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The gut microbiota is closely related to the occurrence and development of cancer. However, the 
characteristics of gut microbiota associated with ovarian tumors remain elusive. In this study, fecal 
samples were collected from healthy control (HC) group and patients with ovarian tumor (OT) or with 
other benign tumor (OBT) for 16s rRNA sequencing to determine differential flora in gut microbiota. 
The composition of gut microbiota in the OT group, including bacterial abundance and diversity, was 
significantly different form HC and OBT groups. In the OT group, Escherichia_Shigella was markedly 
higher than in the HC group, while Coprococcus, Fusicatenibacter, Butyricicoccus and Oscillibacter 
were significantly lower than in HCs. The abundance of Fusicatenibacter, Butyricicoccus, Coprococcus 
Parasutterella, and Anaerotruncus in the OBT group was distinctly higher than that in the OT group, 
while the Lachnospiracae_ND3007_group was significantly lower. In addition, in OT patients, ovarian 
cancer (OC) and benign ovarian tumor (BOT) patients also showed a unique composition of gut 
microbiota. The random forest model was designed using different bacteria. Compared with HCs, 
area under curve (AUC) values for BOT and OC groups were 0.77 and 0.86, respectively. These findings 
suggest that some gut microbiota such as Escherichia_Shigella show a certain ability to distinguish 
between healthy individuals and patients with OT.
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Ovarian cancer (OC) is a malignancy which poses grave threats to female health, and has the highest mortality 
rates affecting the female reproductive system1. Due to hidden disease locations and a lack of good screening 
methods, most cases are at advanced stages at initial diagnosis, with tumors often showing primary or secondary 
resistance to chemotherapeutic drugs, and Critically, 5-year survival rates in patients with OC are between 30 
and 45%2. Currently, the main OC treatments include radical surgery, platinum-based combined chemotherapy, 
and poly ADP-ribose polymerase inhibitor maintenance therapy, but due to low response rates, toxicity, and 
drug resistance, many patients fail to benefit from such treatments3. Therefore, more convenient, non-invasive, 
and highly sensitive OC screening methods are required.

Known as a “super organism”, billions of symbiotic bacteria called the “gut microbiota” live in the human 
body, with the intestinal tract numbering approximately 1014 microorganism species4,5. Due to a two-way 
influence between sex hormone levels and the microflora, gut microbiota composition in females is significantly 
different to that of males; Bacteroides abundance in females is lower, but α-diversity indices are higher4,5.

Intestinal microbiome disorders are associated with several cancers, including colorectal, gastric, and liver 
cancers6–8, and have been observed in various female malignant tumors9,10. Significant differences in α- and 
β-diversity indices have been reported between patients with cervical cancer and healthy controls. Prevotella, 
Porphyromonas, and Dialister levels were higher in patients with cervical cancer, while Bacteroides, Alistipes, and 
Lachnospiracea levels in healthy controls were higher10. Some studies have reported that gut microbiota diversity 
in breast cancer patients was lower than that in healthy controls, while Clostridium abundance was increased11. 
However, few studies have explored relationships between the intestinal microbiota and OC. Jacobson et al.12 
reported that the abundance of Prevotella bacteria were significantly increased in OC patients compared with 
BOTs, regardless of their response to platinum chemotherapy.
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We explored gut microbiota differences between patients with ovarian tumors (OTs) and HCs, patients with 
benign ovarian tumors (BOTs) and patients with OC, and patients with OTs and other benign tumors (OBTs). 
Critically, our research may benefit early OT diagnoses and/or screening strategies.

