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Abstract 

Background Infections with SARS‑CoV‑2 have a pronounced impact on the gastrointestinal tract and its resident 
microbiome. Clear differences between severe cases of infection and healthy individuals have been reported, includ‑
ing the loss of commensal taxa. We aimed to understand if microbiome alterations including functional shifts are 
unique to severe cases or a common effect of COVID‑19. We used high‑resolution systematic multi‑omic analyses to 
profile the gut microbiome in asymptomatic‑to‑moderate COVID‑19 individuals compared to a control group.

Results We found a striking increase in the overall abundance and expression of both virulence factors and anti‑
microbial resistance genes in COVID‑19. Importantly, these genes are encoded and expressed by commensal taxa 
from families such as Acidaminococcaceae and Erysipelatoclostridiaceae, which we found to be enriched in COVID‑
19‑positive individuals. We also found an enrichment in the expression of a betaherpesvirus and rotavirus C genes in 
COVID‑19‑positive individuals compared to healthy controls.

Conclusions Our analyses identified an altered and increased infective competence of the gut microbiome in 
COVID‑19 patients.
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Background
Coronavirus disease 2019 (COVID-19), which is caused 
by the severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), was declared a global pandemic by the 
World Health Organization (WHO). COVID-19 exhib-
its a high degree of clinical heterogeneity, ranging from 
asymptomatic to severe disease, and may be accompanied 
by a poor outcome and a relatively high mortality rate [1]. 
As of 17 October 2022, more than 621 million confirmed 
SARS-CoV-2 infections and 6.5 million COVID-19-re-
lated deaths have been reported [2]. Although COVID-19 
is primarily considered a respiratory disease, it clini-
cally often presents with general (fever, myalgia, and/or 
fatigue) and respiratory symptoms (cough and/or dysp-
nea). Moreover, an emergence of new variants has led to 
the more frequent presentation of gastrointestinal symp-
toms (appetite loss, nausea, vomiting, and diarrhea) [3], 
indicating a potential involvement of the gastrointestinal 
tract in COVID-19. More specifically, SARS-CoV-2 has 
been shown to be able to infect and replicate in entero-
cytes in  vitro [4]. In fact, viral RNA can be detected in 
fecal samples even after resolution of respiratory symp-
toms [5]. Additionally, SARS-CoV-2 infections are associ-
ated with alterations to the gut microbiome composition 
that persist for at least 6 months after the initial infection 
[6]. Thus, an imbalance in the gut microbiome can be 
linked to disease severity and increased concentrations 
of inflammatory markers, as well as an increased post-
COVID-19 risk, understood as a wide range of symptoms 
persisting four or more weeks after the initial SARS-
CoV-2 infection [6, 7].

Stable ecosystems are important for colonization 
resistance to pathogens [8]. As such, host and SARS-
CoV-2-mediated immune dysregulation and dysbiosis 
may predispose patients to co-infections or secondary 
infections of the respiratory and gastrointestinal tracts. 
In addition, co-infecting microorganisms may alter the 
intensity of the host immune response [9], thus signifi-
cantly influencing severity and outcome of the disease. 
For instance, co-infections with viruses (rhinovirus/
enterovirus, respiratory syncytial virus, influenza virus, 
non–SARS-CoV-2 Coronavirus) [10], bacteria (Myco-
plasma pneumoniae, Pseudomonas aeruginosa, Haemo-
philus influenzae, Klebsiella pneumoniae, Streptococcus 
pneumoniae, Staphylococcus aureus) [11, 12], or fungi 
(Candida spp., Aspergillus spp.) [13] have been described 
among SARS-CoV-2-positive cases in different study 
set-ups. In particular, bacterial co-infections in hospital-
ized and intensive care unit patients with COVID-19 are 
associated with prolonged ventilation and an increased 
mortality rate [11, 14]. Furthermore, hospital-acquired 
infections with multi-drug-resistant (MDR) pathogens 
are also linked with increased mortality in COVID-19 

patients [15]. These reports collectively suggest a clear 
shift in COVID-19 patients with respect to an increased 
abundance of pathogens and potential for harm. Moreo-
ver, these shifts may further manifest themselves in rela-
tion to the infective competence, i.e., the propensity for 
virulence and increased antibiotic resistance, in the gut 
microbiome as a consequence of an increased capacity to 
cause infections.

Major factors that contribute to the success of some 
of the pathogens highlighted above are virulence factors 
(VFs). Virulence factors including cell-surface structures, 
adhesins, siderophores, endo-, and exotoxins enable 
pathogens to undergo quick adaptive shifts, invade and 
colonize host niches, as well as evade innate and adaptive 
immune mechanisms of the host, resulting in inflamma-
tion and clinical manifestations of the disease. Another 
factor facilitating colonization of pathogens, through 
prevention of effective treatment, is antimicrobial resist-
ance (AMR). Even though AMR is an ancient and natu-
ral phenomenon [16], it is usually linked to the human 
influence on the environment and the use of antibiotics. 
Overuse of antibiotics is hypothesized to also contribute 
to the broader problem of antimicrobial resistance [17]. 
Moreover, although not a VF by itself, AMR shares com-
mon characteristics with VFs [18]. Specifically, AMR and 
VFs: (1) are necessary for the survival of pathogens under 
unfavourable conditions [19]; (2) can be transmitted 
between species by horizontal gene transfer [20]; and (3) 
both processes make use of similar systems, e.g., cell wall 
alterations, efflux pumps, porins, and two-component 
systems to activate or repress expression of various genes 
[18, 21]. Thus, in response to host defence mechanisms 
and environmental challenges, communities of microor-
ganisms, i.e., microbiomes, may alter their “infective com-
petence”. The infective competence is defined as the ability 
of microorganisms to constantly adapt and evolve, utiliz-
ing VFs and AMR mechanisms, resulting in increased 
survival, invasion, or growth. Importantly, the combina-
tion of host-driven factors, i.e., immune system-mediated 
effects and antimicrobial peptides, and unfavourable 
gastrointestinal conditions, e.g., low pH, disruption of 
the mucus layer, niche competition with other taxa, may 
confer transiently a selective advantage to a pathogenic 
lifestyle [22, 23]. This may be reflected in the entire gut 
microbiome, possibly altering the infective competence 
of the endogenous taxa and subsequently giving rise to 
pathobiont-dominated communities.

