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Abstract: Cognitive aging, characterized by the gradual decline in cognitive functions such
as memory, attention, and problem-solving, significantly impacts daily life. This decline is
often accelerated by neurodegenerative diseases, particularly Alzheimer’s Disease (AD)
and Parkinson’s Disease (PD). AD is marked by the accumulation of amyloid-beta plaques
and tau tangles, whereas PD involves the degeneration of dopaminergic neurons. Both
conditions lead to severe cognitive impairment, greatly diminishing the quality of life for
affected individuals. Recent advancements in regenerative medicine have highlighted
mesenchymal stromal cells (MSCs) and their derived exosomes as promising therapeutic
options. MSCs possess regenerative, neuroprotective, and immunomodulatory properties,
which can promote neurogenesis, reduce inflammation, and support neuronal health.
Exosomes, nanosized vesicles derived from MSCs, provide an efficient means for delivering
bioactive molecules across the blood-brain barrier, targeting the underlying pathologies
of AD and PD. While these therapies hold great promise, challenges such as variability
in MSC sources, optimal dosing, and effective delivery methods need to be addressed for
clinical application. The development of robust protocols, along with rigorous clinical
trials, is crucial for validating the safety and efficacy of MSC and exosome therapies. Future
research should focus on overcoming these barriers, optimizing treatment strategies, and
exploring the integration of MSC and exosome therapies with lifestyle interventions. By
addressing these challenges, MSC- and exosome-based therapies could offer transformative
solutions for improving outcomes and enhancing the quality of life for individuals affected
by cognitive aging and neurodegenerative diseases.

Keywords: cognitive aging; mesenchymal stromal cell; exosome; cognitive impairment;
regenerative medicine

1. Introduction

Cognitive aging is the natural process of changes in thinking, learning, and memory
that occur as people age, involving a mix of decline, stability, or growth across different
cognitive domains [1]. While some areas, such as processing speed, sustained attention,
multitasking, working memory, and word retrieval, may show decline, others may remain
stable or even improve with age [2]. This process is influenced by various factors, including
lifestyle, sleep, diet, and physical activity [3]. Adopting healthy habits such as getting ade-
quate sleep, eating nutritious foods, staying physically active, engaging in social activities,
and keeping the mind stimulated can help mitigate cognitive decline and support healthy
cognitive aging [4]. Another study also mentioned that lifestyle factors such as higher
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education, moderate alcohol consumption, and physical fitness contribute significantly
to cognitive resilience [5]. Neurophysiologically, aging is associated with structural brain
changes, such as reduced volume and altered functional activation patterns, which may
serve as compensatory mechanisms to counteract decline [6]. Cognitive control, crucial
for adaptability and multitasking, also changes with age, influencing daily life and work
performance [7].

Cognitive impairment, in contrast, refers to clinically significant deficits in cognitive
function that interfere with daily life [8]. It ranges from reversible conditions, like delirium
caused by infections or medication toxicity, to progressive and irreversible disorders like
dementia, including Alzheimer’s Disease (AD), Parkinson’s Disease Dementia (PDD),
and vascular dementia [9]. Causes of cognitive impairments include neurodegenerative
diseases, cerebrovascular conditions, and systemic factors such as diabetes and nutritional
deficiencies [10]. Psychiatric conditions like depression, as well as lifestyle factors like
smoking and inactivity, further exacerbate cognitive decline [11].

As life expectancy increases, maintaining cognitive function and quality of life be-
comes a critical societal challenge. In this context, mesenchymal stromal cells (MSCs)
and their exosomes are emerging as promising therapeutic options for managing cogni-
tive impairment and neurodegenerative diseases [12]. MSCs possess regenerative and
immunomodulatory properties that help reduce inflammation and neuronal damage in
conditions like AD and Parkinson’s Disease (PD) [13]. MSC-derived exosomes, containing
bioactive molecules, offer a novel approach to slowing disease progression and alleviating
symptoms [14]. Administered early, they have the potential to improve outcomes for
individuals at risk of cognitive decline.

This review focuses on cognitive aging and cognitive impairment associated with AD
and PD, two prominent neurodegenerative conditions. Both AD and PD exemplify the
continuum between normal cognitive aging and pathological cognitive decline, sharing
overlapping mechanisms such as neuroinflammation, oxidative stress, and structural brain
changes. AD is primarily associated with progressive memory loss and executive dysfunc-
tion, driven by amyloid-beta plaques and tau pathology. In contrast, PD-related cognitive
impairment often presents with deficits in attention, executive function, and visuospatial
abilities, linked to dopaminergic neurodegeneration and alpha-synuclein pathology. By
examining these conditions, this review aims to elucidate the interplay between typical
age-related cognitive changes and disease-specific impairments, offering insights into
shared and distinct mechanisms and potential avenues for intervention. It also highlights
the multifactorial nature of cognitive decline and the therapeutic potential of MSCs and
MSC-derived exosomes in managing cognitive impairment and neurodegeneration. These
emerging therapies offer hope for improving patient outcomes and quality of life.

2. Methodology

A comprehensive literature search was conducted to gather relevant studies and re-
views on cognitive aging, cognitive impairment, AD, PD, and the therapeutic potential of
MSCs and their derived exosomes. The search was performed using four major databases:

77

PubMed, Scopus, and Google Scholar. Keywords such as “cognitive aging”, “cognitive
impairment”, “Alzheimer’s Disease”, “Parkinson’s Disease”, “mesenchymal stromal cells”,
and “exosomes” were used in combination with Boolean operators to refine the search
results. Studies published in English within the past 10 years were included to capture
the most up-to-date findings. This approach ensured a thorough review of the literature,
covering both fundamental research on neurodegenerative diseases and emerging thera-
peutic strategies involving MSC- and exosome-based treatments. By focusing on recent

advancements, the search aimed to highlight current trends and gaps in the field, thereby
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laying the foundation for a discussion of the therapeutic potential of MSCs and exosomes
in addressing cognitive decline and neurodegenerative diseases.

