species-

level Bray-Curtis dissimilarity matrices. Calinski-Harabasz and Silhouette width indices were used to determine whether average

(ASV data) or complete (species data) linkage was optimal for the different datasets.

Ordination
Principal Coordinates Analysis (PCoA) was performed on the ASV-level Bray-Curtis dissimilarity matrix using the function pcoa (ape

package89). Cailliez transformation was applied to correct for negative eigenvalues.122 The scree plot of the eigenvalues alongside

with proportion of variance explainedwere inspected to determine the optimum number of coordinates to extract. For taxonomic and

functional interpretation of the main axes of variance (i.e., the extracted PCo-s), Spearman correlation coefficients were calculated

between the PCo scores and the relative abundances of the ASVs, species, GBMs and GMMs.
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Species contribution to gut-brain modules
To understand which bacterial species contribute to the calculated gut-brain modules,47 we took two approaches. First, we calcu-

lated Spearman rank correlation coefficients between the relative abundances of the gut-brain modules and 25 most abundant spe-

cies in the dataset. Second, we plotted the relative abundance of the gut-brain modules stratified by species. The latter approach

illustrates the extent to which a species’ genes could be attributed to a gut-brain module.

Alpha diversity
Shannon index and the number of observed ASVs were calculated using the estimate_richness function (phyloseq package81). These

indices were calculated based on the ASV table after removal of contaminant taxa but before filtering of the ultra-rare taxa. This full

ASV table was rarefied to the minimum sequencing depth (10200 reads before filtering of ultra-rare taxa) using rarefy_even_depth

function. Linear mixed effects modeling (lmer function within package lmerTest,90 Satterthwaite’s method) was used to assess dif-

ferences in alpha diversity indices between the sample types and timepoints, fitting participant ID as a random effect to adjust for

repeated measures. For observed ASVs, the assumption of normal distribution of model residuals was violated and therefore the

values were log10-transformed. Post-hoc analyses were conducted using the package emmeans.91 P-values were adjusted for mul-

tiple comparisons for the main effects across the models for the two alpha diversity indices, and separately for the three pairwise

comparisons. We then assessed the associations between perinatal covariates and alpha diversity indices in preterm infants at

the two timepoints. We calculated Spearman correlation coefficients for the associations between continuous variables and alpha

diversity indices; t-tests (TP2) and Wilcoxon rank-sum tests (TP1) were applied to test for the differences in alpha diversity indices

between groups of infants based on categorical variables. P-values were adjusted for multiple comparisons separately for the time-

points. Covariates with q-value <0.1 in univariablemodels were followed upwithmultivariable linear regressionmodeling including all

covariates to adjust for the potential confounding effects between the variables.

Associations between gut microbiota and brain MRI features
Baseline linear regression models

First, the microbiota features (PCo-s and alpha diversity indices) were adjusted for GA at sample collection by fitting a linear model of

each feature on GA at sample collection and retaining the residuals. We adjusted for sampling age in this manner rather than using it

as a covariate in the model with the brain MRI feature as the outcome to avoid spurious correlations between GA at microbiota sam-

pling and brain MRI features. Then, a linear regression model was performed for each residualised microbiota feature as the predic-

tor, eachMRI feature as the outcome, and GA at birth and at scan added as covariates. All values were scaled (z-transformed) before

fitting the models, resulting in standardised regression coefficients. P-values were adjusted for the FDR across all models separately

for volumetric and microstructural/cortical morphometric MRI features. Due to the exploratory nature of the study and given the

correlated nature of the neuroimaging measures, results with q-value <0.25 were considered as noteworthy and investigated further

in sensitivity and post-hoc differential abundance analyses. FDR correction of the p-values provides a balance between type I and

type II errors; 0.25 is the default threshold in MaAsLin2 and there is precedence of using this cut off in microbiota-brain/behavior

studies.70,123

To quantify the variance in each brain imagingmetric accounted for by themicrobiota PCo-s or diversity indices, the incremental R2

was calculated as the difference between themultiple R2 of eachmodel with that from the null model including only the covariates (GA

at birth and at scan) as predictors. We used analysis of variance (ANOVA) to test whether the baseline model with the microbiota

feature as the predictor fit the data significantly better compared to the null model.

Covariate identification and adjustment (sensitivity analyses)

The clinical variables that were significantly (q-value <0.1) associated with microbiota alpha- or beta-diversity at TP2 on ASV-level

(sex, birthweight Z score, antibiotics >72h of life, and NEC) were tested for associations with brain MRI features. Two-sample t-tests

were used to compare the means of normally distributed continuous features between the groups of the categorical covariates; Wil-

coxon rank-sum tests were applied to compare differences in non-normally distributed MRI features; Spearman correlation analysis

was used to test for significant associations between birthweight Z score and MRI features. Variables that were nominally signifi-

cantly (p < 0.05) associated with at least one of the brain MRI features were added as covariates in the fully adjusted model. These

variables were: birthweight Z score, sex and NEC. Only three infants in the sample were diagnosed with NEC, thus, instead of adding

this variable as a covariate, a sensitivity analysis was performed excluding infants with NEC.

Differential abundance testing
MaAsLin246 was used to identify bacterial ASV, species and functional capacity biomarkers associated with factors of interest. We

applied TSS-normalisation prior to MaAsLin2 modeling. As by default in the method, we considered results with q-values <0.25 as

statistically significant.

In analyses assessing the associations between bacterial abundance and perinatal covariates, models were performed separately

for the two timepoints.We tested for the effects on ASVs (16S) and species (shotgun) that were present with at least 1%of abundance

(min_abundance = 0.01) in at least 5% of samples (min_prevalence = 0.05); the normalisation method within MaAsLin2 was set to

‘‘none’’; all other arguments were used as by default. Baseline analyses at TP1 were adjusted for postnatal age at sample. Baseline

models at TP2 were adjusted for the degree of prematurity (GA group; very vs. extremely preterm) and GA at sample collection. At
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TP1 we didn’t adjust for GA at birth given the lack of statistically significant association in univariable PERMANOVA; at TP2 we

adjusted for GA at sample collection instead of postnatal age given the high collinearity between GA at birth and postnatal age. In

fully adjustedmodels, all clinical variables were tested simultaneously. For species, an additional model was performed for TP1 sam-

ples including labor antibiotics in the model.

To identify ASVs, species and GBMs associated with brain imaging features, MaAsLin2 was conducted for those brain MRI fea-

tures that were significantly (q-value <0.25) associated with any of the microbiota feature in the baseline models. MaAsLin2 reverses

predictors and outcomes compared to PCo-based analyses, thus, to achieve alignment of theMaAsLin2models with the initial base-

line regression model, we first adjusted the brain MRI features for GA at birth and at scan by fitting a linear model of each feature on

GA at birth and at MRI, retaining the residuals. These residuals were then used independently as the predictors in the MaAsLin2

models, including GA at fecal sample collection as a covariate. Due to the relatively small sample size in comparison with the number

of bacterial taxa, in all analyses, we tested for effects on ASVs and species that were present with at least 1%of abundance in at least

10% of samples; other arguments were as specified above; for GBMs, the default MaAsLin2 parameters were used.

Reporting summary
We followed the Strengthening The Organization and Reporting of Microbiome Studies (STORMS) checklist124 in describing the

methodology and reporting results.
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