Here, we addressed questions pertaining to the effect 
of SARS-CoV-2 infection on the endogenous gut micro-
biome in COVID-19 cases compared to healthy con-
trols using systematic, high-resolution multi-omic data, 
including metagenomics and metatranscriptomics with 
a particular focus on VFs and antimicrobial resistance 
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genes (ARGs). We find that mild, i.e. asymptomatic-to-
moderate, COVID-19 does not alter the overall composi-
tion of the gut microbiome, unlike the drastic microbiota 
changes reported previously in severe cases. Importantly, 
we find that a mild progression of COVID-19 affects the 
infective competence of gut microbiota, wherein taxa 
encode and express genes facilitating their survival and/
or growth. We find specific families such as Acidamino-
coccaceae and Erysipelatoclostridiaceae to be encoding 
for and expressing VFs and ARGs, significantly more in 
individuals with COVID-19. Collectively our data also 
demonstrates a significantly higher infective competence 
of the endogenous microbiome, suggesting that infec-
tion with SARS-CoV-2 may mediate co-infections in the 
longer term.

Results
Taxonomic and functional profiles indicate minimal 
changes in COVID‑19
COVID-19 studies have reported an altered gut micro-
biota composition of hospitalized and critical COVID-
19 patients. However, limited attention has been paid to 
milder forms of COVID-19. Thus, we assessed whether 
gut microbiota composition was altered in COVID-19 
individuals compared to healthy controls. Overall, the 
gut microbiome compositions, based on the alpha- and 
beta-diversity metrics, of 61 COVID-19 and 57 individu-
als from the control group were similar (Fig. 1 and Sup-
plementary Figure  S1), with an increased abundance of 
species belonging to the Lachnospiraceae, Ruminococ-
caceae, Bacteroidaceae, and Bifidobacteriaceae families 
in COVID-19 (Fig. 2a). We found specific taxonomic dif-
ferences within the metagenomes, such as an increase in 

the abundance of AM10 47 (Firmicutes phylum), Prevo-
tella sp. CAG 520, Prevotella stercorea and Roseburia sp. 
CAG 471 in the COVID-19 group (Fig.  2b), along with 
a decrease in CAG 145 (Firmicutes phylum), Roseburia 
faecis and Turicibacter sanguinis (Fig. 2c). Despite these 
taxonomic differences, we did not observe any significant 
changes in the overall functional profile of the microbi-
ome between the COVID-19 and control groups. Along 
similar lines, we did not find a significant correlation 
between covariates such as age, sex, COVID-19 severity, 
and other variables in the COVID-19 and control groups 
in relation to the taxonomic and functional features.

In light of reports, indicating the potential co-infections 
with viruses along with SARS-CoV-2, we also assessed 
the virome (Methods) within the COVID-19 patient and 
the control groups. We did not observe large differences 
between the groups. However, we found that genes asso-
ciated with a specific betaherpesvirus and rotavirus were 
enriched (adj. p < 0.05; one-way ANOVA) in the COVID-
19 group (Supplementary Table S2).

SARS‑CoV‑2 is associated with increased abundance 
and expression of virulence factors
SARS-CoV-2 infections have been suggested to predis-
pose patients to co-infections or secondary infections of 
the respiratory and gastrointestinal tracts. Virulence fac-
tors in particular enable (pathogenic) microorganisms to 
colonize host niches and establish infections. We used 
PathoFact [24] to assess the prevalence of VFs in the co-
assembled metagenomic and metatranscripomic data. 
PathoFact was designed to contextualize the genomic 
data and classify VFs and ARGs, allowing to assess the 
infective competence of taxa. To obtain a comprehensive 

Fig. 1 Sample collection and study design. Schematic of the project study design, including cohort composition, and data analyses
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overview of actual gene expression, we complemented 
metagenomic analyses with metatranscriptomic infor-
mation conferring information regarding the transcrip-
tion levels of identified VFs. Based on the metagenomic 
data, we found a significant increase (adj. p < 0.05; Wil-
coxon rank-sum test) in alpha diversity (Supplemen-
tary Figure  S2) as well as the overall abundance of VFs 
in the COVID-19 group compared to the control group 
(Fig.  3a). The metatranscriptomic information further 
confirmed that these VFs demonstrated significantly 
increased expression levels (adj. p < 0.05; Wilcoxon rank-
sum test) in the COVID-19 group compared to the con-
trol group (Fig. 3b).

To link the prevalence and expression of the identi-
fied VFs to the taxa within the microbial community, 
we reconstructed metagenome-assembled genomes 
(MAGs) and further leveraged the iterative work-
flow of the integrated meta-omic pipeline (IMP) [25]. 

Overall, we found a significant increase in encoded 
and expressed VFs between the COVID-19 and con-
trol groups (adj. p < 0.05; Wilcoxon rank-sum test). 
Our analyses further linked families such as Acidami-
nococcaceae, Erysipelatoclostridiaceae, and Erysip-
elotrichaceae with increased expression of VFs in the 
COVID-19 group (Fig.  3c). Interestingly, the control 
group exhibited higher gene abundances and expres-
sion of VFs only in the Dialisteraceae family. Further-
more, we found that some families (Acutalibacteraceae, 
Coriobacteriaceae, Lachnospiraceae, and Ruminococ-
caceae) demonstrated an increased expression of VFs 
in the COVID-19 group (Fig. 3d; adj. p < 0.05; Wilcoxon 
rank-sum test), although their respective gene abun-
dances were not different from those found in the con-
trol group.