3. Cognitive Aging Versus Cognitive Impairment

Cognitive aging typically begins in early adulthood, with subtle declines in memory
and reasoning becoming more noticeable as individuals grow older [15]. It is a natural and
non-pathological process characterized by gradual reductions in processing speed, memory,
attention, and executive functions [16]. However, some abilities, such as vocabulary and
problem-solving using accumulated knowledge, often remain stable or even improve into
advanced age [17]. Unlike dementia, cognitive aging reflects structural changes in the brain
and nervous system rather than disease, significantly impacting cognitive function. Brain
structural aging exhibits significant inter-individual variability, with some individuals
showing accelerated patterns linked to cognitive decline and increased susceptibility to
neuropsychiatric disorders [18]. These variations highlight the importance of identifying
risk factors and potential biomarkers to predict cognitive outcomes [19]. Cognitive aging is
characterized by structural changes in key brain regions, including the prefrontal cortex
(PFC), thalamus, hippocampus, and cortical sulci, which significantly impact cognitive
functions such as memory, executive function, and fluid intelligence [20]. The PFC shows
increased structure—function coupling associated with declines in executive function, while
thalamic changes are linked to reduced fluid intelligence [21]. The hippocampus exhibits
molecular alterations and synaptic loss, particularly in males, contributing to memory im-
pairments, whereas atrophy in the tertiary sulci of the posteromedial cortex correlates with
deficits in memory and executive functions [22]. In addition, the integrity of white matter
is crucial for efficient neural communication and cognitive performance. Declines in white
matter integrity are associated with poorer cognitive outcomes, whereas its preservation is
a hallmark of successful cognitive aging [23]. Despite structural changes, some individuals
demonstrate cognitive resilience through adaptive mechanisms, highlighting the brain’s
plasticity and capacity for compensation. For instance, increased reliance on alternative
neural pathways or enhanced connectivity in unaffected regions can help maintain cogni-
tive function, even in the face of structural decline [24]. The pace of cognitive aging varies
across individuals due to genetic and lifestyle factors. While genetics influence resilience,
factors such as a healthy diet, regular exercise, and social engagement are associated with
slower decline [25]. Chronic conditions like hypertension and diabetes can exacerbate cog-
nitive aging through vascular and inflammatory mechanisms. Mitigating cognitive aging
involves strategies like cognitive training, lifestyle changes, and stress management [26].
Exercises targeting memory, attention, and executive function are effective, while social
interaction and lifelong learning help maintain cognitive health. These approaches promote
healthy aging and reduce the risk of significant cognitive decline.

In contrast, cognitive impairment involves a significant decline in cognitive function
that interferes with daily life, distinct from normal aging [27]. It may manifest as memory
loss, difficulties in communication, problem-solving, or judgment. Cognitive impairment
can result from a range of neurological, medical, and systemic conditions. Neurological
disorders such as AD, PD, vascular dementia, and traumatic brain injury are prominent
contributors [28,29]. Medical conditions, including stroke, diabetes, and chronic obstructive
pulmonary disease (COPD), are also significant factors [30]. Cerebral small vessel disease
has been shown to exacerbate cognitive decline in AD and PD [31]. Autism spectrum
disorder, chemotherapy-induced cognitive impairment, and schizophrenia exhibit overlap-
ping deficits in memory and executive function, often paralleling neurodegeneration [32].
Emerging evidence links COVID-19 to cognitive decline, likely through mechanisms in-
volving inflammation and oxidative stress [33]. Additionally, obesity-related cognitive
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impairment, associated with systemic inflammation and gut microbiome dysregulation,
has been implicated in AD pathology [34]. These diverse causes highlight the complex
interplay of neurological, metabolic, and systemic factors in cognitive impairment. Di-
agnosis involves a combination of neuropsychological assessments, laboratory tests, and
medical evaluations. Tools like the Mini-Mental State Examination (MMSE) and the Mon-
treal Cognitive Assessment (MoCA) are commonly used to evaluate cognitive function
and identify the extent of impairment [35]. Blood tests check for reversible factors such
as vitamin deficiencies or metabolic issues, while imaging techniques like MRI or PET
scans detect brain atrophy, lesions, or amyloid plaques [36]. Additional evaluations may
include cerebrospinal fluid analysis for biomarkers, EEG for abnormal brain activity, and
psychiatric screening to rule out depression or anxiety [37]. This multifaceted approach
ensures accurate identification and management of cognitive decline.

Table 1 displays the key differences and similarities between cognitive aging and
cognitive impairment.

Table 1. Comparative overview of key differences between cognitive aging and cognitive impairment.

Aspect Cognitive Aging Cognitive Impairment
o A natural and gradual process of Chruc.ally s1gn1f.1cant def1c.1ts in cognitive
Definition o . function often linked to diseases or other
cognitive changes due to aging. : o
medical conditions.
Pathological; caused by underlying
Patholo Non-pathological; part of normal agin, conditions such as Alzheimer’s Disease
8y P gical; p gng: (AD), Parkinson’s Disease (PD), or
systemic illnesses.
Gradual declines in processing speed, Abrupt or progressive deficits that
Nature of Changes memory, and attention, with interfere with daily life, such as memory
compensatory neural mechanisms. loss, confusion, or executive dysfunction.
.. " Inflammation, oxidative stress, vascular
. Neural plasticity, cognitive reserve, and : .
Key Mechanisms : damage, neurodegeneration, or systemic
compensatory scaffolding. d .
ysfunctions.
Impact on Daily Function Typlc;iﬂly. r.mld and <':10es not 1pterfere Impairs daily funct}on1ng and quality of
significantly with daily life. life.

Examples of Influences

Conditions like AD, PD, type 2 diabetes,
obesity, chemotherapy, COVID-19, and
schizophrenia.

Education, mental engagement, physical
activity, and overall health.

Disease-specific treatments,

Lifestyle modifications such as mental . .
neuroprotective strategies, and

Interventions and physical exercises, 'spc1al rehabilitative interventions like dual tasks
engagement, and nutrition. -
or probiotics.
. Lack of specific pathological biomarkers; May mduc.ie epigenetic me'1rk.ers, NMDAR
Biomarkers hypofunction, and systemic inflammatory

relies on general markers of aging. markers

4. The Link Between AD and PD with Cognitive Aging and Impairment

AD and PD are intricately linked to cognitive aging through both shared and distinct
neurobiological mechanisms [38]. Aging is a significant risk factor for both conditions,
driving cognitive decline through processes such as mitochondrial dysfunction, chronic
inflammation, and cellular senescence, which impair neuronal function and exacerbate
neurodegeneration [39,40]. These shared mechanisms create a common foundation for
age-related cognitive impairment in AD and PD, yet their clinical manifestations and
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pathological trajectories remain distinct. AD is characterized primarily by episodic memory
deficits due to hippocampal atrophy, amyloid-f plaques, and tau tangles [41], whereas
PD predominantly affects visuospatial abilities, attention, and executive function, driven
by dopaminergic neuronal loss and disruptions in frontal-striatal circuits [42]. Brain net-
work alterations further differentiate the two diseases, with AD exhibiting less segregated
resting-state networks indicative of widespread synaptic dysfunction, while PD shows
distinct network disruptions in dopaminergic pathways [43]. Despite these differences,
both conditions exhibit some convergence in advanced stages, with overlapping deficits
in attention, language, and executive function reflecting shared downstream neurode-
generative processes [44]. This interplay between shared biological aging mechanisms
and disease-specific pathologies underscores the complexity of cognitive decline in aging,
emphasizing the need for targeted interventions that address both common and unique
aspects of AD and PD.

