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SUMMARY
The microbiota in individual habitats differ in both relative composition and absolute abundance. While
sequencing approaches determine the relative abundances of taxa and genes, they do not provide informa-
tion on their absolute abundances. Here, we developed a machine-learning approach to predict fecal micro-
bial loads (microbial cells per gram) solely from relative abundance data. Applying our prediction model to a
large-scale metagenomic dataset (n = 34,539), we demonstrated that microbial load is the major determinant
of gut microbiome variation and is associated with numerous host factors, including age, diet, and medica-
tion. We further found that for several diseases, changes in microbial load, rather than the disease condition
itself, more strongly explained alterations in patients’ gut microbiome. Adjusting for this effect substantially
reduced the statistical significance of the majority of disease-associated species. Our analysis reveals that
the fecal microbial load is a major confounder in microbiome studies, highlighting its importance for under-
standing microbiome variation in health and disease.
INTRODUCTION

Shotgun metagenomic sequencing facilitates high-throughput

profiling of complex microbial communities in environmental

samples.1–3 Applied to the human gut microbiome, metagenom-

ics reveals its structure, function, and variations4–6 as well as its

associations with host physiologies, including diseases, immune
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This is an open access article under the CC BY license (http://cr
function, and response to cancer therapy.7–11 However, the mi-

crobial profiles obtained from metagenomic analysis are inher-

ently compositional, with the abundance of each microbial

species represented in relative proportions (fraction of total

reads).12–14 In such compositional data, changes in one microbi-

al species result in concurrent relative changes in others, leading

to negative correlation bias that can cause false positives
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and false negatives in association studies.12,13 Moreover,

sequencing data do not provide information on microbial load

(i.e., the total number of prokaryotic cells per gram or microbial

density), which is closely associated with fecal transit

time,15–17 stool consistency,18 water content,19 and pH20,21 in

the gut and is a key ecological factor in shaping the

diversity, metabolism, and inter-individual variation of the

microbiome.19,22

To overcome these issues and to factor in total absolute abun-

dances, various experimental methods are applied to micro-

biome studies, such as flow cytometry-based cell count-

ing,19,23,24 quantitative PCR,25–27 or internal standard provision

(e.g., spike-in DNA)28–31 that quantify the microbial load in envi-

ronmental samples. Such additional data help avoid pitfalls

associated with compositional data13 and link microbiome vari-

ation across individuals with changes in microbial load.19,32

However, generating such quantitative profiles requires extra ex-

periments that are labor-intensive, costly, and impractical for

large-scale microbiome studies. Hence, the vastmajority of pub-

lic or ongoing metagenomic studies do not take into account

associated microbial loads in their analyses.

Here, we present a machine-learning model capable of

robustly predicting microbial load without requiring additional

wet lab assays. Using large-scale paired datasets of metage-

nomes and microbial load data from two independent study

populations (GALAXY/MicrobLiver and MetaCardis), we first

train our model to predict the microbial load of a human

fecal sample directly from relative microbiome profiles. We

then demonstrate the utility of our model by applying it to

a large-scale collection of public metagenomic datasets

(n = 34,539), revealing significant associations between

various host physiologies and predicted microbial load.

Furthermore, we show that microbial load is a major determi-

nant of microbiome variation and frequently confounds dis-

ease associations of microbial species, with implications for

biomarker development.

RESULTS

Microbial load is strongly correlated with taxonomic and
functional profiles of the gut microbiome
We based our analysis on fecal samples collected in two inde-

pendent large-scale study populations by the GALAXY/

MicrobLiver (n = 1,894, 46.7 ± 20.3 years old [mean ± SD], males

69.5%) and MetaCardis consortia (n = 1,812, 54.6 ± 13.0 years

old [mean ± SD], males 44.8%).33–35 GALAXY/MicrobLiver en-

compassed various sub-cohorts, including heterogeneous indi-

viduals such as healthy controls, early- to advanced-stage liver

disease patients, individuals who participated in intervention tri-

als, and children/adolescents with obesity (see STAR Methods

and Tables S1A and S1B). Meanwhile, MetaCardis focused on

cardiometabolic disease patients (e.g., coronary artery disease,

metabolic syndrome, type 2 diabetes, and severe/morbid

obesity) as well as healthy individuals33–35 (Table S1A). While

the data on MetaCardis have been reported elsewhere,33–35

we present here newly obtained metagenomes and microbial

load data from the GALAXY/MicrobLiver consortium

(Table S1C). The microbial load of each sample was measured
by flow cytometry-based cell counting (see STAR Methods),

which provides results that are consistent with qPCR and

spike-in DNA.19,28–30,36 As in many studies, we focused here

on the prokaryotic community, which is a major component of

the human gut microbiome, and obtained species-level taxo-

nomic and functional (gene) profiles with a marker gene-based

method using the mOTUs profiler37 and the Global Microbial

Gene Catalog (GMGC),38 respectively. The microbial loads in

the two study populations were significantly different (mean

values were 6.5 ± 2.7e10 and 11.1 ± 5.8e10 for the GALAXY/

MicrobLiver and MetaCardis study populations, respectively),

suggesting possible study effects due to differences in experi-

mental techniques used to measure load in respective study

populations (Figure S1B; see STAR Methods). Nonetheless,

taxonomic and functional profiles of the microbiome were

consistently associated with the microbial loads in both study

populations (Figures S1C and S1D; Tables S2A and S2B).

We first associated the experimentally measured microbial

loads with three enterotypes.39,40 The microbial load was the

highest in Firmicutes (Ruminococcus) enterotype, followed by

Prevotella and Bacteroides enterotypes in both study popula-

tions (Figures 1A and 1B). Diversity indexes (e.g., Shannon diver-

sity, species richness, and Simpson diversity) of the microbiome

had consistent positive correlations with microbial load, with

Shannon diversity showing one of the strongest positive associ-

ations in both study populations (Figure 1C). We next studied

correlations between relative species abundance and total mi-

crobial load and observed positive correlations for various

uncultured species in Firmicutes phylum, short-chain fatty acid

producers,41 and slow-growing42 species (e.g., Oscillibacter,

Faecalibacterium, and Eubacterium spp.). By contrast, we

observed negative correlations for disease-associated species

such as Ruminococcus gnavus with inflammatory bowel dis-

ease43,44 and Flavonifractor plautii with colorectal cancer45 (Fig-

ure 1C; Table S2A). Typical oral species also found in stool, such

as Streptococcus and Veillonella spp., were also negatively

associated with microbial load (Figure S1E).

When correlating the microbial loads with the relative func-

tional profiles of the human gut metagenome, we found that mi-

crobial genes for lipopolysaccharide (LPS) biosynthesis were en-

riched in samples with low microbial loads in both study

populations (Figure S1F; Table S2B). Similarly, genes for sugar

metabolism, including the phosphotransferase system and fruc-

tose/mannose metabolism, were consistently associated with

lower microbial loads in both study populations. On the other

hand, genes involved in flagella assembly and bacterial chemo-

taxis were positively correlated with the high microbial load in

both study populations (Figure S1F). As increased LPS levels

in the gut could cause inflammation and diarrhea (i.e., shorter

transit time),46 these genes might also be associated with fecal

transit time.

Microbial load is robustly predicted from the taxonomic
and functional profiles of the gut microbiome
As we observed strong associations betweenmicrobial load and

relative gut microbiome profiles, we hypothesized that the mi-

crobial load of a fecal sample could be predicted from relative

abundances of taxa. We thus trained eXtremeGradient Boosting
Cell 188, 222–236, January 9, 2025 223
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Figure 1. Microbial load is robustly associated with the taxonomic profile of the gut microbiome in the two study populations

(A) Multidimensional scaling plot of the species-level taxonomic profile of the microbiomes in the GALAXY/MicrobLiver (n = 1,894) and MetaCardis (n = 1,812)

study populations. Each point represents a sample, and the color shows the log10 transformed microbial load of the sample. Arrows represent the three en-

terotypes plotted by the envfit function in R. The direction of the arrow indicates the centroid of each enterotype, and the length indicates the strength of the

correlation with the enterotype.

(B) Associations between the microbial loads and the enterotypes. Boxplots show the log10-transformed microbial load across the three enterotypes in each

cohort. ****p < 0.0001, ***p < 0.001 (Wilcoxon rank-sum test).

(C) Pearson correlations between microbial load and relative abundances of microbial species (both values were log10 transformed). The three diversity indexes

and the top 40 species with the highest correlations are shown. Scatter plots for the two diversity indexes and two microbial species are shown above the

heatmap, as examples.

See also Figure S1.
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(XGBoost) regression models47 based on relative abundance of

each microbial species as well as the Shannon diversity index

(see STAR Methods). Internal 5-times repeated 10-fold cross-

validation in each study population showed that both models

predicted the microbial load with Pearson correlation coeffi-

cients of 0.67 ± 0.0068 and 0.68 ± 0.0069 (mean ± SD) for the

GALAXY/MicrobLiver and MetaCardis study populations,

respectively (Figure 2A). To evaluate the robustness of themodel

in an external dataset, we applied each model to the other data-

set and found that both models again predicted the microbial

loads significantly (Pearson correlation coefficient = 0.56 for

both the GALAXY/MicrobLiver and MetaCardis models). Func-

tional profiles at the Kyoto Encyclopedia of Genes and Genomes
224 Cell 188, 222–236, January 9, 2025
(KEGG) orthology level also predicted the microbial loads with

comparable accuracies to those trained by the species-level

taxonomic profiles (Figure 2B). These results demonstrated

robust prediction of microbial loads in fecal samples from rela-

tive microbiome profiles obtained by metagenomic sequencing.

To further explore the applicability to different sequencing

technologies, we collected additional paired data of 16S rRNA

gene sequencing and fecal microbial loads from two previous

studies19,24 (see STAR Methods). The internal and external vali-

dations of themodel between the two studies also demonstrated

robust prediction of microbial load (Pearson correlation coeffi-

cient = 0.79 for the internal validation and 0.60 for the external

validation, Figure 2C), indicating that with sufficient data, fecal
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Figure 2. Machine-learning models robustly predict microbial loads of fecal samples

Scatterplots showing the predictive performance of XGBoost regressionmodels for fecal microbial load. Themodels were trained to predict microbial load based

on the species-level taxonomic profile (A), functional profile with the KEGG orthology level (B), and 16S rRNA gene profile (C) of the microbiome. For the species

and functional models, the metagenomes of the GALAXY/MicrobLiver (n = 1,894) and MetaCardis (n = 1,812) study populations were used to construct them.