Materials and methods
The study population
From May 2018 to January 2022, we collected fecal samples from 382 female individuals from Zhejiang Cancer 
Hospital in China, including 239 patients with OTs (148 patients with OC and 91 with BOTs), 90 patients with 
OBTs, and 53 with HCs. This study was investigated in compliance with the Declaration of Helsinki. All subjects 
provided written informed consent, and the study was approved by our local ethics committee (Approval No. 
IRB-2023-417). The following patients were excluded: Patients who have been exposed to antibiotics, patients 
who have not signed consent forms and other patients with malignant tumors in the past eight weeks. Healthy 
individuals excluded people with severe cardiopulmonary diseases and other tumors, and were recruited by 
the health examination center of our hospital. Clinical data were collected by consulting medical records. Stool 
samples were freshly collected and immediately frozen at − 80 °C for follow-up analysis. In order to avoid the 
influence of medication as much as possible, we collected samples from the patients when they were just admitted 
to the hospital and had not received treatment. Subject clinical data were collected by consulting medical records 
(Table 1), including factor such as age, FIGO stage, body mass index (BMI), medication history and personal 
cancer history. Tumor staging was performed according to World Health Organization histological classification 
criteria and the International Federation of Gynecology and Obstetrics (FIGO) staging criteria. We confirm that 
all experiments are carried out in accordance with the relevant guidelines and regulations.

DNA extraction
Total bacterial genomic DNA was extracted from fecal samples using DNA isolation kits (GUhe Laboratories, 
Hangzhou, China). DNA concentrations and purity were tested on a NanoDrop ND-1000 spectrophotometer 
(Thermo Fisher Scientific, Waltham, MA, USA).

16S rDNA amplicon pyrosequencing
The V4 region of bacterial 16s rRNA was amplified using forward (515F 5′-GTGCCAGCMGCCGCGGTAA-3′) 
and reverse primers (806R 5′-GGACTACHVGGGTWTCTAAT-3′). We also used specific 6-bp sequences to 
incorporate bar codes into TrueSeq adapters for multiple sequencing. Amplification included a pre-denaturation 
step at 98 °C for 30 s and then 25 cycles including denaturation at 98 °C for 15 s, annealing at 58 °C for 15 s, 
extension at 72 °C for 15 s, and a final extension at 72 °C for 1 min. Amplicons were purified and quantified 
using Agencourt AMPure XP Beads (Beckman Coulter, Indianapolis, IN, USA) and a PicoGreen dsDNA assay 
kit (Invitrogen, Carlsbad, CA, USA). In further analyses, GUHE Info Technology Co., Ltd (Hangzhou, China) 
used the Illumina NovaSeq6000 platform (Illumina, San Diego, CA, USA) for pairwise 2 × 150 bp sequencing, 
after amplifier quantification and pooling. After individual quantification steps, amplicons were pooled in equal 
amounts, and pair-end 2 × 150 bp sequencing was performed using the Illumina HiSeq4000 platform at Guhe 
Info Technology Co. Ltd (Hangzhou, China).

Sequence analysis
Operational taxonomic unit (OTU) picking using VSEARCH v2.22.1. Exact matches with bar codes were 
assigned to corresponding samples and identified as valid sequences. The average sequencing reads of the samples 
was 129,726, and the lowest sequencing depth was 81,116. The criteria for screening low-quality sequences were 
sequence length < 150 bp, average Phred scores of < 20, the sequence containing ambiguous bases, and the single 
nucleotide repeat sequence containing > 8 bp. Using VSearch, we selected amplified sequence variants (ASVs) 
for included dereplication (–derep_fulllength), cluster (–cluster_fast, –id 0.97), and detection of chimeras (–

Characteristics HCa BOTb OCc OBTd

Female 53 91 148 90

Age, years 52.54 ± 8.68 45.38 ± 14.41 58.62 ± 10.77 49.27 ± 11.72

FIGO stage

 I–II – – 14 –

 III–IV – – 134 –

Body mass index (BMI), kg/m2 23.28 ± 4.75 22.59 ± 3.21 22.74 ± 4.47 23.01 ± 2.94

Medication History

 No – 82 110 70

 Yes – 9 38 20

Personal Cancer History

 No – 90 143 89

 Yes – 1 5 1

Table 1. Clinical features of participants enrolled in this study. Measurement data are expressed as 
mean ± SEM. aHealth control. bBenign ovarian tumor. cOvarian cancer. dOther benign tumor.
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uchime_ref)13. ASV sequence data in the ASV table were normalized to minimize sequencing depth differences 
between samples. A normalized value of 1 indicated relative abundance. A representative sequence (REP–SEQS) 
was selected from each ASV using default parameters. REP–SEQs and ASV table files were then imported into 
QIIME2 (V2022.2)14. QIIME2 removed ASVs with < 0.001 of total sequences. Resulting classifications were 
collapsed using the QIIME taxa collapse command.