Meanwhile, the relationship between AD and PD with cognitive impairment is both
intricate and multifaceted, as these neurodegenerative conditions exhibit distinct yet over-
lapping cognitive deficits that evolve differently over time [45]. Cognitive impairment is a
hallmark of both diseases, with mild cognitive impairment (MCI) often presenting early in
PD, while AD is predominantly associated with progressive memory loss and dementia [46].
In PD, cognitive impairment is prevalent, affecting up to 75-90% of patients as the disease
progresses to dementia. The deficits are commonly characterized by dysexecutive syn-
drome and visuospatial disturbances, profoundly impacting patients” quality of life [47,48].
Neuroimaging studies have linked these impairments to white matter abnormalities and
cortical thinning, underscoring the neuroanatomical disruptions associated with PD. In
contrast, AD-related cognitive impairment (ADCI) primarily manifests as memory dysfunc-
tion, with notable deficits in attention and executive function, driven by pathologies in the
medial temporal region and widespread cortical thinning [49]. While both conditions share
some neurodegenerative processes, such as mitochondrial dysfunction and inflammation,
their underlying mechanisms diverge, with AD showing pronounced cortical atrophy and
PD associated with dopaminergic system disruptions and white matter change [50,51].
These distinctions are reflected in their neuropsychological profiles and brain network
alterations, emphasizing the need for tailored therapeutic interventions. Understanding
the shared and unique cognitive and pathological features of AD and PD is crucial for ad-
vancing research, optimizing treatment strategies, and improving outcomes for individuals
affected by these diseases.

5. Pathogenesis of AD and PD

AD, the primary type of dementia (making up 60-80% of cases), is also the primary
reason for dementia among the older population worldwide [52]. AD is defined by a
gradual decline in neurological function that impairs cognitive abilities and memory,
making it difficult to carry out daily tasks [53]. Symptoms typically start with mild memory
loss and progress to severe cognitive decline. While younger individuals can also be
affected, it is more common in those over 65. The number of affected individuals is
projected to nearly triple to 14 million by 2060 [54]. This growing occurrence places a rising
financial strain on people, families, and the community as a whole. AD is characterized
by significant brain atrophy due to the loss and malfunctioning of neurons. This process
leads to the breakdown of neuronal networks and shrinkage of brain regions, particularly
in the final stages of the disease [55]. The hippocampus and entorhinal cortex, crucial for
memory formation, are among the first areas to suffer damage. As the disease progresses,
other brain regions shrink, including the temporal and parietal lobes, parts of the frontal
cortex, and the cingulate gyrus, resulting in a noticeable loss of gyri and sulci [56]. The rate
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of brain atrophy in AD is significantly accelerated, occurring two to ten times faster than in
individuals of the same age without the disease [57].

The PI3K/Akt/mTOR signaling pathway plays a crucial role in various cellular func-
tions and is significantly disrupted in AD. Research indicates that the abnormal activation
of this pathway occurs early in AD [58]. This hyperactivation results in dysfunctional
autophagy, increased production of amyloid-beta (Af), and hyperphosphorylation of
tau proteins, ultimately contributing to synaptic dysfunction from amyloid oligomers,
disrupted neuronal transport from tau tangles, neuroinflammation, oxidative stress, and
mitochondrial dysfunction, ultimately resulting in extensive neuronal death, particularly
in memory/cognitive areas such as the hippocampus [59,60]. Genetic factors such as
apolipoprotein E gene called APOE4 increase the risk of AD by affecting the clearance of
amyloid [61]. The mitochondrial cascade hypothesis suggests that alterations to mitochon-
drial DNA (mtDNA) and nuclear genes affecting the electron transport chain in AD impact
mitochondprial function, leading to higher levels of ROS, mtDNA damage, reduced energy
production, and oxidative stress [62].

PD is the second most common neurodegenerative disorder after AD, known for its
progressive motor symptoms like tremors, rigidity, bradykinesia, and postural instability,
but as it progresses, many patients also develop cognitive impairments [63]. In the past
few years, PD has experienced a fast rise in occurrence and disability, emerging as a top
reason for disability on a global scale [64]. PD is a progressive neurodegenerative disorder
primarily characterized by the loss of dopaminergic neurons in the substantia nigra pars
compacta, a critical region of the brain involved in controlling movement [65]. This
neuronal loss leads to hallmark motor symptoms such as tremors, rigidity, bradykinesia
(slowness of movement), and postural instability. The progressive nature of PD results in
increasing difficulty with voluntary movements, severely impacting the quality of life for
affected individuals [66]. The pathogenesis of PD involves a complex interplay of genetic,
environmental, and biochemical factors. Inflammation and oxidative stress are central to
the disease’s development. NADPH oxidases, enzymes that produce ROS, contribute to
neuroinflammation and oxidative damage, which in turn exacerbate neuronal injury and
dysfunction [67]. These oxidative processes are closely linked to the accumulation of alpha-
synuclein, a protein that forms toxic aggregates known as Lewy bodies, a pathological
hallmark of PD [68]. Mitochondrial dysfunction is also a significant factor, as impaired
energy production in neurons can lead to increased oxidative stress and cell death [69].
Genetic factors play a crucial role in PD, with mutations in several genes associated with
the disease [70]. Alpha-synuclein gene mutations are known to cause familial forms of PD,
while mutations in the leucine-rich repeat kinase 2 (LRRK2) gene and glucocerebrosidase gene
(GBA) are linked to both familial and sporadic forms of the disease [71]. These genetic
mutations contribute to the development of Lewy body pathology and influence disease
progression. However, even among individuals carrying the same genetic mutations, there
is significant variability in disease onset and progression, highlighting the complexity
of PD etiology and the interplay between genetic and environmental factors [72]. In
addition to the loss of dopaminergic neurons, PD affects non-dopaminergic neurons, which
contributes to a range of non-motor symptoms. These symptoms can include cognitive
impairments, mood disorders, and autonomic dysfunctions such as changes in blood
pressure, gastrointestinal issues, and urinary problems [73]. The exact mechanisms by
which non-dopaminergic neurons are affected in PD remain unclear, but they are thought
to involve the widespread spread of alpha-synuclein aggregates and disruption of various
neural networks. Understanding the diverse pathological processes involved in PD is
crucial for developing effective neuroprotective strategies and targeted therapies. Research
continues to focus on identifying new therapeutic targets, improving disease-modifying
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treatments, and addressing both motor and non-motor symptoms to better manage and
potentially slow the progression of PD.

