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Gut microbiota shapes cancer
immunotherapy responses

Check for updates

Wanting Lei1,2,6, Kexun Zhou3,6, Ye Lei4,6, Qiu Li1 & Hong Zhu1,5

The gut microbiota significantly influences cancer immunotherapy efficacy by modulating immune
responses, remodeling the tumormicroenvironment (TME), andproducing keymetabolites. Strategies
such as FMT, probiotics, and dietary interventions show promise in enhancing responses to ICIs and
ACTs while reducing immune-related adverse events (irAEs). This review summarizes clinical and
preclinical findings and discusses microbiota-based interventions and future directions for precision
immunotherapy.

In 2001, the concept of “microbial community”was first introduced, which
mainly consists of 40 trillion microorganisms, including bacteria, fungi,
archaea, and viruses, withmore than 100 times asmany genes as the human
genome1–4. Among them, the gut microbiota is particularly significant,
colonizing the colon and comprising over 97% of the total microbial
population2,5. Given that it contains up to 60-70% of peripheral immune
cells and interacts with a substantial number of microbiota, the gut is
regarded as the largest peripheral immune organ in the body6,7. These
microorganisms help maintain intestinal homeostasis through metabolic
and immune-mediated pathways, influencing key physiological processes
such as metabolism, inflammation, immunity, and neurology8–10. For
instance, microbial metabolites such as short-chain fatty acids (SCFAs) and
bile acids (BAs) play crucial roles in shaping both innate and adaptive
immune responses11–13.

Disruptions in gut microbial composition have been linked to cancer
development through multiple mechanisms, including genomic instability,
alterations in the tumor microenvironment, and modulation of immune
evasion strategies14,15. Malignant tumors remain the second leading cause of
death globally, and while conventional treatments like chemotherapy,
radiotherapy, and surgery have improved patient outcomes, they are often
limited by drug resistance, recurrence, and adverse side effects. In recent
years, immunotherapies—such as immune checkpoint inhibitors (ICIs) and
adoptive cell transfer therapies (ACTs)—have revolutionized cancer
treatment16,17. However, responses to these therapies vary significantly
among patients, with some exhibiting primary or acquired resistance,
underscoring the need for novel adjuvant approaches18–20.

In recent years, the influence of the gut microbiota on tumorigenesis
and therapeutic response has been gradually uncovered with the help of
next-generation sequencing (NGS) and third-generation sequencing
technologies21–23. Specific microbial compositions not only differentiate

cancer patients from healthy individuals but also correlate with immu-
notherapy outcomes, making them potential biomarkers for predicting
treatment efficacy24,25. Strategies to modulate gut microbiota—such as fecal
microbiota transplantation (FMT), probiotics, prebiotics, and dietary
interventions—have shown promise in enhancing immunotherapy
response and mitigating treatment-related toxicity26–30. Additionally,
tumor-associated microbiota within the tumor microenvironment (TME)
may influence therapeutic outcomes by modulating inflammation, pro-
moting immune cell infiltration, and enhancing drug-induced immuno-
genic cell death31–33. These findings have opened new avenues for
microbiome-based precision oncology.

Despite these advancements, the mechanisms underlying interactions
between the gut microbiota and tumor immunity remain incompletely
understood, and research on microbiota-driven immunotherapy optimi-
zation is still in its early stages. Adeeper understanding of themolecular and
systems biology functions of gut microbes is critical for identifying novel
therapeutic targets and improving clinical applications. In this review, we
examine the role of the gut microbiota in shaping immunotherapy efficacy,
focusing on ICIs and ACTs, and exploring its impact on treatment-related
toxicity. We also discuss emerging microbiota-targeted interventions and
personalized therapeutic strategies, highlighting key studies that have
advanced the field. Finally, we address current challenges and future per-
spectives in leveraging gut microbiota for cancer immunotherapy.

The evolving role of gut microbiota in cancer immu-
notherapy: a historical perspective
Immunotherapies, particularly ICIs and ACTs—including T-cell receptor-
engineered T cells (TCR-T) and chimeric antigen receptor T cells (CAR-T)
—have transformed cancer treatment and significantly improved patient
outcomes34–36. These therapies work by activating or modulating the
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immune system to enhance anti-tumor responses. However, their efficacy
varies widely across cancer types and patient populations, with key chal-
lenges such as antigen escape, limited transport, and insufficient tumor
infiltration affecting treatment success37–41. Additionally, tumor mutation
burden (TMB)—the total number of somatic mutations per coding region
of a tumor genome—has emerged as a significant biomarker predicting
immunotherapy response. Tumors with higher TMB, such as melanoma
and non-small-cell lung cancer (NSCLC), tend to generate more neoanti-
gens, thereby enhancing tumor immunogenicity and responsiveness to
ICIs42. Conversely, cancerswith lowerTMB, such as prostate andpancreatic
cancer, often exhibit reduced neoantigen formation, resulting in limited
immune recognition and decreased efficacy of immunotherapies43. Emer-
ging clinical studies have identified a strong correlation between gut
microbiota composition and immunotherapy outcomes in cancer patients
(Fig. 1 and Table 1)44–89. Fecal sample analyses suggest that variations in gut
microbial communities may influence treatment efficacy through under-
lying biological mechanisms. These studies demonstrate the utility of
microbiota interventions in clinical practice.However, given the complexity
of the gutmicrobiota and significant individual heterogeneity, translation of
microbiota-based insights into clinical practice remains limited. Further
investigation is needed to fully elucidate these interactions and harness the
gut microbiota to optimize immunotherapy strategies.

Gut microbiota and ICIs: modulation, response and therapeutic
potential
ICIs work by enhancing the body’s immune response against tumors, pri-
marily by blocking inhibitory immune checkpoints such as programmed
cell death protein 1 (PD-1), its ligand PD-L1, and cytotoxic T lymphocyte-
associated antigen-4 (CTLA-4).Currently, ICIs have beenwidelyused in the
treatment of a variety of cancers. Apart from mismatch repair deficient
(dMMR) colorectal cancer, which is consistently responsive to ICIs, in
general, only 20-40%of patients (including themost responsive tumor types
such as melanoma, lung cancer and renal cell carcinoma) are susceptible to
ICIs45,46. Early preclinical research suggested that gut microbiota plays a key
role in modulating anti-tumor immune responses90–92. In 2015, Sivan et al.
first reported that commensal bacteria influence both spontaneous immune
responses to tumors and the effectiveness of ICIs93. They demonstrated that
oral administration of Bifidobacterium enhanced the anti-tumor efficacy of
PD-L1 inhibitors by promoting dendritic cell (DC) maturation and
increasing tumor-specific CD8+T cell activity. Another study that same
year showed that antibiotic treatment could reduce the effectiveness of ICIs,
while supplementation with Bacteroides fragilis in melanoma models
restored anti-CTLA-4 efficacy by stimulating Th1 cell activation in tumor-
draining lymph nodes and enhancing intra-tumoral dendritic cell
maturation94.

By 2018, clinical trials confirmed that gutmicrobiota composition and
diversity could predict ICI response25,45. Patients with non-small cell lung
cancer (NSCLC) and renal cell carcinoma (RCC) who had higher gut
microbial diversity responded better to anti-PD-1 therapy25. In metastatic
melanoma, responders exhibited increased levels of Bifidobacterium
longum, Collinsella aerofaciens, and Enterococcus faecium, and fecal
microbiota transplantation (FMT) from these patients into germ-free mice
improved anti-PD-L1 therapy outcomes45. Retrospective studies further
linked antibiotic use to reduced ICI efficacy and lower survival rates in
patients with advanced solid tumors, reinforcing the role of gut microbiota
in shaping anti-tumor immune responses95,96. Prospective studies have since
demonstrated significant correlations between microbiome composition
and ICI outcomes in melanoma, NSCLC, and hepatocellular carcinoma
(HCC)46–49. Notably, researchers showed that FMT from ICI responders,
combined with anti-PD-1 therapy, could overcome resistance in patients
with refractory melanoma55,74. The first phase I FMT clinical trial further
highlighted the role of gutmicrobiota inmodulating responses to anti-PD-1
therapy54. Researchers then focused on multi-omics and metabolite
mechanisms. Zhu et al. characterized five response-associated gut pheno-
types through multi-omics analysis, in which the metabolite phenylethyl

fluoride was negatively associated with response and shown to attenuate
anti-PD-1 efficacy in vivo, elucidating the interplay between gutmicrobiota,
gut metabolome, and immunotherapy response97.

