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ABSTRACT
Despite the growing interest in developing anti- aging drugs, high costs and low success rates of traditional drug discovery meth-
ods pose significant challenges. Aging is a complex biological process associated with numerous diseases, making the identifica-
tion of compounds that can modulate aging mechanisms critically important. Accelerating the discovery of potential anti- aging 
compounds is essential to overcome these barriers and enhance lifespan and healthspan. Here, we present ElixirSeeker, a ma-
chine learning framework designed to maximize feature capture of lifespan- extending compounds through multi- fingerprint 
fusion mechanisms. Utilizing this approach, we identified several promising candidate drugs from external compound data-
bases. We tested the top six hits in Caenorhabditis elegans and found that four of these compounds—including Praeruptorin C, 
Polyphyllin VI, Thymoquinone, and Medrysone—extended the organism's lifespan. This study demonstrates that ElixirSeeker 
effectively accelerates the identification of viable anti- aging compounds, potentially reducing costs and increasing the success 
rate of drug development in this field.

1   |   Introduction

The demand for anti- aging products and preventive medicines 
is constantly rising as the worldwide population ages. Various 
pharmacological approaches have been shown to increase 

lifespan and attenuate age- related diseases (Scheen  2018; Zhu 
et  al.  2019; Dehghan et  al.  2019; Strong et  al.  2020; Cabreiro 
et al. 2013; Singh et al. 2023; Chaib et al. 2022; Martel, Ojcius, 
et  al.  2020). As anti- aging pharmacology advances, high cost 
and low success rate hinder drug development, emphasizing 
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the need for identifying more promising candidate compounds. 
In the past, the focus has been on target- based drug discov-
ery (TDD), which designs compounds for specific targets. The 
demand for more novel and promising anti- aging, especially 
lifespan- extending, drug candidates would require phenotypic 
drug discovery (PDD), a target- agnostic approach focusing on 
the phenotypic impacts of treatments in relevant biological sys-
tems (Figure 1).

As a classical model organism, the nematode, Caenorhabditis el-
egans (C. elegans), is extensively utilized in anti- aging research. 
This organism is particularly valuable due to its short lifespan, 
simple genome, ease of manipulation, and significant genomic 
similarities to humans (Shen et al. 2018). Several studies have 
utilized C. elegans to identify numerous small molecules that 
potentially extend lifespan and improve health. This model 
has facilitated the initial screening of hundreds of lifespan- 
extending compounds (Banse et al. 2024). For example, research 
has demonstrated that natural products such as plant- based sub-
stances (Martel, Wu, et al. 2020; Kim and Lee 2019), polyphe-
nols (Liu et al. 2021), and herbal mixtures (Moriwaki et al. 2013) 
have significant potential for extending the lifespan extension 
of C. elegans.

Nevertheless, translating these findings into clinical candidates 
remains hampered by intrinsic challenges: Aging- related data-
sets are characteristically sparse, noisy, and contaminated by 
false positives—a reflection of biological complexity and meth-
odological variability across studies. These data limitations 
render conventional deep learning approaches suboptimal, as 
they typically require large- scale annotated datasets to achieve 
robust generalization.

Computational chemistry has revolutionized early drug dis-
covery through machine learning- driven bioactivity prediction 
(Jayatunga et al. 2022; Yuan et al. 2023), target deconvolution 
(Abbasi Mesrabadi et  al.  2023; Amiri Souri et  al.  2022; Ahn 
et al. 2022), and virtual screening (da Silva Rocha et al. 2019). 

Particularly, molecular fingerprint- based algorithms have 
shown promise in metabolomic profiling (Issa et  al.  2021; 
Ehiro 2024; de Fernánz-  Gortari et al. 2017). However, critical 
limitations persist: (1) Arbitrary fingerprint length selection 
risks information loss or noise amplification (Yin et  al.  2019; 
Sherwani et  al.  2024; Zahid et  al.  2024; Liu et  al.  2024); (2) 
Current methodologies treat all molecular substructures as 
equally informative, neglecting context- dependent biological 
relevance; and (3) Static fingerprint representations fail to adapt 
to specific therapeutic domains like geroscience.

To address these challenges, we present ElixirSeeker—a new 
machine learning framework integrating importance- guided 
fingerprint fusion with ensemble learning. Our methodology 
strategically combines three elements: First, an XGBoost- 
based meta- learner dynamically determines optimal finger-
print lengths while assigning attention weights to critical 
substructures. Second, Kernel PCA (KPCA) enables nonlin-
ear dimensionality reduction tailored to lifespan- extending 
compound spaces. Third, iterative feature importance scoring 
creates fused fingerprint representations that synergistically 
capture complementary chemical information. This ensemble 
approach proves particularly advantageous for aging- related 
datasets where limited positive samples (n = 276 curated com-
pounds in DrugAge database) coexist with substantial biolog-
ical noise.

Experimental validation demonstrated remarkable effi-
cacy: Screening the top 0.07% of candidates identified by 
ElixirSeeker yielded four lifespan- extending compounds in C. 
elegans from six tested—an over 50% success rate surpassing 
conventional screening yields. To promote open innovation, 
we provide ElixirFP, a modular Python package implement-
ing our fingerprint fusion architecture. This resource enables 
customizable implementation of ensemble learning- based 
fusion fingerprints across therapeutic domains, particularly 
benefiting research areas constrained by sparse and noisy bi-
ological data.

FIGURE 1    |    Overview of target- based drug discovery (TDD) and phenotypic drug discovery (PDD).
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2   |   Materials and Methods

2.1   |   Data Sources and Pre- Processing

Our study leveraged data from the DrugAge database (Barardo, 
Thornton, et  al.  2017), which comprehensively catalogs small 
molecules with lifespan- extending properties. DrugAge ag-
gregates information on compounds, drugs, and supplements 
known to extend the lifespan of various model organisms, pre-
dominantly C. elegans, mice, and fruit flies. This database pro-
vides detailed aging- related metrics, including average/median 
lifespan, maximum lifespan, strains, dosage, and gender, under 
standardized experimental conditions. The dataset is curated, 
incorporating data from diverse sources and rigorously con-
trolled lifespan experiments. Given the substantial representa-
tion of compounds tested on C. elegans, our analysis primarily 
focused on this model organism. Additionally, we supplemented 
our dataset with information extracted from numerous ac-
ademic publications (Büchter et  al.  2013; Cheng et  al.  2023; 
Cho et  al.  2023; Ding et  al.  2017; Havermann et  al.  2014; Liu 
et al. 2022; Lu et al. 2017; Zhang et al. 2024; Yu et al. 2024; Zhao 
et al. 2017), resulting in a dataset comprising 1695 small mole-
cules, including 462 positive instances.

In the context of lifespan- extending drug screening, the prob-
lem can be abstracted into a mathematical framework, specif-
ically as a binary classification problem. Here, the objective is 
to classify each molecule as either positive (having lifespan- 
extending effects) or negative (lacking lifespan- extending ef-
fects). Mathematically, this can be formulated using a binary 
label yi for each molecule i, where:

2.2   |   Feature Selection

2.2.1   |   Generation for Compounds' Fingerprints

To obtain structural information of compounds, we first 
used the PubchemPy tool to extract the SMILES strings 
of all compounds from the DrugAge database (Southern 
and Griffin  2011). Using Python packages PubChemPy and 
Openbabel (O'Boyle et  al.  2011), the chemical structures of 
the DrugAge dataset were converted into canonical SMILES 
strings.

Before fusing molecular fingerprints, we conducted pre- training 
to determine the optimal lengths of three types of fingerprints: 
Morgan, Topological, and MACCS. We employed Python 3.7.10 
and the following packages for generating fingerprints and 
training: catboost (version 1.2.5), joblib (version 1.3.2), lightgbm 
(version 4.3.0), numpy (version 1.22.0), pandas (version 2.0.3), 
rdkit (version 2023.9.5), rdkit- pypi (version 2023.9.5), requests 
(version 2.31.0), scipy (version 1.10.1), scikit- learn (version 1.3.2) 
and xgboost (version 2.0.3).

The Morgan fingerprint, also known as circular or extended 
connectivity fingerprint (ECFP), captures local structural fea-
tures through iterative extension from each atom within a 

specified radius. It generates a binary fingerprint indicating 
the presence or absence of specific motifs, facilitating robust 
similarity searching and clustering. In contrast, the topological 
fingerprint, or path- based fingerprint, encodes molecular struc-
tures by representing topological paths or fragments as binary 
substructure patterns. It adeptly captures both global and local 
structural nuances, particularly in delineating structural simi-
larities and pharmacophoric landscapes.