Thesemodels were internally evaluated with a 5-times repeated 10-fold cross-validation and externally by applying to each other’s dataset (i.e., test dataset). For

the 16S rRNA gene model, samples from Vandeputte et al.24 (n = 707) were used to construct. An independent dataset from Vandeputte et al.19 (n = 95) was

employed for the external validation. The solid blue lines show regression lines, and the gray dashed lines represent 1:1 reference lines. Pearson correlations

between experimentally measured and predicted microbial loads are shown with p values.

See also Figure S2.
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microbial loads can be predicted from different relative abun-

dance measures.

Since the GALAXY/MicrobLiver and MetaCardis study popu-

lations included individuals with different phenotypes and demo-

graphic factors (e.g., healthy adults, diseased patients, and chil-

dren/adolescents, Table S1), we next examined how prediction

accuracy differed among these groups. Notably, we found that

bothmodels robustly predictedmicrobial load not only in healthy

samples but also in diseased samples that were not included in

the model’s training (Figures S2A and S2B). Specifically, the

MetaCardis model, which was trained on samples from healthy

adults and cardiometabolic disease patients, showed compara-

tive accuracy among the sub-cohorts in the GALAXY/

MicrobLiver study population (Figure S2A), with Pearson correla-

tion coefficient of 0.52 for healthy individuals (GALA-HP), 0.47 for

early- to middle-stage liver disease patients (GALA-ALD), 0.62

for advanced-stage liver disease patients (TIPS), and 0.53

for children/adolescents (HOLBAEK). Similarly, the GALAXY/

MicrobLiver model also showed comparative accuracies for in-

dividuals with various diseases in the MetaCardis dataset, with

Pearson correlation coefficients of 0.44 for healthy individuals,

0.43 for patients with coronary artery disease, 0.56 for diabetes,

0.48 formetabolic syndrome, and 0.63 for severe obesity/morbid

obesity (Figure S2B). As such, themodels robustly predictmicro-

bial load even for samples with phenotypes not included in the

training data.

To further assess the robustness of our prediction models in

regard to variation of various technical and biological factors,

we next applied our prediction model to metagenomes derived

from the same fecal sample sequenced using the same protocol

in different laboratories (i.e., technical replicates) and sequenced

using different DNA extraction methods, to longitudinal metage-

nomes obtained from the same individual, and to metagenomes
from different individuals in previous studies (Figure S2C).48–56

The lowest variation in predicted microbial load was observed

between technical replicates (coefficient of variation [CV] =

0.12), followed by between metagenomes with different DNA

extraction methods (CV = 0.19) and between longitudinal sam-

ples from the same individual (CV = 0.19), and the highest varia-

tion was observed between samples from different individuals

(CV = 0.36) (Figure S2C). These results indicate that biological

variability is greater than technical variability for microbial load

and that, therefore, with large sample sizes, associations be-

tween microbial load and biological factors can be detected us-

ing our prediction model.

Predicted microbial loads are significantly associated
with various host factors
To investigate the associations between predicted microbial

loads and host factors such as diet, lifestyle, medication, and

disease status, we collected public gut metagenomes from

159 previous studies across 45 countries (n = 27,832, 46.3 ±

19.3 years old [mean ± SD], 52.9% males; Tables S3A and

S3B). Additionally, we collected metagenomes from two large

population studies57,58: Japanese 4D cohort (n = 4,198, 66.4 ±

12.6 years old [mean ± SD], 58.8% males) and Estonian Micro-

biome cohort (n = 2,509, 50.0 ± 14.9 years old [mean ± SD],

29.7% males), in which deep phenotyping was performed

and various host and environmental factors were available

(Tables S3C and S3D). Since the former data were derived

from various smaller studies with less host intrinsic and extrinsic

factor information, they were combined into a global dataset. We

prepared species-level taxonomic profiles of each sample and

predicted microbial load using the MetaCardis prediction model

(see STAR Methods and Figure S1). Redundancy analysis

showed that the predicted microbial load had the strongest
Cell 188, 222–236, January 9, 2025 225
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Figure 3. Predicted microbial loads are associated with various host factors

(A) Predicted microbial loads of the collected metagenomes across different countries. Individuals treated with antibiotics and those with any diseases were

excluded. The average microbial loads of the 34 countries with at least 20 individuals are shown.

(B) Comparison of the predicted microbial loads among four groups of countries divided by economic size. Definitions of the groups were obtained from the World

Bank. The letters above the boxes (a, b, and c) indicate statistically significant differences (p < 0.01) between groups with different letters (Wilcoxon rank-sum test).

(C) Associations between the predictedmicrobial load and various host factors in the Japanese 4D and EstonianMicrobiome cohorts. The explained variances by

the host factors (coefficient of determination) were assessed by linear regression models, including these host factors as explanatory variables and the log10
transformed microbial load as a response variable.

(legend continued on next page)
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association with the gut microbiome variation among various

host and environmental factors, such as diet, lifestyle, disease,

and medication, in both the Japanese 4D and Estonian Micro-

biome cohorts (Figure S3A), indicating a strong interaction be-

tween microbial load and gut microbiome composition.

In the global dataset, samples from high-income countries

showed significantly higher predicted microbial loads than those

from low-income countries (Figures 3A and 3B). This difference

could not be attributed to the potential bias that the model was

trained on samples from high-income countries (Figure S3B),

suggesting that factors associated with increased income such

as lifestyle, diet, or hygiene affect the microbial load. In the Jap-

anese 4D and Estonian Microbiome cohorts, the medication

category showed the strongest association with the predicted

microbial load among the metadata categories (Figure 3C),

which was consistent with the strongest impact of medication

on the relative gut microbiome profile observed previously.57

Anthropometric factors and disease status followed in the Japa-

nese 4D cohort, while diet and other factors ranked next in the

Estonian Microbiome cohort. Among the available host factors

in the Japanese 4D and Estonian Microbiome cohorts, 65

(26.3%) and 8 (3.6%) showed significant associations with the

predicted microbial loads, respectively (false discovery rate

[FDR] < 0.05, Figure 3D; Tables S3E and S3F). In the three data-

sets, the self-reported Bristol stool scale (an index that classifies

categories of fecal consistency) showed consistent negative

correlations with the predicted microbial loads (Figures 3E and

S3C). The frequency of defecation, surveyed in the Estonian Mi-

crobiome cohort, was also negatively associated with the micro-

bial load (Figure 3F). These results are consistent with findings

from previous studies suggesting that fast transit time (e.g.,

frequent defecation and diarrhea) reduces microbial loads while

slow transit time (e.g., infrequent defecation and constipation) in-

creases microbial loads since fecal bacteria grow along the

gastrointestinal tract gradually.18,22 While age was not associ-

ated with microbial load in the Estonian Microbiome cohort, it

showed significant positive correlations in the Japanese 4D

and global datasets (Figure S3D). Overall, elderly individuals

(>70 years old) had 9.7% higher microbial load than younger in-

dividuals (<30 years old) in the combined datasets (Figure 3G).

Sex was consistently associated with the microbial load in all

three datasets (Figures 3H and S3E), with women having a

3.5% higher microbial load than men on average. These results

are consistent with epidemiological studies that showed slower

transit time in elderly people and females.59,60 Interestingly,

elderly individuals and females showed higher microbiome di-

versity than younger individuals and males, as observed in

previous studies,61,62 while the strength of these associations
(D) Associations between the predicted microbial load and each host factor. The

factors with the strongest associations in the Japanese 4D cohort (FDR < 0.05) an

the figure. For visualization, the explained variance for age in the Japanese 4D c

(E–J) Correlations between the predicted microbial load and various host factors,

dietary habits (I), and antibiotics (J) in the combined datasets of the Japanese 4D

Pearson correlation for (E)–(G) and Wilcoxon rank-sum test for (H)–(J).

(K) Recovery of the predicted microbial load after antibiotic treatment. Boxplot s

point. The datasets were collected from Palleja et al. (n = 12) and Raymond et a

between time points (paired Wilcoxon rank-sum test).

See also Figure S3.
decreased once adjusted for the effect of the microbial load (Fig-

ure S3G). This suggests that the higher microbial load or slower

transit time contributes to increased gut microbiome diversity in

elderly individuals and females. Other factors significantly asso-

ciated with microbial load in the Japanese 4D cohort included

various medications (e.g., platelet aggregation inhibitors, amino-

salicylic acid, and osmotic laxatives), diseases (e.g., Crohn’s

disease, ulcerative colitis, and HIV infection), diet (e.g., fruits,

mushrooms, green tea, and vinegar), and lifestyle (e.g., alcohol

consumption) (Figure 3D).

We next examined associations between fecal microbial load

and dietary habits, which play a critical role in shaping the gutmi-

crobiome.63–65 When we compared predicted microbial loads

among omnivores, vegetarians, and vegans in the global data-

set, we found that omnivores had the highest microbial load, fol-

lowed by vegetarians and vegans (median predicted load =

8.4e10, 7.8e10, and 7.1e10, respectively, Figure 3I). This result

aligns with previous research indicating that vegetarian/vegan

diets increase the frequency of defecation and softer stools.66

Additionally, we observed that a high-starch dietary intervention

increased predicted microbial load while a low-calorie dietary

intervention had no significant effects (Figure S3H), consistent

with previous findings that a high-carbohydrate diet is linked to

a lower frequency of defecation.67 Overall, these results indicate

that specific dietary habits and components play an important

role in shaping microbial load.