Despite concerted efforts by researchers to combine diverse cohorts
and expand sample sizes for studying microbiota associated with
immunotherapy63, identifying consistent beneficial microbial markers
remains challenging. This difficulty stems from multiple confounding fac-
tors, including individual and environmental variability, differences in
clinical trial design, and methodological inconsistencies. Moreover, gut
microbiota linked to response varies by ICI type—bacteria associated with
anti-PD-1 and anti-PD-L1 efficacy may differ from those influencing anti-
CTLA-4 response, reflecting distinct mechanisms of immune
modulation54,93,98. For example, Gunjur et al. suggest that future develop-
ment of gutmicrobiota diagnostics or therapeutics should be tailored to ICB
treatment protocols rather than to cancer type. Tumor type further influ-
ences microbiome interactions, resulting in variability among patients99–101.
For example, in advanced melanoma, high levels of Bifidobacterium, Cor-
iobacteriaceae, Ruminococcaceae, and Lachnospiraceae correlate with
favorable anti-PD-1 responses25,45–47,62. In contrast, NSCLC, RCC, andHCC
patients with greater abundance of Akkermansia muciniphila exhibit
improved anti-PD-1 efficacy25,102. Interestingly, Akkermansia muciniphila
has also been linked to resistance in antibiotic-treated patients, suggesting a
dual role in ICI response103.Most studies todatehave reliedonmetagenomic
sequencing of fecal samples to identifymicrobial species associated with ICI
response. However, a comprehensive analysis at the subspecies or strain
level has yet to be conducted.Recent studies have revealed that twobranches
of the same bacterial subspecies do not play identical roles in tumorigenesis
and progression, which underscore the necessity for finer-grained studies to
elucidate the precise interactions between themicrobiome and ICI, with the
objective of optimizing the effects of immunotherapy104.

Gut microbiota and ACTs: influence on efficacy and toxicity
ACTs, refer to collecting andmodifying a patient’s immune cells in vitro to
enhance their tumor-killing ability before reinfusion into the body, include
T-cell receptor (TCR) therapy, chimeric antigen receptor (CAR) T-cell
therapy, natural killer (NK) cell therapy, and tumor-infiltrating lymphocyte
(TIL) therapy.Many studies have shown thatACTs, particularlyCAR-T cell
therapy, has demonstrated significant efficacy in hematologic malignancies
and melanoma105,106.

The influence of gutmicrobiota onACTefficacywasfirst discovered in
2007 when researchers found that the broad-spectrum antibiotic cipro-
floxacin reduced the therapeutic effectiveness of ACT in mice. This effect
was reversed by supplementing bacterial lipopolysaccharide (LPS), which
activates theToll-like receptor (TLR)-4 pathway107. Subsequent studies have
provided further indirect evidence linkinggutmicrobiota toACToutcomes.
In 2017, a study showed that vancomycin treatment, which increased
Proteobacteria while depleting Firmicutes and Bacteroidetes, enhanced
ACT efficacy by promoting CD8α+DCs and upregulating interleukin
(IL)-12. In contrast, antibiotics such as neomycin andmetronidazole, which
deplete Gram-negative aerobic and anaerobic bacteria, respectively,
impaired ACT efficacy108. This suggests that gut microbiota modulation
may improve ACT effectiveness. In 2018, it was shown that gutmicrobiota-
mediated bile acid metabolism increased CXCR6+NKT cells in the liver,
contributing to the anti-tumor activity of HCC109. In the same year,
researchers found that SCFA, another key microbial metabolite, could
strengthen anti-tumor immunity of ACT by inhibiting histone deacetylase
to increase the cytotoxicity of CD8+ T cells110. Since then, researchers have
gradually focused on the effects of gut microbial metabolites on the efficacy
of ACT and demonstrated these findings111–113.

During this time, as ACT therapies evolved, several retrospective stu-
dies found that gut microbiota were associated with ACT toxicity and had
potential as biomarkers. One study analyzing plasma samples from color-
ectal cancer (CRC) patients treatedwithACTand chemotherapy found that
responders had significantly higher blood levels of Bifidobacterium, Lac-
tobacillus, and Enterococcus, indicating that the blood microbiome may
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serve as a biomarker for immunotherapy response60. In 2022, Lauren et al.
found that patients treated with piperacillin/tazobactam, meropenem, or
imipenem/cilastatin (P-I-M) antibiotics within four weeks before CD19-
targeted CAR-T therapy had lower survival rates and higher neurotoxicity
risks. Sequencing data identified Ruminococcus, Bacteroides, and

Faecalibacteriumas keymicrobial taxa associatedwithCAR-Tefficacy,with
bacterial metabolic pathways such as peptidoglycan synthesis and pentose
phosphate metabolism emerging as potential biomarkers for response
monitoring70. In the same year, Melody et al. found that the composition of
the gutmicrobiota appeared to change at different stages of CAR-T therapy.

Fig. 1 | Timeline for key advancements of gut microbiota research on immu-
notherapy. ACT, adoptive cell therapy; PD-L1, programmed cell death ligand 1;
CTLA-4, cytotoxic T lymphocyte-associated antigen-4; ICI, immune checkpoint
inhibitor; Rs, responders; NRs, non-responders; TME, tumor microenvironment;
CAR-T, chimeric antigen receptor T-cell therapy; NGS, next generation sequencing.
Early mouse studies (2007–2013) demonstrated that gut microbiota can enhance
anti-tumor immune responses, whereas antibiotic treatment attenuates the efficacy
of ACT. In 2015, research first revealed a direct relationship between gut microbiota
and ICI response, identifying specific bacterial species such as Bifidobacterium and
Bacteroides fragilis as promoters of ICI efficacy. Subsequent preclinical and clinical

studies in 2018 explored the potential of gut microbiota and its metabolites as
predictive markers for the effectiveness of ICIs and ACTs. Clinical breakthroughs
between 2020 and 2021 further demonstrated that fecal microbiota transplantation
(FMT) could enhance ICI response, while gut microbial metabolites were found to
improve the activity of CAR-T cells. More recent retrospective and prospective
studies (2022–2023) have established correlations between gut microbiome com-
position and CAR-T cell therapy efficacy, leveraging next-generation sequencing
(NGS) and machine learning algorithms for predictive analysis. In 2024–2025,
researchers focus on multi-omics and metabolic mechanisms underlying gut
microbiota interactions with immunotherapy.
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In multiple myeloma (MM) patients, microbial diversity and abundance
varied between those in complete remission (CR) and partial remission
(PR), with Bifidobacterium, Prevotella, Sutterella, and Collinsella showing
significant fluctuations. Moreover, patients who developed severe cytokine
release syndrome (CRS) exhibited higher levels of Bifidobacterium, Leu-
conostoc, Stenotrophomonas, and Staphylococcus, suggesting a potential
role of gut microbes in CAR-T-associated toxicities71. Targeted microbiota
modulation could offer a strategy to mitigate these side effects.

Additionally, gut microbes can shape TME by promoting che-
mokine secretion, recruiting tumor-infiltrating T cells, and improving
patient prognosis114. Notably, intratumoral injection of Escherichia coli
MG1655 has been shown to normalize tumor vasculature and repro-
gram tumor-associated macrophages (TAMs) to the M1 phenotype,
leading to increased chemokine CCL5 production and enhanced T cell
infiltration of ACTs115. This approach, which combined bacterial
therapy targeting the interior of solid tumors with ACT targeting the
periphery of tumors, successfully eradicated early melanoma and slo-
wed pancreatic tumor progression. Current research on the interaction
between gut microbiota and ACTs is still in its early stages, with most
studies focused on hematologic malignancies. The role of gut micro-
biota in ACTs efficacy for solid tumors remains unexplored, and the
dominant bacterial species and underlying mechanisms require further
investigation. In the future, interventions such as microbiota trans-
plantation or metabolite supplementation before T-cell activation
could enhance the effectiveness of ACTs and reduce treatment-related
toxicity.