The MACCS fingerprint, derived from the Molecular ACCess 
System (MACCS), adopts a fixed- length representation based on 
predefined structural keys or pharmacophoric patterns. By iden-
tifying the presence or absence of each key, it yields a concise yet 
informative fingerprint.

These three types of fingerprints are calculated from different 
perspectives: the Morgan fingerprint captures local structural 
features through iterative extension, the topological fingerprint 
encodes molecular structures based on topological paths or frag-
ments, and the MACCS fingerprint adopts predefined structural 
keys or pharmacophoric patterns for representation.

2.2.2   |   Pre- Training for Optimal Fingerprint Lengths

XGBoost (eXtreme Gradient Boosting) is a machine learning al-
gorithm that is particularly suitable for solving classification and 
regression problems. Its core idea is to combine multiple simple 
models (usually decision trees) to form a more powerful model 
through “ensemble learning”. The working principle of XGBoost 
can be likened to “teamwork”: each simple model (decision tree) 
focuses on solving a part of the problem, while XGBoost contin-
uously adjusts the weight of each model to ensure that they can 
work together and ultimately produce more accurate prediction 
results.

One key advantage of XGBoost is its ability to provide fea-
ture importance scores, which quantify the contribution of 
each feature to the model's predictive performance. Feature 
importance scores are calculated based on how frequently 
each feature is used in decision tree splits and how much 
each split improves the model's performance. Features that 
are frequently used in important splits and lead to significant 
improvements in model performance are assigned higher im-
portance scores.

We utilized the XGBoost algorithm for this task. Prior to fea-
ture fusion, we conducted pre- training to determine the opti-
mal lengths of three different types of molecular fingerprints: 
Morgan, Topological, and MACCS. We enumerated fingerprint 
lengths from 16 to 1016 bits with increments of 8 (excluding 
MACCS), utilizing the XGBoost algorithm and employing ten- 
fold cross- validation to obtain the optimal length for each fin-
gerprint type. Feature importance scores were recorded for each 
fingerprint at its optimal length.

2.3   |   Fusion of Molecular Fingerprints

After obtaining feature importance scores from pre- training, we 
implemented an attention- driven fusion approach to integrate 

{
1 if molecule i has anti−aging effects

0 if molecule i does not have anti−aging effects
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the fingerprints effectively. For the detailed information on the 
algorithm, please refer to Appendix S1.

We used Kernel Principal Component Analysis (KPCA) with the 
Gaussian Radial Basis Function (RBF) kernel, leveraging the 
feature importance scores as weights in the KPCA. KPCA is a 
technique in machine learning that extends the traditional PCA 
by using kernel functions to map data into a higher- dimensional 
space where it becomes linearly separable. This method is par-
ticularly useful when dealing with complex, non- linear relation-
ships in data.

KPCA works by transforming the original data into a new co-
ordinate system, where the axes (principal components) are 
aligned with the directions of maximum variance in the data. 
Unlike standard PCA, which is limited to linear transforma-
tions, KPCA employs kernel functions, such as the Gaussian 
RBF kernel, to capture non- linear patterns. The Gaussian RBF 
kernel measures the similarity between data points based on 
their distance, allowing KPCA to uncover intricate structures 
that would be missed by linear methods.

One of the key advantages of KPCA is its ability to incorpo-
rate feature importance scores as weights during the dimen-
sionality reduction process. This weighted approach ensures 
that the principal components are more heavily influenced by 
the features that contribute most significantly to the predic-
tive power of the model. By assigning higher weights to more 
important features, KPCA can prioritize the most relevant as-
pects of the data, leading to more meaningful and interpreta-
ble results.

This weighted KPCA approach is particularly beneficial in 
biological research, where datasets often contain a large num-
ber of features, many of which may be irrelevant or redun-
dant. The RBF kernel used in KPCA measures the similarity 
between data points in the input space. The RBF kernel func-
tion is defined as:

In this context, xik and xjk represent the values of molecule i at 
the k- th fingerprint bit, respectively. d is the total length of the 
fingerprint, and γ is the bandwidth parameter of the kernel, 
which controls the smoothness of the Gaussian function. � is the 
feature importance score of the fingerprint bit, used to amplify 
the differences between the fingerprint bits. The architecture 
design was detailed in Appendix S1.

2.4   |   Model Validation

To ensure the robustness of the model, we employed a ten- fold 
cross- validation method. Throughout the machine learning pro-
cess, the dataset was split into a ratio of 2:7:1, where 70% was 
allocated for training, 20% for validation, and the remaining 10% 
for testing. A ten- fold cross- validation was performed within 
the training set. Model performance was evaluated by the AUC 
score, with cross- validation repeated 10 times to produce 10 
AUC scores.

The predictive accuracy we report is based on the average AUC 
values from the ten- fold cross- validation and the cumulative 
confusion matrix. All models were scored with metrics of classi-
fication performance:

where TP represents the count of true positives, TN denotes the 
count of true negatives, FP is the number of false positives, and 
FN stands for the number of false negatives.

Accuracy measures the proportion of correctly predicted in-
stances (both true positives and true negatives) out of the total 
instances. It provides a general overview of the model's perfor-
mance but can be misleading in imbalanced datasets.

Precision indicates the proportion of correctly predicted posi-
tive instances (true positives) out of all instances predicted as 
positive. It is particularly useful when the cost of false posi-
tives is high.

Recall (Sensitivity) represents the proportion of correctly pre-
dicted positive instances (true positives) out of all actual positive 
instances. It is crucial when the cost of false negatives is high, 
such as in medical diagnoses.

F1- Score combines precision and recall into a single metric 
by taking their harmonic mean. It is especially useful for 
evaluating models on imbalanced datasets, as it balances the 
trade- off between precision and recall. Precision measures 
the proportion of correctly predicted positive instances out of 
all instances predicted as positive, while recall measures the 
proportion of correctly predicted positive instances out of all 
actual positive instances. In many real- world scenarios, espe-
cially in biological research, datasets are often imbalanced, 
meaning one class significantly outnumbers the other. In 
such cases, relying solely on accuracy can be misleading, as a 
model might achieve high accuracy by simply predicting the 
majority class.

The F1- Score addresses this issue by providing a single metric that 
considers both precision and recall, ensuring that the model per-
forms well in identifying both positive and negative instances.

AUC- ROC (Area Under the Receiver Operating Characteristic 
Curve) measures the model's ability to distinguish between 
classes across all classification thresholds. A higher AUC value 

(1)K
(
xi, xj

)
= exp

(
− γ

∑d

k=1
�k

|||
xik−xjk

|||

2)

(2)Accuracy =
TP + TN

TP + TN + FP + FN

(3)Precision =
TP

TP + FP

(4)Recall =
TP

TP + FN

(5)F1 − Score = 2 ⋅
Precision ⋅ Recall

Precision + Recall

(6)AUC − ROC =

1

∫
0

TPR(FPR)d(FPR)
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indicates better performance, with 1 representing perfect classi-
fication and 0.5 representing random guessing.

2.5   |   Molecular Fingerprint Stability Index

The Molecular Fingerprint Stability Index (MFSI) is a compre-
hensive metric utilized to assess the consistency of model per-
formance across various molecular fingerprint lengths. This 
index is derived from the standard deviations of the model's 
accuracy, Area Under the Curve (AUC), and F1- Score under 
different molecular fingerprint lengths, normalized to quantify 
the stability of model performance. MFSI ranges between 0 and 
1, where values approaching 0 indicate minimal performance 
discrepancies across diverse molecular fingerprint lengths, thus 
indicating higher stability.

2.6   |   C. elegans Strains and Maintenance

In all experiments, the N2 strain was used as the wild type. 
Worms were maintained on NGM (Nematode Growth Medium) 
plates at 20°C, with the medium composed of 25 mM NaCl, 1.7% 
agar, 2.5 mg/mL peptone, 5 μg/mL cholesterol, 1 mM CaCl2, 
1 mM MgSO4, and 50 mM KH2PO4 at pH 6.0.

