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Abstract

Exosomes, nanosized extracellular vesicles of 30–150
nm, are shed by almost all cell types. Bearing proteins,
lipids, RNAs, and DNAs, exosomes have emerged as
vital biological mediators in cell-to-cell
communication, affecting a plethora of physiological
and pathological processes. Particularly, mounting
evidence indicates that immunologically active
exosomes can regulate both innate and adaptive
immune responses. Herein, we review recent
advances in the research of exosomes in several
immune-mediated eye diseases, including Sjögren’s
syndrome (SS) dry eye, corneal allograft rejection,
autoimmune uveitis, and age-related macular
degeneration (AMD). Additionally, we discuss the
potential of exosomes as novel biomarkers and drug
delivery vesicles for the diagnosis and treatment of
eye diseases.
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Introduction
Exosomes were first described as 50-nm diameter-sized
vesicles secreted from maturing sheep reticulocytes in
the early 1980s [1, 2]. These nanovesicles sparked scien-
tists’ interest, as they appeared to function from cellular
garbage disposals to potent intercellular communication
mediators. Typically, exosomes are a subtype of extracel-
lular vesicles (EVs) (30–150 nm) secreted by almost all
cell types [3, 4]. They widely exist in numerous bio-
logical fluids including serum, urine, breast milk, tear
fluid, vitreous humor, saliva, and aqueous humor, under
both healthy and pathological conditions [5, 6].

Encapsulated in a bilayer membrane, exosomes are
enriched in various bioactive molecules, including pro-
teins, lipids, RNAs (mRNA, circular RNA, microRNA,
long noncoding RNA), and DNAs (genomic DNA, cDNA,
and mitochondrial DNA) [7–9]. These molecular compo-
nents are capable of inducing functional responses in re-
cipient cells and are extraordinarily variable depending on
the cellular origin and cell exposure context [10–13]. By
transferring these functional molecules between cells, exo-
somes act as potent mediators in intercellular communi-
cation and participate in numerous physiological and
pathological processes [14]. Exosomes from both immune
cells and non-immune cells exert pivotal roles in the regu-
lation of immunity [15] and have been reported to be in-
volved in the development and treatment of inflammatory
and autoimmune diseases [16, 17].
The eye, a unique sensory organ of vision, is

regarded as an immune-privileged site that prevents
immunogenic inflammation [18]. Still, there are sev-
eral inflammatory and immune-mediated diseases
which involve the anterior or posterior segment of
the eye, even in severe cases resulting in sight-threat-
ening conditions, such as Sjögren’s syndrome (SS) dry
eye, corneal allograft rejection, uveitis, and age-related
macular degeneration (AMD) [19–21]. Of these dis-
eases, the action of immune cells and the expression
of pro-inflammatory cytokines and chemokines induce
local inflammatory responses which ultimately cause
ocular tissue damage. Although therapeutic strategies
have undergone substantial transformation, there are
still some challenges remaining [22, 23].
In this review, we highlight and discuss the recent

research advances about exosomes in several immune-re-
lated eye diseases and their potential as biomarkers and
drug delivery vesicles in the eye.

Biogenesis and function of exosomes
Exosome generation starts with the invagination of the
plasma membrane to form early endosomes. As the early
endosomes mature, intraluminal vesicles (ILV) are
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produced in the lumen of the late endosomes (also
called multivesicular bodies, or MVBs). MVBs eventually
fuse with the plasma membrane and release their in-
ternal contents as exosomes. Alternatively, some MVBs
are destined for degradation inside of lysosomes [3, 14]
(Fig. 1). Cargoes assembled into exosomes are sorted
through several molecular machinery, including the
endosomal sorting complex required for transport
(ESCRT) machinery (containing ESCRT-0, ESCRT-I,
ESCRT-II, and ESCRT-III) and ESCRT-independent
machinery (involving lipids, syndecan, and syntenin) [24,
25]. In addition, the Rab family of small GTPase proteins
(such as Rab27a and Rab27b), SNARE (soluble N-ethyl-
maleimide-sensitive fusion attachment protein receptor)
complexes, and cytoskeleton act as important modula-
tors of exosomes secretion [24]. However, in spite of the
heightened interest in this field, the mechanisms that
control exosome biogenesis and secretion are still not
exhaustive.
Once released, exosomes can interact with specific re-