Fig. 2 Composition of the microbial community. a Cladogram representing the microbial community profiles in COVID‑19 patients (red) and 
control group (green). The outer rings represent the relative abundance (%) of the microbial community. b Relative abundance of bacterial species 
significantly enriched in COVID‑19 patients compared to the control group [adj.p < 0.05; Wilcoxon rank‑sum test]. c Relative abundance of bacterial 
species significantly decreased in COVID‑19 patients compared to the control group [adj. p < 0.05; Wilcoxon rank‑sum test]
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Expression of antimicrobial resistance increases together 
with virulence factors
While co-infections or secondary infections in COVID-
19 may exacerbate the disease, the presence of ARGs 
may limit treatment options. Since the overall abun-
dance and expression of VFs was increased in COVID-
19 individuals, we assessed the antimicrobial resistance 
profile of the microbial community in the COVID-19 
and control groups. Specifically, using PathoFact, we 
characterized the prevalence and relative expression 
of ARGs (22 categories). While we did not find any sig-
nificant differences in the overall gene abundances and 
the normalized expression levels of all ARGs contribut-
ing to the resistome, we observed a significant increase 
(adj. p < 0.05; Wilcoxon rank-sum test) in ARG alpha 
diversity (Supplementary Figure  S3) between COVID-
19 and the control groups (Fig.  4a). Importantly, when 

investigating individual AMR categories, we found that 
peptide resistance wash significantly higher in terms of 
gene abundance and also more highly expressed within 
the COVID-19 group (Fig.  4b; adj. p < 0.05; Wilcoxon 
rank-sum test). In addition, we observed that the expres-
sion of multi-drug resistance was enriched (adj. p < 0.05; 
Wilcoxon rank-sum test) in the COVID-19 group, while 
macrolides, lincosamides and streptogramins (MLS) 
and beta-lactam resistance both exhibited a higher gene 
abundance in the same group (adj. p < 0.05; Wilcoxon 
rank-sum test).

As described above, we leveraged the MAGs to cor-
relate the differentially abundant and expressed ARGs 
to the microbial community. In line with our obser-
vations with the VFs, we found a significant increase 
(adj. p < 0.05; Wilcoxon rank-sum test) in ARGs 
encoded and expressed by the Acidaminococcaceae 

Fig. 3 Abundance of virulence factors in the microbial community. a Overall abundance (metagenome) of virulence factors encoded by the 
microbiome of COVID‑19 patients and control group. The significance of the differential abundance is indicated with the adjusted p value 
[adj.p < 0.05; Wilcoxon rank‑sum test]. b Overall expression levels (metatranscriptomics) of virulence factors encoded by the microbiome in 
COVID‑19 patients and the control group [adj.p < 0.05; Wilcoxon rank‑sum test]. c Abundance and expression levels of MAG families where a 
significant increase in encoded and expressed virulence factors was observed in COVID‑19 patients [adj.p < 0.05; Wilcoxon rank‑sum test, * < 0.05, 
** < 0.01, *** < 0.001]. d Abundance and expression levels of virulence factors in MAGs depicting taxonomic families only demonstrating an 
increased expression of virulence factors, with no significant difference observed at a metagenomic level [adj.p < 0.05; Wilcoxon rank‑sum test, 
* < 0.05, ** < 0.01, *** < 0.001]
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and Erysipelatoclostridiaceae in the COVID-19 group 
(Fig. 5a, b). Furthermore, an additional family, i.e., Tan-
nerellaceae was also associated with increased abundance 
and expression of ARGs in the COVID-19 group (Fig. 5a, 
b). Specifically, in relation to the above-reported AMR 
categories, we identified a significant increase in multi-
drug resistance encoded and expressed by all three of 
these taxonomic families. In addition, the Acidaminococ-
caceae also were found to encode a significant increase 
in ARGs contributing to peptide resistance. Interest-
ingly, we found that several other taxonomic families 
were also associated with increased ARG expression in 
the COVID-19 group (adj. p < 0.05; Wilcoxon rank-sum 
test), although their gene abundances did not demon-
strate any significant differences (Fig. 5b). These included 
Barnesiellaceae, Lachnospiraceae, Ruminococcaceae, and 
Rikenellaceae.

To further validate our findings, especially those linking 
VFs and ARGs with taxa, we used bias correction-based 
analyses for microbial compositions (ANCOM-BC). For 
both abundances and relative expression, across VFs and 
ARGs, ANCOM-BC revealed similar taxonomic fami-
lies were enriched in the COVID-19 group, as identified 
in our initial analyses using MaAsLin2 and subsequent 
non-parametric tests. Based on the ANCOM-BC analy-
ses, the COVID-19 group had a higher log2 fold-change 

of Erysipelatoclostridiaceae, Acidaminococcaceae, and 
Erysipelotrichaceae in the VFs compared to the control 
group (Supplementary Figure S4a-b). Similarly, ARGs in 
the Acidaminococcaceae and Erysipelatoclostridiaceae 
families were both abundant and showed higher relative 
expression in the COVID-19 group (Supplementary Fig-
ure S4 c-d).