Bioinformatics and statistical analysis
Sequence data analysis was primarily conducted using QIIME2 and R packages (V3.6.3). Alpha-diversity was 
indicated by the Shannon diversity index. Because the data do not conform to normal distribution, the statistical 
differences between groups were determined using Kruskal–Wallis tests. The UniFrac distance metric15 was 
used for β-diversity analysis to examine structural changes in microbial communities in samples, and principal 
coordinate analysis (PCoA) was used for visualization16. Phylum, class, order, family, genus, and species 
abundance levels in groups were statistically compared. Besides β-diversity, the differences among samples were 
also analyzed by linear discriminant analysis (LDA) effect size (LEfSe). We used Kruskal–Wallis or Tukey tests to 
test taxa abundance differences between groups. Box charts were used for visualization. P < 0.05 values indicated 
statistical significance.

Using the R package “random Forest” with 1000 trees and default settings, random forest analyses were 
used to distinguish samples from different groups17. We used 10 × cross-validation to estimate generalization 
errors. The expected “baseline” error was also included, which was generated using classifiers that predicted the 
most common category tags. We also used the CatBoost and XGBoost algorithms to construct and test models 
to distinguish between the HC and OC groups. A tenfold cross-validation strategy was employed for model 
training and evaluation. Output files were further analyzed using the STAMP software package (V2.1.3)18. The R 
package and Microbiome Analyst (https://www.microbiomeanalyst.ca/) were used for data visualization.

Results
Intestinal microbial diversity differences between HCs and patients with OTs
To determine gut microbiota differences between patients with OTs and HCs, gut microbiota structures in 
groups were compared and analyzed. Microbial community phyla and genera were examined and described 
(Fig. 1A and B) to show the relatively higher phyla and genera abundance, while remaining phyla were merged 
under “other”. Fecal microorganisms were mainly composed of Bacteroidota, Firmicutes, and Proteobacteria at 
the phylum level (Fig. 1A). Genus levels (Fig. 1B) were dominated by Bacteroides, Faecalibacterium, Prevotella, 
Escherichia_Shigella, Megamonas, and Phascolarctobacterium. At phylum and genus levels, no significant 
differences in gut microbiota composition were identified between OT and HC groups, but differences were 
recorded in the proportion of gut microbiota composition. At the phylum level, average Bacteroidota and 
Proteobacteria abundance in the OT group was higher than in HCs, while average Firmicutes abundance in 
OTs was lower than that in HCs. At genus levels, when compared to HCs, average Bacteroides, Prevotella, and 
Escherichia_Shigella abundance in the OT group increased, while average Faecalibacterium, Megamonas, and 
Phascolarctobacterium abundance decreased.

To evaluate gut microbiota diversity in OT and HC groups, α- and β-diversity indices were evaluated. The 
different alpha diversity indexes (Chao 1, ACE, Shannon and Simpson) were measured. Chao1 and ACE indexes 
were used to determine community abundance, the Shannon and Simpson indexes were used to determine 
community diversity. In this study, the ACE and Chao1 indices of the OT group were both higher than those of 
the HC group (P < 0.001), while the Shannon and Simpson indices were both lower than those of the HC group 
(P < 0.001). These data indicate that compared with the control group, the diversity of the gut microbiota in OT 
patients was significantly decreased, while the abundance was significantly increased (Fig. 1C). Additionally, 
PCoA based on weighted UniFrac distances was used to show compositional microflora differences. A significant 
difference in gut microbiota between HC and OT groups was observed (P = 0.001) (Fig. 1D). It was worth noting 
that when compared to HCs, gut microbiota in the OT group showed different composition and diversity.