cipient cells. It appears that exosome targeting specificity
is based on the particular combination of exosomes and
acceptor cells [24]. Studies have identified that the ex-
pression of phosphatidylserine receptors, integrins, tetra-
spanins, lectins, glycans, and other adhesion molecules
on exosome surface contributes to this process [26, 27].
Exosomes can transmit information to target cells via
internalization through macropinocytosis, phagocytosis,
receptor-mediated endocytosis, or membrane fusion

[28–30], or via acting on their cell surface, without deliv-
ery of their cargos [31] (Fig. 1). Nevertheless, the more
specific cellular and molecular basis for exosome target-
ing is still undetermined.
The function of exosomes was unknown until 1996,

when it was found that exosomes derived from Epstein-
Barr virus (EBV)-transformed B cell lines induced major
histocompatibility complex (MHC) class II-restricted T
cell responses in an antigen-specific manner, hinting the
possible role of exosomes as mediators of immune re-
sponses [32]. Since then, intensive research has been de-
voted to delineating their roles in immunomodulation. It
is now clearly understood that immunologically active
exosomes can regulate both innate and adaptive immun-
ity [33, 34]. Exosomes generated by immune cells have
been studied extensively. For instance, exosomes from
antigen-presenting cells including dendritic cells (DCs),
B cells, and macrophages carry surface MHCI and
MHCII molecules and thus directly stimulate CD8+ and
CD4+ T cell responses, respectively [15, 35]. Besides,
Okoye et al. demonstrated that Let-7d-containing exo-
somes derived from primary regulatory T cells (Tregs)
inhibited Th1 cell responses by targeting Cox-2 in a
mouse model of colitis [36]. Of note, exosome secretion
in immune cells is regulated by cell context. For ex-
ample, exosome release in DCs and B cells is increased
after cognate T cell interactions [37–39], and mast cells
produce more EVs in response to cross-linking of the
high-affinity Fc receptor for IgE or exposure to calcium

Fig. 1 Biogenesis, release, and internalization of exosomes. Exosomes originate from early endosomes which then mature to late endosomes or
MVBs. Numerous proteins, nucleic acid, and lipids are selectively encompassed in exosomes during the formation of ILV inside MVBs via the
invagination of the endosomal membrane. Eventually, exosomes are released outside the cell upon fusion of MVBs with the plasma membrane.
The internalization of exosomes by recipient cells can be mediated by receptor-mediated endocytosis, macropinocytosis, phagocytosis, or direct
fusion of exosomes with cell membrane
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ionophores [40]. Aside from immune cell-derived exo-
somes, exosomes secreted by nonimmune cells such as
tumor and mesenchymal stem cells (MSCs) have gained
great attention in recent years. Tumor-cell-derived exo-
somes can travel to the draining lymph node, where they
inhibit T cell activation by presenting programmed
death-ligand 1 (PD-L1) and thus promote tumor pro-
gression [41]. Mesenchymal stem cells-derived exosomes
(MSC-Exos) have been shown to enhance the differenti-
ation of immunosuppressive cells such as M2 macro-
phages and Tregs, or inhibit proliferation of natural
killer cells or T lymphocytes [42]. For instance, Zhao et
al. discovered that mouse bone marrow-derived MSC-
Exos modulated macrophage polarization by transferring
miR-182, which targeted TLR4/NF-κB/PI3K/Akt signal-
ing [43]. More attractively, several studies proposed that
inflammatory stimulation increased secretion of MSC-
Exos and even enhanced their anti-inflammatory and
immunosuppressive properties [44–46]. However, al-
though exosomes possess versatile biological functions
including immunomodulation [47], pro-regeneration
[48], anti-inflammation [49], and tumor growth regula-
tion [50] (Table 1), the field of exosome research in eye
diseases currently remains relatively less explored.