Additionally, UV- killed (dead) Escherichia coli strain OP50 
was used as the food source in all experiments to ensure con-
sistent experimental conditions and avoid potential confound-
ing effects from bacterial metabolism or growth. To prepare 
the UV- killed OP50, the concentrated bacterial suspension 
was spread onto prepared NGM plates. After the bacterial 
lawn had dried slightly, the plates were opened (lids removed) 
and placed directly into a UV crosslinker for irradiation. The 
energy was set to 9999 × 100 μJ/cm2, and the irradiation time 
was 12 min.

For synchronization, gravid adult worms were washed from 
plates using M9 buffer (22 mM KH2PO4, 42 mM Na2HPO4, 
86 mM NaCl, 1 mM MgSO4) and treated with a hypochlorite 
solution (1% sodium hypochlorite, 0.5 M NaOH) for 10 min 
with gentle agitation to dissolve adult carcasses and release 
eggs. Eggs were pelleted by centrifugation at 1000 × g for 1 min, 
washed three times with M9 buffer, and hatched overnight in 
M9 buffer at 20°C to obtain synchronized L1 larvae. L1 larvae 
were then transferred to NGM plates seeded with OP50 and al-
lowed to develop to the desired stage at 20°C.

2.7   |   Lifespan Assay

Solid drug powders were dissolved in DMSO to prepare 10 mM 
stock solutions. For each drug, the final DMSO concentration 
in the Nematode Growth Media (NGM) was adjusted based on 
solubility and biocompatibility. Medrysone, Thymoquinone, 
and Praeruptorin C were tested with 0.1% DMSO (v/v) in the 
medium. 7β- Hydroxylathyrol, Polyphyllin VI, and α- Hederin re-
quired 1% DMSO (v/v) for optimal solubility while maintaining 

viability. Control groups for all drug treatments were main-
tained in parallel under identical conditions, with NGM supple-
mented with the corresponding concentration of DMSO solvent 
but without the test compound.

The prepared drug stock was then proportionally added to the 
NGM to create solutions with concentrations of 25, 50, and 
100 μM. Prior to all experiments, we had ensured that DMSO in 
selected concentrations did not affect worms in terms of longev-
ity compared to vehicle- free conditions (detailed in Figures  S1 
and S2; Tables S3–S6), ensuring its suitability as a solvent.

Lifespan assays were conducted at 20°C with daily scoring 
of survival under a stereomicroscope. Worms (n = 60–80 per 
group) were transferred to fresh plates every 2 days to avoid bac-
terial depletion. Worms lost due to desiccation or mechanical 
damage were censored from the analysis. Notably, no antibiotics 
or 5- fluoro- 2′- deoxyuridine (FUDR) were used throughout the 
experiments.

Worms confirmed as dead were removed from the medium, 
and the number of dead and lost worms in each culture dish 
was recorded. Worms lost due to crawling on the walls or han-
dling errors, leading to non- natural death, were counted as 
missing.

The lifespan of N2 worms was analyzed using the Kaplan–
Meier survival curve method, which is a non- parametric sta-
tistic used to estimate the survival function from lifetime data. 
To compare the survival curves between different groups, the 
log- rank test was performed. This test assesses whether there 
are statistically significant differences in the survival distri-
butions of the groups. A p value < 0.05 was considered statis-
tically significant.

2.8   |   Heat Shock Stress Resistance Assay

Slimilar to lifespan assay, age- synchronized worms were ob-
tained by hypochlorite treatment of gravid adults. Synchronized 
eggs were cultured on NGM plates seeded with OP50 at 20°C 
until reaching the young adult stage (approximately 3 days 
post- L1). Young adult stage worms were transferred to drug- 
containing NGM plates (n = 60–80 per group, 15 worms per 
plate, 3 independent biological replicates were performed.) and 
maintained at 20°C for 5 days.

On Day 5, worms were subjected to heat shock stress by shift-
ing plates to a 35°C incubator (0 h timepoint). Mortality was 
assessed every 2 h under a stereomicroscope. Worms display-
ing no response to gentle platinum wire touch were scored 
as dead.

Worms lost due to non- natural causes (e.g., crawling on plate 
walls, desiccation artifacts, or handling errors) were censored 
at the time of disappearance and excluded from survival anal-
ysis (< 5% of total population in all groups). Survival curves 
were generated using the Kaplan–Meier method, and statistical 
significance was determined by the log- rank test (Prism v9.0; 
p < 0.05 considered significant).

(7)MFSI = 1 −
σAcc + σAUC + σF1

3∗max
(
σAcc, σAUC, σF1

)
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2.9   |   Statistical Analysis

All statistical analyses were performed using GraphPad Prism 
10.1.0 (GraphPad Software, San Diego, CA, USA). A p value 
of < 0.05 was considered statistically significant. Data are pre-
sented as mean ± standard error of the mean (SEM). Survival 
analysis was conducted using the Kaplan–Meier (KM) method, 
and differences between survival curves were assessed using 
the log- rank test.

3   |   Results and Discussion

3.1   |   The Fusion Fingerprint Significantly 
Enhanced Model Accuracy

Our study uses an expanded DrugAge database containing 
lifespan- extending compounds validated across multiple species 
(C. elegans > 70%) and incorporating newly reported molecules, 
resulting in a dataset of 1695 small molecules (462 positives, 
1233 negatives).

Molecular fingerprints serve as computational representa-
tions that translate chemical structures into numerical vectors, 
enabling machine learning models to “interpret” molecular 
features. While fingerprints like Morgan (atom environment- 
based), Topological (bond path- based), and MACCS 
(substructure- based) encode distinct aspects of molecular iden-
tity, each has inherent limitations in comprehensively capturing 
bioactive determinants.

Therefore, for machine learning models, the selection and de-
sign of molecular fingerprints directly determine the model's 
feature capture capabilities, which in turn affects its prediction 
results. Although different molecular fingerprints can encode 
certain specific aspects of the molecular structure, none of them 
can fully capture the multidimensional characteristics of mole-
cules in complex biological activities.

For example, Morgan fingerprints may ignore the global topo-
logical information of molecules, while MACCS fingerprints 
may not be able to effectively identify novel molecular skeleton 
variants. These limitations are particularly prominent in small 
data sets (such as the lifespan- extending compound database in 
this research) because the lack of data will amplify the incom-
pleteness of feature capture, making it difficult for the model to 
learn enough information to accurately predict complex biolog-
ical activities.

In our study, we conducted an investigation of the three distinct 
molecular fingerprinting methodologies as illustrated above. 
To establish a baseline, we employed the top- performing single 
molecule fingerprint models.

The length of molecular descriptors can significantly im-
pact prediction accuracy. To identify the optimal lengths 
for two variable- length molecular fingerprints (Morgan and 
Topological fingerprints) that best suit our dataset, we eval-
uated models using these fingerprints across a range of bit 
lengths from 16 to 1016 bits. As shown in Figure  3A,B, the 
Morgan fingerprint achieved its best performance at 368 bits 

(prediction accuracy = 0.662), while the Topological fingerprint 
performed optimally at 696 bits (prediction accuracy = 0.701).

However, even after optimizing these fingerprints individually, 
their limitations became apparent. These optimized descriptors 
alone could not fully capture the chemical diversity of lifespan- 
extending molecules, as their prediction accuracies remained 
below the desired threshold of 0.80. This suggests that no sin-
gle molecular descriptor alone could comprehensively represent 
the structural and physicochemical features critical to lifespan- 
extending activity. This needed multi- fingerprint fusion to syn-
ergize their complementary strengths—local atomic detail of 
Morgan, global connectivity of Topological, and pharmacoph-
oric motifs of MACCS.

Then we first applied principal component analysis (PCA) 
to the three optimized fingerprints (368- bit Morgan, 696- bit 
Topological, and MACCS). This fusion strategy, termed ElixirFP, 
aimed to capture complementary structural and physicochemi-
cal patterns while reducing feature redundancy. By enumerat-
ing lengths through grid search, we identified 192 bits as the 
optimal dimensionality for ElixirFP, achieving higher model 
efficiency (Table 1, Accuracy: 0.779 ± 0.033).

However, conventional PCA does not account for the fact that 
individual bits in molecular fingerprints may contribute differ-
ently to predicting lifespan- extending potential. Hence, we used 
feature importance scores generated through XGBoost training 
as biologically weighted parameters to prioritize the most pre-
dictive molecular features.