We next used univariate analysis (in Microbiome Analyst) to compare specific gut microbiota between OT 
and HC groups. At genus levels, significant differences in 14 gut microbiota between groups were recorded 
(Table 2), including Escherichia_Shigella, Coprococcus, Fusicatenibacter, Butyricicoccus, Oscillibacter, Blautia, 
Bilophila, Enterbacter, Alistipes, Lachnospira, Bacteroides, Parasutterella, Lachnospiraceae_ND3007_group, and 
Ruminococcus. From an analysis of the first five flora by False Discovery Rate (FDR), Escherichia_Shigella in the 
OT group was significantly higher when compared with HCs, while Coprococcus, Fusicatenibacter, Butyricicoccus, 
and Oscillibacter were significantly lower than in HCs (Fig. S1). To comprehensively consider the biological 
consistency and effect size, taxonomic analysis using the linear discriminant analysis effect size (LEfSe) was 
carried out. Different classifications at the genus level were extracted and displayed as a bar chart. The results 
showed that 12 genera including Lachnospira and Faecalibacterium were increased and enriched in the healthy 
control group, while 3 genera including Bacteroides, Escherichia_Shigella and Prevotella were highly enriched in 
the OT group (Fig. S4).

Intestinal microbial diversity differences between patients with BOTs and OC
Next, we divided OTs into two groups: patients with BOTs and patients with OC, and compared gut microbiota 
levels between groups. Fecal microorganisms were mainly composed of Bacteroidota, Firmicutes, and 
Proteobacteria at the phylum level (Fig. 2A). Genus levels (Fig. 2B) were dominated by Bacteroides, Prevotella, 
Faecalibacterium, Escherichia_Shigella, Phascolarctobacterium, and Parabacteroides. At the phylum level, 
no significant differences in gut microbiota composition and proportions were identified between BOT and 
OC groups. However, differences in the proportions of gut microbiota were identified at genus levels. When 
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compared to HCs, average Bacteroides, Escherichia_Shigella, Phascolarctobacterium, and Parabacteroides 
abundance increased in the OC group, while Prevotella and Faecalibacterium decreased.

Gut microbiota diversity in OC and BOT groups was also evaluated. In the OC and BOT groups, the Shannon 
and Simpson indices (Fig. 2C) showed no significant difference in the diversity of gut microbiota between the 
two groups of patients (P = 0.967, P = 0.177). According to the Chao1 index, there was no significant difference 
in the abundance of gut microbiota between the two groups of patients (P = 0.128), but according to the ACE 
index, there was a significant difference in the abundance of gut microbiota between the two groups of patients 
(P = 0.046). Additionally, weighted PCoA results showed a significant difference in gut microbiota composition 
between BOT and OC groups (P = 0.002) (Fig. 2D). Univariate analysis showed eight gut microbiota differences 
between BOT and OC groups at genus levels (Table 3), including Flavonifractor, Ruminococcus_gnavus_group, 
Prevotella, Anaerotruncus, Veillonella, Bacteroides, and Parabacteroides. According to FDR, the first five flora 
were analyzed, of which, Flavonifractor, Ruminococcus_gnavus_group, and Anaerotruncus in the OC group 
were significantly higher than in BOT, while Prevotella and Veillonella were significantly decreased (Fig. S2). 
The classification analysis results of LEfSe showed that 12 genera including Prevotella and Agathobacter were 
increased and enriched in the BOT group, while 3 genera including Bacteroides, Escherichia_Shigella and 
Ruminococcus_gnavus_group were highly enriched in the OC group (Fig. S4).