Gut microbiota and CpG-ODN immunotherapy: modulation and
clinical implications
Pattern recognition receptors (PRRs) play a crucial role in initiating and
sustaining innate immunity. Among them, TLRs, nucleotide-binding
oligomeric domain-like receptors (NLRs), and C-type lectin receptors
(CLRs) are key mediators116. Innate immune cells such as DCs and NK
cells express PRRs to detect pathogen-associated molecular patterns,
bridging innate and adaptive immune responses. CpG oligodeox-
ynucleotides (CpG-ODNs), synthetic immunomodulatory agents,
enhance immune responses by activating TLR9, thereby stimulating
both cellular and humoral immunity117,118.

Studies have demonstrated the gut microbiota’s essential role in
CpG-ODN-based immunotherapy. Guiducci et al. found that CpG-
ODN treatment in tumors rapidly shifts macrophages from an
immunosuppressive M2 phenotype to a pro-inflammatory M1 state,
producing high levels of TNF and IL-12, leading to tumor necrosis.
However, this effect was absent in sterile or antibiotic-treated mice,
suggesting that gut microbiota–derived LPS activate TLR4, priming
myeloid cells in tumors to respond to TLR9 stimulation119. Similarly,
Iida et al. reported that disrupting the microbiota impaired tumor
responses to CpG-ODNs and platinum-based chemotherapy120. Their
findings linked specific bacterial species to TNF production, where
Gram-negative Ruminococcus (e.g., A. shahii) enhanced TNF expres-
sion, while Gram-positive Lactobacillus species (e.g., L. murinum, L.
intestinalis, L. fermentum) were negatively associated. Notably,
restoring A. shahii in antibiotic-treated mice reinstated TNF produc-
tion, underscoring the microbiota’s role in mediating immune
responses. The influence of gut microbiota on CpG-ODN immu-
notherapy has been further validated in clinical trials. A phase II study
in melanoma patients receiving CpG-ODN combined with ICIs
revealed that responders had an enriched population of Gram-negative
Bacteroidaceae, Enterobacteriaceae, and Firmicutes, reinforcing the
microbiota’s role in modulating bone marrow-derived immune func-
tions within the TME85.

Although the precise mechanisms linking gut microbiota to tumor
immunotherapy remain under investigation, emerging research suggests
that distinct microbial subtypes influence clinical outcomes, with shared
genetic traits modulating host immune responses62. Future studies should

focus on identifying key bacterial strains and their metabolites to develop
targetedmicrobiota-based strategies for enhancing immunotherapy efficacy.

Gut microbiota and cancer immunotherapy: mechan-
isms of immune modulation
As mentioned earlier, gut microbes can modulate immunotherapy
responses, and the mechanisms by which gut microbiota modulate
anti-tumor immune responses also have important implications, with
roles involving the immunomodulation of the body, including the
immune system and the TME, by the microbiota, either directly or
through its metabolites, and by exerting interactions with immu-
notherapy (Fig. 2).

Shaping innate and adaptive immunity
Growing evidence indicates that gut microbiota plays a crucial role in
regulating innate immunity by influencing immune signaling and
maintaining gut barrier integrity. The microbiota shapes the develop-
ment and function of key innate immune cells, including DCs and
macrophages. Disruptions in microbial balance weaken the intestinal
mucosal barrier, allowing microbial products such as lipopoly-
saccharides (LPS), peptidoglycan, and flagellin to enter the blood-
stream. These microbial components activate pattern recognition
receptors (PRRs), such as TLRs and NLRs, triggering proinflammatory
cytokine production, DC maturation, and NK cell activation, all of
which contribute to immune responses and inflammation121. Addi-
tionally, specific gut bacteria activate PRRs within gut-associated
lymphoid tissue (GALT) and mesenteric lymph nodes, further stimu-
lating DCs and enhancing immune function122. For example, Bifido-
bacterium bifidum and Bifidobacterium fragilis promote innate
immunity by interacting with DCs and macrophages through their
metabolites and stimulating the release of cytokines such as IL-12 and
TNF-α92,93,123. Gut microbiota also influence innate immune signaling
through NLRs. Studies suggest that commensal bacteria help regulate
intestinal inflammation by interacting with these receptors124–126. In
addition, lactobacillus plantarum can enhance the expression of natural
cytotoxicity receptors (NCRs), activating NK cells and reinforcing
innate immunity127. Furthermore, themicrobiota plays a role in shaping
the phenotype and function of innate lymphoid cells (ILCs), particularly
ILC3s, further underscoring its importance in immune regulation128. For
instance, Gut microbiota metabolites can directly modulate ILC3 func-
tions, influencing cytokine production, tissue repair, and inflammation
regulation129. These interactions subsequently alter the immune micro-
environment, which can enhance or impair responses to cancer immu-
notherapy. Recent studies highlight that microbial-derived aryl
hydrocarbon receptor (AhR) ligands enhance ILC3 functionality, pro-
moting anti-tumor immunity and improving immunotherapeutic
outcomes130.

Beyond innate immunity, gut microbiota contributes to the
development of adaptive immune responses, particularly through
molecular mimicry and thus stimulation of T cell activation and dif-
ferentiation, which in turn influence systemic immune homeostasis131
–133. Studies suggest that gut microbes regulate CD4+ T cell subtypes,
including Th1, Th2, Th17, and regulatory T cell (Treg)134–136. Germ-
free (GF) mice, for instance, exhibit an imbalance skewed toward a
Th2-dominant response137. Certain bacterial species, such as Bacter-
oides fragilis, produce polysaccharide A (PSA), which engage TLR 2/1
heterodimers and Dectin-1, triggering downstream phosphoinositide
3-kinase signaling138. This cascade leads to the production of the
immunomodulatory cytokine IL-10 by CD4+ Tregs, contributing to
immune homeostasis. The gut microbiota also influences intestinal
CD8+ T cell function, which extends to the regulation of peripheral
immune cells139–142. Moreover, the gut microbiota has been shown to
play a dual role in cancer progression bymediating B cell responses and
thusmodulating immune responses. On the one hand, B-cell responses
that are indirectly induced by specificmicrobiota (e.g., Bifidobacterium
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bifidum, Ackermannia spp.) through activation of DC and CD8+ T
cells may promote antitumor immunity through the production of
tumor-reactive antibodies, the enhancement of antigen presentation,
and the promotion of cytotoxic T-cell responses143,144. Conversely,
under certain conditions, certain intestinal flora (e.g., Mycobacterium
spp.) may attenuate T-cell-mediated antitumor responses by inducing

regulatory B-cell differentiation and secreting immunosuppressive
factors such as IL-10 and TGF-β143. The specific microbial commu-
nities and their metabolites play a pivotal role in determining whether
B cells exert tumor-promoting or tumor-suppressive effects.

Disruptions in microbiota-T cell interactions can create a proin-
flammatory environment within and beyond the gastrointestinal tract,
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including the TME. These insights highlight the intricate crosstalk between
the gut microbiota and host immunity, offering potential therapeutic ave-
nues to enhance immunotherapy efficacy.

Harnessingmetabolites for the regulationofanti-tumor immunity
Gut microbiota influence both systemic and tumor-specific immune
responses through their metabolites—small molecules that diffuse from the
gut andmodulate the immune system145. Thesemicrobialmetabolites canbe
broadly categorized based on their origin and synthesis: (1) metabolites
derived from dietary components, such as SCFAs, tryptophan metabolites,
and inosine; (2) host-produced metabolites modified by gut microbiota,
such as secondary bile acids; and (3) metabolites synthesized directly by gut
microbiota, including branched-chain amino acids (BCAAs) and
vitamins146.

SCFAs, such as butyrate and propionate, play a key role in immune
regulation.Bacteroidetes, Lachnospiraceae, andRoseburiaproducepropionic
acid via the succinate or acrylic acid pathways, while Firmicutes species,
including Ruminococcus and Clostridium, generate butyric acid147,148. These
SCFAs are absorbed in the colon and influence T cell differentiation through
G-protein-coupled receptor signaling andhistonedeacetylase inhibition149,150.
Similarly, tryptophan metabolism by gut microbiota yields various bioactive
compounds, such as indoles, 5-hydroxytryptamine, and kynurenine, which
exert bidirectional effects on immune responses151. For example, Lactoba-
cillus reuteri metabolizes tryptophan in the TME to produce indole-3-alde-
hydes, which enhanceCD8+Tcell activity and inhibitmelanoma growth via
AhR signaling152. However, in pancreatic ductal adenocarcinoma (PDAC)
models, Lactobacillus reuteri-derived tryptophanmetabolites activate TAMs,
promotingan immunosuppressivephenotype153.Thesefindingshighlight the
need for tumor-specific intervention strategies. Other microbial metabolites
also modulate immune responses. Inosine, a purine metabolite produced by
Akkermansiamuciniphila andBifidobacterium longum, enhances antitumor
immunity by inhibiting UBA6 expression in tumor cells, thereby increasing
tumor immunogenicity154. Additionally, inosine interacts with adenosine 2A
receptors onT lymphocytes, leading to IL-12 receptor β2 activation and IFN-
γ upregulation, further strengthening immune responses155.