These scores reflect the significance of each feature bit in pre-
dicting lifespan- extending activity and were used to guide a 
modified PCA method (Kernel PCA, KPCA), enabling nonlinear 
dimensionality reduction that prioritizes features with the high-
est biological relevance. This approach is similar to the “atten-
tion mechanism” in deep learning, enabling the model to focus 
on the most critical features, and thus the resulting representa-
tion is termed Attention- ElixirFP.

This attention- driven method demonstrated higher compres-
sion efficiency. A 64- bit Attention- ElixirFP achieved higher 

TABLE 1    |    Performance metrics of different molecular fingerprints 
at optimal lengths. This table summarizes the predictive performance 
of various fingerprint types (Morgan, Topological, MACCS, PCA, and 
Kernel- PCA) at their best lengths, evaluated based on accuracy and 
ROC AUC.

Fingerprint Length Accuracy ROC AUC

Morgan 368 0.727 ± 0.035 0.662 ± 0.029

Topological 696 0.746 ± 0.010 0.701 ± 0.031

MACCS 166 0.711 ± 0.026 0.639 ± 0.027

ElixirFP 192 0.779 ± 0.033 0.706 ± 0.058

Attention- 
ElixirFP

64 0.849 ± 0.012 
(p < 0.001)

0.767 ± 0.020 
(p < 0.001)

Note: The bold row indicates the best performing method with statistically 
significant superiority to ElixirFP on paired t- tests.
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performance metrics (Accuracy: 0.849 ± 0.012; ROC AUC: 
0.767 ± 0.020), surpassing both single fingerprints and standard 
PCA- fused ElixirFP as mentioned above (Table 1).

The Molecular Fingerprint Stability Index (MFSI) is a metric 
designed to evaluate the performance consistency (robustness) 
of molecular fingerprints across varying bit- length configura-
tions. Since conventional training workflows typically do not 
systematically test all possible fingerprint lengths, minimizing 
performance fluctuations across different bit- length settings can 
enhance computational efficiency and streamline model opti-
mization. As shown in Figure  3C, the Topological fingerprint 
exhibited the highest MFSI, indicating the largest performance 
variation across different bit- length configurations. In contrast, 
Attention- ElixirFP demonstrated the best stability in its perfor-
mance across varying bit- length settings.

This fusion framework introduces three key elements through 
context- aware weighting, non- linear feature synthesis, and 
dimensionality- efficiency optimization. By using XGBoost's 
feature importance scores as biologically informed weights, 
Elixieseeker prioritizes molecular descriptors that are most rel-
evant to lifespan- extending related phenotypes, establishing a 
chemically interpretable weighting scheme.

3.2   |   Critical MACCS Fragments Driving 
Lifespan- Extending Activity

While our phenotype- based drug discovery approach enables 
rapid identification of lifespan- extending compounds, this strat-
egy inherently carries limitations that warrant interpretation. 
Firstly, the de novo nature of PDD leads to a dissociation phe-
nomenon, as our models effectively map structural patterns to 
phenotypic outcomes, such as extending lifespan, while remain-
ing agnostic to the underlying biological targets. This is simi-
lar to identifying keys that fit a lock without understanding the 
lock's internal mechanism, as evidenced by recent critiques of 
deep learning in drug discovery.

Thus, identification of key molecular fragments represents 
an important step in developing potent lifespan- extending 

compounds. The MACCS (Molecular Access System) finger-
print, an established molecular descriptor comprising 166 pre-
defined substructural patterns, serves as a tool for encoding 
structural information of small molecules. This fingerprinting 
system has demonstrated extensive utility in drug discovery 
and cheminformatics applications, particularly for establishing 
structure–activity relationships.

Our analysis revealed two MACCS indices with significance: 
index 161 (importance score = 11.41) and index 26 (importance 
score = 3.28). As illustrated in Figure 2F, index 161 corresponds 
to the presence of nitrogen atoms, while index 26 characterizes 
carbon atoms participating in cyclic systems with specific dou-
ble bond configurations and connectivity patterns. These struc-
tural elements emerged as critical determinants in predictive 
models for lifespan- extending activity.

For carbon atoms involved in specific double bond configura-
tions and connection patterns, especially carbon–carbon double 
bonds in ring systems, fullerenes C60 contain multiple carbon–
carbon double bonds and are thought to extend lifespan by scav-
enging free radicals. In addition, resveratrol and curcumin have 
been widely studied for their antioxidant and anti- inflammatory 
effects due to their conjugated double- bond system, and have 
been used for lifespan- extending purposes.

Notably, nitrogen- containing fragments dominated the top- 
ranked structural motifs, constituting two of the five most 
significant features (Table  2). This observation underscores 
nitrogen's role in bioactive molecule design, particularly in dis-
tinguishing active compounds from inactive counterparts. The 
chemical versatility of nitrogen—manifested through its ability 
to form diverse bonding configurations (e.g., amines, amides, 
and imines)—establishes it as a fundamental component in bi-
ologically active molecular architectures. These structural reve-
lations may guide pharmacophore optimization: (1) preferential 
introduction of pyridine nitrogen (similar to metformin) in the 
benzene ring neighborhood to balance lipophilicity; (2) intro-
duction of a sulfonyl group in the double bond neighborhood to 
construct a redox- responsive switch; and (3) substitution of the 
methylene bridge for an oxoheteroatom may mimic the endoge-
nous anti- aging conformation of urushiolic acid.

FIGURE 2    |    An overview of ElixirSeeker.
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However, it is important to note the inherent limitations of 
MACCS fingerprinting: its predefined 167 patterns may miss 
three- dimensional pharmacophores that are unique to novel 
anti- aging drugs. For example, the planar carboxylic acid struc-
ture of α- ketoglutarate analogues is not captured by specific 
MACCS sites.

3.3   |   The 64- Bit Attention- ElixirFP Achieves 
Optimal Performance

During the KPCA dimensionality reduction process, we ob-
served that both 64- bit and 624- bit Attention- ElixirFP achieved 
peak performance. Notably, the 64- bit variant demonstrated 
exceptional efficiency, outperforming the 192- bit PCA- fused 
ElixirFP (Accuracy: 0.849 vs. 0.779; ROC AUC: 0.767 vs. 0.706, 
Table 1) despite its significantly compressed feature length (only 
~10% of the original 696- bit Morgan fingerprint). This highlights 
KPCA's ability to effectively distill lifespan- extending molecu-
lar signatures by converting sparse binary representations into 
dense floating- point vectors enriched with discriminative chem-
ical patterns.

However, to fully validate the generalizability of Attention- 
ElixirFP beyond XGBoost frameworks, we evaluated three 
variants—192- bit ElixirFP, 624- bit Attention- ElixirFP, and 
64- bit Attention- ElixirFP—across 11 machine learning clas-
sifiers (including Decision Trees, Random Forests, and 
ExtraTrees) paired with seven sampling strategies (e.g., SMOTE, 
RandomOverSampling). Given the class imbalance inherent in 
lifespan- extending datasets, we prioritized F1- Score as the eval-
uation metric—a harmonic mean of precision (correct identi-
fication of potential hits) and recall (comprehensive detection 
of all true actives) that ensures reliable prediction of bioactive 
compounds. This balanced measure better reflects real- world 
screening scenarios where both minimizing false leads and 
maximizing hit discovery are critical.

As shown in the heatmaps (Figure 3G–I), the 192- bit ElixirFP 
demonstrated mostly lower F1- Scores across all model- sampling 
combinations compared to Attention- ElixirFP variants, with the 
64- bit Attention- ElixirFP consistently outperforming its 624- bit 
counterpart. The “ExtraTrees + RandomOverSampling” con-
figuration achieved the highest F1- Score (0.892 ± 0.014), likely 
due to ExtraTrees' inherent feature randomness mitigating over-
fitting and RandomOverSampling's effectiveness in address-
ing minority class underrepresentation. In contrast, ElixirFP 
showed larger performance variability across classifiers, under-
scoring the limitations of linear feature aggregation for complex 
phenotypic modeling.

This finding carries significant implications for molecular ma-
chine learning. Traditional fingerprints often impose computa-
tional bottlenecks due to their high dimensionality (e.g., 1230 
bits when concatenating Morgan, Topological, and MACCS). 
Our attention- driven compression strategy reduces feature 
length by 84% while enhancing predictive power, effectively 
creating a task- specific “lifespan- extending fingerprint” that 
concentrates bioactive patterns from training molecules. Such 
compact representations dramatically lower computational 
costs for large- scale virtual screening, reducing training time 
by 63% compared to using raw concatenated fingerprints (from 
126 min to 45 min per 10- fold cross- validation).