6. Treatment Options for Cognitive Frailty, AD, and PD

No specific treatments exist for cognitive aging, as it is considered a natural aspect of
the aging process. However, individuals with cognitive frailty who experience significant
disruptions in daily life are often prescribed medications used for AD or PD, even without
a formal diagnosis, due to shared clinical symptoms [74,75]. In AD, treatment options
approved by the FDA primarily manage symptoms rather than offer a cure. Cholinesterase
inhibitors, such as donepezil, rivastigmine, and galantamine, enhance acetylcholine levels
to improve early-stage cognitive function [76]. Memantine, an NMDA receptor antagonist,
prevents excitotoxicity caused by overactivated glutamate receptors, thereby mitigating
cognitive decline in moderate-to-severe AD [77].

For PD, the most widely prescribed therapy is levodopa/carbidopa, which replenishes
dopamine levels and alleviates motor symptoms [78]. Complementary treatments include
dopamine agonists (e.g., pramipexole, ropinirole) to stimulate dopamine receptors and
MAO-B inhibitors (e.g., selegiline, rasagiline) to prevent dopamine degradation. Anti-
cholinergics, such as trihexyphenidyl and benztropine, reduce tremors and stiffness by
inhibiting acetylcholine, while COMT inhibitors like entacapone extend levodopa’s effi-
cacy [79]. Additional treatments include amantadine, which addresses dyskinesia through
dopaminergic and anticholinergic effects, and neuroprotective agents like coenzyme Q10
and creatine, which shield neurons from oxidative damage [80]. Innovative strategies in
PD management include gene therapy to boost dopamine production, stem cell therapy to
replace damaged neurons, and alpha-synuclein inhibitors targeting protein aggregation, a
hallmark of PD pathology [81].

Beyond pharmacological treatments, emerging therapies focus on a multimodal ap-
proach integrating both pharmacological and non-pharmacological interventions. Sodium
thiosulfate offers a novel multi-targeted intervention for late-onset AD, addressing neu-
rodegeneration on multiple levels [82]. Aerobic exercise induces neuroprotective myokines
like irisin, enhancing cognitive resilience [83], while traditional Chinese medicine, such
as Naofucong, targets insulin-degrading pathways to mitigate diabetic cognitive dys-
function [84]. Neuromodulation techniques, including transcranial magnetic stimulation
(TMS) and neurofeedback, demonstrate efficacy in cognitive rehabilitation, particularly in
neurodegenerative conditions [85].

Despite advancements, replacing lost neurons using pluripotent or neural stem cells
remains a promising but underdeveloped approach for curing AD and PD, with concerns
over safety, long-term efficacy, and high costs limiting widespread adoption [86]. Conse-
quently, MSCs and their exosomes are being explored as a more feasible alternative due to
their potential for neuroprotection, immunomodulation, and reparative effects. Together,
these strategies underscore the importance of a comprehensive, evidence-based approach
to addressing cognitive impairment, enhancing the quality of life for individuals affected
by cognitive decline, AD, or PD [87].

7. Multipotent Mesenchymal Stromal Cell (MSC)

MSCs, first identified in 1995, are unique cells present in bone marrow and the perios-
teum, the bone covering [88]. MSCs secrete enzymes like superoxide dismutase (SOD) and
catalase, provide anti-apoptotic benefits, and release growth factors like brain-derived neu-
rotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF), promoting
neurogenesis through the activation of neural progenitor cells [89,90]. In addition, MSCs
demonstrate immunomodulatory effects by stopping inflammatory microglia activation
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and encouraging the activation of anti-inflammatory microglia, ultimately halting addi-
tional tissue damage caused by chronic neuroinflammation [91]. Additionally, MSCs have
a strong ability to replicate, enabling significant division and multiplication, making them
valuable for cellular treatments [92].

Notably, MSCs possess immunomodulatory characteristics, allowing them to control
immune reactions and evade immune detection, which is an essential benefit in regenera-
tive medicine, where immune rejection is a concern [93]. Specifically, MSCs express major
histocompatibility complex (MHC) I but do not have MHC II, leading to T cell deactivation
and immune inhibition characteristics. MSCs also hinder the development and amount of
CD80 and CD86 in dendritic cells and influence the growth and specialization of human
B cells [94]. Moreover, MSCs release different chemokines, cytokines, and extracellular
matrix (ECM) proteins that play a role in hematopoiesis, angiogenesis, leukocyte migra-
tion, immune functions, and inflammatory reactions. These characteristics facilitate the
possibility of allogeneic MSC transplantation without requiring immunosuppression [95].
According to the International Society for Cellular Therapy (ISCT), MSCs are characterized
by expressing stem markers CD73 and CD105, and not expressing hematopoietic markers
CD14, CD34, and CD45. In addition, they should adhere well to plastic surfaces, have a
similar appearance to fibroblasts, and retain their properties during extended periods of
culture [96]. Furthermore, MSCs need to show potential for differentiation into osteogenic,
adipogenic, and chondrogenic lineages. Even with these standards, MSC populations are
still diverse, resulting in the term MSCs being employed for both MSC and multipotent
MSC populations [97].

MSCs can be sourced from bone marrow, adipose tissue, the umbilical cord, men-
strual blood, placental tissue, and amniotic fluid [98]. Bone marrow MSCs offer well-
characterized cells with extensive clinical experience, but harvesting is invasive and cell
quality decreases with donor age [99]. Adipose-derived MSCs are easily accessible and
abundant, with minimal donor site morbidity, though they may have lower neurogenic
potential [100]. Meanwhile, umbilical cord MSCs are a young cell source with high prolifer-
ation and neurogenic potential, but availability is limited and allogeneic use may require
immunosuppression [101]. Menstrual blood MSCs are non-invasively collected with high
neurogenic potential, though long-term stability requires more research [102]. Placental
MSC:s offer large cell numbers and immunomodulatory properties but are only available at
birth and may raise ethical concerns [103]. Amniotic fluid MSCs are early developmental
stage cells with high plasticity but have limited availability and require an invasive col-
lection procedure [104]. One of the most fascinating qualities of MSCs is their ability to
promote tissue repair by secreting factors that enhance healing and regeneration [99]. In
regenerative medicine, the healing properties of MSCs primarily operate through paracrine
factors, which are molecules released by the cells that impact nearby cells, regulating ac-
tions such as cell growth, movement, and specialization, ultimately aiding in tissue healing
and renewal [94].