Exosomes in immune-mediated eye diseases
Sjögren’s syndrome (SS) dry eye
Sjögren’s syndrome (SS), a multisystem autoimmune dis-
ease, is characterized by lymphocytic infiltration in salivary
and lacrimal glands (LGs) and the presence of various auto-
antibodies (such as anti-Ro(SS-A) or anti-La(SS-B)), result-
ing in oral and ocular dryness [67, 68]. This condition leads
to one of the most severe subtypes of dry eye diseases [20].
Activation of both innate and adaptive immune pathways,
such as interferon (IFN) signatures, B cell activating factor
(BAFF)/BAFF receptor axis, and NF-kB signaling, contrib-
utes to the pathogenesis of SS [69, 70].
Salivary gland epithelial cells (SGECs) in SS play active

roles in the autoimmune and inflammatory responses by
virtue of the constitutive or inducible expression of diverse
immunoactive factors, such as BAFF, several Toll-like
receptors (TLRs), and autoantigenic ribonucleoproteins
(RNPs) [71, 72]. Lymphocytic infiltrates consisting primar-
ily of CD4+ T cells and B cells occur proximally to and
frequently invade epithelial cells [73, 74], suggesting the
interaction between epithelial and immune cells. One pre-
vious study demonstrated that the autoantigenic Ro/SS-A,
La/SS-B, and Sm RNPs were present in exosomes which
were released continuously by SGECs, indicating that
intracellular autoantigens were transferred to autoreactive
lymphocytes via RNP-containing exosomes. However, this
release is not restricted to SS-derived cells [51]. Besides, as
EBV typically infects B cells, one study proposed that
EBV-miRBART13-3p could be transferred via exosomes

from B cells to SGECs. This functional miRNA targeted
aquaporin 5 (AQP5) and stromal interacting molecule 1
(STIM1), which could significantly impact salivary secre-
tion. However, the authors did not mention the effect on
the function of LGs [52].
The LGs are primarily responsible for the aqueous

layer of the tear film. LG dysfunction is mainly due to
the infiltration of immune cells [75]. Our research team
has verified that MSC administration efficiently allevi-
ated induced autoimmune dacryoadenitis in rabbit
models, which closely mimic human SS [76]. It is noted
that MSC-Exos mediate the immunosuppressive effects
of their parent cells and are deemed as promising surro-
gates for MSC-based therapy [33]. Ongoing studies in
our laboratory recently demonstrated that subconjunc-
tivally administered MSC-Exos efficiently improved clin-
ical evaluations and diminished the inflammation in
lacrimal glands of diseased rabbits, compared with those
treated with saline. The therapeutic effects may partially
be ascribed to their modulatory effects on lacrimal
macrophage polarization and enhancement of Treg and
Th2 responses via targeting NF-kB signaling. Therefore,
MSC-Exos presumably provide a very promising cell-free
therapy for SS dry eye. In addition, the role of exosomes
in interactions between lymphocytes and LG epithelial
cells remains unexplored, calling for extensive research.

Corneal allograft rejection
Corneal transplantation is the most prevalently performed
type of tissue grafting globally. To enhance corneal graft
survival, considerable efforts have been devoted to build-
ing effective strategies [77]. Although cornea as an avascu-
lar transparent tissue enjoys the relative privilege of
immunity, the major cause of corneal graft failure re-
ported is allogeneic rejection, which is ascribed to the
adaptive immune response initiated through recognition
of donor MHC antigens by recipient T cells after trans-
plantation [78, 79]. EVs, including exosomes, released by
donor cells are partly responsible for this type of allore-
cognition [80]. Howbeit, they also contribute to allograft
tolerance under certain circumstances. It has been re-
ported that EVs from a specific population of CD4+CD25−