Among medications, antibiotics substantially disrupt the mi-

crobial community in the human gut,68,69 but only a few small-

scale studies quantified changes in the microbial load.32,70 As

expected, recent antibiotic treatment was negatively associated

with predicted microbial loads in all three datasets (Figures 3J

and S3F). Using detailed information on classes of antibiotics

from the Japanese 4D and Estonian Microbiome cohorts, we

found that many classes had significant impact on the microbial

loads, such as sulfonamides, third-generation cephalosporins,

macrolides, and fluoroquinolone (Figure S3I). We did not find

any differences between bactericidal (i.e., those that kill bacteria)

and bacteriostatic (i.e., those that prevent bacterial growth) anti-

biotics, in line with recent findings that there might not be such

a clear separation between bactericidal and bacteriostatic

groups.71 To further explore changes in the microbial loads, we

focused on two public time-series metagenomic datasets, with

data up to 180 days post-antibiotic treatment.68,69 In one of

these,69 individuals were treated with a combination of three

broad-spectrum antibiotics (vancomycin, gentamicin, andmero-

penem), while in the other,68 individuals were treated with a sec-

ond-generation cephalosporin (cefprozil). We found that the pre-

dicted microbial loads gradually recovered after the treatment
explained variance was assessed by linear regression models, and the top 40

d eight factors with FDR < 0.05 in the Estonian Microbiome cohort are shown in

ohort (2.8%) is plotted above 2.0% on the y axis.

such as the Bristol stool scale (E), gut emptying frequency (F), age (G), sex (H),

, Estonian Microbiome, and global datasets. Associations were evaluated with

howing the predicted microbial load of each individual at the respective time

l. (n = 24) studies. Numbers in the plot indicate the p values for comparisons

Cell 188, 222–236, January 9, 2025 227



Figure 4. Predicted microbial loads are associated with various diseases
The left forest plot shows the effect sizes of each disease on the predicted microbial load. Blue and red colors represent negative and positive associations with

the microbial load compared with the controls, respectively. Filled and empty circles represent significant (FDR < 0.05) and non-significant (FDR > 0.05) as-

sociations, respectively. Effect sizes were assessed by a linear regression model including log10 transformed microbial load as a response variable and disease

status (i.e., case or control) and each study as explanatory variables. The middle heatmap shows enrichments and depletions of microbial species across

different diseases. Blue and red colors represent negative and positive associations, respectively, comparedwith the controls in each disease dataset. The top 30

species with the strongest differences (FDR < 0.05) in their effect sizes between positively and negatively associated diseases are shown. **p < 0.01, *p < 0.05

(linear regression analysis). The right bar plot represents the number of samples included in the comparison.

See also Figure S4.
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and returned to the baseline level in 180 and 90 days, respec-

tively (Figure 3K). However, the microbial load was still reduced

at day 42 following the combinatorial treatment.69 These results

suggest that recovery of microbial load after antibiotic treat-

ments takes at least several weeks. This is consistent with

studies on relative species abundances, reporting recovery

only after months.69,72

Numerous diseases are associated with altered
microbial loads
Identification of disease-associated gut species is an important

step in developing microbial biomarkers, investigating the etiol-

ogy of diseases, and developing targeted therapies.11,73,74

However, the association between microbial load and disease

is still largely unexplored, except in a few cases where microbi-

al loads were experimentally determined.19,32 To evaluate as-

sociations between various diseases and the predicted micro-

bial loads, we performed a large-scale case-control analysis by

combining the datasets from the global and Japanese 4D data-

sets, capturing sufficient data for 26 diseases (i.e., >50 cases
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and controls for each disease) with 13,200 cases and 18,511

controls (Figure S4A; Table S4A). The analysis revealed that

the majority of diseases (14/26) were significantly associated

with the predicted microbial load (FDR < 0.05). Nine of the

significantly associated diseases showed negative associations

with the predicted microbial load, while five showed positive

associations (Figure 4; Table S4B). The negatively associated

diseases included Crohn’s disease, ulcerative colitis, liver

cirrhosis, C. difficile infection, and HIV infection, all of which

are frequently associated with diarrhea.75–77 On average, these

patients with these conditions had 17.3% lower predicted mi-

crobial loads than controls. Positively associated diseases

included slow transit constipation, along with conditions often

associated with constipation such as multiple sclerosis, colo-

rectal cancer, and hypertension.78,79 On average, these pa-

tients exhibited 7.7% higher predicted microbial load than the

controls. In irritable bowel syndrome (IBS), which is classified

into different subtypes according to symptoms, the diarrhea

type (IBS-D) showed a significant negative correlation with pre-

dicted microbial load (FDR = 3.6e�7), while the constipation
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type (IBS-C) showed a significant positive correlation as ex-

pected (FDR = 0.042).

To further characterize microbiome profiles in these diseases,

we performed a meta-analysis of the relative microbial composi-

tions between cases and controls and defined microbial signa-

tures for each disease based on the coefficient for each species

obtained from the regression model (see STAR Methods). Com-

parison of the signatures between positively and negatively asso-

ciated diseases revealed a significant difference between the two

groups (p = 0.0002, Figure S4B). The majority of the negatively

associated diseases were characterized by significantly less

diverse microbiomes (e.g., in Crohn’s disease, C. difficile infec-

tion, and ulcerative colitis), whichwas in linewith previous findings

that diseases accompanied by diarrhea commonly present

reduced microbiome diversity.80 By contrast, some of the posi-

tively associated diseases showed significantly increased

microbiome diversity (e.g., slow transit constipation, type 2 dia-

betes, and Parkinson’s disease). Additionally, we identified 86

species that distinguished positively and negatively associated

diseases (FDR < 0.05), such as Alistipes spp. (A. putredinis,

A. indistinctus, and A. shahii), Bacteroides spp. (B. eggerthii,

B. intestinalis, and B. clarus), and Eubacterium spp. (E. siraeum

and E. sp. CAG:202) as well as uncultured Clostridiales. The ma-

jority of these species were consistently depleted in the patients

with negatively associated diseases, while enriched in those

with positively associated diseases (Figure 4; Table S4C). These

species also included Bilophila wadsworthia, a hydrogen sul-

fide-producing bacteria that may cause systemic inflamma-

tion,81,82 and Akkermansia muciniphila, a potential beneficial

microbe that may enhance the gut barrier integrity.83 They have

also been identified as slow-growing species in an in vitro study,84

consistent with our observation that they were positively associ-

ated with diseases with higher microbial loads (i.e., longer transit

time). An unclassified Burkholderiales species was the only spe-

cies consistently enriched in the negatively associated diseases

while depleted in positively associated diseases (Table S4C).

The presence of these consistent disease-microbe associations

across different diseases suggests that some of these disease-

associated species are confounded by changes in microbial load.

Microbial load substantially confounds disease-microbe
associations
To disentangle species association with disease from those with

microbial load in the case-control analyses, we next incorpo-

rated predicted microbial load as a covariate in a regression

model, which is a method to effectively adjust for such con-

founding effects in microbiome studies85,86 (see STAR

Methods). We excluded Vogt-Koyanagi-Harada disease and

Alzheimer’s disease from the following analyses since no signif-

icant species were identified in these two diseases (FDR > 0.05).

The adjustment led to a considerable reduction in the effect size

on the disease-associated species and their statistical signifi-

cance (in terms of p value) in several diseases. This was espe-

cially the case for seven diseases, namely Crohn’s disease, ul-

cerative colitis, liver cirrhosis, IBS-D, breast cancer, C. difficile

infection, and slow transit constipation (Figure 5). For these con-

ditions, the adjustment led to a decrease in the average effect

size by 21.9%–49.9% (35.5% on average, Figure 5A), and
consequently, 23.6%–75.0% (48.0% on average) of the previ-

ously significant disease-species associations (FDR < 0.05)

were no longer significant (FDR > 0.05, Figures 5B and 5C). Of

these seven diseases that were particularly affected by the

adjustment, six, except for slow transit constipation, were the

ones negatively associated with the predicted load. On the other

hand, several diseases positively associated with the predicted

microbial load, such as end-stage renal disease, colorectal can-

cer, and multiple sclerosis, showed slight increases in the num-

ber of significantly associated species with them (Figure 5C).

Microbial species that lost their significance across different

diseases after the adjustment included Clostridium phoceensis,

Bacteroides intestinalis, Eubacterium eligens, Parabacteroides

merdae, and Faecalibacterium prausnitzii (Figures 5E and S5A;

Table S5), all of which were positively correlated with the experi-

mentally measured microbial load in the GALAXY/MicrobLiver

and MetaCardis study populations (Figure 1C; Table S2A). Also,

the majority of these species substantially affected by the adjust-

ment were those depleted in the disease patients. These results

showed that these bacterial species were more strongly ex-

plained by the predicted microbial load than the disease. By

contrast, most species significantly enriched in disease patients

were not substantially affected by the adjustment. This included

Fusobacterium nucleatum in colorectal cancer, Flavonifractor

plautii in Crohn’s disease and ulcerative colitis, and Strepto-

coccus anginosus in liver cirrhosis and pancreatic cancer

(Table S5). Conversely, several enriched species, such as

Erysipelatoclostridium ramosum and [Ruminococcus] gnavus,

became newly significant after the adjustment in several diseases

such as multiple sclerosis and colorectal cancer, respectively

(FDR < 0.05, Table S5). These species were significantly enriched

in various diseases other than the two diseases, implying that

they are involved in pathogenicity87,88 in a non-disease-specific

manner. Additionally, we found that the adjustment decreased

the statistical significance of Shannon diversity (Figure 5D), which

is one of the most common characteristics to decrease in individ-

uals with diseases,89,90 in all of the 11 diseases significantly asso-

ciated with it before the adjustment. In four diseases, such as ul-

cerative colitis, ankylosing spondylitis, IBS-D, and slow transit

constipation, associations with Shannon diversity were not signif-

icant after the adjustment (FDR > 0.05). Overall, our results sug-

gest that microbial loads could confound a substantial portion

of the results in disease association analyses.