Fig. 1. The gut microbiota profile differs between ovarian tumor patients and healthy individuals. The top ten 
microbial communities are presented at the phylum (A) and genus level (B) in the ovarian tumor and healthy 
groups. α-diversity was estimated by Chao1, ACE, Shannon , and Simpson Index (C). Principal component 
analysis (PCoA) was used to display the microbiome space between groups, indicating significant differences 
in the gut microbiota between the HC and OT groups (D). OT Ovarian tumor, HC Healthy control.
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Intestinal microbial diversity differences between patients with OBTs and those with OTs
We also compared gut microbiota differences between patients with OBTs and those with OTs. Microbial 
composition in feces was mainly comprised of Bacteroidota, Firmicutes and Proteobacteria at the phylum level 
(Fig.  3A). Genus levels (Fig.  3B) were dominated by Bacteroides, Prevotella, Faccalibacterium, Escherichia_
Shigella, and Megamonas. At phylum and genus levels, no significant differences in gut microbiota composition 
were identified between OBT and OT groups, but differences in the proportion of gut microbiota composition 
were recorded. At phylum levels, average Bacteroidota and Proteobacteria abundance in the OT group was higher 
than in the OBT group, while average Firmicutes abundance in the OBT group was lower than in the OBT group. 
At genus levels, when compared with the OBT group, average Bacteroides, Prevotella, and Escherichia_Shigella 
abundance in the OT group increased, while average Faccalibacterium and Megamonas abundance decreased. 
The Chao1 and ACE indices of the OT group were significantly higher than those of the OBT group (P < 0.001, 
P = 0.012), while the Shannon and Simpson indices were lower than those of the OBT group (P = 0.020, P = 0.122). 
These data indicate that compared with the OBT group, the diversity of the gut microbiota in OT patients was 
significantly decreased, while the abundance was significantly increased (Fig. 3C). Also, weighted PCoA results 
showed a significant difference in gut microbiota between OBT and OT groups (P = 0.001) (Fig. 3D).

Microbiome Analyst univariate analysis was next used to compare specific gut microbiota in OBT and OT 
groups. At genus levels, significant differences in seven gut microbiota were identified between groups (Table 
4), including Fusicatenibacter, Butyricicoccus, Lachnospiraceae_ND3007_group, Coprococcus, Parasutterella, 
and Blautia. According to FDR, the first five flora were analyzed, in which Fusicatenibacter, Butyricicoccus, 
Coprococcus Parasutterella, and Anaerotruncus in the OBT group were significantly higher than the OT group, 
while the Lachnospiraceae_ND3007_group was significantly decreased (Fig. S3). The classification analysis results 
of LEfSe showed that 13 genera including Lachnospira and Roseburia were increased and enriched in the OBT 
group, while 2 genera including Prevotella and Streptococcus were highly enriched in the OT group (Fig. S4).

The value of detecting gut microbiota for OT diagnoses
To evaluate gut microbiota potential to distinguish cancer populations, we established and tested a random forest 
classifier model. Gut microbiota diagnostic effects were evaluated using ROC analysis; when compared with 
HCs, the AUC value of the BOT group was 0.77 (Fig. 4A). From top to bottom, the main bacteria responsible for 
distinguishing patients with BOTs from HCs are shown (Fig. 4C), with an error rate of 31.6%. When compared 
with HCs, the AUC value of the OC group was 0.86 (Fig.  4B). The performance measured by the AUC for 
the CatBoost and XGBoost models of the HC and OC groups was 0.859 for both (Fig. S5). The main bacteria 
responsible for distinguishing patients with OC from HCs are shown (Fig. 4D), with an error rate of 34.1%. 
When compared with the OC group, the AUC value of the BOT group was 0.72 (Fig. 4E). The main bacteria 
responsible for distinguishing patients with OC from those with BOTs are shown (Fig. 4G), with an error rate 
of 42.51%. When compared with the OBT group, the AUC value of the OT group was 0.70 (Fig. 4F). The main 
bacteria responsible for distinguishing patients with OTs from those with OBTs are shown (Fig. 4H), with an 
error rate of 43.94%.