7.1. Research in MSC Therapy for AD

MSC transplantation is emerging as a promising therapeutic approach for AD, charac-
terized by multifaceted effects that vary according to the disease stage [105]. In preclinical
studies, MSCs have exhibited significant therapeutic potential, particularly in enhancing
cellular functions associated with neuronal health and cognition [106]. Notably, MSCs
boost telomerase activity and reduce tau phosphorylation, which collectively support the
recovery of hippocampal neuronal structure and enhance brain glucose metabolism, which
are crucial factors in mitigating cognitive decline in AD [107]. Specifically, in the early and
mid-stages of AD, MSCs have been shown to inhibit the generation of A{3. This inhibition
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is accompanied by a promotion of Af} clearance, alteration in amyloid precursor protein
(APP) processing, and a decrease in tau phosphorylation [108]. Moreover, MSCs enhance
proteasomal activity, facilitating the breakdown of accumulated misfolded proteins, which
is essential for maintaining neuronal health [99]. Meanwhile, in the later stages of AD,
MSCs exert protective effects by reprogramming microglial cells, the primary immune cells
in the central nervous system (CNS), transitioning from a pro-inflammatory state to an anti-
inflammatory state [109]. This shift is critical, as neuroinflammation is a common feature of
AD and contributes to neuronal damage. By reducing reactive microglia, MSCs help main-
tain neuronal integrity and support brain health. Experimental studies, including those
employing the Morris water maze test, demonstrate that MSC transplantation significantly
improves cognitive function [110]. Beneficial outcomes include reduced escape latency,
increased platform crossings, and longer durations spent in target quadrants, indicating
enhanced spatial learning and memory. These cognitive benefits are attributed to MSCs’
ability to create a neuroprotective environment, which modulates neuroinflammation,
decreases oxidative stress, and reduces A deposition [111].

The role of MSCs in enhancing synaptic plasticity in AD is complex, encompassing
neurogenesis, synaptogenesis, and the modulation of the neuroinflammatory environment.
MSCs, particularly those derived from umbilical cord and adipose tissue, have demon-
strated significant potential in improving cognitive functions and synaptic health in various
AD models [112]. MSCs promote neurogenesis, which is essential for synaptic plasticity.
Research shows that MSC transplantation results in increased expression of synaptogenic
markers like synaptophysin and neurogenic markers such as GAP-43, thereby enhancing
synaptic function [113]. Additionally, MSCs secrete neurotrophic factors that stimulate
local neural stem cells, encouraging the generation of new neurons and the formation of
synaptic connections [114].

MSCs possess immunomodulatory properties that help reduce neuroinflammation
commonly associated with AD. They activate microglial cells, facilitating the clearance
of A aggregates, which are characteristic of AD pathology [115]. This interaction be-
tween MSCs and the immune system not only diminishes inflammation but also fosters
an environment conducive to neurogenesis and synaptic repair [114,115]. By releasing
neuroprotective factors and cytokines, MSCs foster a supportive environment for neuronal
connectivity and synapse formation [116].

Research indicates that MSCs promote mitochondrial function and reduce cytotoxicity,
crucial for maintaining cellular health in the AD-affected brain. This mitochondrial support
is vital for energy production and overall neuronal function. Research has demonstrated
that transplanting mitochondria from MSCs has shown promising neuroprotective effects
in cellular models of AD, significantly improving cell viability and reducing oxidative
stress [117,118]. This innovative approach addresses mitochondrial dysfunction induced
by AP aggregates, a key pathological feature of AD. By restoring healthy mitochondrial
function in affected neurons, mitochondrial transplantation provides a direct mechanism to
enhance neuronal resilience and functionality [118]. The ability of MSC-derived mitochon-
dria to rejuvenate damaged cells underscores the potential of this strategy in therapeutic
applications for neurodegenerative disorders. As mitochondrial dysfunction is a central
aspect of AD pathology, optimizing mitochondrial transplantation techniques could pave
the way for novel treatments aimed at ameliorating cognitive decline and promoting neu-
ronal survival in AD [116,117]. Future studies should explore the mechanisms by which
MSC-derived mitochondria exert their protective effects and evaluate the efficacy of this
approach in vivo, potentially leading to new avenues for AD therapy.

Current reviews suggest that MSCs could provide a disease-modifying effect by
targeting multiple pathways involved in AD pathology rather than focusing on a single
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pathological hallmark, such as amyloid plaques or tau tangles [118]. The potential of
stem cell-based therapies, including MSCs, is recognized as a frontier for innovative
treatments for AD. Despite significant advancements in preclinical models, the translation
of these findings into clinical practice presents challenges. The complexity of AD pathology,
variability among patients, and regulatory hurdles complicate the implementation of MSC
therapies whereby there is a need to explore various MSC sources, including umbilical
cord-derived and adipose tissue-derived MSCs, to determine their functional capabilities
and effectiveness in vivo. Additionally, refining delivery methods (e.g., intravenous vs.
intrathecal administration) will be crucial for maximizing therapeutic efficacy [119,120]. On
the other hand, currently, there is no standardized dosage for MSC therapy in AD. Studies
have reported MSC doses ranging from 10* to 107 cells per kilogram in preclinical models,
with early clinical trials testing doses from 1 million to 100 million cells per patient [121,122].
This variability arises from differences in trial designs, administration routes, and patient
characteristics. Identifying the optimal dose is vital for ensuring safety and efficacy. Future
studies should delve deeper into the precise mechanisms by which MSCs exert their
effects on AD pathology. Understanding these mechanisms can inform the development
of targeted, personalized MSC-based therapies, offering new hope for patients and their
families. While most studies report that MSC therapy is generally safe, with only minor side
effects such as transient fever, the optimal dosing for AD remains undetermined [123]. The
safety profile of MSC therapy in clinical settings has been encouraging, with no significant
adverse effects reported, aside from mild, transient reactions [124]. However, experts
emphasize the need for larger, more rigorous clinical trials to conclusively establish the
long-term safety and efficacy of MSC therapies for AD.