Tregs generated in vitro could prolong kidney allograft
survival, which was mediated by their unique cargo, spe-
cific miRNAs, and inducible nitric oxide synthase (iNOS)
enzyme [53]. Moreover, MSC-Exos loaded with specific
small RNAs successfully improved islet transplantation
[54]. These encouraging results suggest that exosomes
from specific immunosuppressive cell populations serve as
a potentially effective tool to promote immune tolerance
in graft survivals such as corneal graft.
For decades, severe global shortfall of donated human

corneas has been an ongoing challenge that should not be
ignored [81]. To address this, new biomaterials, such as
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Table 1 A selective overview of studies reporting exosomes in diseases
Disease involved Cellular origin of exosomes Exosomal cargo Biological function and (or) action

mechanism
References

Colitis Mouse Tregs Let-7d Suppress Th1 cell proliferation and
secretion of IFN-γ

[36]

Cancer Cancer cell lines PD-L1 Suppress T cell activity in the
draining lymph node by presenting
PD-L1

[41]

Myocardial
Ischemia
Reperfusion

Mouse bone marrow-derived
MSCs

miR-182 Modulate macrophage polarization
via targeting the TLR4/NF-B/PI3K/Akt
signaling cascades

[43]

SS Salivary gland epithelial cells Autoantigenic Ro/SS-A, La/SS-B and Sm RNPs Present intracellular autoantigens to
immune system to induce immune
response or tolerance

[51]

SS EVB-infected B lymphocytes miR-BART13-3p (exogenous) Target AQP5 and STIM1, impact
activation of a critical Ca2+ entry,
impair salivary gland function

[52]

kidney
allotransplantation

Tregs generated by dendritic cells
transfected with adenovirus-
encoding dnIKK2 in vitro

Specifc miRNAs and iNOS enzyme Inhibit T cell alloreactivity, promote
Tregs generation, prolong kidney
allograft survival

[53]

Islet
transplantation

Human bone marrow-derived
MSCs transfected by
overexpressed siFas and anti-miR-
375 in plasmid

siFas and anti-miR-375 (exogenous) Silence Fas and miR-375 of human
islets, inhibit early apoptosis of
transplanted human islets

[54]

Corneal implant In-growing pig corneal epithelium
cells

Generate matrix components,
promote corneal regeneration

[55]

Corneal wound
healing

Mouse corneal epithelial cells Thrombospondin-2, latent-transforming growth factor
beta-binding protein 1, C-X-C motif chemokine 5, and C-
C motif chemokine 2

Trigger keratocyte proliferation,
convert keratocyte transformation
into myofibroblasts, angiogenesis

[56]

Corneal wound
healing

Normal human cornea limbal
keratocytes

Small RNAs Enhance proliferation and wound
healing rates of limbal epithelial
cells through activating Akt
signaling

[57]

Corneal wound
healing

Human corneal MSCs Accelerate corneal epithelial wound
healing

[58]

Noninfectious
uveitis

ARPE-19 Inhibit T-cell proliferation, regulate
human monocyte phenotype and
viability

[59]

Autoimmune
uveoretinitis

Human bone marrow-derived
MSCs

Prevent the onset of EAU by
suppressing Th1/Th17 development
and inhibiting T cell proliferation

[60]

Autoimmune
uveitis

Human umbilical cord-derived
MSCs

Exert therapeutic effects on EAU by
inhibiting inflammatory cell
migration

[61]

AMD ARPE-19 Complement protein C3 Targets for complement factor H,
interact with the complement
pathways

[62]

Laser-induced
choroidal
neovascularization

Mouse retinal astroglial cells Endostatin, KC/Chemokine (C-X-C motif) ligand 1,
macrophage inflammatory protein-1, matrix
metalloproteinase-3 and -9, nephroblastoma-
overexpressed, pigment endothelium-derived factor,
proliferin and tissue inhibitor of metalloproteinases-1

Suppress retinal vascular leakage,
reduce choroidal neovascularization

[63]

Atherosclerosis Mouse bone marrow-derived
MSCs

miR-let7 family Decrease macrophage infiltration via
miR-let7/IGF2BP1/PTEN pathway,
regulate macrophage polarization
via miR-let7/HMGA2/NF-kB pathway

[64]

Cancer Human bone marrow-derived
MSCs

miR-100 Decrease the expression and
secretion of VEGF via modulating
the mTOR/HIF-1α signaling

[65]