Discussion
In this study, fecal samples were collected from HCs (n = 53), 239 patients with OTs (patients with OC (n = 148) 
and with BOTs (n = 91)), and patients with OBTs (n = 90). Through the analysis of the gut microbiota of these 
patients, we observed that the gut microbiota composition, including bacterial abundance and diversity of OT 
group significantly differs from that of HC group and OBT group. Also, a significant difference was noted in 
the gut microbiota between OT and BOT patients. Moreover, among patients with OTs, OC and BOT patients 
showed distinctive gut microbiota compositions. Via the analysis of the microbiota in the patient sample, unique 

Name FDRa Mean HCb MeanBOTc Mean OCd See P-Valve

Escherichia_Shigella 6.45E−09 0.006 0.046 0.050 2.386 8.71E−11

Coprococcus 0.001 0.006 0.004 0.003 0.252 1.07E−05

Fusicatenibacter 0.003 0.006 0.001 0.001 0.237 1.14E−04

Butyricicoccus 0.005 0.005 0.003 0.002 0.220 2.76E−04

Oscillibacter 0.005 0.002 0.001 0.002 0.349 4.40E−04

Blautia 0.007 0.007 0.004 0.005 1.379 6.74E−04

Bilophila 0.008 0.003 0.001 0.002 0.002 0.001

Enterobacter 0.008 0.002 0.012 0.020 0.481 0.001

Alistipes 0.011 0.016 0.011 0.011 1.735 0.002

Lachnospira 0.013 0.026 0.017 0.015 1.992 0.002

Bacteroides 0.017 0.294 0.358 0.358 1.554 0.003

Parasutterella 0.021 0.011 0.008 0.007 0.452 0.004

Lachnospiraceae_ND3007_group 0.021 0.004 0.002 0.001 0.237 0.004

Ruminococcus 0.021 0.011 0.006 0.002 0.328 0.005

Table 2. Differences in gut microbiota between ovarian tumor patients and healthy control group at the genus 
level. aFalse Discovery Rate. bHealth control. cBenign ovarian tumor. dOvarian cancer. eStandard Error.
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Name P-values FDRa Seb mean BOTc mean OCd

Flavonifractor 1.66E−05 0.001 0.003 0.001 0.002

Ruminococcus_gnavus_group 3.53E−05 0.001 0.347 0.001 0.004

Prevotella 5.76E−05 0.001 0.239 0.190 0.069

Anaerotruncus 8.03E−05 0.001 3.119 0.190 0.069

Veillonella 0.000424 0.006 2.807 0.004 0.015

Bacteroides 0.00054 0.006 1.649 0.284 0.360

Parabacteroides 0.00469 0.042 1.815 0.024 0.026

Table 3. Differences in gut microbiota between Benign ovarian tumors and ovarian cancer at the genus level. 
aFalse Discovery Rate. bStandard Error. cBenign ovarian tumor. dOvarian cancer.

 

Fig. 2. The gut microbiota profile differs between ovarian cancer patients and benign ovarian tumor patients. 
The top ten microbial communities are presented at the phylum (A) and genus level (B) in the ovarian tumor 
and healthy groups. α-diversity was estimated by Chao1, ACE, Shannon , and Simpson Index (C). Principal 
component analysis (PCoA) was used to display the microbiome space between groups, indicating significant 
differences in the gut microbiota between the OC and BOT groups (D). OC Ovarian cancer, BOT Benign 
ovarian tumor.
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intestinal microbe species were discovered. We speculate that we could distinguish OT patients from HCs 
through these microbes.

Because of the close relationship between estrogen and intestinal microorganisms, differences in intestinal 
microorganisms in female tumors (cervical and breast cancer) have been extensively studied, Patients with 
cervical cancer and breast cancer have their own unique gut microbiota19–21. Kang et al.19 reported that the 

Name P-values FDRa Seb mean OTc mean OBTd

Fusicatenibacter 5.18E−05 0.004 0.002 0.001 0.003

Butyricicoccus 4.19E−04 0.011 0.004 0.002 0.003

Lachnospiraceae_ND3007_group 5.37E−04 0.011 0.003 0.002 0.002

Coprococcus 5.685E−04 0.011 0.008 0.003 0.005

Parasutterella 9.725E−04 0.015 0.011 0.007 0.010

Blautia 1.533E−03 0.020 0.005 0.005 0.005

Table 4. Differences in gut microbiota between ovarian tumor and other benign tumor at the genus level. 
aFalse discovery rate. bStandard Error. cOvarian tumor. dOther benign tumor.