Moreover, in scenarios with sparse biological data (common in 
aging research), the 64- bit Attention- ElixirFP maximizes fea-
ture extraction efficiency, minimizing noise from redundant 
or irrelevant molecular descriptors. These findings may help 
address longstanding challenges in phenotype- based drug dis-
covery, where computational efficiency and biological interpret-
ability must coexist by enabling high- accuracy predictions with 
ultra- compact representations.

3.4   |   Candidate Compounds Enhance C. elegans 
Survival Under Heat Stress

After optimizing and integrating molecular fingerprints, we ex-
panded the application of our model to an external compound 
database to assess its generalizability and effectiveness outside 
the initial training set. Using the 64- bit Attention- ElixirFP devel-
oped in this study, our screening process yielded notable results, 
particularly with the “ExtraTrees + RandomOverSampling” 
ensemble method as the final ElixirSeeker Model. Notably, we 
identified several potential compounds with high prediction 
confidence.

Our screening process included three compound libraries: the 
FDA approved library (TargetMol, USA, L1010), the Sellect 
Bioactive compound library (Selleckchem, Houston, TX, USA, 
L1700), and a Traditional Chinese Medicine compound library 
(Chengdu Biopurify Phytochemicals Ltd.), which contained 
3151, 9109, and 1988 small molecules, respectively. Using our 
model for prediction, we obtained a maximum score of 0.716. We 
then selected the top 50 small molecules with a threshold score 
of 0.57 (Figure 4A).

Most compounds of the database were assigned prediction scores 
indicating a low likelihood of being senolytic- like. Further analysis 

TABLE 2    |    Key structural motifs identified using MACCS (Molecular 
ACCess System) indices. This table presents the MACCS indices with 
the highest importance scores, along with their corresponding SMARTS 
notations and descriptions of the molecular structures they represent. 
The indices illustrate crucial chemical features that significantly 
contribute to the lifespan- extending properties of compounds.

MACCS Index Score Description

161 11.411 Nitrogen atom

26 3.238 Structure of a carbon–
carbon double bond (C C) 
between two carbon atoms

40 1.526 Sulfur- oxygen single bond

147 1.495 A methylene bridge 
( CH2 CH2 ) linked 

to any other atom

25 0.964 Structure of a carbon 
atom directly connected 
to three nitrogen atoms
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of the compounds over this threshold yielded intriguing findings. 
Some molecules had previously been validated as positive com-
pounds, such as Triptolide (Hsu et al. 2012) and Ginkgolid B (Lee 
et al. 2025) which are known to extend the lifespan of model or-
ganisms, and they did not occur in the training set. Four of the top 
15 compounds were known positive drugs, and we selected six of 
these compounds that were readily available for subsequent test-
ing. The candidates were detailed in Table 3 and Table S44.

The composition of small molecules with a score greater than 
the threshold in the Traditional Chinese Medicine compound 

database is particularly interesting. Notably, 89.36% of these 
compounds belong to the saponin class, which is known for its 
anti- aging and lifespan- extending properties. Specifically, 40% 
of these saponins are Ginsenosides, including Ginsenoside F1, 
showing some relevance of Ginseng in this research. Moreover, 
in the Traditional Chinese Medicine database, Thymoquinone 
emerged with a high score of 0.696, surpassing the second- 
ranked Ginsenoside- Rh4 (0.637). This prompted our interest 
in investigating whether Thymoquinone could extend the lifes-
pan of C. elegans, hence revealing its potential as an anti- aging 
compound. Although reports have suggested the activity of 

FIGURE 3    |    Performance and analysis of the Elixirseeker model. (A) Accuracy heatmaps of XGBoost models trained with Morgan, Topological, 
ElixirFP, and Attention- ElixirFP fingerprints on the test set (across fingerprint lengths from 16 to 1016 bits). (B) F1- Score heatmaps of the same 
XGBoost models on the test set. (C) Molecular Fingerprint Stability Index (MFSI) for Morgan, Topological, ElixirFP, and Attention- ElixirFP. (D–F) 
Feature importance scores for individual bits of Morgan (D), Topological (E), and MACCS (F) fingerprints. (G–I) F1- Scores of machine learning mod-
els using 192- bit ElixirFP (G), 64- bit Attention- ElixirFP (H), and 624- bit Attention- ElixirFP (I) across different algorithms and sampling methods.

 14749726, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/acel.70116 by C

ochraneC
hina, W

iley O
nline L

ibrary on [26/06/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



10 of 18 Aging Cell, 2025

FIGURE 4    |     Legend on next page.
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Thymoquinone, no study has demonstrated that it extends lifes-
pan in any model organism.

Then, we conducted tests on a selection of top- performing small 
molecules identified from the three libraries, which had not 
been previously reported to have lifespan- extending activities. 
These molecules included Praeruptorin C, Polyphyllin VI, α- 
Hederin, Medrysone, Thymoquinone, and 7β- Hydroxylathyrol. 
These compounds were chosen based on their high prediction 
scores and their absence in the literature concerning direct 
lifespan- extending or senolytic activities.

The tested concentrations (25, 50, 100 μM) were selected 
based on alignment with common C. elegans dosing ranges in 
DrugAge studies (typically 10–200 μM), and preliminary sol-
ubility assessments. Importantly, these values represent agar 

medium concentrations, not actual internal doses. Nematodes 
ingest compounds orally while grazing on bacteria, resulting 
in substantially lower bodily concentrations due to partial ab-
sorption and metabolic degradation. This pharmacokinetic dis-
connect complicates direct comparisons to in vitro IC50 values, 
which were not pursued here.

We first performed heat shock stress assays on C. elegans at 35°C 
(Figure 4B; see Section 2 for protocol details). While heat shock 
experiments provide rapid preliminary insights into stress resis-
tance as a proxy biomarker correlated with aging mechanisms, 
all six tested compounds demonstrated lifespan- prolonging 
trends under thermal stress (Figure  4C–E,G–I, detailed in 
Table  S1). However, the uniform concentration protocol likely 
created suboptimal dosing conditions for certain molecules, as 
biological activity thresholds vary by compound. Crucially, this 
result itself confirms bioactive potential, suggesting either anti-
oxidant properties or other cytoprotective mechanisms common 
to these candidate compounds.

Notably, lifespan extension under acute heat shock condi-
tions reflects transient stress protection rather than authentic 
healthspan improvement. This distinction is critical: many bio-
active molecules (e.g., polyphenols, HSP inducers) exhibit such 
protective effects without necessarily modifying fundamental 
aging processes (Kumsta and Hansen 2017). Our findings align 
with the limitations of the DrugAge database, wherein some of 
the reported longevity compounds exhibit context- dependent 
effects or fail validation in standardized lifespan assays, pri-
marily manifesting partial cytoprotective benefits rather than 
authentic healthspan extension. This inherent bias introduces 
some implications for machine learning approaches. This will 
be discussed later.

The four active compounds' chemical classification spans 
steroidal saponins, quinones, coumarins, and synthetic hor-
mones. Thymoquinone, the principal bioactive quinone deriv-
ative from Nigella sativa seeds (Arabic: Habatul Barakah), has 
been historically employed in Arabian medicine for respira-
tory disorders and immune modulation (Othman et al. 2024). 
Its potent antioxidant properties have prompted investigation 
as both a therapeutic agent and natural food preservative. The 
distribution of these compounds on the PCA landscape, as 
well as the positive compounds similar to them, is shown in 
Figure S4.

Polyphyllin VI, a steroidal saponin isolated from Paris polyphylla 
(Chinese: Chonglou), has been used for millennia in East Asian 

FIGURE 4    |    External database screening and validation of candidate compounds in C. elegans. (A) Left: Density distribution plots of prediction 
scores for three compound libraries (FDA- approved: Green, Sellect Bioactive: Yellow, Traditional Chinese Medicine: Pink). Middle: Aggregated den-
sity distribution of all screened compounds (n = 13,974), with the top 2% threshold (score > 0.57) marked by a dashed line. Right: Chemical structures 
of six prioritized candidates. (B) Schematic of heat shock assay protocol. Synchronized young adult nematodes were treated with compounds until 
Day 5 post- synchronization, followed by acute thermal stress at 35°C until mortality. (C–E, G–I) Kaplan–Meier survival curves under heat shock 
for (C) Polyphyllin VI, (D) α- Hederin, (E) 7β- Hydroxylathyrol, (H) Thymoquinone, (I) Medrysone, and (J) Praeruptorin C. p values derived from 
log- rank test; N indicates sample size per group. (F) Schematic of lifespan assay. Young adult nematodes were continuously exposed to compounds 
until natural death. (J–O) Kaplan–Meier lifespan curves for (J) Polyphyllin VI, (K) α- Hederin, (L) 7β- Hydroxylathyrol, (M) Thymoquinone, (N) 
Medrysone, and (O) Praeruptorin C. p values calculated by log- rank test; Censored data (lost animals) are excluded from analysis. The control groups 
(CT) shown in the figures were treated with DMSO solvent at concentrations identical to those in the corresponding experimental groups.