Hyperglycemia-
induced retinal
inflammation

Human umbilical cord-derived
MSCs

miR-126 Suppress the hyperglycemia-
induced inflammatory response via
downregulating HMGB1 signaling

[66]

This list is limited to studies presented in this review. Tregs regulatory T cells, PD-L1 programmed death-ligand 1, MSCs mesenchymal stem cell, SS Sjögren’s
syndrome, RNPs ribonucleoproteins, EVB Epstein-Barr virus, AQP5 aquaporin 5, STIMI stromal interacting molecule 1, iNOS inducible nitric oxide synthase,
siFas siRNA against Fas receptor, ARPE-19 human retinal pigment epithelium cell line, EAU experimental autoimmune uveoretinitis, AMD age-related macular
degeneration, VEGF vascular endothelial growth factor, HMGB1 high-mobility group box 1
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collagen gels, synthetic polymers, and tissue-engineered
scaffolds, have been developed to repair, regenerate, or re-
place the damaged cornea [82]. Jangamreddy et al. found
that one kind of peptide analogs as alternatives to collagen
promoted regeneration of corneal tissue by stimulating
in-growing corneal epithelium cells to secrete EVs for
generating matrix components [55]. During corneal
wound healing, mouse corneal epithelial cell-derived exo-
somes induced fibroblast proliferation and transformation
of keratocytes to myofibroblasts, mediating intercellular
communication between the corneal epithelium and
stroma [56]. Besides, exosomes derived from normal hu-
man corneal limbal keratocytes were found to greatly en-
hance proliferation and wound healing rates of primary
limbal epithelial cells, likely via activating Akt signaling
[57]. One recent study revealed that human corneal MSC-
Exos were capable of accelerating corneal epithelial wound
healing [58]. Together, the available results indicate that
exosomes are vital biological mediators of regeneration
[83] and provide new insights into the therapeutic strat-
egies for corneal injury and transplant rejection.

Autoimmune uveitis
Autoimmune uveitis, an inflammation of the uvea (iris,
ciliary body, and choroid tissue) and even adjacent tissues
(vitreous humor, optic nerve and retina), can occur either
alone or secondary to systemic syndrome [84]. The auto-
immune causes are mainly due to inappropriate immune
responses mediated by pathogenic T cells [85]. Pathogenic
Th17 cells and their related inflammatory cytokines coor-
dinately act as potent inducers of tissue inflammation [86,
87]. Innate immune cells such as DCs, monocytes/macro-
phages, γδT cells, natural killer (NK) cells, and NKT cells
also actively participate in shaping the effector T cell re-
sponses in autoimmune uveitis [88, 89].
During the inflammatory processes, particularly in pos-

terior uveitis, retinal pigment epithelium (RPE) cells may
get damaged [90]. RPE cells have been revealed to have
immunosuppressive properties, including induction of
Tregs and inhibition of Th17 and Th22 cell differentiation
[91]. Knickelbein et al. reported that exosomes released by
both resting and cytokine-stimulated RPE cells suppressed
the proliferation of T lymphocytes isolated from the per-
ipheral blood of noninfectious uveitis patients, and these
nanosized vesicles could also regulate human monocyte
phenotype and viability [59]. The above results indicate
that exosome secretion may be a crucial mechanism for
RPE cells to perform their immunoregulatory effects.
Further understanding of exosomes from RPE cells may
reveal novel vistas for therapy of uveitis.
Interestingly, Shigemoto-Kuroda and colleagues

found that human bone marrow-derived MSC-Exos
could effectively ameliorate experimental autoimmune
uveoretinitis (EAU). The mixed lymphocyte reaction

assay indicated that these MSC-Exos performed a sig-
nificant inhibitory effect on the T cell proliferation and
Th1 and Th17 development [60]. However, in another
experimental study focused on EAU, human umbilical
cord-derived MSC-Exos (hUC-MSC-Exos) failed to
suppress the proliferation of conA-stimulated T cells,
but effectively inhibited inflammatory cell migration
[61]. In vitro results from our group showed that hUC-
MSC-Exos had only a slight suppressive effect on inter-
photoreceptor retinoid-binding protein (IRBP)-specific
Th17 responses, while they significantly inhibited DC-
driven Th17 responses through the modulation of DC-
derived Th17-polarizing cytokines IL-1β, IL-6, and IL-
23. The discrepancies of these results may be due to
the high heterogeneity of exosomes and distinct assay
systems applied in the studies. It thus appears that
MSC-Exos have therapeutic potential for autoimmune
uveitis, but the specific mechanism related to their
anti-inflammatory and immunomodulatory effects war-
rants further investigations.