Gut microbiota-derived lipid metabolites, particularly sphingolipids
such as ceramides and sphingosine-1-phosphate (S1P), also significantly
modulate immune responses and influence cancer immunotherapy
efficacy156–158. Sphingolipids not only serve as structural components of
cellular membranes but also act as signaling molecules that regulate cell
behavior and immune cell communication. Specific gut microbes,
including Bacteroidetes, produce sphingolipids that shape host immune
responses157,159. These microbiota-derived sphingolipids can either
enhance or impair the efficacy of immunotherapies by modulating
immune cell trafficking, proliferation, and activation. For instance, S1Phas
been shown to regulate lymphocyte egress from lymphoid tissues, influ-
encing their availability at tumor sites, thus directly impacting immu-
notherapy outcomes160. The immunomodulatory roles of these lipid
metabolites underscore the importance of exploring microbial lipid
metabolism further to develop targeted strategies enhancing the effec-
tiveness of cancer immunotherapies.

Bile acids, primarily converted by gut microbiota in the cecum and
colon, also influence immune function. Species within Firmicutes,

particularly Clostridium, convert primary bile acids into secondary bile
acids such as lithocholic acid (LCA) and deoxycholic acid (DCA)161. These
metabolites regulate T cell differentiation and macrophage polarization,
with secondary bile acids notably suppressing Th17 cell function162,163.
However, their effects on tumor immunity are complex. For example,
secondary bile acids from Clostridium scindens impair the tumor-
suppressive function of NKT cells109. In contrast, LCA inhibits breast can-
cer cell growth by activating TGR5 and constitutive androstane receptors,
leading tooxidative stress, suppressionof epithelial-mesenchymal transition
(EMT), and reduced angiogenesis and metastasis164. Gut microbiota also
produce BCAAs and vitamins that influence anti-tumor immune response.
Bacteria degrade proteins and unabsorbed amino acids to synthesize
BCAAs such as leucine, isoleucine, and valine, which promote effector T cell
activation and proliferation through mTORC1 signaling165. Meanwhile,
Firmicutes (such as Lactobacillus and Enterococcus) and Bacteroides syn-
thesize B vitamins. Bacteroides fragilis, Prevotella, and Ruminococcus lactis
produce vitamin B3, which binds to GPR109A receptors in myeloid cells,
inhibiting NF-κB signaling, reducing immunosuppressive myeloid cell
polarization and enhancing CD8+ T cell cytotoxicity166,167. Likewise, vita-
min B6, synthesized by Lactobacillus acidophilus and Bifidobacterium
bifidum, boosts T lymphocyte proliferation and promotes antitumor
immunity by stimulating T cell activity168,169.

These findings underscore the critical role of microbial metabolites in
shaping antitumor immune responses. However, their bidirectional effects
and individual variability present challenges in therapeutic applications. To
maximize their potential, future research must integrate multi-omics data
anddeveloppersonalized strategies tooptimize tumor immunotherapywith
minimal toxicity.

Synergizing ICI to enhance antitumor efficacy and
managing risks
As previously mentioned, the gut microbiota has the capacity to augment
the efficacy of immunotherapy by modulating host immunity. However,
several studies have demonstrated that the gut microbiota can also interact
with immunotherapy to further enhance its efficacy. Vétizou et al. found
that Bacteroides thetaiotaomicron and Bacteroides fragilis stimulate TLR4-
and IL-12- dependent T helper 1 (Th1) responses, enhancing the effects of
CTLA-4 blockade94. Other studies have shown that Firmicutes and Acti-
nobacteria activate mucosa-associated innate T cells and CD56+CD8+
T cells in peripheral blood, increasing the expression of human leukocyte
antigen (HLA) class II genes, CD74, and granzyme K (GZMK) in CD8+
T cells at tumor sites, thereby improving anti-PD-1 responses55. Certain
bacterial species also facilitate immune cell infiltration into tumors, further
amplifying the effects of immunotherapy. Enterococcushiraemigrates from
the small intestine to secondary lymphoid organs, increasing the intratu-
moral CD8+ T/Treg ratio, while Bacteroides intestinihominis accumulates
in the colon and stimulates IFN-γ-producing γδ T cells, improving cyclo-
phosphamide efficacy in advanced lung and ovarian cancer patients115,170.
Similarly, Akkermansia and high-fiber diets have been shown to induce
tumor-infiltratingNKcell-DC interactions through stimulator of interferon
genes (STING) signaling, leading to type I interferon (IFN-I) production
and enhanced ICI efficacy171. Additionally, Bifidobacterium preferentially
accumulates in tumors and promotes CD47-based immunotherapy in a

Fig. 2 | Gut microbiota exert intrinsic and adaptive immunity in the gut
and TME. DC, dendritic cell; MHC-I, major histocompatibility complex class I;
MHC-II, major histocompatibility complex class II; TCR, T cell receptor; PRR,
pattern recognition receptor; NK, natural killer; CTL, cytotoxic T lymphocyte.
Within the gut, the gut microbiota plays a crucial role in maintaining the intestinal
barrier, protecting against pathogens, and shaping immune responses. Certain
bacterial species, such as Bifidobacterium and Bacteroides fragilis, can interacting
with DCs and activate CD8+ T cells and Th1 cells. Additionally, invasive micro-
biota and microbiota-derived metabolites—including lipopolysaccharides (LPS)
and peptidoglycans—activate PRRs, promoting macrophage polarization toward
the pro-inflammatory M1 phenotype and enhancing T cell activation. Specific

microbial strains, such as Lactobacillus plantarum and Bifidobacterium, also sti-
mulate NK cell activation, reinforcing antitumor immunity. Systemically, these
microbiota-driven immune responses extend beyond the gut, increasing CTL
infiltration into distant tumor sites, particularly within the tumor microenviron-
ment (TME). Notably, Bifidobacterium, Clostridiales, and certain microbial meta-
bolites enhance CD8+ T cell infiltration into tumor tissues, strengthening the
immune response against cancer. Furthermore, gut microbiota-derived antigens
share similar epitopes with tumor-associated antigens, promoting cross-reactivity
and amplifying tumor-targeting immune responses. Conversely, some microbial
metabolites may inhibit T cell recognition of tumor epitopes, potentially dampening
anti-tumor immunity.
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STING- and interferon-dependent manner172. Beyond direct immune
modulation, the commensal microbiota may also activate tumor antigen-
specific T cell responses by modulating the immunogenicity of tumor cells.
Microbiota can enhance ICI efficacy by providing tumor cross-antigens that
stimulate tumor-specificT cell responses131,173,174. Fluckiger et al. found that a
tail-length tapering protein (TMP) from an Enterococcus phage closely
resembles the proteasomal subunit β-4, triggering TMP-specific CD8+ T
cell responses during cyclophosphamide or anti-PD-1 therapy173. Similarly,
Bessell’s team identified an antigenic epitope (SVYRYYGL) in Bifido-
bacterium breve that mimics the tumor epitope (SIYRYYGL), enabling
cross-reactive T cell responses that suppress tumor growth174. Moreover,
bacterial-specific peptides have been identified in HLA molecules from
glioblastoma tissues and tumor cell lines, suggesting a direct link between
gut microbiota and tumor antigen presentation175.