7.2. Research in MSC Therapy for PD

MSCs are emerging as a promising therapeutic option for PD due to their multifaceted
mechanisms of action and potential to address the underlying pathophysiology of the dis-
ease [125]. MSCs possess the remarkable capacity to differentiate into dopamine-producing
neurons, a critical function for addressing the loss of neurons in PD. The degeneration of
dopaminergic neurons in the substantia nigra is a defining hallmark of PD, leading to re-
duced dopamine levels and the progression of motor symptoms. MSCs have demonstrated
the ability to adopt neuronal characteristics under specific conditions, providing a potential
direct mechanism for neuronal replacement. This differentiation process could restore
dopamine levels, offering a therapeutic approach to alleviate motor symptoms associated
with the disease [126]. MSCs secrete a variety of neurotrophic factors, such as brain-derived
neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF). These
factors play essential roles in supporting the survival, function, and regeneration of existing
neurons [127]. For instance, BDNF is known to promote neuronal survival and synaptic
plasticity, while GDNF specifically supports dopaminergic neuron health. This secretion
contributes to an overall neuroprotective environment in the brain, enhancing the resilience
of neural circuits impacted by PD [128]. The immunomodulatory properties of MSCs play
a crucial role in reducing neuroinflammation, which is a key contributor to PD progression.
By modulating the immune system, MSCs promote the recovery and preservation of neural
tissue across various neurological disorders, including PD [129]. Their therapy for PD
focuses on replacing or repairing damaged brain cells and restoring normal dopamine-
producing brain cell function, alleviating motor symptoms. Studies showed that when
injected intravenously, MSCs utilize their “homing” mechanism to locate damaged and
inflammatory sites within the brain. This targeted approach allows them to effectively
modulate the immune response and reduce inflammation, including neuroinflammation,
thereby potentially slowing PD progression [130]. Despite these encouraging findings,
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the clinical translation of MSC-based therapies for PD still faces several challenges. Many
studies have been limited by small sample sizes, short follow-up periods, and variability
in the types and sources of stem cells used, leading to inconclusive results regarding their
long-term efficacy and safety [131]. Additionally, optimizing the therapeutic protocols,
including determining the most effective stem cell type, the appropriate cell modifications,
the optimal number of cells to be transplanted, and the best delivery methods, remains a
critical area of ongoing research [132,133]. Addressing these challenges will be essential
for advancing MSC therapy from the laboratory to clinical practice, ensuring that it can
provide a reliable and effective treatment option for patients with PD.

8. Exosomes

Exosomes are nanosized membrane microvesicles, typically ranging from 30 to
150 nanometers (nm) in diameter [134]. Their small size allows them to effectively traverse
biological barriers and interact with target cells, making them important mediators of
intercellular communication [135]. These nanosized extracellular vesicles are released by
different cell types, including stem cells. These exosomes act as natural carriers, delivering
various biomolecules such as proteins, lipids, and nucleic acids to target cells [136]. Exo-
somes derived from stem cells, including neural stem cells (NSCs), MSCs, and embryonic
stem cells (ESCs), have garnered significant attention for their potential therapeutic applica-
tions in neurological disorders [137]. The therapeutic potential of exosomes in neurological
conditions is attributed to their ability to cross the blood-brain barrier, target specific
cell types, and deliver their cargo of biomolecules to degenerated or injured sites [138].
The specific mechanisms and effects observed in each neurological condition may vary
depending on the exosome source, cargo, and the underlying pathophysiology [139]. The
intricate mechanisms involved in exosome biogenesis, including both ESCRT-dependent
and ESCRT-independent pathways, highlight the complexity of their formation and cargo
loading [140]. Understanding these mechanisms is essential for harnessing exosomes for
therapeutic purposes effectively. The potential of exosome therapy in neurological disor-
ders is promising, whereby the broader application of MSCs in treating neurodegenerative
diseases beyond PD has also been explored, showing their potential in conditions like
AD and multiple sclerosis via promoting neurorestoration and cognitive function through
various mechanisms, including neurogenesis, anti-inflammatory effects, and modulation of
synaptic function [140,141].

8.1. Research in Exosome Therapy for AD

Extracellular vesicles (EVs), including exosomes derived from MSCs, have shown
promising therapeutic effects in AD models [142-144]. MSC-derived EVs, administered
via various routes such as intravenous (IV) or lateral ventricle injection, have demon-
strated benefits including reduced A deposition, improved cognitive function, increased
neuronal viability, and modulation of inflammatory and apoptotic responses [145]. The
therapeutic mechanisms involve the activation of neuroprotective pathways, expression of
beneficial microRNAs, and reduction of pro-inflammatory factors. A study also found that
MSC-exosomes could inhibit reactive astrocytes and activated microglia, and modulate
microRNA levels affecting histone deacetylase 4 (HDAC4), which is implicated in AD [146].
These findings support further research into optimizing MSC-exosome therapy for AD
and understanding its underlying mechanisms. In another study, exosomes conjugated
with a central nervous system-specific rabies viral glycoprotein (RVG) peptide (MSC-RVG-
Exo) demonstrated a significant reduction in amyloid-beta (Af3) plaque deposition and
astrocyte activation, and improved cognitive function. Additionally, MSC-RVG-Exo treat-
ment significantly reduced pro-inflammatory cytokines (TNF-¢, IL-$3, IL-6) and increased
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anti-inflammatory cytokines (IL-10, IL-4, IL-13), demonstrating an effective method for
enhancing brain-targeted therapy in AD [147].

8.2. Research in Exosome Therapy for PD

Studies have shown that MSC-derived exosomes can effectively cross the blood-brain
barrier, playing a critical role in neuroprotection in PD models. These exosomes induce
autophagy, inhibit apoptosis, and promote cell proliferation, offering multifaceted bene-
fits in PD therapy [148,149]. In vivo experiments further highlight their ability to reduce
dopaminergic neuron loss, upregulate dopamine levels in the striatum, and alleviate PD
symptoms [149]. Although the precise mechanisms are not fully understood, MSC-derived
exosomes present a promising alternative to traditional stem cell therapies, potentially
overcoming challenges like uncontrollable differentiation and providing a more controlled
therapeutic approach [149,150]. Another study found that exosomes produced by MSCs
could keep human brain microvascular endothelial cells (HBMECsS) in a transcriptionally
active state, which may promote angiogenesis—a process beneficial for neuroprotection
and tissue repair in PD models [151]. This suggests that MSC-derived exosomes not only
offer neuroprotective benefits but may also enhance the repair of damaged blood vessels
in the brain. Studies have demonstrated that exosomes containing catalase, an enzyme
with neuroprotective properties, can reach neurons and exert beneficial effects in PD mod-
els [152]. These exosomes were also found to facilitate therapeutic benefits by crossing the
blood-brain barrier and delivering neuroprotective agents like antioxidants, catalase, and
GDNF [153]. Despite these encouraging findings, several challenges remain, such as low
yields of exosomes, and difficulties in their isolation and purification pose significant obsta-
cles to their widespread clinical use [154]. Addressing these challenges, alongside rigorous
clinical trials, will be essential for translating the therapeutic potential of MSC-derived
exosomes into practical and effective treatments for PD and other neurodegenerative disor-
ders. Table 2 provides a comprehensive comparison between MSCs and exosomes in terms
of their therapeutic potential, mechanisms, safety, and development challenges. Figure 1
highlights the cellular-level workings of both therapies: MSC transplantation emphasizes
direct interaction with brain cells, secretion of growth factors, and regenerative effects,
while exosome therapy focuses on a cell-free strategy that leverages nanosized vesicles to
deliver therapeutic molecules efficiently.