Infective competence of the gut microbiome
Our analyses collectively indicated that both VFs and 
ARGs were enriched in abundance and expression in 
the COVID-19 group. Specifically, we found that the 
abundances of ARGs were correlated with those of the 
VFs (Fig.  6a, R = 0.52 and p < 0.01; Spearman’s correla-
tion). Complementing this observation, we found that 
the expression profiles of ARGs and VFs also correlated 
with each other (Fig. 6b, R = 0.46 and p < 0.01; Spearman’s 
correlation) suggesting a higher propensity for infectious 
capacity. To further characterize the infective competence 
of the various taxa within the gut microbiome, we esti-
mated the log2 fold-change of the abundance and expres-
sion of VFs and ARGs across taxonomic families found in 
the COVID-19 group and the control group. We found 
that ~ 62% (21/34) of the families had a higher infective 
competence and were enriched in abundance and expres-
sion within the COVID-19 group, whereas only ~ 9% 

Fig. 4 Abundance levels of antimicrobial resistance genes. a Overall ARG abundance and expression levels for COVID‑19 and control groups 
(boxplot), coupled with a breakdown of the respective abundance and expression levels to individual AMR categories [adj.p < 0.05; Wilcoxon 
rank‑sum test, * < 0.05, ** < 0.01, *** < 0.001]. b ARG abundance (top) and expression levels (bottom) of individual AMR categories significantly 
increased in COVID‑19 patients compared to the control group [adj.p < 0.05; Wilcoxon rank‑sum test, * < 0.05, ** < 0.01, *** < 0.001]
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(3/34) of the families showed increased infective compe-
tence in the control group (Fig.  6c). In particular, these 
analyses highlighted the Acidaminococcaceae and Ery-
sipelatoclostridiaceae families, in line with our earlier 
observations, suggesting a higher infective competence, 
where the abundances and expression levels of the VFs 
and ARGs were significantly higher in COVID-19 com-
pared to the control group (p < 0.05; two-way ANOVA). 
In the control group, Dialisteraceae, which was also 
observed earlier, showed increased infective competence 
(Fig.  6c). Collectively, our data suggests that the infec-
tive competence of taxa found in the COVID-19 group is 
increased compared to controls.

Discussion
COVID-19 has become a common condition for which 
the manifold effects however remain a challenge [26]. 
Since the onset of the pandemic, the presentation of 

gastrointestinal symptoms has indicated the involve-
ment of the gastrointestinal tract in COVID-19 [7]. 
As we uncover and understand the potential effects of 
COVID-19 in humans, it is important to also elucidate 
the concomitant consequences of the disease on the gut 
microbiome. To this end, several studies have focused 
on the drastic shifts in the microbiome of COVID-19 
patients with severe symptoms. These include changes 
in diversity including stark enrichments and/or loss of 
specific taxa [27]. Several Studies have focused on dif-
ferences in the gut microbiome between patients with 
severe COVID-19 and controls [7, 28]. Though these 
findings are essential, the effect on the larger popula-
tion, wherein the infection is asymptomatic-to-moder-
ate, is not readily represented. To address this particular 
gap in knowledge, we focused on the effect of COVID-
19 in cases with asymptomatic-to-moderate symptoms 
in comparison to controls. Interestingly, we found that 

Fig. 5 Association of AMR with the microbial community. Abundance (a) and expression (b) levels of ARGs and corresponding to AMR categories 
linked to MAGs. On top (boxplot) depicting the overall ARG abundance, below the average abundance of selected AMR categories per taxonomic 
family. The plot depicts taxonomic families in which overall a significant increase in abundance or expression of ARGs was observed [adj.p < 0.05; 
Wilcoxon rank‑sum test, * < 0.05, ** < 0.01, *** < 0.001]
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the diversity and overall shifts in community composi-
tion, highlighted in previous reports between severe and 
control patients [29], did not manifest themselves when 
comparing asymptomatic-to-moderate cases to the con-
trol group of individuals. However, this was associated 
with an increased abundances of specific taxa such as 
Prevotella spp., AM10 and CAG145 (Firmicutes phylum), 
Roseburia spp. and a Turicibacter spp. in the COVID-
19 group. This is in contrast to existing reports [27, 30], 
suggesting the loss of beneficial taxa such as Faecalibac-
terium, Bifidobacterium and Roseburia in the context 
of COVID-19. Since our study did not include patients 

with severe COVID-19 or those that were hospitalized, it 
is likely that the lower disease severity does not lead to 
significant changes in the abundance of beneficial com-
mensals. Along similar lines, major differences in the 
virome profile of the COVID-19 group in our study were 
not observed when compared to the control group. Nev-
ertheless, and importantly, we found that genes associ-
ated with rotavirus C were increasingly expressed in the 
COVID-19 group, despite no differences in overall abun-
dance of this virus between the patient groups. Rotavirus 
is a known enteric pathogen causing gastroenteritis in 
the pediatric population; however, their capacity to cause 

Fig. 6 Assessing the infective competence of the gut microbiome. a Correlation of gene abundances of AMR and virulence factors [R = 0.52 
and p < 0.01; Spearman’s correlation] in COVID‑19 patients (red) and the control group (green). b Correlation of AMR and virulence factors gene 
expression levels [R = 0.46 and p < 0.01; Spearman’s correlation] in COVID‑19 patients (red) and negative controls (green). c Bubble plot depicting 
the infective competence via the log2 fold change of AMR and virulence factors between COVID‑19 patients (red) and control group (green)
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infections in adults is underappreciated and poorly char-
acterized due to only mild symptoms including nausea, 
headaches, and diarrhea [31]. Importantly, at the time 
of writing only one report by Wang et al. [32], indicated 
the possibility of increased rotavirus A-mediated enteric 
infections in COVID-19 patients. These findings are 
intriguing given the propensity for COVID-19 patients 
to suffer from enteric symptoms [3], including nausea 
[33] and diarrhea [34]. Whether the rotavirus, especially 
in adults, is associated with COVID-19 gastrointestinal 
symptoms, or the enteric effects exacerbate the expres-
sion of rotavirus C-associated genes is still unknown 
and will have to be investigated in dedicated follow-up 
studies.