To validate the result of the adjustment based on predictedmi-

crobial loads, we further analyzed liver cirrhosis samples (n = 64)

from the GALAXY/MicroLiver study and type 2 diabetes samples

(n = 539) from the MetaCardis study populations, where both

experimentally measured and predicted microbial loads were

available. We compared these patient samples with healthy con-

trol samples (n = 127 and 275, respectively) to assess the differ-

ences in the association between species and disease when us-

ing adjustments based on either experimentally determined or

predicted loads (Figure S5B). The results showed high consis-

tency in the changes of FDR values for each species due to

adjustment, with Pearson correlation coefficients of 0.90 for liver

cirrhosis and 0.95 for type 2 diabetes (Figure S5C). Additionally,

the statistical significance of Shannon diversity decreased simi-

larly when using both measured and predicted microbial loads
Cell 188, 222–236, January 9, 2025 229
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Figure 5. Microbial loads confound disease-microbe associations

(A) Fold change in effect size before and after the adjustment for species that were significantly associatedwith the disease (FDR < 0.05) before the adjustment for

themicrobial load. The y axis shows the geometricmean of the ratio of the effect size on the species before and after the adjustment. The error bars show the 95%

confidence interval of the geometric mean. Associations between the disease and species abundances were assessed by linear regression analysis with and

without the microbial load as a covariate (see STAR Methods). Results for 24 diseases are shown in the plot as Vogt-Koyanagi-Harada disease and Alzheimer’s

disease had no significant associations with any species (FDR > 0.05).

(B) Comparison of the statistical significance (i.e., FDR) of species before and after the adjustment. For visualization, the maximum on the y axis was set at 20 (i.e.,

FDR = 1e�20), and extremely lower FDRs were plotted there.

(C) Comparison of the number of significantly associated species (FDR < 0.05) before and after the adjustment.

(D) Comparison of the statistical significance of the Shannon diversity before and after the adjustment. Arrows represent the changes in the FDR before and after the

adjustment. Red horizontal line represents FDR= 0.05. For visualization, the FDR for Crohn’s disease before adjustment (2.2e�25) is plotted above 20 on the y axis.

(E) The top species (n = 20) that lost their significant associations to at least 5 of the 26 diseases due to the adjustment.

See also Figures S5 and S6.
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(Figure S5D). These results show that adjustment based on pre-

dicted loads yield results consistent with those based on exper-

imentally measured microbial loads.

Finally, when deriving absolute abundances of microbial spe-

cies by taking into account the predicted load (i.e., relative abun-

dances multiplied by predicted microbial load), we found that

quantitative species profiles reduced biases in relative abun-

dance profiles, therefore reducing over- or underestimation of

the significance of species in several diseases associated with

microbial load (Figure S6).

DISCUSSION

In this study, we developed machine-learning models to predict

microbial load solely based on the relative species and gene

abundances of a fecal sample (Figures 1 and 2). The bench-
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marking (cross-validation within the training cohorts and appli-

cation to independent study populations) as well as the consis-

tency with existing knowledge on microbial load changes (e.g.,

after antibiotic treatment) supported the robustness of the

prediction. Although various methods are available to experi-

mentally quantify microbial load in fecal samples (e.g., flow cy-

tometry, qPCR, and spike-in DNA), the present models are a

convenient way to obtain microbial load without additional wet

lab assays, particularly for existing public fecal metagenomes,

as it can be directly inferred from relative microbiome profiles.

The application of the prediction models to the large-scale mi-

crobiome datasets revealed that predicted microbial load is the

major determinant of microbiome variation and various host and

environmental factors significantly associated with it, including

age, sex, diet, diseases, and medications (Figure 3). Although

many of these factors are interdependent, microbial load
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appears as a major factor that could explain indirect associa-

tions whose mechanisms were unknown (e.g., higher microbial

diversity for elderly people and females). These results empha-

size the need for analyses that take microbial load into account.

Our analysis also revealed significant differences in microbial

loads across various diseases (Figure 4), which indicates that pa-

tient microbiomes are not only affected directly by the disease but

also indirectly by physiological (e.g., water content, oxygen con-

centration, and pH) and physical (e.g., transit time) changes that

accompany the disease. For example, diarrhea is common in

various gastrointestinal and infectious diseases,91–93while consti-

pation is a common complication for several neurological dis-

eases such as Parkinson’s disease,94 Alzheimer’s disease,94

and multiple sclerosis,95 and a risk factor for colorectal cancer.96

Furthermore, drug treatment could change bowel movement and

induce constipation (e.g., opioids, antipsychotics, and non-steroi-

dal anti-inflammatory drugs [NSAIDs]).97 These observations,

along with findings that more than half of the disease-microbe as-

sociations lost their significance after the adjustment in several

diseases (Figure 5), suggest that microbial load can be a major

confounder in disease association studies. This may partly

explain the reasonwhy themicrobial signatures of a particular dis-

ease are often non-specific and shared across multiple diseases,

as observed in previous meta-analysis studies.80,98,99 On the

other hand, previous studies have shown that F. prausnitzii, which

lost significance by the adjustment in several diseases, prevents

inflammation (and the resulting decreased transit time).100 There-

fore, the decrease of this species might be the cause of changes

in microbial load rather than the result, further necessitating the

research to elucidate the causal relationship between them.While

our model does not establish causality, it allows for the easy ex-

amination of species of interest and their associations withmicro-

bial load, which will facilitate the establishment of robust associ-

ations between a disease and gut microbes.

The machine-learning model that predicts fecal microbial

loads, exclusively based on the relative species abundances,

is freely available (MLP, Microbial Load Predictor, https://

microbiome-tools.embl.de/mlp/). Although the model was accu-

rate enough to capture known and unknown biological associa-

tions, its accuracy will likely increase through refinement with

more data or better machine-learning algorithms. In principle,

the approach can also be applied to other habitats, making mi-

crobial loads comparable, for example, enabling important

global studies, such as better estimates of biomass on Earth.

Limitations of the study
While our study demonstrates the utility and robustness of our

machine-learning model to predict fecal microbial loads from

relative abundance data, several limitations must be acknowl-

edged. Firstly, although the model enables robust prediction,

its prediction accuracy was moderate, with correlations ranging

from 0.5 to 0.6 in the external validation (Figure 2). This indicates

that while the model captures general trends, there is still room

for improvement in predicting exact microbial loads in individual

samples or small study populations. Additionally, the causal rela-

tionship between changes inmicrobial load and specific gut spe-

cies remains unclear. Further research is necessary to elucidate

whether changes inmicrobial load drive shifts in species compo-
sition or vice versa. Also, the model was developed and vali-

dated using fecal samples from children and adults (Table S1),

and its applicability to infant and animal fecal samples or biopsy

samples is limited. Finally, our analysis primarily focused on

the prokaryotic communities and did not consider viruses and

eukaryotic microorganisms.
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J. (2021). Benchmarking microbiome transformations favors experi-

mental quantitative approaches to address compositionality and sam-

pling depth biases. Nat. Commun. 12, 3562. https://doi.org/10.1038/

s41467-021-23821-6.

14. Gloor, G.B., Wu, J.R., Pawlowsky-Glahn, V., and Egozcue, J.J. (2016).

It’s all relative: analyzing microbiome data as compositions. Ann. Epide-

miol. 26, 322–329. https://doi.org/10.1016/j.annepidem.2016.03.003.

15. Roager, H.M., Hansen, L.B.S., Bahl, M.I., Frandsen, H.L., Carvalho, V.,

Gøbel, R.J., Dalgaard, M.D., Plichta, D.R., Sparholt, M.H., Vestergaard,

H., et al. (2016). Colonic transit time is related to bacterial metabolism

and mucosal turnover in the gut. Nat. Microbiol. 1, 1–9. https://doi.org/

10.1038/nmicrobiol.2016.93.

16. Asnicar, F., Leeming, E.R., Dimidi, E., Mazidi, M., Franks, P.W., Al Khatib,

H., Valdes, A.M., Davies, R., Bakker, E., Francis, L., et al. (2021). Blue poo:

impact of gut transit time on the gut microbiome using a novel marker. Gut

70, 1665–1674. https://doi.org/10.1136/gutjnl-2020-323877.

17. Boekhorst, J., Venlet, N., Procházková, N., Hansen, M.L., Lieberoth,
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68. Raymond, F., Ouameur, A.A., Déraspe, M., Iqbal, N., Gingras, H., Dridi,

B., Leprohon, P., Plante, P.-L., Giroux, R., Bérubé, È., et al. (2016). The
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

2% Paraformaldehyde VWR J61899.AP

SYBR Green I Fisher Scientific S7563

Dimethylsulfoxide Sigma-Aldrich D8418-100ML

123count eBeads Invitrogen 01-1234-42

Critical commercial assays

AllPrep PowerFecal Pro DNA/RNA Kit Qiagen 80254

NEBNext Ultra II DNA Library Prep kit New England Biolabs E7645L

Deposited data

Shotgun metagenomic data (GALA-ALD) This study BioProject: PRJEB76661

Shotgun metagenomic data (GALA-HP) This study BioProject: PRJEB76664

Shotgun metagenomic data (GALA-RIF) This study BioProject: PRJEB76667

Shotgun metagenomic data (AlcoChallenge) This study BioProject: PRJEB76662

Shotgun metagenomic data (HCO) This study BioProject: PRJEB81698

Shotgun metagenomic data (GALA-POSTBIO) This study BioProject: PRJEB76668

Shotgun metagenomic data (GastricBypass) This study BioProject: PRJEB76666

Shotgun metagenomic data (HOLBAEK) This study BioProject: PRJEB81697

Shotgun metagenomic data (TIPS) This study BioProject: PRJEB76665

Software and algorithms

mOTUs (v2.5) Milanese et al.37 https://motu-tool.org/

BWA-MEM (v0.7.17) Li and Durbin101 https://github.com/lh3/bwa

eggNOG-mapper (v1.0.3) Huerta-Cepas et al.102 https://github.com/eggnogdb/

eggnog-mapper

flowcore R package (v1.11.20) Le Meur et al.103 https://bioconductor.org/packages/

release/bioc/html/flowCore.html

clusterProfiler R package (v4.8.3) Wu et al.104 https://www.bioconductor.org/packages/

release/bioc/html/clusterProfiler.html

vegan R package (v2.6.4) Oksanen105 https://cran.r-project.org/web/

packages/vegan/index.html

xgboost R package (v1.7.5.1) Chen and Guestrin47 https://cran.r-project.org/web/

packages/xgboost/index.html

caret R package (v6.0.94) Kuhn106 https://cran.r-project.org/web/

packages/caret/index.html

MatchIt R package (v4.5.3) Ho et al.107 https://kosukeimai.github.io/MatchIt/

BD FACSDiVa software Becton, Dickinson

and Company

https://www.bdbiosciences.com/en-dk/

products/software/instrument-software/

bd-facsdiva-software

Flowcore R package (v1.11.20) Meur et al.108 https://bioconductor.org/packages/

flowCore/

Other

Shotgun metagenomic data (MetaCardis) Vieira-Silva et al.,33

Forslund et al.,34

and Fromentin et al.35

PRJEB41311, PRJEB38742, and PRJEB37249

Microbial load data (MetaCardis) Forslund et al.34 N/A

Shotgun metagenomic data (Estonian Microbiome) Aasmets et al.58 EGAS00001008448

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Shotgun metagenomic data (Japanese 4D) Nagata et al.57 N/A