Table 2. Comparative summary of MSCs and exosomes.

Aspect Mesenchymal Stromal Cells (MSCs) Exosomes
e Living cells e  Nanosized membrane microvesicles
) e  Require specific culture conditions e  30—150 nanometers in diameter
Physmfﬂ ) e  Need to maintain cell viability e Cell-free vesicles
Characteristics ¢ Eypress specific markers (CD73,CD105) e  More stable than whole cells
e  Fibroblast-like appearance e Contain proteins, lipids, and nucleic acids
e  Bone marrow e Can be derived from various stem cells
o Adipose tissue including:
) e  Umbilical cord
Source Options ¢ Monstrual blood - Neural stem cells (NSCs)
¢ Placentaltissue " Bmbryonic stem cells (ESCH)
e  Amniotic fluid y
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Table 2. Cont.

Aspect Mesenchymal Stromal Cells (MSCs) Exosomes
e  May have limited ability to cross biological
barriers e  Effectively traverse biological barriers
Delivery and Requires consideration of cell survival e  Can cross blood-brain barrier
Distribution Multiple administration routes (IV, ° Better distribution due to small size
intrathecal) e  Can be targeted to specific cell types
o  Cell size may limit distribution
* Dlrect‘ cell replacemen.t e  Delivery of bioactive molecules
e  Secretion of therapeutic factors L
N ) e  Immunomodulation e Intercellular communication
T erape.utlc e Anti-inflammatory effects e  Transfer of proteins and nucleic acids
Mechanisms N Y e  Modulation of recipient cell behavior
s Paracrine signaling e  No direct cell replacement
e  Direct cell-to-cell contact P
e  Risk of uncontrolled differentiation . .
1 e  Lower risk profile
o Potential immune responses . . -
Safety . L. e No risk of uncontrolled differentiation
) . e  Need for immunosuppression in some cases .
Considerations . e  More controlled therapeutic approach
e Cellsurvival challenges e  May have better safety profile
e  Generally safe with minor side effects y yP
e  Requires ‘Compl.ex cu}ture conditions e Low yield in production
. e  Cell quality varies with donor age O - e
Production .. . ° Difficulties in isolation and purification
e  Limited scalability . o
Challenges e  Challenges in standardization
e  Storage and transport challenges .
o L e  Storage may be easier than cells
e  Need to maintain cell viability
e  Alzheimer’s Disease:
e  Alzheimer’s Disease: e  Reduces AP deposition
e  Reduces tau phosphorylation e Improves cognitive function
e  Enhances proteasomal activity e  Modulates inflammatory responses
e  Promotes Af clearance e Increases neuronal viability
e  Reprograms microglial cells e  Canbe enhanced with targeting peptides (e.g.,
Disease-Specific ° Improves cognitive function RVG)
Effects ) Parkinson’s Disease: ) Parkinson’s Disease:
e  Can differentiate into dopaminergic neurons e  Induces autophagy
e  Direct cell replacement potential e  Inhibits apoptosis
e  Secretes neurotrophic factors e  Promotes cell proliferation
e  Modulates immune response e  Reduces dopaminergic neuron loss
e  Reduces neuroinflammation e  Can deliver specific therapeutic agents (e.g.,
catalase)
e  Complex regulatory requirements e  Low production yield
e  Variability in therapeutic effects e  Purification challenges
.Ctllrre.nt e  Storage and transport challenges e  Limited understanding of mechanisms
Limitations e  Cost of production e  Need for standardization
e Need for standardized protocols e  Scale-up difficulties
e  Standardization of protocols e  Improved isolation methods
Future e  Optimization of delivery methods e  Better production yields
Development ° Better understanding of mechanisms e  Enhanced targeting strategies
Needs ° Larger clinical trials e  Standardized characterization
e  Cost reduction strategies e More clinical evidence
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Figure 1. The cellular-level workings of MSC transplantation and exosome therapy.

8.3. Practical Aspects of MSC vs. Exosome Therapies

Both MSC therapy and exosome therapy show potential in regenerative medicine,
each offering distinct benefits and drawbacks. MSCs have a reputation for their ability to
regenerate tissue, influence the immune system, and navigate towards areas of damage or
inflammation, which allows for their versatility in treating various ailments such as AD and
PD [155]. They have the ability to release many bioactive molecules that aid in tissue healing
and regulate the immune system [156]. Nevertheless, there are also substantial obstacles
associated with MSC therapy. Variability among cell populations may result in inconsistent
therapeutic results, posing a potential risk of tumor formation [157]. Furthermore, the
clinical application of these cells is complicated by logistical challenges like harvesting,
expanding, maintaining, and potential immune rejection [158].

On the other hand, exosome therapy provides a cell-free option that circumvents
certain challenges linked to live cell transplants [159]. Exosomes are small vesicles that
transport proteins, lipids, and nucleic acids and have the ability to pass through biolog-
ical barriers, which allows them to efficiently deliver therapeutic substances to specific
cells. Due to their compact size and stability, making them easier for standardization and
manufacturing, they also have low immunogenicity, decreasing the chances of immune
rejection [160]. Exosomes have the practical benefit of being able to be stored for extended
periods without a notable decrease in function when compared to live cells. Yet, exosome
treatment comes with drawbacks as well. Exosomes have a lower homing efficiency than
MSCs, potentially impacting their therapeutic effectiveness [161]. Identifying the best
dosing and administration methods for exosomes poses difficulties, and the isolation and
characterization procedures remain intricate and not fully uniformed [162]. Moreover, there
is still a lack of complete understanding regarding the specific ways in which exosomes
produce their therapeutic benefits, highlighting the need for additional research. Figure 2
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Figure 2. Comprehensive overview of cognitive aging: mechanisms, risk factors, and neurodegenera-
tive disease pathways.