In line with the above observations, early in the pan-
demic, the role of COVID-19 in enhancing co-infections 
was documented extensively [14, 35]. This is not only lim-
ited to mucormycosis [36] which was amplified in certain 
parts of the world, but also bacterial and viral co-infec-
tions that were reported in severe COVID-19 patients 
[32]. Despite these observations and case studies, the 
effect of COVID-19 on the infective competence of the 
existing and endogenous microbiota has never been char-
acterized. Our findings, therefore, bridge an important 
and broad chasm in knowledge, suggesting that COVID-
19-mediated shifts may lead to higher microbiome-linked 
burden with potentially manifold effects. Importantly, 
we not only found an increased abundance in VFs in the 
COVID-19 group, but also a concomitant increase in 
expression of genes associated with virulence. Although 
it is plausible that a positive correlation between VFs and 
ARGs exists in de facto pathogens, such infection-linked 
shifts have not been reported beforehand. Furthermore, 
this phenomenon has not been reported in commensal 
organisms. Thereby, infective competence may be used 
to monitor and understand potential future infections in 
the context of COVID-19-mediated effects. Simultane-
ously, we found that these VFs were associated with taxa 
from families such as Acidaminococcaceae, Erysipelato-
clostridiaceae, and Erysipelotrichaceae. Though Acid-
aminococcus was recently reported to be associated with 
a disease-related group in a large-scale meta-analysis 
[37], the exact role of Acidaminococcaceae in virulence 
is undocumented. Members of the Erysipelatoclostri-
diaceae family are typically seen as typical members of 
the microbiome; however, in specific cases species such 
as Erysipelatoclostrium ramosum have been associ-
ated with systemic infection and systemic inflammatory 
response syndrome [38], while Erysipelotrichaceae have 
been positively correlated with colorectal cancer [39]. 
Our observations, especially the increased expression of 
VF genes associated with these taxa, may pave the way 
in future explorations to serve as indicators of diseases. 

Importantly, it is still unclear whether the enriched infec-
tive competence is a COVID-19-specific hallmark or one 
found in all infections. For example, it has previously 
been hypothesized that selection of pathobionts result 
from inflammatory responses and/or a dysregulation of 
the tolerant immune system [40]. Future studies will need 
to address the extent to which various underlying factors 
such as a dysbiotic microbiome and an impaired immune 
system affect the infective competence of the gut micro-
biome. Furthermore, with larger cohorts which would 
include severe cases of COVID-19, supervised learning 
analyses may be employed to predict disease status based 
on the infective competence of individuals’ microbiome. 
Further work may also involve the heterologous expres-
sion of VF and AMR genes to assess predicted versus 
realized infective competence.

Another important aspect of COVID-19, in particu-
lar early on in the pandemic, was the overuse and mis-
use of antibiotics for treating SARS-CoV-2 [41] which 
was also associated with the potential increase of AMR 
[17]. Based on our findings and a recent report from the 
European Centre for Disease Prevention Control show-
ing a North-to-South as well as a West-to-East AMR gra-
dient in Europe during the COVID-19 pandemic [42], it 
is imperative to undertake future and detailed analyses 
accounting for socioeconomic and geographic factors 
contributing to AMR. In this context, Luxembourg may 
constitute an important reference population given its 
geographic location and its diverse demographic com-
position. Recent studies have reported on the higher 
incidence of AMR [43] and increased ARGs in COVID-
19 patients [44]. However, these reports either refer 
to patients who were administered antibiotics [44] or 
include a meta-analyses observing datasets which were 
generated pre- and post-pandemic, specifically associ-
ated with travel [45], or limit characterization of antibi-
otic-mediated differences at a broad and low-resolution 
[46]. In contrast to these studies, antibiotic usage was a 
clear exclusion criterion in our study where individuals 
included were not administered any antibiotics 3 months 
prior to sampling. To our knowledge, our findings are 
the first report to systematically analyze the resistome 
of COVID-19 and control individuals and importantly 
to demonstrate that several of these ARGs are indeed 
expressed significantly higher in the COVID-19 group 
compared to the control group, regardless of antibiotic 
treatment. We observe that resistance genes include 
MLS, multi-drug and peptides, resistance classes where 
treatments of resistant bacteria are known to be inher-
ently challenging with conventional antibiotics [47]. 
Strikingly, we found that the increased ARG expression 
in the COVID-19 group was further associated with the 
same taxa encoding and expressing VFs. This suggests 
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that combinatorial effects of VFs and ARGs may exacer-
bate the infective competence of these taxa. This is further 
supported by our analysis identifying that taxa from the 
Acidaminococcaceae and Erysipelatoclostridiaceae fami-
lies demonstrated a predicted higher infective competence 
in the COVID-19 group.

Conclusions
Our findings suggest that it is imperative to elucidate all 
the implications of SARS-CoV-2 infection, especially its 
effect on the gut microbiome community and functions. 
Although other studies have involved the severe cases 
of COVID-19 [7, 48], none of these studies include both 
metagenomic and metatranscriptomic sequencing data. 
We found that the VFs and ARGs were indeed expressed 
in higher levels in the COVID-19 group compared to the 
controls. These key findings would have not been pos-
sible by only focussing on metagenomic data. Our col-
lective findings, indicating the enriched abundance and 
expression of both VFs and ARGs, suggest that COVID-
19 may yet have unknown effects that may come to light 
in the longer term including the shaping of the micro-
biome across the population. Moreover, we find that 
none of the commonly reported pathogens (Salmonella, 
Shigella, Klebsiella etc.) are enriched in the COVID-19 
group in our study. In contrast, we find changes in Prevo-
tella spp, AM10 and CAG145 (Firmicutes phylum), Rose-
buria spp and a Turicibacter spp. Therefore, it will be 
critically important to evaluate and further validate the 
effects of COVID-19 on the gut microbiome also in rela-
tion to infections by other viral and other pathogens. In 
particular, it remains unclear at this time, whether infec-
tions with other viruses, known to cause respiratory and 
gastrointestinal distress, e.g., Adenoviruses, respira-
tory syncytial virus (RSV), influenza viruses, norovirus, 
would lead to similar community and functional changes 
within the gut microbiome. Overall, it must be reiterated 
that pandemic preparedness coupled to the monitor-
ing of VFs in tandem with antibiotic stewardship may be 
essential components for future strategies to mitigate the 
longer-term effects of COVID-19 and possibly other viral 
infections.