Age-related macular degeneration (AMD)
Age-related macular degeneration (AMD), a complex multi-
factorial degenerative disease, is a leading cause of blindness
among the elderly in developed countries [92]. Two clinical
phenotypes of AMD exist: early non-exudative (dry-type)
and late exudative (wet-type). The dry-type AMD is charac-
terized by yellowish drusen (accumulation of extracellular
deposits) and geographic atrophy, whereas the wet-type in-
volves choroidal neovascularization (CNV) [93].
Gradually, it has been realized that pathological

processes in AMD which had once been considered to
be purely degenerative also implicate immune and in-
flammatory elements [21]. The complement system, a
major arm of the innate immunity, has been recognized
as a key component in AMD pathogenesis [94]. Report-
edly, reduced membrane complement regulators in RPE
cells contributed to RPE damage in AMD, and the de-
creased levels were partially explained by their release in
apoptotic particles and exosomes [95]. Single nucleotide
polymorphisms (SNPs) in complement factor H (CFH)
gene have been identified to be linked with an increased
risk of developing AMD [96, 97]. The CFH gene encodes
protein factor H (FH) which functions as a regulator of
the complement pathway [96]. Taylor et al. recently pro-
posed that haploinsufficiency of factor H-like 1 (FHL-1),
a variant of FH serving as a major complement regulator in
Bruch’s membrane, may be an important mechanism driv-
ing the development of early-onset macular drusen in the
vast majority of AMD cases [98]. Also, loss of complement
protein C3 functionality contributes to the pathogenesis of
AMD [99]. Dysfunction of CFH may cause C3-coated exo-
somes from RPE cells to become attacked by the invading
leukocytes in the aged retina, and this might cause
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destabilization of exosome membranes and then result in
the release of intracellular proteins, contributing to the for-
mation of drusen [62]. These imply that RPE cell-derived
exosomes are in part responsible for complement-driven
innate immune responses in AMD.
In exudative AMD, especially in the CNV membranes,

macrophages are the major populations of infiltrating
inflammatory cells [100]. A pathological switch of
macrophage polarization may be implicated in the devel-
opment of CNV [101]. Retinal astrocyte-derived exo-
somes were confirmed to target both macrophages and
vascular endothelial cells and perform significant inhibi-
tory effects on laser-induced retinal vessel leakage and
CNV of mouse models [63]. Besides, vascular endothelial
growth factor (VEGF) has been identified as a critical in-
ducer of pathologic neovascularization [102]. It is known
that MSC-Exos are capable of regulating macrophage
polarization [64] and downregulating VEGF expression
[65]. Thereout, it can be speculated that MSC-Exos have
the potential to control aberrant neovascularization in
exudative AMD.

Exosome biomarkers for eye diseases
Exosomes and other EVs, particularly their cargoes, have
been increasingly recognized as ideal low-invasive

biomarkers in detecting, monitoring, and prognosticat-
ing diseases in recent years [103]. Especially in cancer
screening, thermophoretic aptasensor has been devel-
oped to profile surface proteins of serum EVs for early
cancer detection and classification [104]. Exosomes are
abundant in tear fluids [105], aqueous humor (AH)
[106], vitreous humor (VH) [107], and blood [108], all of
which are important body fluids associated with ocular
health and disease. Though it is less developed, theoret-
ically, the identification and characterization of exo-
some-specific biomarkers in eye diseases have a great
significance. For example, exosomes and their miRNA
payload or proteomic profiling in AH may be used as
novel diagnostic biomarkers for patients with glaucoma
and neovascular AMD [106, 109]. Proteomic findings of
RPE-derived exosomes may also offer diagnostic indica-
tors for retinal disease [110]. Furthermore, Ragusa and
colleagues showed that miR-146a was significantly
upregulated in the VH exosomes of uveal melanoma pa-
tients with respect to controls, and the upregulation was
also detected in serum exosomes of the same patients.
Based on this, exosome-derived miR-146a might be
deemed as a potential marker of uveal melanoma [107].
Overall, with the recent progress in exosome-specific
isolation techniques and identification methods for their