While gut microbiota enhance immunotherapy, they also play a
dual role in modulating immunotherapy-related toxic responses, par-
ticularly immune-associated adverse events (irAEs), either by pro-
moting immune homeostasis and treatment tolerance or by
exacerbating adverse effects through immune dysregulation (Fig. 3).
These toxicities vary by therapy type—anti-CTLA-4 therapy is often
linked to colitis and pituitary inflammation, anti-PD-1 therapy to
thyroid dysfunction and pneumonitis, and CAR-T therapy to cytokine
release syndrome (CRS) and neurotoxicity176–178. A key mechanism
underlying immunotherapy-related toxicity is intestinal barrier dis-
ruption. Studies show that SCFA-rich diets can significantly reduce
gastrointestinal toxicity induced by immunotherapy179,180. Specific
microbial taxa, such as Akkermansia muciniphila and members of the
Ruminococcaceae family, have been associated with high-fiber and
omega-3-rich diets, promoting both optimal antitumor immune
responses and reduced irAEs by supporting mucus turnover and epi-
thelial integrity64. Certain bacterial populations also confer resistance to
irAEs. For instance, increased Bacteroidetes abundance has been linked
to reduced colitis risk in anti-CTLA-4 therapy, and Bacteroides vulgatus
and Bacteroides dorei were found to correlate negatively with irAE

development in metastatic melanoma patients receiving anti-CTLA-4
and anti-PD-1 treatment44,181. Furthermore, FMT from healthy donors
has been shown to restore microbial diversity, increase Treg propor-
tions in colonic mucosa, and mitigate ICI-induced colitis182.

Conversely, gut microbiota imbalances can amplify immunotherapy
toxicity by fostering pro-inflammatory conditions. For example, a high
abundance of Bacteroides intestinalis has been associated with colitis and
upregulation of mucosal IL-1β in melanoma patients treated with anti-
CTLA-4 and anti-PD-1 therapy56. Additionally, studies inmice have shown
that antibiotic treatment can reduce colitis, CRS, and liver injury caused by
immunoagonist therapy, suggesting a microbiota-driven mechanism183.
However, antibiotic use has also been linked to increased neurotoxicity in
patients receiving CD19-targeted CAR-T therapy71. Interestingly, baseline
gut microbiota composition may predict both treatment efficacy and toxi-
city. In metastatic melanoma patients treated with anti-CTLA-4, an abun-
dance of Faecalibacterium and other Firmicutes was associated with
improved treatment responses but higher irAEs, whereas Bacteroidetes
correlated with poorer responses and lower irAE incidence—an effect
termed the “efficacy-toxicity coupling effect”184.

These findings underscore the complex and individualized nature of
microbiota-mediated immune regulation in immunotherapy. However, the
mechanisms of the gut microbiota are complex and individualized, and
further studies are needed to elucidate the precise pathways of the gut
microbiota before translating its regulatory role into new strategies in
clinical treatment.

The intratumoral microbiome: a critical regulator of
TME and immunotherapy responses
The TME constitutes a sophisticated ecosystem that includes tumor cells,
stromal cells, immune cells, and an intricate molecular and physical land-
scape. A critical yet often overlooked component of this ecosystem is the
tumor-associated microbiota, consisting of bacteria, fungi, archaea, and
viruses, which are either intrinsically present at the tumor site or translo-
cated into tumors via various physiological routes152,185,186. Recent research

Fig. 3 | Bidirectional regulation of immunotherapeutic toxicity by gut micro-
biota. LPS, lipopolysaccharide; SCFA, short chain fatty acids; FMT, fecal microbiota
transplantation. With respect to the amplification of immunotherapy toxicity, the
presence of certain bacterial species, including Lactobacillus intestinalis, Strepto-
coccus, and E. faecalis, along with other Firmicutes, disrupt the intestinal barrier,
leading to elevated levels of LPS and promotion of Th17 cell activation, which in

turn, promotes an increase in interleukin-17 (IL-17) secretion and inflammatory
response. Conversely, microbiota exemplified by Akkermansia muciniphila, Lac-
tobacillus, Bifidobacterium fragilis, and Bifidobacterium bifidum, as well as FMT
from healthy donors, which collectively enhanced Treg activity, promoted SCFA
production, and upregulated anti-inflammatory cytokines such as IL-10 and TGF-β,
thereby reducing immunotherapy toxicity.
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has underscored the pivotal roles these microbial communities play in
tumorigenesis, progression, metastasis, and response to cancer therapies187.

The composition and diversity of the intratumoral microbiota are
variable across cancer types, reflecting distinct environmental niches and
tumor-specific physiological conditions. For instance, breast cancer tissues
exhibit richermicrobial diversity compared toother cancers, predominantly
harboring Proteobacteria and Firmicutes188. In gastrointestinal cancers, a
notable enrichment of Fusobacterium nucleatum (Fn) has been
documented189–192. In gastric cancer, Fn recruits tumor-associated neu-
trophils via IL17/NF-κB signaling, driving their polarization toward
immunosuppressive phenotypes and increasing PD-L1 expression. Para-
doxically, Fn-infected tumors exhibit increased sensitivity to anti-PD-L1
therapy, indicating dual roles in immune modulation189. Similarly, in CRC,
Fn secretes the Fap2 protein, which interacts with TIGIT receptors on NK
cells, thereby inhibiting their activity, recruitingmyeloid-derived suppressor
cells (MDSCs), and enhancing tumor cell proliferation while impairing
antitumor immunity190. Moreover, Fusobacterium nucleatum has been
found to colonize hepatic metastases via hematogenous dissemination,
subsequently promoting tumor cell invasiveness through activation of the
TLR4/MyD88 signaling axis191. In NSCLC, butyrate-producing bacteria,
notably Roseburia, correlate with disease recurrence and metastasis. Cir-
culating microbial DNA signatures enriched with butyrate producers have
also emerged as predictive biomarkers for recurrence, underscoring the
clinical relevance of microbial metabolites192.

Microbial influence on tumor progression also extends to other cancer
types. In squamous cell carcinoma, Staphylococcus species release enter-
otoxin B, which enhances the expression of CD4+ STAT5 andHDAC-1 in
T cells, subsequently increasing IL-9 secretion and promoting apoptosis of
carcinoma cells193. Additionally, microbial metabolites significantly impact
tumor development through mechanisms such as induction of DNA
damage and activation of oncogenic pathways194. Escherichia coli, for
example, produces colibactin, leading to DNA methylation changes and
double-strandDNAbreaks. Similarly, Bacteroides fragilis generates reactive
oxygen species (ROS), thereby inducing genomic instability and facilitating
tumorigenesis195,196.

The intratumormicrobiota is not only affected by the dynamics of the
TME, but also acts as a feedback regulator of its morphology and function.
Hypoxia, low pH, andmetabolic stress in the TMEmay bemore favorable
for the growth of both parthenogenetic and purely anaerobic bacteria197.
Bifidobacterium, for example, migrates to colonize and enrich CRC
tumors198. Themicrobiota, in turn, affects the TME throughmetabolic and
immune interactions. Numerous studies have demonstrated that specific
gut microbiota and their metabolites influence the TME by promoting the
formation andmaturationof tertiary lymphoid structures (TLS). TLS serve
as critical hubs for local immune activation, facilitating the recruitment,
organization, and activation of immune cells, notably antigen-presenting
cells, T cells, and B cells, thus coordinating robust anti-tumor immunity.
For example, in CRC mouse models, the gut commensal bacterium H.
hepaticus has been shown todriveTLS formationby inducingCD4+Tcell
differentiation into follicular helper T (Tfh) cells, thereby enhancing
immune cell infiltration within the TME199. Additionally, microbial
metabolites such as SCFAs and trimethylamine N-oxide can reshape the
TME to support TLS maturation through activation of the STING sig-
naling pathway and enhancement of T and NK cell activity200. Further-
more, other microbial-derived metabolites—including indole derivatives,
hydrogen sulfide, and bile acids—modulate tumor cell metabolism and
immune homeostasis201. The dynamic evolution of the gut microbiome is
intimately associated with mechanisms of immune escape in tumors.
Specific Clostridium spp. produce metabolites that induce the differ-
entiation of Tregs while inhibiting the establishment of immunosuppres-
sion in the TME202. Moreover, D-Lactate produced by Lactobacillus is
capable of convertingM2-type TAMs toM1-type, thereby remodeling the
TME and enhancing anti-tumor immune responses203.

Given these insights, targeting tumor-associated microbiota and their
metabolites emerges as a promising therapeutic strategy. Synthetic

microbiome interventions, inhibitors against specific tumor-associated
bacteria, or microbiome-based metabolite modulation could effectively
disrupt oncogenic microbial interactions, thereby enhancing immune
responsiveness and treatment efficacy. Future research should thus prior-
itize comprehensive characterizationof the intratumoralmicrobiomeacross
diverse cancer types, unraveling the precise molecular mechanisms
underlying microbial-tumor-immune interactions. This approach holds
significant potential for optimizing personalized cancer immunotherapy
strategies, ultimately improving patient outcomes across multiple
malignancies.