Methods
Cohort description and patient involvement
Between May and October 2020, stool samples were col-
lected from 61 participants with COVID-19 confirmed 
by positive SARS-CoV-2 RT-qPCR (Supplementary 
Table  S1) within the framework of the Predi-COVID 
study [49]. In order to be eligible to participate in the 
study, an individual must have been residing in Lux-
embourg and met all the following criteria: (1) signed 
informed consent form; (2) individuals ≥ 18  years old 

with confirmed SARS-CoV-2 infection as determined 
by PCR, performed by one of the certified laborato-
ries in Luxembourg; and (3) hospitalized or at home. 
In addition to the criteria specific to the Predi-COVID 
study, samples were excluded if antibiotic treatment was 
reported. From the individuals, relevant clinical data was 
collected using a modified version of the International 
Severe Acute Respiratory and Emerging Infection Con-
sortium (ISARIC) case report form. The participants to 
be included in the study were classified using an adapted 
version of the National Institute of Healthy symptom 
severity scheme [50]. Briefly, the classification of COVID-
19 severity was based on the classification of the National 
Institute of Health (NIH) in the USA. Disease was clas-
sified as moderate if an individual had SpO2 ≥ 94%, and 
shortness of breath and/or evidence of lower respiratory 
disease. If SpO2 < 94%, a ratio of arterial partial pres-
sure of oxygen to fraction of inspired oxygen (PaO2/
FiO2) < 300  mmHg, a respiratory rate > 30  breaths/min, 
or lung infiltrates > 50%, disease was classified as severe. 
Subsequently, only asymptomatic to moderate symptoms 
were reported.

Along with the samples from the COVID-19 confirmed 
participants, stool samples were collected from a group 
of 57 individuals who tested negative for SARS-CoV-2 
by RT-qPCR, who were participants of the CON-VINCE 
study, a population-based cohort study which recruited a 
representative sample of the Luxembourg population, to 
serve as age-matched controls. Participation in the con-
trol group was excluded if matching any of the following 
criteria: (1) infection of SARS-CoV-2 prior to the study; 
(2) presence of fever and respiratory distress/cough not 
attributable to other known chronic disease; (3) usage of 
antibiotics up to three months prior to enrolment or first 
SARS-CoV-2 infection. The study design is presented in 
Fig.  1. Demographic characteristics of the study groups 
are summarized in Table 1 while additional metadata are 
included in Supplementary Table  S1. Patients were not 
involved in setting the research questions or the outcome 
measures of this study.

Sample collection and processing
Stool samples were collected at home by individuals in 
Fecal Collection Tubes (Zymo Research). Samples and 
data were collected at the Integrated BioBank of Luxem-
bourg (IBBL). Around 1 g of stool was sampled, diluted 
in 9 ml DNA/RNA Shield according to the manufactur-
er’s instructions. Prior to DNA/RNA extraction, stool 
samples were thawed on ice and aliquoted as follows: 
250  µl of sample was aliquoted for DNA extraction, to 
which 250  µl of lysis solution (ZymoBIOMICS DNA 
Miniprep Kit; Zymo Research) was added and the sam-
ple was subsequently kept frozen at − 80  °C until DNA 
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extraction was performed. Furthermore, another 700  µl 
was aliquoted for RNA extraction using ZR BashingBead 
Lysis Tubes (Zymo Research) and the RNeasy Mini Kit 
(QIAGEN).

DNA and RNA extractions
DNA was extracted using the ZymoBIOMICS DNA Min-
iprep Kit according to the manufacturer’s instructions 
with the following modifications: samples were inacti-
vated for 7 min at 70 °C prior to homogenization by mill-
ing for 3 cycles (5 min of cooling on ice between cycles) 
for 60 s at 6 m/s in a FastPrep-24 5 G (MP Biomedicals). 
Prior to DNA purification, a Proteinase K incubation step 
was performed: 5 µl of 20 mg/ml Proteinase K (New Eng-
land Biolabs GmbH) was added to each sample and incu-
bated for 30 min at 40 °C. The extraction was performed 
following the manufacturer’s instructions and DNA was 
eluted in 50 µl DNase/RNase-Free Water (prewarmed to 
60  °C). An RNase treatment was performed by adding 

2.4  µl of 20  mg/ml Monarch RNase A (New England 
Biolabs GmbH) to each sample followed by incubation 
for 10 min at 56 °C. DNA was purified and concentrated 
using ZR-96 DNA Clean-Up Kit (Zymo Research) fol-
lowing the manufacturer’s instructions and DNA was 
eluted in 50  μl DNase/RNase-Free water (prewarmed 
to 60  °C). DNA was quantified using Qubit dsDNA BR 
assay kit (Invitrogen) and purity determined using Nan-
odrop 2000C (Thermo Scientific). Samples were frozen 
at − 80 °C until further use.