 

Fig. 3. The gut microbiota profile differs between ovarian tumor patients and other benign tumor patients. 
The top ten microbial communities are presented at the phylum (A) and genus level (B) in the ovarian tumor 
and other benign tumor patients. α-diversity was estimated by Chao1, ACE, Shannon , and Simpson Index (C). 
Principal component analysis (PCoA) was used to display the microbiome space between groups, indicating 
significant differences in the gut microbiota between the HC and OT groups (D). OT Ovarian tumor, OBT 
Other benign tumor.
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abundance of Prevotella in fecal samples of early cervical cancer patients was higher than that in healthy control 
group. Additionally, cervical cancer stage was most significantly and negatively correlated with Ruminococcus 
2, which was posited as a potential biomarker in predicting cervical cancer development20. High Bacteroides 
abundance was also found in fecal samples from patients with cervical cancer, with Bacteroides identified as 
a dominant bacteria related to estrogen metabolism. Thus, cervical cancer occurrence and development 
may be related to estrogen metabolism mediated by intestinal microorganisms20. When compared with 
healthy individuals, breast cancer patients usually have lower microbial diversity and microbial composition 

Fig. 4. The diagnostic efficacy of microbiota was evaluated by subject operating characteristics (ROC) analysis. 
The area under the curve (AUC) of the patients with BOT was 0.77 (A) compared with the healthy group. 
Compared with the healthy group, the AUC of patients with OC was 0.86 (B). The AUC of OC patients was 
0.72 (E) compared with BOT patients. Compared with OBT, AUC of patients with OT was 0.70 (F). The error 
rate represents the error rate of finding characteristic microbiota to predict classification by the random forest 
method (C, D, G, H). OT Ovarian tumor, OC Ovarian cancer, BOT Benign ovarian tumor, OBT Other benign 
tumor.
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alterations; relative Streptomyces and Bacteroides abundance in feces from breast cancer patients was lower, while 
Verrucous and Proteus abundance was higher21. The bacterial metabolites secreted by gut microbiota, similar 
to the role of hormones, are also involved in estrogen metabolism regulation in cancer cells22,23. Since 80% 
of breast cancer cases are estrogen receptor positive22, the occurrence and development of breast cancer may 
be related to estrogen metabolism. In our study, when compared with HCs, Escherichia_Shigella abundance 
was significantly increased, while Coprococcus, Fusicatenibacter, Butyricicoccus, and Oscillibacter abundance was 
significantly decreased in patients with OTs. Some E. coli and Shigella strains may cause intestinal infections and 
diarrhea23,24. Current evidence also suggest that patients with non-HBV/ non-HCV hepatocellular carcinoma 
have intestinal ecological disorders characterized by excessive amounts of pro-inflammatory bacteria such as 
Escherichia coli Shigella and enterococci and a decrease in anti-inflammatory bacteria25. Studies have shown that 
E. coli and Shigella are Enterobacteria that generate lactic acid which promotes tumor growth and development 
by providing energy for tumor cells and immune defense evasion26–28. Escherichia_Shigella may potentially 
promote OT development, although mechanisms remain unclear. Coprococcus is an important member of the 
Pleurococcus genus, which mainly colonizes the intestines of healthy individuals29 and Butyricicoccus is a known 
“probiotic”, both of which are important butyric acid producers30. Some studies have reported that butyric acid 
exerts protective effects in patients with colorectal cancer by inhibiting tumor cell proliferation and inducing 
tumor cell apoptosis31. It was previously reported that when compared with fecal microbiota data in healthy 
women, relative Butyricimonas and Coprococcus abundance in patients with early breast cancer had decreased32. 
A study revealed that Fusicatenibacter can produce short-chain fatty acids SCFAs (i.e., butyrate, propionate, and 
acetate). SCFAs is essential for the integrity of the intestinal barrier and can also affect the intestinal nervous 
system and stimulate systemic anti-inflammatory properties33. OTs are also associated with abnormal estrogen 
levels, but whether unique intestinal microorganism levels in OTs are implicated in disease occurrence and 
development via estrogen metabolism requires investigation.