GMGC Coelho et al.38 https://gmgc.embl.de/

eggNOG Huerta-Cepas et al.109 http://eggnog5.embl.de/

KEGG Kanehisa M. et al.110 https://www.genome.jp/kegg/
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

GALAXY/MicrobLiver study population
A total of 1,906 fecal samples were collected in the GALAXY/MicrobLiver study population. These samples were derived from 9

different cohorts (GALA-ALD,111–113 GALA-HP,114,115 GALA-RIF,116,117 AlcoChallenge,118–121 High Carbohydrate Overfeeding

(HCO),122,123 GALA-POSTBIO, GastricBypass, The HOLBAEK Study (HOLBAEK),124 and TIPS125–128) with different study designs

and objectives. These studies involved diverse participant groups, including healthy individuals (GALA-HP), patients with chronic

alcohol-related liver disease (ALD) (GALA-ALD and TIPS), those with severe obesity (GastricBypass), those born with low birth weight

(HCO), children and adolescents with obesity (HOLBAEK), and patients with dietary (GALA-POSTBIO), alcohol (AlcoChallenge), and

drug interventions (GALA-RIF). Out of the 1,906 samples, 12 sampleswere excluded as outliers from the downstream analyses due to

having substantially lower microbial loads than other samples (<10% of the median value of the samples). In total, 1,894 fecal sam-

ples from 1,351 participants were used in the study (Table S1A). The objective of each cohort, study design, inclusion, and exclusion

criteria were described as follows.

GALA-ALD
This is a prospective, single-center, biopsy-controlled, cross-sectional study covering the full range of alcohol-related liver disease

(ALD).111–113 Patients were recruited between 2013 and 2018 in the Region of Southern Denmark. Inclusion criteria comprised indi-

viduals aged 18-75 yearswith prior or current chronic alcohol overuse, whichwas defined asmore than 24 g/day for women andmore

than 36 g/day for men for over a year, and informed consent to a liver biopsy. Exclusion criteria included solid evidence of cirrhosis,

concurrent liver diseases, severe illnesses with less than 12 months expected survival, contraindications to percutaneous liver bi-

opsy, severe alcohol-related hepatitis, hepatic congestion or bile duct dilation as shown by ultrasound, HIV positive status, ongoing

substance abuse other than alcohol, and inability to comply with the study protocol. Participants were sourced fromboth primary and

secondary healthcare, encompassing populations at low versus moderate-high prevalence of cirrhosis.

GALA-HP
This longitudinal study involved healthy participants recruited between 2016 and 2018 at Odense University Hospital in Denmark. The

inclusion criteria specified individuals aged 18-75 who were matched by sex, age and (partially) BMI to patients from the GALA-ALD

study.114,115 The exclusion criteria included current alcohol consumption exceeding 7 units per week, prior harmful alcohol use,

known liver disease, elevated liver enzymes or altered liver function tests, signs of altered glucose metabolism, signs of other meta-

bolic diseases, infection/inflammation, significant vitamin/mineral deficiencies, any known chronic diseases, ongoing substance

abuse, use of any medication (besides infrequent use of mild pain relievers), and use of antibiotics within the last six months. Stool

samples were collected at home, frozen in the home freezer immediately, and brought to our unit (with cooling elements to remain

frozen) for –80 �C storage within 24 hours.

The study protocol for the GALA-ALD and GALA-HP was approved by the ethics committee for the Region of Southern Denmark

(nos. S-20160006G, S-20120071, S-20160021 and S-20170087) and is registered with both the Danish Data Protection Agency (nos.

13/8204, 16/3492 and 18/22692) and Odense Patient Data Exploratory Network (under study identification nos. OP_040 and OP_239

[open.rsyd.dk/OpenProjects/da/openProjectList.jsp]). These studies were conducted according to the principles of the Declaration

of Helsinki, and oral and written informed consent was obtained from all participants.

GALA-RIF
The GALA-RIF trial, an investigator-initiated, randomized, double-blind, placebo-controlled, single-center, phase 2 study, was con-

ducted to evaluate the efficacy of rifaximin-a in patients diagnosed with alcohol-related liver disease through liver biopsy.116,117 Pa-

tients were allocated in a 1:1 ratio to either rifaximin-a or placebo for 18months. Patients were recruited at the Department of Gastro-

enterology andHepatology at Odense University Hospital in Denmark. Ethical approval was granted by the regional ethics committee

(S-20140078), and the study adhered to the International Conference on Harmonization Good Clinical Practice guidelines, with

external monitoring by the Good Clinical Practice Unit at Odense University Hospital. Participants were identified from a cross-

sectional study (GALA-ALD) focusing on alcohol-related liver disease. Alcohol overuse was defined as a daily intake of 24g or

more for women and 36g or more for men for at least a year. The study excluded patients with a history of hepatic decompensation
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or any known liver disease. Following the screening, patients at risk of liver fibrosis underwent liver biopsy. From these, patients aged

18–75 years with liver fibrosis and histological features of alcohol-related liver disease were included in the study. Stool samples

analyzed in this study were derived from baseline, 1 month, and 18 months (at the end of treatment). EudraCT, number: 2014–

001856-51.

AlcoChallenge
This clinical study aimed to investigate the acute impact of alcohol consumption on the intestine with the hypothesis that acute

alcohol intake increased intestinal permeability and inflow of bacterial products to the liver.118–121 Participants aged 18-75 who

met the criteria for ALD, metabolic dysfunction-associated steatotic liver disease (MASLD), or healthy controls were included. Pa-

tients with other known causes of liver disease, total alcohol abstinence or desire for it, insulin-dependent diabetesmellitus, cirrhosis,

pregnancy, recent antibiotic treatment, liver cancer, severe comorbidities, or inability to follow instructions were excluded. Partici-

pants were asked tomaintain their habitual diet and alcohol consumption until two days before the alcohol intervention. On the inves-

tigation day, participants were fasting and abstained from alcohol for 48 hours. Stool samples were collected by the participants

within 24 hours of each visit. Participants were given instructions and material for sample collection. The samples were collected

in sealed test tubes and stored immediately in the participants’ freezer. The samples were transported to the hospital as cold as

possible using a cooler bag and cooling elements. Upon arrival at the hospital, the samples were stored in a –80 �C freezer. The study

was approved by the Ethical Committee of Southern Denmark (S-20160083) and registered at ClinicalTrials.gov (NCT03018990).

HCO
This study aims to investigate whether 12 weeks of exercise training can revert and/or minimize the deleterious cardiometabolic ef-

fects of 4 weeks of carbohydrate overfeeding in individuals born with low birth weight and increased risk of developing type 2 dia-

betes. This study recruited healthy Caucasian males, born between 1979 and 1980 at full term (gestational weeks 39–41).122,123

Exclusion criteria for participants included having diabetes in their first-degree relatives, any chronic or acute diseases, medication

intake that could affect the study’s outcomes, BMI > 30 kg/m2, physical activity >10 hours per week, alcohol consumption exceeding

the national recommendations, and significant weight changes (>2 kg) in the past 6months. Feces were sampled at home and imme-

diately stored in the freezer at –18 �C or cooler. The samples were picked up by the staff and transported on dry ice to the laboratory

and stored at –80 �C. The study was conducted in compliance with the Declaration of Helsinki II and approved by the ethical com-

mittee of the Capital Region of Denmark, with identifier H-4-2014-128. The research has been registered under the ClinicalTrials.gov

identifier: NCT02982408. All participants provided written informed consent to participate in the study.

GALA-POSTBIO
A 24-week prospective, randomized controlled clinical trial aiming to investigate if a postbiotic drink made of fermented oats, Re-

Ferm�, could alter the progression of liver disease compared to an active comparator, Fresubin�. From March 2019 to January

2021, 56 patients were recruited and included in the study. The trial was held at the Department of Gastroenterology and Hepatology

at Odense University Hospital in Denmark. Ethical approval was granted by the regional ethics committee (S-20170163) and the

Danish Data Protection Agency (19/6646). Patients were allocated in a 1:1 ratio to either ReFerm� or Fresubin� treatment groups.

Clinical investigations were conducted at baseline, 4 weeks, 24 weeks (end of intervention), and after a wash-out period of 6 to

8 weeks. Inclusion criteria were outpatients with stable, compensated advanced chronic alcohol-related liver disease between 30

and 75 years. Compensated advanced chronic alcohol-related liver disease was defined as liver stiffness R15 kPa or a newly per-

formed (<6mdr) liver biopsy with Kleiner Fibrosis StageR 3 or a liver biopsy > 6 months with Kleiner Fibrosis StageR 3 and a current

liver stiffnessR10 kPa. Eligible patients had a prior or ongoing harmful alcohol intake defined as an average ofR24g alcohol/day for

women and R36 g/d for men for R 5 years. Exclusion criteria were Child-Pugh C score, Meld-Na R15, hospitalization within three

months, moderate or severe ascites, high-risk varices needing interventional treatment, known liver disease other than alcohol-

related, antibiotic treatment in the prior three months, and treatment with nutritional drinks, probiotics or prebiotics within the last

three months. ClinicalTrials.gov ID: NCT03863730.