Fig. 2 Schematic of the potential application of exosomes in immune-mediated eye diseases. Exosomes have been involved in a broad variety of
physiological and pathophysiological events. Depending on their origin and exposure context, they exert different functions including
intercellular communication, immune modulation, wound healing, and regeneration. MSC-Exos have been found to regulate the activity of
intraocular immune cells. Corneal epithelial cell-derived exosomes are capable of promoting matrix component generation, and corneal limbal
keratocyte-derived exosomes can accelerate corneal wound healing. Moreover, exosomal miRNA payload or proteomic profiling can reflect the
disease state and have the potential to serve as eye disease-specific biomarkers. Owing to their highly desired drug carrier attributes, exosomes
are increasingly considered as ideal drug delivery systems. Together, exosome-based therapy or diagnosis holds great potential for clinical
application in ophthalmology
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protein and nucleic acid contents, the research of exo-
some biomarkers for eye diseases appears to have suffi-
ciently hopeful prospects.

Exosomes as drug delivery vesicles
The conventional route of treatment for eye disease,
especially involving the anterior segment, is topical in-
stillation of eye drops, which is accompanied with limita-
tions such as the need for frequent administration and
low bioavailability. During recent years, various synthetic
drug vehicles have been developed for encasing existing
drugs to enhance the therapeutic effect [111]. However,
troubling issues including their immunotoxicity [112]
and quick clearance by the mononuclear phagocyte sys-
tem (MPS) or the reticuloendothelial system (RES) [113]
still exist. Fortunately, exosomes, regarded as natural
nanocarriers, have plenty of the highly desired qualities
that drug delivery vehicles should have. These small ves-
icles are capable of penetrating the blood-brain barrier
(BBB), delivering their cargoes across cell membranes
and targeting specific cell types after artificial modifica-
tions [114]. Collectively, exosomes have been shown to
serve as possible nanocarriers for functional RNA
strands (mRNA, miRNA, siRNA, and lncRNA), DNA
molecules, peptides, or synthetic drugs [115, 116]. For
instance, exosomes from adeno-associated virus type 2
(AAV-2)-producing 293 T cells showed higher efficiency
in retinal transduction than conventional AAV-2 after
intravitreal injection and were regarded as robust tools
for intravitreal gene transfer into the retina [117]. Be-
sides, MSC-Exos loaded with exogenous miRNA-126
were reported to alleviate hyperglycemia-induced retinal
inflammation via suppressing the high-mobility group
box 1 (HMGB1) signal pathway [66]. Moreover, chemo-
therapeutic drug-loaded exosomes showed higher effi-
cacy and better bioavailability compared to free drug
[118, 119], which sheds new light on ocular pharma-
cotherapeutics. So far, there has been sparse research
focused on the latent role of loading exosomes with
exogenous functional cargoes in eye diseases. Therefore,
significant endeavors are needed to develop such therap-
ies in ophthalmology.

Conclusions
Taken together, the extensive implication of exosomes
in regulating various aspects of the immunity makes
exosomes attractive diagnostic and therapeutic candi-
dates for immune-mediated eye diseases (Fig. 2).
Because of their multiple functions, elucidating the
contents of exosomes and understanding how each of
them function are necessary. Additionally, for success-
ful translation into clinical therapies, novel and
advanced technology is urgently needed to obtain mass

highly purified exosomes with stable functional efficacy.
Exosome research in the eye is still a relatively young
field, awaiting more extensive investigations into the
precise biological mechanisms and clinical potential of
exosomes in ocular diseases.
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