In patients with OTs, when compared with those with BOTs, Flavonifractor, Ruminococcus_gnavus_group, 
and Anaerotruncus in malignant OTs were significantly increased, while Prevotella was significantly decreased. 
Ruminococcus gnavus has been implicated in Crohn’s disease; its relative abundance is increased in patients with 
the disease and is associated with severe disease symptoms34. R. gnavus abundance was also increased in patients 
with viral Hepatocellular carcinoma, which eventually induced tumor necrosis factor-α in dendritic cells and 
led to hepatocyte carcinogenesis8. Jacobson et al.12 reported that Prevotella abundance increased significantly in 
patients with OC when compared with benign controls. The possible reason is that they included only five Native 
American female patients with BOTs. After being included in the study and treated for OC, intestinal microbes 
may alter after therapy. Prevotella is generally associated with healthy plant diets and has “probiotic” roles in the 
body, but too much Prevotella can stimulate intestinal epithelial cells to produce IL-8 and IL-6, thus promoting 
intestinal mucosal auxiliary Th17 immune responses, neutrophil recruitment, and chronic inflammation35. 
Similar to the gut microbiota of healthy controls included in this study, Fusicatenibacter was also significantly 
reduced in OTs when compared with females with OBTs.

In recent years, the gut microbiota has been widely investigated as early diagnostic markers in some cancers 
(e.g., gastric, colorectal, and liver cancers)6,7,36. Zhang et al. and other authors reported that Lactic Acid Bacteria 
and Macrococci abundance in patients with gastric cancer was significantly higher than in healthy individuals; 
Different bacteria were used to generate a random forest model, which provided an area under the curve (AUC) 
value of 0.91. Verification samples achieved a true positive rate of 0.83 in gastric cancer7. It was also reported 
that the combined observation of gut bacteria and metabolic biomarkers (such as branched chain amino acids, 
aromatic amino acids, and amino acyl tRNA organisms) may improve the diagnostic performance of colorectal 
cancer. The AUC value of colorectal cancer patients and healthy individuals is 0.94, indicating the possibility of 
early diagnosis of colon cancer7. Another study reported that in eight intestinal bacterial genus classification 
models with an average abundance of more than 0.1%, high diagnostic accuracy was achieved when classifying 
liver cancer types in the verification cohort36. In our study, gut microbiota diagnostic effects were evaluated using 
ROC analysis; when compared with HCs, AUC values in BOT and OC groups were 0.77 and 0.86, respectively. 
These findings suggest that some gut microbiota such as Escherichia_Shigella show a certain ability to distinguish 
between healthy individuals and patients with OT. But this is only a preliminary study and large-scale clinical 
verification is needed.

Our research also had some limitations. Sample size was small and conclusions were based on single-center 
data. Therefore, more samples and FIGO stages must be considered in future studies. Moreover, gut microbiome 
is dynamic, affected by multiple factors, including genetics, lifestyle, and environmental exposure. We also did 
not fully consider the relationship among menstruation, estrogen metabolism, and gut microbiota, and there 
was no validation through an independent cohort. These factors will be fully considered in future research. 
To conclude, our work has demonstrated characteristic changes in gut microbiota in OT patients and possible 
key genera in the identification of HCs and OT patients. In the future, we will further construct and verify the 
predictive model of OT based on gut microbiota in clinic.

Data availability
Sequence data that support the findings of this study have been uploaded on China National GeneBank Data-
Base with the primary accession code CNP0005514. https://db.cngb.org/search/?q=CNP0005514. Please contact 
the corresponding author for further information if necessary.
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