GastricBypass
The bariatric study cohort is based on 70 patients with a BMI > 35.0 kg/m2 undergoing laparoscopic bariatric surgery (either Roux-

en-Y gastric bypass (n=30) or sleeve gastrectomy (n=40)). The design is best described as a prospective cohort study. Study subjects

were included between December 2016 and September 2019 at Copenhagen University Hospital Hvidovre. The study subjects ful-

filled the existing criteria for bariatric surgery issued by the Danish Health Authorities (BMI>35.0 kg andmetabolic comorbidity and/or

arthrosis in lower extremities ORBMI>50with or withoutmetabolic comorbidity/arthrosis in lower extremities), including amandatory

weight loss of 8% before surgery. The mode of surgery (Roux-en-Y gastric bypass or sleeve gastrectomy) was decided by the en-

docrinologists at the Endocrinology Department. Study-specific exclusion criteria were current or previous alcohol consumption

of > 2.5 units/day for men and > 1.5 units/day for women, use of antibiotics within onemonth prior to surgery, preexisting liver disease

other thanmetabolic dysfunction-associated steatotic liver disease, pre-existing disease in the lipidmetabolism and acute or chronic

inflammatory disease, or an ethnic origin other than North European. On the day of surgery (aka baseline visit) fasting project blood

samples were collected. The fecal samples were collected 1-7 days prior to surgery and immediately frozen. During surgery, liver and
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adipose tissue were sampled. Follow-up visits including collection of fecal- and blood samples were conducted three, six, and

12 months after surgery. Fecal samples at the baseline, three, and 12 months were analyzed in this study. The study protocol

was approved by the Regional Scientific Ethics Committee (H-16030784 and H-16030782). Written and oral informed consent

was obtained from all study participants. The study was conducted according to the Declaration of Helsinki.

The HOLBAEK Study
We collected fecal samples from 397 5–19-year-olds of which 331 were from a hospital-based obesity clinic cohort and 66 were from

a population-based cohort. The hospital-based obesity clinic cohort consists of children and adolescents enrolled in multifaceted

obesity management from January 2008 onwards at the Children’s Obesity Clinic, Holbaek University Hospital.124 These patients

were referred from general practitioners, pediatric departments, or community-based doctors. In the hospital-based obesity clinic

cohort, the longitudinal data collection began just prior to the initiation of non-pharmacological obesity treatment and continued

with the subsequent contacts in the clinic in a systematic, family-based, person-centred, chronic care setting. The only inclusion cri-

terion was a referral to the hospital-based obesity clinic. Importantly, no a priori age- or other exclusion criteria would make a child or

adolescent ineligible for treatment or inclusion in the clinic. The population-based cohort consists of children and adolescents re-

cruited from October 2010 onwards without selection pertaining to body weight or BMI. Recruitment took place at schools and

high schools across 11 municipalities in Region Zealand and the Capital Region in Denmark. All children and adolescents at the

participating schools were considered eligible for inclusion regardless of age, and no exclusion criteria were applied. Informative

recruitment meetings for potential participants were held during school hours andwrittenmaterial was delivered to the parents. Stool

samples were collected at participants’ homes, immediately frozen in their home freezers, and then transported to the laboratory with

cooling elements to ensure they remained frozen. Upon arrival, the samples were stored in freezers at a temperature of –80 �Cwithin

24 hours of collection. The HOLBAEK Study was approved by the Ethical Committee of Region Zealand (Project number: SJ-104),

The Danish Data Protection Agency (REG-043-2013), and other collateral project approvals and was registered at ClinicalTrials.gov

on June 26, 2009 (NCT00928473). All procedures in relation to the biobank are performed in accordance with the Helsinki Declara-

tion.Written informed consent was obtained fromparents/legal guardians or from the adolescents themselveswhen above the age of

18 years.

TIPS
The TIPS study is a single-center prospective study in patients with decompensated cirrhosis who received a transjugular portosys-

temic shunt as part of the NEPTUN study (NCT03628807) at the Department of Internal Medicine I, University Clinic Bonn (Ger-

many).125–128 For this study, stool samples from 84 patients were obtained between 2014 and 2018. The mean age was 58 years

(range 18–84 years), 53% of the patients were male and the majority of patients had alcohol-induced cirrhosis (n=62), followed by

viral hepatitis (n=8) and other etiologies (n=18). The stool samples were collected during the inpatient treatment of the patients shortly

before the TIPS procedure and stored directly at -80 �C degrees until further use. The study was approved by the local ethics com-

mittee of the University of Bonn (029/13), and all patients signed an informed written consent in accordance with the Helsinki

Declaration.

METHOD DETAILS

DNA sequencing of fecal samples
Microbial DNAwas extracted from collected stool samples using Qiagen AllPrep PowerFecal Pro DNA/RNA Kit (Qiagen, Hilden, Ger-

many) following the manufacturer’s protocol in the GALA-RIF, AlcoChallenge, HCO, GALA-POSTBIO, and TIPS cohorts. The same

protocol, except for an additional phenol-chloroform extraction step after the step of lysing microbial cells, was used in the GALA-

ALD, GALA-HP, HOLBAEK, and GastricBypass cohorts. Metagenomic sequencing libraries were prepared using the NEBNext Ultra

II DNA Library Prep kit (New England Biolabs, MA, USA) with a targeted insert size of 350-400bp and Dual Index multiplex oligos.

Libraries were prepared using a liquid automated system (Beckman Coulter i7 Series) and sequenced on an Illumina HiSeq 4000 plat-

form (Illumina, San Diego, CA, USA) with 2x150bp paired-end reads.

Quality control of sequenced reads
Sequenced reads were processed to remove low-quality reads and host-derived reads using ngless (v1.1).129 Nucleotide calls with a

Phred quality score of less than 25 were removed from the 30 end and reads less than 45 nucleotides long after the removal were

discarded. Reads representing human DNA were identified by comparing all reads’ sequence similarity to the human reference

genome (hg38). Any reads with greater than 90% similarity to the human genome were discarded. After this quality control, reads

were re-classified as paired or as singles, where, respectively, both or only the forward and reverse reads are present in the final

dataset.

Cell counting
Bacterial cell counting was performed as previously described.108 Briefly, frozen (-80�C) fecal samples were diluted, mechanically

homogenized and afterward fixed with 2% Paraformaldehyde (10 min, RT; VWR). To minimize clumps, the samples were filtered
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through a cell strainer. The resulting bacterial cell suspension was stained with SYBR Green I (1:200,000 (Fisher Scientific), in DMSO

(Sigma-Aldrich)) and incubated in the dark for 30 min. Measurements were performed at a pre-set flow rate of 0.5 mL/sec, and a

known concentration of 123count eBeads (Invitrogen) was added for accurate bacterial cell count estimation. Measurements

were performed using a BD Fortessa LSRII flow cytometer (BD Biosciences) (GALA-HP, Alcochallenge, GALA-ALD, TIPS, HCO co-

horts) and BD Fortessa 3 flow cytometer (BD Biosciences) (GALA-POSTBIO, GALA-RIF, HOLBAEK, GastricBypass cohorts), and

data were acquired using BD FACSDiVa software. A collection threshold value of 200 was applied on the FITC (530/30 nm) channel.

Fluorescence intensity was collected at green (530/30 nm, FITC), blue (450/50 nm, Pacific Blue), yellow (575/26 nm, PE), and red (695/

40 nm, PerCP-Cy5.5) fluorescence channels. Forward- and side-scattered (FSC and SSC) light intensities were also collected. Data

was processed in R using the flowcore package (v1.11.20)103 in R Studio (v4.1.2). A stringent fixed gating strategy was selected

based on density plots of blank sample, unstained fecal sample solution, and stained fecal sample solution. To allow for direct com-

parison between measured samples, the same gating strategy was applied to all samples. The gating on density plots of the green

(FITC-H) channel versus the forward-scatter (FSC-H) channel allowed for a distinction between the stained bacterial cells and un-

stained debris. The gating on the blue (Pacific Blue-H) channel versus the green (FITC-H) channel allowed for a distinction between

the counting beads and other particles in the sample solution, including bacteria and unstained debris. Bacterial cell counts, esti-

mated from pre-set flow rate, were adjusted with internal control counts, included on each plate, to correct for batch effects.

Taxonomic and functional profiling of metagenomes
Species-level taxonomic profiles of the samples were obtained with the marker-gene-bases method using mOTUs (v2.5).37 Func-

tional profiles were obtained bymappingmetagenomic reads to the sub-catalog of the human gut microbiome in the global microbial

gene catalog (GMGC)38 using BWA-MEM (v0.7.17)101 with the default parameters. The genes were functionally annotated using

eggNOG-mapper (v1.0.3)102 against eggNOG database 5.0109 and KEGG orthologies110 were assigned to each gene. The number

of reads mapped to each KEGG orthology was counted using gffquant (v2.9.1) (https://github.com/cschu/gff_quantifier) where the

count of the number of reads aligning multiple genes was distributed to each gene by dividing by the number of the genes.

MetaCardis dataset
Fecal metagenomes from theMetaCardis project (n = 1,820)33–35 were downloaded from the European Nucleotide Archive under the

accession numbers PRJEB41311, PRJEB38742 and PRJEB37249. Microbial load data for these samples were obtained in the study

of Forslund et al.34 Out of 1820 samples, eight samples were excluded from the downstream analyses as outliers due to significantly

lower or higher microbial loads than other samples (9.7e09 and 1.1e11, respectively). In total, 1,812 samples were used in the

following analyses. Taxonomic and functional profiles of the microbiomes were obtained with the same procedure described above.

QUANTIFICATION AND STATISTICAL ANALYSIS

Association analysis between the gut microbiome and microbial loads
To investigate correlations between themicrobiome profile (i.e. species-level taxonomic and functional compositions) and the exper-

imentally measured microbial load, Pearson correlation coefficients were calculated between the log10 transformed relative abun-

dance of each microbial species/functions and the microbial load in each cohort separately. Additionally, the analysis was also per-

formed for diversity indexes of the taxonomic profiles such as Shannon diversity, species richness (i.e. the number of detected

species), and Simpson diversity. The over-representation of KEGG pathways in the positively- and negatively-correlated functions

was identified with the gene set enrichment analysis using the GSEA function in the clusterProfiler package (v4.8.3).104 Multidimen-

sional Scaling (MDS) analysis was performed using the metaMDS function in the vegan package (v2.6.4),105 based on a Euclidean

distance matrix derived from log10-transformed relative abundance data with half of the minimum non-zero value as pseudocounts.