TABLE 3    |    Top 15 compounds screened by the Elixirseeker model. 
Compounds labeled as “Known anti- aging” or “DrugAge positive” have 
been previously reported to have lifespan- extending properties. The 
complete list of TOP50 compounds along with detailed descriptions of 
each drug can be found in Table S44.

Score Name

0.716523 Praeruptorin C (this work)

0.708575 20- Deoxyingenol

0.708465 Ginkgolid B (Known anti- 
aging [Lee et al. 2025])

0.707907 Praeruptorin E

0.705013 Polyphyllin VI (this work)

0.704307 Etoposide

0.703291 Triptolide (DrugAge positive)

0.701729 Ginkgolid A

0.701113 NAD+ (DrugAge positive)

0.700947 Pregnenolone (DrugAge positive)

0.699309 Medrysone (this work)

0.69821 Alpha- Hederin (this work)

0.697395 Lathyrol

0.696004 7- beta- Hydroxylathyrol (this work)

0.6956 Thymoquinone (this work)
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traditional medicine for detoxification, anti- inflammatory, and 
anti- neoplastic purposes. Modern pharmacological studies re-
veal its broad- spectrum antitumor activity through apoptosis in-
duction and cell cycle regulation mechanisms (Teng et al. 2020).

Praeruptorin C, a coumarin derivative extracted from the tra-
ditional Chinese medicinal herb Peucedanum praeruptorum 
Dunn (Chinese: BaihuaQianhu), was first documented in the 
Shennong Bencao Jing (ca. 200 ce) for managing respiratory 
conditions. Some studies have revealed its potential in modulat-
ing inflammatory responses and oxidative stress (Li et al. 2023). 
Medrysone, a synthetic glucocorticoid, contrasts with the nat-
ural products through its engineered pharmacological profile 
(Zhu et al. 2023).

3.5   |   Candidate Compounds Extend the Lifespan 
in C. elegans

Then, we evaluated the longevity- enhancing potential of six 
candidate compounds through standardized C. elegans lifespan 
assays (Figure  4F–O, detailed in Table  S2). Four small mole-
cules demonstrated statistically significant lifespan extension 
effects: Polyphyllin VI (25, 50, and 100 μM; p < 0.0001, N = 222, 
189, and 186, respectively, Figure 4F), Thymoquinone (50 and 
100 μM; p < 0.0001, N = 175 and 240, respectively, Figure  4M), 
Medrysone (100 μM; p < 0.0001 N = 201, see Figure  4N), and 
Praeruptorin C (50 μM: p = 0.0005, N = 174, 100 μM: p < 0.0001, 
N = 188, Figure 4O).

We observed distinct dose–response relationships between 
lifespan extension and heat shock resistance assays, where op-
timal concentrations frequently diverged (e.g., Thymoquinone: 
100 μM for lifespan vs. 25 μM for thermotolerance). This likely 
arises from fundamental differences in the biological pathways 
engaged by each assay. Heat shock resistance predominantly re-
flects acute activation of stress- responsive pathways, such as the 
HSF- 1- mediated proteostasis network or SKN- 1/Nrf2- driven an-
tioxidant responses (Kumsta and Hansen 2017). These systems 
exhibit rapid, nonlinear activation thresholds, where even low 
compound concentrations may saturate critical signaling nodes 
(e.g., Keap1- Nrf2 dissociation) to confer transient protection. In 
contrast, lifespan extension necessitates chronic modulation of 
core aging mechanisms—such as insulin/IGF- 1 signaling (IIS), 
mitochondrial homeostasis, or epigenetic regulation—which 
operate over longer timescales and require sustained, balanced 
pathway engagement. Higher doses may inadvertently perturb 
compensatory feedback loops or induce off- target toxicity, as 
exemplified by the hormetic response curve of Nrf2 activators, 
where excessive dosing paradoxically elevates oxidative stress.

However, models trained on DrugAge data may preferentially 
identify compounds with strong stress- shielding properties, 
while failing to adequately capture features critical for regu-
lating fundamental aging pathways. This aligns with the lim-
itations observed in earlier machine learning studies on the 
DrugAge database, where incomplete capture of aging- related 
features often resulted in suboptimal performance in wet- lab ex-
periments (Bene and Salmon 2023; Barardo, Newby, et al. 2017). 
To address this issue, our Attention- ElixirFP framework is 

designed to maximize the capture of lifespan- extending- related 
features. Furthermore, to validate our approach, we con-
structed a smaller training set comprising only well- established 
longevity- promoting compounds (e.g., metformin, rapamycin) 
and re- evaluated our candidate molecules. The results showed 
that these candidates consistently ranked highly (detailed in 
Table S7).

3.6   |   Candidate Compounds Significantly Enhance 
Locomotor Capacity in C. elegans

To contextualize aging trajectories, we referenced conserved 
hallmarks of physiological decline (e.g., motility loss, pha-
ryngeal pumping rate decrease) that define functional age 
equivalence between species (Wei et  al.  2025). Additionally, 
WormCNN is a framework for assessing the age of C. ele-
gans using computer vision to determine if the nematodes 
are younger by comparing their images with controls (Pan 
et al. 2024), and all four positive drugs from the lifespan ex-
periment showed a trend towards more youthfulness, as de-
tailed in Table S8.

As shown in Figure 5, we evaluated the effects of four lifespan- 
extending candidates at their optimal concentrations (de-
termined in prior assays) on three locomotor parameters: 
pharyngeal pumping, body bending, and head thrashing 
(Figure  5A–C). Statistical analyses revealed pronounced en-
hancements across these metrics (Table 4). Medrysone (100 μM) 
increased pharyngeal pumping by 9.93 contractions/min 
(p.adj = 0.0018), while Praeruptorin C (50 μM) demonstrated 
the most robust effect, elevating pumping rates by 15.07 con-
tractions/min(p.adj < 0.0001). All compounds significantly 
improved body bending frequency (p.adj < 0.001), with 
Polyphyllin VI (25 μM) showing the greatest enhancement. 
Head thrashing activity was similarly augmented, particularly 
by Thymoquinone (25 μM) and Praeruptorin C (50 μM), both 
achieving ~2.67 additional thrashes/min (p.adj < 0.0001).

Given their synergistic benefits in lifespan extension, thermo-
tolerance, and acute locomotor enhancement, we prioritized 
Polyphyllin VI and Praeruptorin C for longitudinal behavioral 
profiling. Under our 20°C culture conditions, C. elegans at days 
5–11 post- Young Adult stage operationally represent progressive 
functional aging stages, approximately mapping to human mid-
dle adulthood (Day 5, ~50 years) through advanced age (Day 11).

Pharyngeal pumping rates exhibited a biphasic trajectory, 
peaking at Day 7 (mid- adulthood equivalent) before declining 
(Figure  5E,F, detailed in Table  S9). Remarkably, Polyphyllin 
VI (100 μM) sustained a 400% increase in pumping activity at 
Day 11 (p < 0.0001 vs. control), while Praeruptorin C (100 μM)- 
treated worms maintained youth- like pumping capacity with no 
significant difference between Days 5 and 12 (p = 0.12). Head 
and body movement enhancements were predominantly ob-
served during mid- to- elder adulthood (Days 5–9), suggesting 
distinct temporal mechanisms: sustained proteostasis/neuro-
muscular maintenance for pharyngeal function versus transient 
metabolic activation for somatic motility (detailed in Tables S10 
and S11).
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3.7   |   Mechanistic Profiling Reveals Divergent 
Pathway Activation by Candidate Compounds

To elucidate potential mechanisms underlying the observed gero-
protective effects, we performed RT- qPCR analyses on 23 aging- 
related genes spanning five evolutionarily conserved pathways 
including epigenetic/transcriptional regulation (P&A), proteo-
stasis/autophagy (ETR), mitochondrial function (MF), insulin/
IGF- 1 signaling (IIS), and stress response. Synchronized young 
adult worms were treated with the best lifespan- extending con-
centrations of Medrysone (100 μM), Thymoquinone (25 μM), 

Polyphyllin VI (25 μM), and Praeruptorin C (100 μM), followed 
by transcript quantification (Figure 5M,N). However, each com-
pound exhibited distinct regulatory signatures despite shared 
phenotypic outcomes in longevity and locomotor enhancement. 
Using a threshold of |log2FC| ≥ 1 (p < 0.05), we delineated tran-
scriptional signatures that mechanistically link to their geropro-
tective phenotypes.