Strategies for gut microbiota intervention combined
with immunotherapy
The composition anddiversity of the gutmicrobiota are closely linked to the
efficacy of cancer therapies. Beyond merely understanding these associa-
tions, researchers are now exploring ways to modulate the microbiota to
enhance immunotherapy effectiveness and reduce toxicity. Strategies for
microbiota-targeted interventions combined with immunotherapy include
antibiotics, FMT, probiotics, dietary and prebiotic-based approaches, and
engineered microbiota therapies (Fig. 4). A multitude of pertinent clinical
trials are currently ongoing, and a comprehensive review of studies per-
taining to these therapeutic strategies from recent years is provided below.

Antibiotics
The utilization of antibiotics in themanagement of patients withmalignant
tumors is predominantly driven by postoperative prophylactic infections,
treatment-related infections, and the management of comorbidities. How-
ever, these interventions inevitably alter the gut microbiota, potentially
affecting immunotherapy outcomes204–206. Preclinical and clinical studies
suggest that antibiotic use, particularly broad-spectrum antibiotics, may
impair ICI efficacy (Table 2)95,207–228. In mouse models of NSCLC and
melanoma, antibiotics such as vancomycin, ampicillin, metronidazole, and
neomycin disrupted IL-17-producing γδT17 cells, promoting tumor
metastasis229. Clinical studies have similarly reported reduced progression-
free survival (PFS) and overall survival (OS) in patients with advanced RCC
andNSCLCwho received antibiotics prior to ICI therapy230. The results of a
retrospective analysis and two clinical studies related to ICI for NSCLC
showed that both antibiotics and another microbiologically modifiable
proton pump inhibitor significantly shortened PFS and OS in patients
treated with atalizumab231. These findings suggest a pivotal role for the
antibiotic-influenced gut microbiota in ICI treatment.

The impact of antibiotics on tumor immunotherapy is also related to
the duration of patient exposure to antibiotics. A multicenter prospective
study reported that antibiotic treatment givenprior to, but not at the time of,
ICI treatment were associated with poorer response and lower OS118.
Conversely, another study suggested that antibiotic use within 30 days
before or after ICI initiation correlated with improved benefit from
immunotherapy213. The divergent outcomes observed in the two studies
maybe attributable to factors such as the timingof antibiotic administration,
the specific nature of the tumor, and individual variations. A meta-analysis
further highlighted the impact of antibiotic timing, showing that patients
who avoided antibiotics within 42 days before ICI therapy had significantly
longer OS than those who received antibiotics within 60 days prior to
treatment, which is consistent with previous findings, as the microbiota
returned to near-baseline levels within 42 days after administration of an
antibiotic cocktail regimen (ABX) for 4 days to healthy adults208,232. The
aforementioned studies underscore the pivotal role of the temporal aspect of
antibiotic administration in the context of immunotherapy. Additionally,
broad-spectrum antibiotics appear to have a more detrimental impact on
OS compared to narrow-spectrum antibiotics226,233.

Despite concerns about their negative impact on immunotherapy,
certain antibiotics may enhance treatment efficacy when used selectively.
Vancomycin, which targets gram-positive bacteria such as Clostridium dif-
ficile, has been shown topromoteNKTcellmigrationand IFN-γproduction,
thereby inhibiting primary and metastatic HCC growth in mice109,234. A

https://doi.org/10.1038/s41522-025-00786-8 Review

npj Biofilms and Microbiomes |          (2025) 11:143 10

www.nature.com/npjbiofilms


clinical trial (NCT03785210) is currently evaluating the efficacy of vanco-
mycin in combination with ICIs for HCC treatment. Antibiotics may also
counteract tumor-associated microbial activities that impair therapy. For
example, some Clostridium species synthesize androgens, reducing the
effectiveness of androgen deprivation therapy (ADT) in prostate cancer235.
Vancomycin-containing antibiotic regimens may enhance ADT efficacy by
eliminating these bacteria236. Similarly, tigecycline has demonstrated syner-
gistic effects with B-cell lymphoma-2 inhibitors, suggesting potential ther-
apeutic applications in diffuse large B-cell lymphoma237. Beyond systemic
effects, localized antibiotic interventions may be particularly beneficial in
tumors with a high microbial burden. The pancreas, due to its anatomical
connection with the gut, harbors a substantial microbial load linked to
pancreatic cancer progression and immunosuppression238,239. ABX has been
shown to disrupt these microbial communities, inhibits pancreatic ductal
adenocarcinoma invasion, and promotes ICI outcome by increasing the
differentiation of M1 macrophages and Th1 CD4+T cells, activating
CD8+Tcells, andupregulating the expression of PD-1 on effectorT cells240.
Additionally, ABX can reduce bacterial translocation to the liver and intes-
tine, thereby inhibiting CRC metastasis241.

While antibiotics offer potential benefits in modulating tumor-
associated microbiota, their application in cancer treatment must be care-
fully tailored. Factors such as the patient’s immune status, tumor genetics,

TME, and antibiotic resistance should be considered. Therefore, treatment
regimens should be tailored to the specific condition of the patient and can
be based on pre-treatment sequencing of the gut microbiome and targeted
formulation design approaches to enhance treatment efficacy while redu-
cing disruption of the gut microbiota by broad-spectrum antibiotics.

FMT
FMT refers to the reconstitution of a new intestinal flora by transplanting
functional flora from healthy human feces into a patient’s gastrointestinal
tract, either orally or via colonoscopy or gastroscopy. Originally developed
to treat refractory Clostridium difficile infections, FMT has since been
explored for other gastrointestinal disorders such as Crohn’s disease and
ulcerative colitis242–244. Itspotential in oncologyhas emerged frompreclinical
studies demonstrating that germ-free mice receiving fecal transplants from
immunotherapy-responsive patients exhibit stronger anti-tumor immune
responses compared to those receiving transplants from non-
responders46,94.

Currently, clinical trials investigating FMT in cancer immunotherapy
are in early stages (Table 3)244–275. Two independent trials (NCT03353402
and NCT03341143) first demonstrated that FMT could overcome resis-
tance to ICI therapy in metastatic melanoma26,55. In NCT03353402, 10
patients with PD-1–refractory melanoma underwent FMT followed by

Fig. 4 | Therapeutic strategies combining gut microbial interventions with
immunotherapy.FMT, fecalmicrobiota transplantation.Gutmicrobiotamodulation
through different approaches, including antibiotics, FMT, probiotics, diet and pre-
biotics, and other strategies, has been shown to influence immunotherapy outcomes.
Selective antibiotics, such as vancomycin and tigecycline, can be beneficial, whereas
broad-spectrum antibiotics may negatively impact treatment response. FMT, admi-
nistered via oral capsules, colonoscopy, or gastroscopy, facilitates the transfer of
beneficial gut microbiota from immunotherapy-responsive donors to patients. The

use of probiotics, including Lactobacillus, Bifidobacterium, Clostridium butyricum,
and Akkermansia, supports a favorable gut microbial composition. Diet and pre-
biotics, such as inulin gel, pectin, high-fiber diets, fasting-mimicking diets, and
ketogenic diets, contribute to microbiota modulation and immune system support.
Additionally, other strategies, including engineered microorganisms, microbial pep-
tides, and microbial metabolites, represent emerging therapeutic approaches. These
interventions collectively contribute to optimizing gut microbiota composition,
thereby promoting immune responses and enhancing immunotherapy efficacy.
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renewed anti-PD-1 therapy, resulting in tumor reduction in three patients,
including two partial responses (PRs) and one complete response (CR)26.
Similarly, NCT03341143 assessed FMT combined with pembrolizumab in
15 patients, yielding two PRs, one overall response (OR), and three cases of
stable disease (SD) lasting over a year55. These studies also highlighted
favorable immune changes, including increased CD8+ T-cell activation
and reduced IL-8–expressing myeloid cells. Microbiome analysis revealed
enrichment of beneficial bacteria (Bifidobacterium longum, Lachnospir-
aceae, Ruminococcaceae) and a decline in potentially detrimental species
such as Bacteroides. Additionally, microbial diversity changes correlated
with increased levels of primary and secondary bile acids and benzoic acid
metabolites. A subsequent FMT study (NCT03772899) differed from the
two previous studies. The present study was distinctive in that its FMT
donorwas fromahealthy individual. Although its conclusions are subject to
further validation due to the trial’s small sample size and lack of a control
group, the preliminary results suggest that theuse of a healthydonor is also a
safe alternative. Concomitantly, this prompts further inquiry into the

optimal FMT donor: a cancer survivor with heightened sensitivity to
immunotherapy, or a non-malignant individual devoid of a medical
history74.