Enterotypes (i.e. Bacteroides, Prevotella, and Firmicutes types)39,40 of the gut microbiome were determined using the enterotyper

(https://enterotype.embl.de/)130 using the pam3 model and they were plotted into the MDS ordination using the envfit functions in

the vegan package.

Construction of prediction models
To construct machine-learning models to predict the microbial load, we employed the eXtreme Gradient Boosting (XGBoost) algo-

rithm,47 available in the xgboost R package (v1.7.5.1). Prior tomodel training, we performed unsupervised feature filtering on the spe-

cies-level taxonomic profiles of the microbiome to exclude minor species (those with < 0.1% average abundance or < 10% preva-

lence). The relative abundances of each species and the microbial loads were then log10 transformed before the training. For the

species, we added half of the non-zero minimum values in the dataset to each abundance to avoid log10 transformation of 0 values,

and further standardized (i.e. z-score). The models were trained using the train function in the caret R package (v6.0.94)106 in the

GALAXY/MicrobLiver and MetaCardis datasets separately, employing a 5-times repeated 10-fold cross-validation procedure to

maximize the root-mean-square error (RMSE) in themodel. The hyperparameters were determined through a grid search. For internal

validation, we calculated the average predicted microbial loads across five repetitions for each sample and compared these with the

actual microbial loads. For external validation, we applied theGALAXY/MicrobLiver model to theMetaCardis dataset, and vice versa,

comparing the predicted and actual microbial loads.
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Analysis of 16S rRNA gene data from previous studies
Additional paired data of 16S rRNA gene sequencing and fecal microbial loads were collected from two previous studies.19,24 For

Vandeputte et al.24 study, the genus-level taxonomic profiles were obtained from the paper. For Vandeputte et al.19 study, 16S

rRNA gene sequencing data were downloaded from the European nucleotide Archive, under the accession numbers

PRJEB21504 and ERP023761. The 16S rRNA gene sequencing data was processed using the DADA2 pipeline and the taxonomic

annotation was performed using the RDP training data rdp_train_set_16. A prediction model was constructed based on the data of

Vandeputte et al.24 (n = 707) using the same procedure described above. Then, the model was applied to the other dataset of Van-

deputte et al.19 (n = 95) for external validation.

Collection of external microbiome datasets
Global dataset: Publicly available human gut metagenomes were downloaded from the European Nucleotide Archive. The dataset

was part of a previous study131 and was composed of 27,832 samples across 45 countries from 159 studies (Tables S3A and S3B).

After the downloading, quality filtering was performed using ngless, and bases with <25 Phred quality score were trimmed from the 30

end, and reads less than 45 bp were excluded. Host metadata such as age, sex, country, antibiotic treatment, and disease were

collected from respective study papers manually. Samples from infants, children under 3 years old, and patients who received fecal

microbiota transplantation were excluded since their gut microbiomes are substantially different from those of adults.132,133 Also,

samples with a low number of sequenced reads (ie. <1 million) were excluded. Countries were classified into four groups according

to theWorld Bank definition (https://www.worldbank.org/en/home/, accessed in February 2024), which defines high-income, upper-

middle, lower-middle, and low-income economies based on gross national income per capita.

Japanese 4D dataset: The Japanese 4D (Disease, Drug, Diet, Daily life) microbiome cohort is a prospective, multicenter, hospital-

based cohort established in the Tokyo metropolitan area. A total of 4,198 fecal samples were collected from the participants and

processed as described previously.57,134 Various intrinsic and extrinsic factors (n = 244) were collected from the participants through

a combination of self-reported questionnaires, face-to-face interviews, and physicians’ electronic medical records. These factors

included anthropometric measurements, lifestyles, dietary habits, physical activities, diseases, and medications (Table S3C). The

protocol for the project was approved by the medical ethics committees of the Tokyo Medical University (approval No.: T2019-

0119), National Center for Global Health and Medicine (approval No.: 1690), the University of Tokyo (approval No: 2019185NI), Wa-

seda University (approval No.: 2018-318), and the RIKEN Center for Integrative Medical Sciences (approval No.: H30-7). All partic-

ipants provided written informed consent before participation in the project.

Estonian Microbiome dataset: The Estonian Microbiome cohort135 is a volunteer-based cohort that currently includes genotyped

adults (R 18 years old) across Estonia. Fecal samples were collected from 2,509 participants in the cohort and sequenced as

described previously.58 All the participants provided informed consent for the data and samples to be used for scientific purposes.

This study received approval from the Research Ethics Committee of the University of Tartu (approval No. 266/T10) and from the

Estonian Committee on Bioethics and Human Research (Estonian Ministry of Social Affairs; approval No. 1.1-12/17). Host factors

such as anthropometric measurements, lifestyle, diet, disease, and medication were collected from self-reported questionnaires

and electronic health records (n = 251, Table S3D).

Evaluation of the effects of biological and technological factors on predicted microbial loads
To assess the impact of technical and biological factors on predictedmicrobial load, we collectedmetagenomes from the same fecal

samples sequenced in different laboratories (i.e. technical replicates) (n = 40),48 metagenomes from the same fecal samples

sequenced using different DNA extraction methods (n = 185),49 longitudinal metagenomes obtained from the same individuals

(n = 1,294),50–56 andmetagenomes obtained from different individuals (n = 2,369). mOTUs and theMetaCardis model were employed

to obtain the species-level taxonomic profile and predicted microbial load, respectively. For longitudinal samples, only pairs with an

interval of at least one week were selected, and for individuals with >2 samples, only the first and last pair were included in the anal-

ysis. Predicted microbial loads were compared between pairs of technical replicates, between pairs of the same fecal samples with

different DNA extraction methods, between pairs of longitudinal samples of the same individuals, and between different individuals.

The variation of predicted microbial load in each group was assessed using the coefficient of variation.

Analysis of the external metagenomic datasets
Species-level taxonomic profiles of the global, Japanese 4D, and Estonian Microbiome samples were obtained with the same

method described above. The relative abundance of each microbial species was log10-transformed (1e-4 was added as a pseudo

count beforehand) and standardized before the prediction. The MetaCardis prediction model was applied to the profiles and micro-

bial loads were predicted for each sample. The MetaCardis model was employed for the analysis since it was trained on samples

derived from more individuals (n = 1,812) than the GALAXY/MicrobLiver model (n = 1,351).

To determine the explained variance of the predicted microbial loads (coefficient of determination) by the collected host factors in

the Japanese 4D and Estonian Microbiome cohorts, linear regression analysis was performed using the glm function with the log10
transformed microbial load as a response variable and all the host factors as explanatory variables. Furthermore, the analysis was

performed for each metadata category (e.g. lifestyle, diet, medication, and disease) separately, and the explained variance by each

category was determined. P-values were adjusted for the multiple comparisons with the Benjamini-Hochberg method.136
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Association analysis between diseases and the microbial load
To explore associations between diseases and microbial loads, we performed a meta-analysis of case-control comparisons by

combining samples in the global and Japanese 4D datasets. In the global dataset, 58 studies including at least 10 cases and 10 con-

trols were picked up and the case and control samples were collected (Table S4A). In the Japanese 4D dataset, 9 diseases with >10

patients were selected and age, sex, and BMI matched-controls were defined for each disease using the matchit function of the

MatchIt R package (v4.5.3).107 Disease-to-control ratios were set to 1:4 when there were enough control samples in the Japanese

4D dataset,137 while set to 1:1 when the number of samples was insufficient.

The case and control samples collected above were combined for each disease and a total of 26 diseases with >50 cases and >50

controls were analyzed (Table S4A). Associations between the diseases and the log10 transformedmicrobial load were assessed us-

ing the glm function with the microbial load as a response variable and the disease condition (i.e. case or control) as an explanatory

variable including each study as a covariate. P-values were adjusted for the multiple comparisons with the Benjamini-Hochberg

method.

Association analysis between diseases and the microbiome composition
For the 26 diseases selected, case-control comparisons of the microbiome profiles were conducted. For each disease dataset, spe-

cieswith an average relative abundance of >0.1%and prevalence of >10%were included in the analysis. The relative abundancewas

log10 transformed after adding half of the non-zero minimum value as a pseudo value. For each microbial species, a linear regression

model was applied using the glm function. In this model, the species abundance was included as a response variable and disease

condition (i.e. case or control) as an explanatory variable, with each study as a covariate. P-values were adjusted for the number of

species for each disease with the Benjamini-Hochberg method.136

The set of the obtained effect sizes (beta coefficients) of each species was defined as the microbial signature for the disease. A

distance matrix among the 26 diseases was then constructed based on the signature, using Spearman’s correlation coefficient

as a distance metric ([1 - Spearman’s correlation] / 2). Then, principal coordinate analysis was performed on this distance matrix us-

ing the cmdscale function in the vegan package.105 The differences in the microbial signatures between the positively- and nega-

tively-associated diseases were examined with permutational analysis of variance using the adonis function in the vegan package

with 9,999 permutations for p-value calculation. Additionally, the effect sizes of each disease were compared between the positively-

and negatively-associated diseases through a linear regression model, and species discriminating between these two groups were

investigated.

To adjust the effect of themicrobial load in the case-control comparisons, linear regressionmodels were constructed for each spe-

cies again by adding the microbial load as a covariate. Effect sizes of each disease on the species and associated P-values were

compared between the models with and without the adjustment of the microbial load.

Comparison of adjustment based on experimentally measured and predicted microbial loads
To evaluate the robustness of the adjustment for predicted microbial load, we analyzed metagenomes from liver cirrhosis patients in

the GALAXY/MicrobLiver study (n = 64, fibrosis stage >F2, GALA-ALD cohort) and type 2 diabetes patients in the MetaCardis study

population (n = 539), where both experimentally measured and predicted microbial loads were available. Metagenomes from healthy

individuals in the GALAXY/MicrobLiver (n = 127, GALA-HP) and MetaCardis (n = 275) study populations were used as controls. Pre-

dicted fecal microbial loads of each sample were obtained by applying the GALAXY/MicrobLiver and MetaCardis models to each

other’s datasets. The association between each species (log10-transformed relative abundance) and disease was assessed by

regression analysis with the glm function, using three methods: no adjustment, with adjustment for actual microbial load, and

with adjustment for predicted microbial load. Species with >0.1% average relative abundance and >10% prevalence were included

in the analysis in each disease dataset. P-values of each species were corrected for multiple comparisons using the Benjamini-

Hochberg method and the differences in the FDR values without adjustment and with adjustment were compared between the

methods based on the actual and predicted microbial load.