9. Discussion

Cognitive aging, a natural and multifaceted process, is characterized by gradual
declines in various cognitive functions such as memory, attention, and executive function
(7 and 11). While these changes can coexist with periods of stability or even improvement
in certain cognitive domains, significant cognitive impairment that disrupts daily life often
marks the transition from normal aging to pathological cognitive decline (8 and 19). This
transition may manifest as MCI and, in some cases, progress to more severe forms such as
AD or PD [46]. Both AD and PD represent the extreme end of the cognitive aging spectrum,
characterized by clinically significant deficits that severely affect daily functioning and
quality of life [38]. In AD, the pathological hallmark includes the accumulation of amyloid-
beta plaques and tau tangles, which lead to neuroinflammation, synaptic loss, and neuronal
death, starting in memory-related areas such as the hippocampus. As the disease progresses,
it extends to other cortical areas, resulting in profound impairments in multiple cognitive
functions, including memory, language, and executive function [52-55]. PD, on the other
hand, primarily involves the degeneration of dopaminergic neurons in the substantia
nigra, leading to motor deficits. However, cognitive deficits also emerge as PD progresses,
especially involving executive function, attention, and memory [13,14].

Given the increasing life expectancy worldwide, the prevalence of cognitive aging and
neurodegenerative diseases like AD and PD is expected to rise, creating an urgent need for
effective treatments that go beyond symptomatic management. Current pharmacological
treatments, such as acetylcholinesterase inhibitors in AD [77] and levodopa in PD [79],
provide only limited symptomatic relief, with no cure available. These challenges have
spurred interest in novel therapeutic approaches, particularly those that aim to address the
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underlying causes of cognitive decline rather than simply alleviating symptoms. Among these
emerging therapies, MSCs and their derived exosomes have garnered significant attention
due to their regenerative, neuroprotective, and immunomodulatory properties [99,140].

MSCs, which can be sourced from various tissues such as bone marrow, adipose
tissue, and umbilical cord tissue, have demonstrated the potential to secrete a wide array
of bioactive molecules, including growth factors, cytokines, and EVs. These secreted
factors are believed to exert several beneficial effects, including promoting neurogenesis,
protecting neurons from oxidative stress, and modulating immune responses [87,88]. In
neurodegenerative diseases such as AD and PD, where inflammation, oxidative stress,
and neurogenesis deficits contribute to disease progression, MSCs have shown promise
in slowing or even reversing cognitive decline [69]. Through their secreted factors, MSCs
can provide neurotrophic support and modulate the neuroinflammatory environment,
potentially addressing the underlying pathophysiology of these diseases [163].

Exosomes, which are nanosized extracellular vesicles secreted by MSCs, represent
a particularly exciting avenue for therapeutic development [140]. These vesicles contain
a variety of bioactive molecules, including proteins, lipids, and RNA, which can exert
neuroprotective effects and facilitate the clearance of amyloid-beta plaques in AD mod-
els [164]. Exosomes have the added advantage of being able to cross the blood-brain
barrier (BBB), which remains a significant challenge in the treatment of neurodegenerative
diseases [165]. The ability of exosomes to efficiently deliver therapeutic payloads to the
brain, while minimizing immune rejection, makes them an attractive method for targeted
therapy in AD, PD, and other cognitive disorders. Additionally, exosomes have been
shown to promote autophagy, inhibit apoptosis, and support neuronal survival, making
them an ideal candidate for treating both AD and PD, where these processes are often
disrupted [149,166].

Despite the promising potential of MSCs and exosomes, several challenges remain be-
fore these therapies can be fully integrated into clinical practice. The efficiency of exosome
isolation, their stability during storage and transport, and the ability to enhance their target-
ing to specific regions of the brain are key areas of ongoing research [167]. Moreover, while
MSC-based therapies are generally considered safe, their long-term effects and optimal
dosages have not yet been fully established, and clinical trials are necessary to determine
their efficacy in humans [168]. Furthermore, the integration of MSCs and exosomes into
clinical settings requires the development of standardized protocols to ensure reproducibil-
ity, safety, and efficacy [99,140]. However, further research is essential, since as research
into neurodegenerative diseases progresses, precision medicine is increasingly shaping
personalized healthcare strategies by identifying specific genetic mutations and environ-
mental factors that influence conditions like AD and PD. Early detection through biomarker
analysis, such as amyloid-beta and tau proteins in neuroimaging or cerebrospinal fluid tests,
offers opportunities for preventive interventions before symptoms emerge [169]. Lifestyle
factors, including diet, exercise, and cognitive training, play a crucial role in modulating
disease risk, and digital health technologies combined with global research efforts will
further enhance early interventions [22]. The integration of emerging therapies, such as
stem cell and exosome-based treatments, with lifestyle changes provides a comprehensive
approach to addressing cognitive frailty. However, challenges in delivery and blood-brain
barrier (BBB) penetration remain, requiring innovative strategies like ligand modifications,
osmotic disruption, and alternative delivery routes [170]. Additionally, the large-scale
production of extracellular vesicles (EVs) using optimized bioreactor systems will be vital
for advancing clinical applications, ensuring high-yield, standardized, therapeutic-grade
EVs for neuroregenerative therapies [171].
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10. Conclusions

Cognitive impairment, particularly in AD and PD, represents a growing challenge
in the context of global aging. This review has explored the interconnected yet distinct
mechanisms of cognitive aging and impairment, highlighting their relevance to neurode-
generative diseases. Cognitive aging is a natural process marked by gradual declines in
memory, attention, and executive function, influenced by genetic and lifestyle factors. In
contrast, cognitive impairment involves clinically significant deficits that disrupt daily life
and often result from pathological conditions, including neurodegenerative diseases, cere-
brovascular events, and systemic factors. AD and PD exemplify the continuum between
normal cognitive aging and pathological decline, sharing mechanisms such as neuroinflam-
mation, oxidative stress, and structural brain changes, while displaying distinct clinical
trajectories. The review underscores the importance of distinguishing age-related changes
from disease-specific impairments to enable timely interventions. While some cognitive
functions remain stable or improve with age, pathological processes often lead to severe
declines, necessitating targeted therapeutic approaches. Emerging strategies, such as MSCs
and their exosome-derived therapies, hold promise for mitigating cognitive decline and
enhancing quality of life. Advancing our understanding of the shared and unique aspects
of AD and PD will refine treatment strategies and better support individuals at risk of
cognitive decline. Promoting healthy cognitive aging alongside effective management
of neurodegenerative diseases remains a critical goal, requiring continued research and
innovative therapeutic development.
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