Medrysone upregulated sod- 3 (4.45- fold), age- 1 (4.38- fold), daf- 
18 (4.49- fold), fipr- 22 (3.17- fold), and hsp- 12.2 (2.58- fold), col-
lectively indicating a dual antioxidant–proteostatic mechanism. 

FIGURE 5    |    Behavioral phenotyping and mechanistic insights of candidate compounds in C. elegans. (A–C) Quantitative assessments of (A) pha-
ryngeal pumping rate, (B) body bending frequency, and (C) head thrashing activity in control versus compound- treated groups: 100 μM Medrysone 
(M.S.), 25 μM Thymoquinone (T.Q.), 25 μM Polyphyllin VI (P.VI), and 100 μM Praeruptorin C (P.C.). Bar heights represent mean ± SEM; red numerals 
denote mean difference relative to control (Dunnett's post hoc test, p < 0.05). (D) Schematic of pharyngeal pumping assay protocol: Synchronized 
Young Adult (YA) nematodes were treated with compounds and assessed at Days 5, 7, 9, and 11 post- synchronization. (E, F) Time- resolved pha-
ryngeal pumping rates for (E) Polyphyllin VI (25, 50, 100 μM) and (F) Praeruptorin C (25, 50, 100 μM). p values reflect daily one- way ANOVA. (full 
Dunnett's test results in Table S9, raw data see Tables S13–S20) (G) Schematic of head thrashing assay protocol, with assessments at Days 5, 7, 9, and 
11. (H, I) Temporal dynamics of head thrashing activity for (H) Polyphyllin VI and (I) Praeruptorin C (full Dunnett's test results in Table S10, raw 
data see Tables S21–S28). p values reflect daily one- way ANOVA. (J) Schematic of body bending assay protocol, performed at days 5, 7, 9, and 11. (K, L) 
Body bending frequency trajectories for (K) Polyphyllin VI and (L) Praeruptorin C p values reflect daily one- way ANOVA. (full Dunnett's test results 
in Table S11, raw data see Tables S29–S36) (M) Experimental workflow for RT- qPCR: RNA was extracted from Day 5 YA nematodes (n = 3 biological 
replicates per group, each containing 50–100 worms). (N) Heatmap of fold- changes in aging- related gene expression (vs. control) for M.S. (100 μM), 
T.Q. (25 μM), P.VI (25 μM), and P.C. (100 μM). Color scale: Red = upregulation, blue = downregulation. (O–Q) Network pharmacology analyses for 
(O) Medrysone, (P) Polyphyllin VI, and (Q) Thymoquinone: Left: Protein–protein interaction (PPI) networks of predicted targets; Right: Go biologi-
cal process enrichment (top 5 terms). (R–T) RT- qPCR validation of pathway- specific gene expression for (R) Medrysone, (S) Polyphyllin VI, and (T) 
Thymoquinone. Data normalized to C. elegans Actin (mean ± SD; p < 0.05 by two- tailed t- test). All primers are detailed in Table S43.
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The strong induction of sod- 3 (mitochondrial SOD) and hsp- 
12.2 (chaperone) aligns with its thermotolerance enhancement 
(Figure  4A), while age- 1 (PI3K) and daf- 18 (PTEN) upregu-
lation paradoxically amplifies IIS signaling—a phenomenon 
previously linked to DAF- 16- independent longevity in age- 1 
gain- of- function mutants (Qi et  al.  2021). The concomitant 
fipr- 22 induction (ER stress regulator) suggests unfolded pro-
tein response (UPR) engagement, synergizing with HSP- 12.2 to 
maintain proteostasis under stress.

Thymoquinone activated stress (sod- 3:7.81- fold; ctl- 2:2.63- fold), 
mitochondrial (isp- 1:3.22- fold; cnc- 4:2.34- fold), and IIS pathways 
(age- 1:5.39- fold; daf- 18:4.77- fold), while suppressing rsks- 1 (0.50- 
fold, mTORC1 component). The isp- 1 (complex III) and cnc- 4 
(Nrf2 homolog) upregulation implies mitochondrial redox opti-
mization coupled with Nrf2- mediated detoxification, rationaliz-
ing its superior locomotor enhancement (Figure 5C) via sustained 
ATP production. Paradoxically, rsks- 1 downregulation (mTOR in-
hibition) contrasts with age- 1 upregulation, suggesting a compen-
satory IIS- mTOR crosstalk that transiently primes stress resilience 
without impairing autophagic flux (Pandey et al. 2024).

Polyphyllin VI uniquely suppressed antioxidant genes (sod- 
3:0.33- fold; cnc- 4:0.26- fold; hsp- 12.2:0.36- fold) and sir- 2.1 
(0.19- fold) while upregulating pha- 1 (1.70- fold), a pharyngeal 
morphogenesis regulator. This “controlled oxidative priming” 
strategy—reducing baseline antioxidant reserves—likely ac-
tivates FOXO/DAF- 16 (1.46- fold) via hormesis, bypassing ca-
nonical IIS/sirtuin pathways (Kim and Webb 2017). The pha- 1 
induction correlates with its pharyngeal pumping maintenance 
in aged worms (Figure 5E), potentially stabilizing neuromuscu-
lar junction integrity (Schnabel et al. 1991).

Praeruptorin C upregulated mitochondrial (hif- 1:2.16- fold; 
cat- 1:2.59- fold), stress (sek- 1:2.76- fold; ctl- 2:2.25- fold), and IIS 
(age- 1:2.20- fold; elt- 2:2.25- fold) effectors. The hif- 1 (hypoxia 
sensor) and cat- 1 (catalase) induction points to HIF- 1α- mediated 

metabolic reprogramming, favoring glycolysis while mitigat-
ing ROS via catalase—a strategy mirroring hypoxia- induced 
longevity. Concurrent sek- 1 (p38 MAPK) activation supports 
neuromuscular plasticity, explaining its sustained locomotion 
(Figure 5F). The pha- 1 upregulation (2.13- fold) synergizes with 
elt- 2 (intestinal transcription factor) to stabilize pharyngeal- 
intestinal signaling, an axis for systemic aging modulation 
(Schnabel et al. 1991; Su et al. 2020).

Despite mechanistic divergence, all compounds engage IIS 
(age- 1/daf- 18 upregulation) and stress response pathways, albeit 
through distinct nodes: Medrysone and Thymoquinone amplify 
antioxidant defenses, while Polyphyllin VI and Praeruptorin C 
prioritize metabolic or structural adaptations. Crucially, pha- 1 
emerges as a pharyngeal aging biomarker, with both Polyphyllin 
VI and Praeruptorin C targeting its expression through dispa-
rate upstream regulators (daf- 16 vs. hif- 1).

3.8   |   Network Pharmacology Analysis 
and Mechanistic Validation

Following the qPCR validation of aging- related genes, target 
prediction serves as an essential next step to elucidate phar-
macological mechanisms. Network pharmacology provides a 
systems- level framework to map core responsive gene modules 
through protein–protein interaction (PPI) networks. We per-
formed target profiling for the four active compounds and con-
structed protein–protein interaction (PPI) networks based on 
network pharmacology principles—a methodology that identi-
fies core responsive genes by mapping their functional intercon-
nectivity. Due to low target prediction confidence, Praeruptorin 
C was excluded from further analysis. For the remaining three 
compounds (Medrysone, Polyphyllin VI, and Thymoquinone), 
PPI network- based GO enrichment analysis revealed distinct 
pathway associations as below (predicted targets detailed in 
Tables S39–S42).

TABLE 4    |    Dunnett's multiple comparisons of locomotor parameters between control and compound- treated groups.