Comparison of quantitative and relative microbiome profiles in disease association analysis
To explore the advantages of the quantitativemicrobiome analysis in disease association analysis, we transformed the relativemicro-

biome profiles (RMP) into quantitative microbiome profiles (QMP) (i.e. a profile where species abundances were represented by ab-

solute abundances) bymultiplying the relative abundance of eachmicrobial species by the predictedmicrobial load of the sample. To

evaluate the association between each species and disease, the same statistical analyses used for the RMP were performed on the

QMP of the same 26 disease datasets. The effect sizes and statistical significance (i.e. p-value) obtained from the analyses were

compared with those obtained based on the RMP.
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Figure S1. Overview of the analysis in this study and associations between microbial load and microbiome profiles in the GALAXY/

MicrobLiver and MetaCardis study populations, related to Figure 1

(A) Flow chart of the analytical processes in this study.

(B) Comparison of microbial loads between the GALAXY/MicrobLiver (n = 1,894) and MetaCardis (n = 1,812) study populations.

(C and D) Comparison of microbial load-microbiome associations between the GALAXY/MicrobLiver and MetaCardis study populations. Each circle represents

microbial species (C) and gene function based on KEGG orthology (D). Pearson correlation coefficient was employed to evaluate the correlations. For the species

analysis, those with a mean relative abundance of >0.01% and prevalence of >10% in both studies were included. For the gene function analysis, KEGG or-

thologies with mean relative abundance of 0.0001% and prevalence of >10% in both studies were included.

(E) Species-microbial load correlations summarized at the genus level retrieved from the Genome Taxonomy Database (GTDB).

(F) Pathway enrichment analysis for genes associated with microbial load. Based on the Pearson correlation coefficients between gene functions and microbial

load, over-representations of KEGG pathways in the positively and negatively associated genes were assessed using the gene set enrichment analysis (GSEA)

function in the clusterProfiler package. Pathways showing statistical significance of FDR < 0.1 are shown in the plot.
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Figure S2. Evaluation of the robustness of the prediction models to biological and technical factors, related to Figure 2

(A and B) Scatterplots showing correlations between experimentally measured microbial loads and predicted values across sub-cohorts in the GALAXY/

MicrobLiver study population (A) and various disease subgroups in the MetaCardis study population (B). XGBoost regression models trained on the species-

level taxonomic profiles were applied to each other’s datasets of the GALAXY/MicrobLiver andMetaCardis study populations. Numbers of individuals included in

each sub-cohort and subgroup are as follows: AlcoChallenge, n = 39; GALA-ALD, n = 333; GALA-HP, n = 127; GALA-POSTBIO, n = 161; GALA-RIF, n = 317;

GastricBypass, n = 129; HCO, n = 125; HOLBAEK, n = 579; TIPS, n = 84 (A), and control, n = 275; patients with coronary artery disease, n = 361; heart failure,

n = 21; metabolic syndrome, n = 246; severe/morbid obesity, n = 373; and type II diabetes, n = 536 (B). The solid blue line shows regression lines, and the gray

dashed lines represent 1:1 reference lines. The shadow of the regression line represents a 95% confidence interval. Pearson correlation coefficients are rep-

resented in the plots. Pearson correlations between experimentally measured and predicted microbial loads are shown with p values.

(C) Comparison of the effects of technical and biological factors on the predicted microbial load. The MetaCardis prediction model was applied to metagenomes

sequenced in different laboratories with the same protocols (i.e., technical replicates), those obtained from the same samples with different DNA extraction

methods, longitudinal samples from the same individuals, and those obtained from different individuals in previous studies. Absolute values of log2 fold change

were calculated between each pair (i.e., within the same sample or individual) or between different individuals and compared between groups. ****p < 0.0001,

***p < 0.001, **p < 0.01 (Wilcoxon rank-sum test).
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Figure S3. Associations between predicted microbial load and various host and environmental factors, related to Figure 3

(A) Associations betweenmicrobiome variation and various host and environmental factors, including predictedmicrobial load in the Japanese 4D (n = 4,198) and

Estonian Microbiome cohorts (n = 2,509). The association between microbiome variation (the Bray-Curtis dissimilarity) and each metadata category was as-

sessed based on distance-based redundancy analysis using the dbrda function in the vegan package.

(B) Total abundance of species not incorporated into the prediction model for each category of the country classified by economy (i.e., fraction of uncommon

species in high-income countries) (left) and the effect of the category (relative to high-income countries) on the predicted microbial load when the fraction was

incorporated into the model as a covariate (right). Error bars indicate 95% confidence intervals. ****p < 0.0001, ***p < 0.001 (Wilcoxon rank-sum test).

(C–F) Associations between the predicted microbial loads and the Bristol stool scale (C), host age (D), host sex (E), and antibiotic treatment (F) in the global

dataset, Japanese 4D, and Estonian Microbiome cohorts. Pearson correlations (C and D) and Wilcoxon rank-sum test (E and F) were used to evaluate the

associations.

(G) Effect sizes of host age and sex for Shannon diversity of the microbiome in the global and Japanese 4D datasets before and after the adjustment with the

predicted microbial loads. The effect size was obtained using linear regression analysis, including Shannon diversity as the response variable and age and sex as

the explanatory variable with and without the predicted microbial load as a covariate. Error bars represent the 95% confidence interval of the effect size.

(H) Changes in the predicted microbial load in two dietary intervention studies. In the study of Poole et al.,54 samples were collected at six time points from 18

individuals. A high-starch dietary intervention was administered before time point T4 and finished after time point T9. In the study of Louis et al.,138 samples were

collected at three time points from 15 subjects, with a low-calorie dietary intervention conducted between time points 0 and 90. p values are indicated in the plot

(Wilcoxon rank-sum test).

(I) Effects of different types of antibiotics on the predicted microbial load in the Japanese 4D and Estonian Microbiome cohorts. Each circle shows the effect size

determined by a linear regression analysis, and the error bar represents 95% confidence intervals.
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Figure S4. Associations between predicted microbial load and various diseases, related to Figure 4

(A) Boxplots comparing predictedmicrobial loads between disease cases and controls across the 26 diseases. 13,200 cases and 18,511 controls from 57 studies

were included in the analysis (Table S4A).

(B) Principal coordinate analysis (PCoA) on microbial signature across the 26 diseases. Each circle represents each disease, and the blue and red colors show

positively and negatively associated diseases with the predicted load, respectively. Microbial signatures of each disease were defined as the set of effect sizes of

each species as determined using a linear regression analysis, with species abundances as the response variable and disease condition as the explanatory

variable (see STAR Methods). The similarity of the microbial signatures between diseases was calculated using Spearman correlations, and they were trans-

formed into distance. Principal coordinate analysis was performed on the distance matrix of the disease signature using the cmdscale function in the vegan

package. The p value was calculated based on permutational analysis of variance using the adonis function in the vegan package.
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Figure S5. Adjusting formicrobial load substantially changes the association betweenmicrobiome-disease associations, related to Figure 5

(A) Species that lost statistically significant associations with diseases after the adjustment for microbial loads (FDR > 0.05). The associations between a species

and a diseasewere evaluated using linear regression analysis with andwithout the adjustment. The red horizontal lines show an FDR of 0.05. Arrows represent the

changes in the FDR before to after the adjustment for microbial load. Results for the six diseases, for which the adjustment had the strongest impact, are included

in the plot. The top 20 species with the lowest FDR before the adjustment are shown. Results for breast cancer are not shown since only four significant species

were detected.

(B) Comparison of experimentally measured and predicted microbial loads between patients and controls in the GALAXY/MicrobLiver and MetaCardis study

populations. Patients with liver cirrhosis (n = 64) and healthy controls (n = 127) were selected from the GALAXY/MicrobLiver study population, and patients with

type 2 diabetes (n = 539) and healthy controls (n = 275) were selected from theMetaCardis study population. Predictedmicrobial loads were obtained by applying

the MetaCardis and GALAXY/MicrobLiver models to each other’s datasets. Numbers in the plot represent the p values between cases and controls (Wilcoxon

rank-sum test).

(legend continued on next page)
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(C) Comparison of changes in FDR values (log10 transformed) for each microbial species due to adjustment for measured and predicted microbial loads. Pearson

correlation was employed to evaluate associations between them.

(D) Changes in FDR values after the adjustment for each microbial species and Shannon diversity. Results for the top 20 microbial species with the largest

reduction in FDR and Shannon diversity are shown in the plot.
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Figure S6. Predicted microbial load partially reduces biases derived from the relative nature of the microbiome data, related to Figure 5

We compared the results of case-control analyses of each disease between the relative microbiome profile (RMP) (i.e., a profile where species abundances were

represented by relative abundance) and the quantitative microbiome profile (QMP) (i.e., a profile where species abundances were represented by absolute

abundances by taking into account the predicted microbial load) (see STAR Methods).

(A) Bar plot showing the number of significantly enriched and depleted species (FDR < 0.05). The volcano plot below shows the effect sizes and FDRs of each

species for Crohn’s disease, ulcerative colitis, colorectal cancer, and slow transit constipation as examples. Arrows represent the shift of the results from the RMP

to QMP.

(B) Boxplot showing the ratio of the number of significant species (FDR < 0.05) between the RMP and QMP data. Wilcoxon rank-sum test was used to compare

the ratio between depleted and enriched species. In negatively associated diseases such as Crohn’s disease and ulcerative colitis, the majority of depleted

species in the patients increased their effect size and statistical significance in the QMP compared with the RMP, while enriched species decreased the statistical

significance. It was the opposite in the positively associated diseases such as colorectal cancer and slow transit constipation. These results indicate that RMP-

based analyses underestimate or overestimate disease-associated microbial species due to differences in microbial load between cases and controls, while

QMP-based analyses reduce these biases.
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