Samples for RNA extraction were inactivated for 7 min 
at 70 °C and 600 µl of cold RLT Buffer (containing 10 µl/
ml 2-mercaptoethanol) was added to the samples prior to 
homogenization by milling for 3 cycles (5 min of cooling 
on ice between cycles) for 60 s at 6 m/s in a FastPrep-24 
5  G (MP Biomedicals). Samples were centrifuged for 
3 min at full speed and the supernatant was mixed with 1 
volume of 70% Ethanol. Lysates were loaded onto a RNe-
asy Mini Spin Column and centrifuged at 8000 × g for 
1 min. This last step was repeated until all supernatants 
had passed through the filters. Columns were washed 
according to the manufacturer’s instructions whereby 
50 μl RNase-free water was added to the centre of the fil-
ter and incubated at room temperature for 1 min. RNA 
was eluted by centrifugation at 8000 × g for 1 min. RNA 
extracts were filled up to 87.5 μl with RNase-free water, 
2.5 µl DNase I stock solution and 10 µl Buffer RDD (both 
RNase-Free DNase Set, QIAGEN) were added, mixed 
and incubated for 10  min at room temperature. RNA 
was purified and concentrated using RNA Clean & Con-
centrator-5 kit (Zymo Research) following the manu-
facturer’s instructions. RNA was eluted in 15 μl DNase/
RNase-Free water. One microliter of obtained RNA was 
heat‐denatured for 2  min at 72  °C and quality-checked 
using Agilent RNA 6000 Nano kit (Agilent Technologies). 
RNA was quantified using Qubit RNA HS assay kit (Inv-
itrogen). RNA extracts were frozen at − 80 °C for further 
use.

Metagenomic and metatranscriptomic sequencing
DNA and RNA were extracted from all collected stool 
samples and sequenced for metagenomic and metatran-
scriptomic analysis, respectively. One hundred nano-
grams of DNA was used for metagenomic library 
preparation using Swift 2S turbo Flexible DNA library 
kit (cat. no. 45096). The genomic DNA was enzymatically 
fragmented for 10 min and DNA libraries were prepared 
without PCR amplification. The average insert size of 
libraries was 600  bp. Prepared libraries were quantified 
using Qubit (DNA HS kit, ThermoFischer) and quality-
checked with a DNA HS kit on a Bioanalyzer 2100 (Agil-
ient). Sequencing was performed at the LCSB sequencing 

Table 1 Demographic characteristics of the study groups

N Number of participants, N/A Not applicable

COVID‑19
(N = 61)

Controls
(N = 57)

P value

Age 43.85 ± 11.92 42.12 ± 3.32 0.297

Sex

 Female 22 (36.07%) 22 (38.6%) 0.776

 Male 39 (63.93%) 35 (61.4%)

COVID‑19 severity

 Asymptomatic 4 (6.56%) N/A N/A

 Mild 45 (73.77%)

 Moderate 12 (19.67%)

Hospitalization status

 Hospitalized 1 (1.64%) N/A N/A

 Not hospitalized 60 (98.36%)

COVID‑19 symptoms

 Fever 35 (57.38%) N/A N/A

 Runny nose 11 (18.03%)

 Sore throat 22 (36.06%)

 Smell and/or taste loss 32 (52.46%)

 Fatigue 40 (65.57%)

 Headache 40 (65.57%)

 Cough 33 (54.1%)

 Shortness of breath 12 (19.67)

 Diarrhea 15 (24.59%)

 Abdominal pain 1 (1.64%)

 Chest pain 9 (14.75%)

 Ear pain 5 (8.2%)

 Joint pain 6 (9.84)

 Muscle pain 30 (49.18%)

 Vomiting/nausea/vertigo 7 (11.47%)
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platform (RRID: SCR_021931) on a NextSeq2000 instru-
ment using 2 × 150 bp read lengths.

500  ng of RNA was rRNA depleted using the Illu-
mina Ribo-Zero Plus rRNA Depletion kit (Illumina, 
20,037,135). rRNA depleted samples were further pro-
cessed using the TruSeq Stranded mRNA library prepa-
ration kit (Illumina, 20,020,594) which includes the 
fragmentation and priming steps. The fragmentation time 
was reduced to 3 min. Prepared libraries were quantified 
using Qubit (DNA HS kit, ThermoFischer) and quality 
checked with DNA HS kit on a Bioanalyzer 2100 (Agil-
ient). Sequencing was performed at the LCSB sequenc-
ing platform (RRID: SCR_021931) on a NextSeq500 
instrument using 2 × 150  bp read lengths. In total, this 
resulted in ~ 6  Gbp per sample for the metagenomics 
and ~ 21 Gbp per sample for the metatranscriptomics.

Data processing, including genome reconstruction
The Integrated Meta-omic Pipeline (IMP; v3-commitID 
#b6f9da0e for preprocessing and #c04edbe for down-
stream assemblies) [25] was used for the processing and 
iterative co-assembly of metagenomic and metatran-
scriptomic reads. The workflow includes pre-process-
ing, assembly, genome reconstruction, and functional 
and taxonomic annotation based on public and custom 
databases in a reproducible manner. For the data pre-
processing, raw metagenomic reads were first trimmed 
to the maximal read length of 150 bases using Cutadapt 
(v3.4) [51]. The preprocessed metagenomic and raw 
metatranscriptomic reads were further processed using 
IMP: reads were trimmed using Trimmomatic (v.39) [52], 
reads mapping to the human genome (hg38 genome) or 
PhiX genome (gi|9,626,372|ref|NC_001422.1, Enterobac-
teria phage phiX174 sensu lato, complete genome) were 
removed using BWA (v. 0.7.9a) [53], and the metatran-
scriptomic reads were further filtered using SortMeRNA 
(v.4.2.0–238-g90cdf6c) [54]. In addition, alpha-diversity 
was calculated based on metagenomic reads using Non-
pareil (v. 3.4.1) [55] as part of the IMP preprocessing step. 
Quality control was performed on the processed reads 
by running FastQC (v. 0.11.9) [56] and summarizing 
the reports using MultiQC (v. 1.10.1) [57]. In addition, 
Kraken2 (v. 2.1.2) [58] was used with a database contain-
ing only the human and PhiX genomes (https:// ndown 
loader. figsh are. com/ files/ 24658 262, from 11.09.2020, 
provided by Mike Lee) to confirm the successful removal 
of these contaminants from the processed sequenc-
ing data. The tool bbmap (v. 38.90) [59] was used on the 
preprocessed FASTQ files to extract reads mapping to 
SARS-CoV-2 reference genomes (same genomes as pro-
vided by fastv). Pairwise sample (dis)similarity was calcu-
lated using Mash (v. 2.3) [60].