Beyond tumor response, FMT is also being explored for managing
irAEs, particularly in reducing steroid-refractory colitis. Trials such as
NCT03819296, NCT04038619, NCT04721041, and NCT04163289 are
assessing its potential to mitigate irAEs. Early studies suggest FMT is
effective in treating steroid-resistant gastrointestinal graft-versus-host dis-
ease (GvHD) following hematopoietic stem cell transplantation (HSCT),
with patients showing significant clinical remission276,277. Similarly, in ICI-
induced colitis, case reports and small trials indicate that FMT can restore
gut homeostasis, with notable increases in beneficial microbes such as
Akkermansia, Blautia, and Bifidobacterium182. A study by Halsey et al.
reported that 92% of 12 patients with refractory immune-mediated colitis
achieved clinical remission post-FMT, accompanied by increased gut
microbial diversity and enrichment of Collinsella and Bifidobacterium278.
These findings, supported by numerous ongoing and completed trials,

Table 2 | Some Clinical studies of Antibiotic-modulated immunotherapy

Cancer type Patients (n) Antibiotics Intervention Immunotherapy Ref.

Melanoma; NSCLC; etc. 196 β-Lactam; quinolone; macrolides; sulfa; etc. αPD-1/αPD-L1 mAb; 95

Melanoma; NSCLC; lung cancer;
urothelial carcinoma; RCC; sarcoma

2740 Antibiotics αPD-1/αPD-L1 mAb; 207

Melanoma; lung cancer; RCC; UC; etc. 2889 Antibiotics αPD-1/PD-L1 mAb, αCTLA-4 mAb, or
combination treatment

208

Melanoma; NSCLC; lung cancer;
RCC; etc.

5565 β-Lactam; quinolone; vancomycin; daptomycin; etc. αPD-1/PD-L1 mAb, αCTLA-4 mAb, or
combination treatment

209

Advanced melanoma 1585 Systemic antibiotic αCTLA-4 mAb 210

NSCLC; RCC; AML 338 Piperacillin; clindamycin; metronidazole. meropenem;
vancomycin; furantoin; rifampin. rifaximin; tobramycin

ICI; chemotherapy 211

mRCC 4290 β-Lactam; fluoroquinolone; macrolides; tetracyclines; etc. αPD-1/PD-L1 mAb; mTOR inhibitors;
IFN-α; VEGF-TT

212

HCC 450 β-Lactams; quinolones; etc. αPD-1/PD-L1 mAb, αCTLA-4 mAb, or
combination treatment

213

Melanoma; NSCLC; blood cancer; renal
cancer; etc.

635 β-Lactam, sulfa, quinolones, macrolides aminoglycosides;
tetracycline

αPD-1/PD-L1 mAb, αCTLA-4 mAb, or
combination treatment

214

Melanoma; NSCLC; RCC; etc. 12,492 β-Lactam; fluoroquinolone; penicillins; carbapenems; etc. αPD-1/PD-L1 mAb, αCTLA-4 mAb, or
combination treatment

215

Melanoma 568 Cephalosporins; penicillins; fluoroquinolone αPD-1 mAb; αCTLA-4 mAb; combined 216

Lung cancer; etc. 767 Antibiotics αPD-1/αPD-L1 mAb; 217

NSCLC 256 Antibiotics αPD-1/PD-L1 mAb, αCTLA-4 mAb 218

B cell lymphoma; leukemia 228 Piperacillin/tazobactam, meropenem and imipenem/
cilastatin (P-I-M)

Anti-CD19 CAR-T 71

Lung cancer; esophagus cancer;
gastrointestinal cancer; etc.

168 Antibiotics αPD-1 mAb 219

Melanoma 2605 Amoxicillin; amoxicillin; pristinamycin; ofloxacin αPD-1 mAb 220

HNSCC 3651 Extended spectrum penicillins; cephalosporins;
quinolones

αPD-1 mAb 221

HCC 4098 Antibiotics αPD-1/PD-L1 mAb, αCTLA-4 mAb, or
combination treatment

222

Leukaemia; lymphoma; melanoma;
myeloma; etc.

111,260 Amoxicillin; flucloxacillin; trimethoprim; erythromycin; etc. ICI; chemotherapy 205

HER2-negative BC 66 Fluoroquinolones; cephalosporins αPD-1 mAb 223

Melanoma 14 Vancomycin αPD-1mAb 224

NSCLC 2028 Cephalosporins; sulfonamides; quinolones αPD-1/αPD-L1 mAb, or combined
chemotherapy

225

Large B-cell lymphoma 422 Broad-spectrum ABX Anti-CD19 CAR-T 226

ES-SCLC 198 Systemic antibiotic Atezolizumab/chemotherapy 227

SCC 104 Beta lactams; cyclins; fluoroquinolones; aminosides; etc. αPD-1mAb 228

NSCLCnon-small-cell lungcancer,RCC renal cell carcinoma,UCurothelial carcinoma,AMLacutemyeloid leukemia,HNSCCheadandnecksquamouscell carcinoma,HCChepatocellular carcinoma,ES-
SCLC extensive-stage small cell lung cancer, SCC squamous cell carcinoma, ABX antibiotic cocktail regimen.
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reinforce the therapeutic potential of FMT in malignancies279–282. Despite
these promising outcomes, concerns remain regarding the long-term safety
of FMT. In 2019, two patients developed Escherichia coli bacteremia, with
one fatality, following FMT from the same donor283. This finding prompted
the Food and Drug Administration (FDA) to issue a safety warning
regarding the risk of infection with FMT therapy. A retrospective study
further revealed that 9% of screened donors carried multidrug-resistant
organisms, highlighting the need for stringent donor screening protocols,
particularly for immunocompromised patients284.

However, not all PD-1–refractory patients respond to renewed
therapy after FMT, likely due to factors such as immunosuppression,
donor-recipient microbiota incompatibility, or suboptimal FMT
delivery methods. Additionally, there are many off-target microbiota
components in donor feces that are transplanted into recipients that
have unknown effects. Future research should focus on refining

microbiota transfer protocols, identifying optimal donor-recipient
pairings, and integrating FMT with complementary approaches to
enhance antitumor efficacy.

Probiotics
The concept of probiotics, first introduced by Metchnikoff, refers to live
microorganisms that confer health benefits when administered in suffi-
cient quantities285,286. Preclinical studies indicate that supplementing spe-
cific gut microbes, such as Lactobacillus, Bifidobacterium, Enterococcus,
Faecalibacterium, and Ruminococcaceae, can enhance tumor
immunotherapy287–291. For instance, Bifidobacterium pseudolongum pro-
duces inosine, which activates the T cell adenosineA2A signaling pathway,
improving immunotherapeutic efficacy176. Similarly, Bifidobacterium
bifidum K57 supplementation has been shown to boost the immune
response against the TME by enhancing CD4+ and CD8+ T cell

Table 3 | Clinical trials of FMT interventions on immunotherapy

Phase (Trial ID) Patients (n) Cancer type Immunotherapy treatment Primary outcomes measures Ref.