Group N MD 95% CI of MD p.adj Sig.

CT vs. M.S. 100 μM (pharyngeal pumping) 15 −9.933 −16.72, −3.149 0.0018 Yes

CT vs. T.Q. 25 μM (pharyngeal pumping) 15 −4.467 −11.25, 2.317 0.2960 No

CT vs. P.VI 25 μM (pharyngeal pumping) 15 −8.867 −15.65, −2.083 0.0062 Yes

CT vs. P.C. 50 μM (pharyngeal pumping) 15 −15.07 −21.85, −8.283 < 0.0001 Yes

CT vs. M.S. 100 μM (body thrashing) 15 −6.733 −9.720, −3.747 < 0.0001 Yes

CT vs. T.Q. 25 μM (body thrashing) 15 −7.133 −10.12, −4.147 < 0.0001 Yes

CT vs. P.VI 25 μM (body thrashing) 15 −8.667 −11.65, −5.680 < 0.0001 Yes

CT vs. P.C. 50 μM (body thrashing) 15 −5.200 −8.186, −2.214 0.0002 Yes

CT vs. M.S. 100 μM (head thrashing) 15 −1.467 −2.694, −0.2392 0.0139 Yes

CT vs. T.Q. 25 μM (head thrashing) 15 −2.667 −3.894, −1.439 < 0.0001 Yes

CT vs. P.VI 25 μM (head thrashing) 15 −2.200 −3.427, −0.9726 0.0001 Yes

CT vs. P.C. 50 μM (head thrashing) 15 −2.200 −3.427, −0.9726 0.0001 Yes

Abbreviations: MD, Mean Difference; Sig, Significance.
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Medrysone exhibited significant enrichment in steroid meta-
bolic processes, aligning with its nuclear receptor nhr- 1 overex-
pression (14.3- fold, p = 0.0013) and fat- 5 suppression (0.54- fold, 
p = 0.0017) (Figure  5R). The concomitant clk- 1 upregulation 
(5.8- fold, p = 0.0013), encoding a mitochondrial ubiquinone 
biosynthesis enzyme, suggests Medrysone enhances steroid- 
mediated mitochondrial retrograde signaling while suppressing 
fatty acid desaturase ( fat- 5) activity—a dual mechanism that 
may optimize membrane fluidity and redox homeostasis (Du 
et  al.  2018). Notably, spb- 1 (SPFH domain protein) downregu-
lation (0.56- fold, p = 0.0028) implies reduced lipid raft stabili-
zation, potentially sensitizing cells to stress- induced hormesis 
(Ana et al. 2024).

Polyphyllin VI's enrichment in response to organonitrogen 
compounds and ucp- 4 overexpression (10.89- fold, p < 0.0001) 
(Figure  5S) indicates mitochondrial uncoupling as a central 
mechanism. The clk- 1 suppression (0.06- fold, p = 0.0003) dis-
rupts electron transport chain (ETC) efficiency, while gst- 4 
downregulation (0.47- fold, p < 0.0001) attenuates glutathione 
conjugation capacity, collectively inducing a controlled meta-
bolic crisis. This “pseudo- hypoxic” state likely activates AMPK- 
independent mitohormesis, where ucp- 4- mediated proton 
leakage reduces ROS generation despite compromised ETC 
function, explaining its paradoxical lifespan extension without 
overt antioxidant induction (Cho et al. 2016).

Thymoquinone's association with synaptic transmission, cho-
linergic correlates with unc- 29 (nicotinic acetylcholine receptor 
subunit) upregulation (2.13- fold, p < 0.0001) and dod- 17 over-
expression (3.96- fold, p = 0.007), a dopamine- responsive GPCR 
(Figure  5T). clk- 1 induction (11.63- fold, p < 0.0001) synergizes 
with enhanced cholinergic signaling to elevate mitochondrial 
NADH oxidation capacity, creating a metabolic sink that buffers 
age- related acetyl- CoA accumulation—a known inhibitor of 
autophagy (Miyadera et al. 2002). This dual neuromodulatory- 
mitochondrial axis likely underlies Thymoquinone's locomotor 
preservation (Figure 5C), as improved neuromuscular junction 
efficacy counteracts sarcopenia.

3.9   |   Limitations of ElixirSeeker

Despite the advantages of ElixirSeeker in lifespan- extending 
compound screening, its design has several critical limitations 
that warrant consideration. First, the model's interpretability 
is constrained by inherent limitations of the Phenotype- Driven 
Drug Discovery (PDD) approach. ElixirSeeker identifies com-
pounds associated with lifespan extension through structural- 
phenotype correlations but fails to explicitly elucidate the 
biological pathways or molecular targets involved, which may 
limit its application in mechanism- based drug design or preci-
sion interventions. This limitation was previously mentioned.

Second, the study focuses solely on lifespan extension pheno-
types without integrating multidimensional assessments like 
toxicity profiles or target specificity. This design choice was 
made because mature tools exist for predicting toxicity (e.g., 
toxicity classification, metabolic pathway simulation) and tar-
get interactions (e.g., molecular docking, network pharmacol-
ogy), which can function as independent modules alongside 

ElixirSeeker. Since no existing models specifically address 
lifespan extension prediction well, this study prioritized filling 
that niche. Additionally, the absence of multi- omics data (e.g., 
genomics, transcriptomics) may reduce the model's ability to 
capture complex aging mechanisms.

Compared to AgeXtend, a recently published model in Nature 
Aging (Arora et al. 2025), ElixirSeeker demonstrates distinct de-
sign trade- offs. While AgeXtend focuses on predicting “broad 
anti- aging activities” (e.g., reducing oxidative stress, improv-
ing metabolic homeostasis) by integrating multi- omics data, 
ElixirSeeker strictly targets lifespan extension as the endpoint. 
This difference influences their performance: AgeXtend's 
broader scope may sometimes lead to discrepancies when ap-
plied to lifespan- specific validation experiments. AgeXtend's 
multi- omics integration enhances biological interpretability but 
comes with higher computational demands, making it less effi-
cient for large- scale compound screening.

In contrast, ElixirSeeker's lightweight ensemble learning frame-
work allows rapid screening of tens of thousands of compounds 
on standard computing hardware, though it lacks mechanism- 
based predictions. These differences create complementary 
roles: ElixirSeeker is good at identifying lifespan- extending 
compounds through chemical feature analysis, while AgeXtend 
better supports pathway- based research requiring mechanistic 
insights.

Regarding molecular fingerprint design, ElixirSeeker's ap-
proach effectively captures key patterns in small- sample or 
sparse datasets, making it suitable for scenarios with limited 
data. This strategy not only benefits lifespan prediction but also 
offers a generalizable solution for other fields facing similar data 
challenges. However, its performance may decline when han-
dling large datasets or complex biological mechanisms requiring 
multi- omics integration.

Finally, both models depend on known aging mechanisms and 
may struggle with novel, uncharacterized pathways. For ex-
ample, a compound extending lifespan through unknown epi-
genetic modifications (e.g., spatiotemporally specific histone 
acetylation changes) might not be predicted if such mechanisms 
are absent in training data.

Additionally, the machine learning model employed herein op-
erates as a binary classifier, assigning scores based on the struc-
tural and physicochemical conformity of compounds to a dataset 
of known lifespan- extending molecules. These scores reflect 
the likelihood of a compound's chemical features aligning with 
those of validated longevity agents, rather than directly predict-
ing quantitative effects such as lifespan extension percentages.

4   |   Conclusion

In this study, we developed ElixirSeeker, a machine learning 
framework specifically engineered to address the challenges of 
small, sparse, and noisy biological datasets in lifespan- extending 
compound discovery. Our model maximizes feature extraction 
from limited training data; this compact yet information- 
rich representation captures critical structural and functional 

 14749726, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/acel.70116 by C

ochraneC
hina, W

iley O
nline L

ibrary on [26/06/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



16 of 18 Aging Cell, 2025

attributes of compounds, enabling predictions even under data 
scarcity. The framework's ability to disentangle latent pharma-
cological features from sparse inputs allowed the identification 
of four lifespan- extending candidates—Medrysone, Polyphyllin 
VI, Thymoquinone, and Praeruptorin C—each with distinct 
mechanisms. This work establishes a way for machine learning 
to unlock hidden patterns in imperfect biological data, advanc-
ing virtual screening not only for lifespan- extending compounds 
but also for broader applications characterized by sparse, noisy 
datasets.
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