De novo co-assembly of the processed metagenomic 
and metatranscriptomic reads was performed by run-
ning Megahit (v2.0) [61] included in IMP, followed by 
gene calling using an in-house modified Prokka version 
also allowing for incomplete ORFs [62]. Concurrently, 
MetaBAT2 [63] and MaxBin2 [64] together with an in-
house binning methodology, binny [65], were used to 
reconstruct metagenome-assembled genomes (MAGs). 
Subsequently, we obtained a non-redundant set of MAGs 
using DAS Tool (v1.1.4) [66] with a score threshold of 
0.7 for downstream analyses, and those with a mini-
mum completion of 90% and less than 5% contamina-
tion as assessed by CheckM (v1.1.3) [67]. Taxonomy was 
assigned to the MAGs using gtdbtk (v1.7.0) [68]. Finally, 
MetaQUAST (v. 5.0.2) [69] was run on the created con-
tig FASTA files to compute assembly statistics such as the 
number and maximal length of contigs, total assembly 
length, and the N50 and L50 values.

Virome analyses
The co-assemblies built using metagenomic and 
metatranscriptomic data were used for the subsequent 
identification of viruses and to determine their functional 
activity. Briefly, the co-assembly was first processed 
through VIBRANT [70] and CheckV [71]. The CheckV 
assessment was repeated and any viral contigs with less 
than 70% completion were removed from further analy-
ses. Subsequently, the complete viral contigs and those 
passing the 70% completion filter were merged and 
their respective taxonomies were determined using the 
IMGVR3 database [72]. To detect other viruses and con-
firm the status of SARS-CoV-2 infection in the processed 
reads, we also used fastv (v. 0.8.1, data for SARS-CoV-2 
and for other viruses was downloaded on September 
11th, 2021) [73]. Taxonomic consensus between the 
IMGVR3 and the fastv databases were determined to 
obtain  overlapping, robust classification, and subse-
quently were  used for the downstream analyses, where 
differentially abundant genes were further assessed for 
differential relative gene expression. 

Prediction of microbial composition, virulence factors, 
and antimicrobial resistance
Profiling of the microbial community was performed on 
the processed reads using MetaPhlAn3.1 (v3.1.0, data-
base “mpa_v31_CHOCOPhlAn_201901”) [74]. Simul-
taneously, profiling of antibiotic resistance factors was 
done using RGI (v5.2.0, CARD data v3.1.4, prevalence, 
resistomes and variants data v3.0.9) [75]. To obtain 
additional in-depth details of ARGs, in addition to the 
detection of VFs and mobile genetic elements (MGEs), 
PathoFact (v1.0; modified branch allowing the input of 
ORFs, #6fa64961) was run [24]. PathoFact is a pipeline 

https://ndownloader.figshare.com/files/24658262
https://ndownloader.figshare.com/files/24658262
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for the prediction of ARGs and VFs, and their localiza-
tion to MGEs, in metagenomic data. PathoFact was run 
on the contigs assembled by IMP together with their 
predicted protein sequences (ORFs) for each sample 
separately. PathoFact uses DeepARG [76] and RGI [75] 
for the prediction of ARGs, DeepVirFinder [77] and Vir-
Sorter [78] for the prediction of phages and PlasFlow [79] 
for the prediction of plasmids. Additionally, PathoFact 
uses its own developed tool, a combination of a HMM 
database (built on the VFDB [80]) and a random forest 
model, for the prediction of VFs. To run PathoFact, the 
input protein sequences were first processed to remove 
any trailing stop codon symbols (“*”) and to remove any 
sequence having an internal stop codon symbol as this is 
required for the tool RGI for ARG detection. For analy-
ses of the predictions, FeatureCounts (v1.6.4) (Liao et al. 
2014) was used to extract the number of reads per func-
tional category. Thereafter, the relative abundance of 
genes and general expression levels was calculated using 
the Rnum_Gi method described by Hu et  al. (Hu et  al. 
2013) which normalizes for both gene length and library 
size. Subsequently, metatranscriptomic expression levels 
were further normalized using the respective gene abun-
dances from the metagenomic data (normalized gene 
expression = gene expression/ gene abundance).

Statistical testing and data analysis
Statistical analyses of the taxonomic and functional 
data, as well as further visualizations, were performed 
using version 4.1.1 of the R statistical software package 
[81]. The R package MaAsLin2 [82] was used to deter-
mine associations between the cohort data and microbial 
features (e.g., functional and taxonomic profiles). Fur-
thermore, MaAsLin2 identified significant differences 
were further validated by Wilcoxon rank-sum tests with 
adjustments using the ‘Benjamini-Hochberg’ method 
for multiple testing, specifically the ‘p.adjust’ function 
from the stats R package was used. To additionally, vali-
date our findings with respect to the VF and ARGs, we 
used ANCOM-BC [83]. The tidyverse, microbiomeViz, 
tidytree, and ggtree packages were used to visualize the 
microbiome data, including using cladogram visualiza-
tions. The tidyverse package, including ggplot2, was used 
to generate all violin plots, box plots, and bubble plots. 
Finally, the hmisc and corrplot packages were used for all 
correlation plots.
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