II (NCT06218602) 40 Lymphoma anti-CD19 CAR-T Safety, AEs 244

I (NCT03353402) 40 Melanoma αPD-1 mAb AEs, proper implant engraftment 245

I (NCT03772899) 20 Melanoma αPD-1 mAb Safety 246

I/II (NCT05251389) 24 Melanoma αPD-1 mAb Efficacy 247

II (NCT03341143) 18 Melanoma αPD-1 mAb ORR 248

NA (NCT04577729) 60 Melanoma ICI PFS 249

II (NCT06623461) 128 Melanoma ICI and LND101 PFS 250

I/II (NCT04521075) 50 Melanoma, NSCLC αPD-1 mAb AEs, ORR 251

II (NCT04951583) 70 Melanoma, NSCLC αPD-1 mAb or αPD-1 mAb plus αCTLA-
4 mAb

ORR 252

I (NCT05008861) 20 NSCLC αPD-1 mAb and chemotherapy AEs, ORR 253

II (NCT06403111) 62 NSCLC αPD-1 mAb and chemotherapy 12 month-PFS 254

II (NCT05502913) 80 Lung Cancer (Chemo-) immunotherapy PFS 255

NA (NCT04924374) 20 NSCLC αPD-1 mAb Safety, Response 256

I (NCT04056026) 1 Mesothelioma αPD-1 mAb PFS 257

III (NCT06486220) 96 NPC αPD-1 mAb and chemotherapy PFS 258

II (NCT05750030) 12 HCC αPD-L1 mAb plus VEGF-α mAb Safety, AEs 259

II (NCT05690048) 48 HCC αPD-L1 mAb plus VEGF-α mAb Differential tumoral CD8 T-cell
infiltration, AEs

260

II (NCT06405113) 198 Gastric Cancer αPD-1 mAb plus SOX 2-year ORR 261

I (NCT04130763) 10 Gastrointestinal cancer αPD-1 mAb ORR, Abnormal vital signs, AEs 262

I (NCT04038619) 40 Gastrointestinal cancer ICI AEs, Remission of diarrhoea/ colitis 263

I (NCT04729322) 15 CRC αPD-1 mAb ORR 264

II (NCT05279677) 30 CRC αPD-1 mAb and TKI ORR 265

I (NCT04163289) 20 Renal cancer αPD-1 mAb or αCTLA-4 mAb Immune-related colitis 266

I (NCT04038619) 40 RCC ICI AEs, ICI-related diarrhea/colitis 267

I/II (NCT04758507) 50 RCC ICI Incidence of tumor progression 268

II (NCT04116775) 32 Prostate cancer αPD-1 mAb and hormone therapy Efficacy 269

I (NCT04883762) 4 Solid tumors ICI AEs 270

I/II (NCT04521075) 42 Solid tumors αPD-1 mAb AEs, ORR 271

II (NCT05286294) 20 Solid tumors ICI Safety, ORR 272

I/II (NCT03819296) 800 Solid tumors Infliximab/Vedolizumab AEs, ICI-related colitis 273

NA (ChiCTR2100042292) 30 Solid tumors Immunotherapy Change in microbiota, Immune
status, AEs

274

NA (NCT04264975) 60 Solid tumors Immunotherapy ORR 254

NA (NCT05273255) 18 Malignancies Immunotherapy Change in intestinal microbiome
community

275

NSCLCnon-small-cell lungcancer, ICI immunecheckpoint inhibitor,ORRobjective response rate,PFSprogression-free survival,AEsadverseevents,NPCnasopharyngeal carcinoma,HCChepatocellular
carcinoma, CRC colorectal cancer, SOX oxaliplatin and capecitabine, RCC renal cell carcinoma.
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activation and increasing IFN-γ and IL-2 secretion, thereby synergizing
with anti-PD-1 therapy to reduce tumor burden290.

Advancements in NGS have identified Akkermansia as another
probiotic that promotes immunotherapy292,293. In Peyer’s patches, Akker-
mansia induces an increase in Tfh cells, while its outer membrane protein,
Amuc, triggers adaptive immune responses by activating the
TLR2 signaling pathway and decreasing immunosuppressive Treg cell
levels294,295. In addition, commensal bacterial strains contribute to immu-
notherapy by maintaining gut homeostasis. Tanoue et al. isolated 11
bacterial strains from healthy donors that induced IFN-γ production by
CD8+ T cells, thereby enhancing ICI efficacy in murine tumor models296.
While someClostridium species are linked to colon carcinogenesis, others,
such as Roseburia intestinalis, Eubacterium hallii, Faecalibacterium
prausnitzii, and Anaerostipes caccae, have demonstrated tumor-
suppressive properties by activating and infiltrating intratumoral CD8+
T cells, effectively reducing tumor growth297. These studies suggest that the
interaction between the gutmicrobiota and the tumor and immune system
may involve more complex processes.

Early clinical trials have explored probiotics to modulate the gut
microbiota and enhance antitumor immunity in cancer patients. Probiotic
strains with anti-inflammatory and mucosal-protective properties, such as
Lactobacillus and Bifidobacterium, have been used to mitigate che-
motherapy- and radiotherapy-induced toxicity298–300. Consoli et al. reported
that probiotic treatment significantly reduced IL-1β, IL-10, and IL-23A
mRNA levels in colonic mucosa, leading to a lower incidence of post-
operative infections301. A clinical trial in CRC patients found that supple-
mentationwithBifidobacterium lactis andLactobacillus increasedbutyrate-
producing bacteria, particularly Faecalibacterium and Clostridiales spp., in
tumor, mucosal, and fecal microbiota, further supporting the role of pro-
biotics in enhancing antitumor responses302. Several ongoing clinical trials
are evaluating the safety and efficacy of probiotics in combination with ICI
therapy (Table 4)303–317. MRx0518, a flagellin-producing probiotic, activates
TLR5 and NF-κB signaling pathways to exert antitumor effects318. A phase

1/2 trial combiningMRx0518with pembrolizumabmet its primary efficacy
endpoint in RCC patients, though the pharmaceutical company later
withdrew from development due to financial constraints319. Retrospective
analyseshave shown thatClostridiumbutyricumCBM588significantlyPFS
and OS in NSCLC patients receiving anti-PD-1 therapy, even among those
who also received antibiotics320. In a phase I clinical trial (NCT03829111),
CBM588 significantly extended PFS in metastatic RCC patients, with a
response rate of 58% when combined with an ICI, compared to 20% with
ICI alone27. Additionally, CBM588 improved ICI efficacy in NSCLC
patients treated with proton pump inhibitors (PPIs)321. Another promising
probiotic, Bifidobacterium bifidum EDP1503, enhances the CD8+ T cell-
to-Treg cell ratio, and preliminary results from a phase I clinical trial
(NCT03775850) suggest it is safe and well tolerated in combination with
pembrolizumab322.

Despite their demonstrated benefits in non-neoplastic diseases,
probiotic-based cancer therapies remain underexplored, with only a limited
number of clinical trials available for validation323,324. The heterogeneity of
commercial probiotics and the lack of standardized quality control raise
concerns about their integrationwith immunotherapy. Indeed, studies have
demonstrated that patients who consume sufficient dietary fiber and do not
utilize probiotics tend to exhibit optimal efficacy with immunotherapy28.
Moreover, recent studies suggest that specific gut microbes may enhance
anti-tumor immune responses by influencing TLS within the TME, which
are closely linked to patient responses to ICI therapy200,325,326. These emer-
ging insights highlight the potential for developing targeted microbiota-
based interventions to optimize cancer immunotherapy.

Diet and prebiotics
Beyond direct modulation of the gut microbiota, dietary interventions can
significantly influence microbial composition, bacterial metabolites, and
immune responses327–329. Preclinical studies suggest that dietary strategies
such as caloric restriction, intermittent fasting, high-fiber diets, ketogenic
diets, and targeted micronutrient supplementation can enhance

Table 4 | Clinical trials of probiotics interventions on immunotherapy

Phase (Trial ID) Patients (n) Cancer type Probiotics
Intervention

Immunotherapy treatment Primary outcomes measures Ref.

II(NCT04988841) 60 Melanoma MaaT013 αPD-1 mAb plus αCTLA-4 mAb Safety 303

II (NCT03595683) 8 Melanoma EDP1503 αPD-1 mAb Response rate, AEs 304

I (NCT03817125) 14 Melanoma SER-401 αPD-1 mAb AEs 225

II (NCT04699721) 60 NSCLC BiFico αPD-1 mAb and chemotherapy AEs, surgical complications 305

II (NCT04909034) 15 NSCLC MS-20 αPD-1 mAb AEs 306

NA (NCT05094167) 46 NSCLC Kex02 αPD-1 mAb ORR 307

NA (NCT06428422) 100 NSCLC BL-04 αPD-1 mAb Evaluation of Clinical
Response, PFS, OS

308

II (NCT06768931) 192 TNBC Biolosion αPD-1 mAb Pathological CR 309

NA (NCT05032014) 46 Liver cancer Probio-M9 αPD-1 mAb ORR 310

I (NCT05122546) 31 RCC CBM588 αPD-1 mAb and chemotherapy Change in stool levels of
Bifidobacterium spp.

311

I (NCT03829111) 30 RCC CBM588 αPD-1 mAb plus αCTLA-4 mAb Change in stool levels of
Bifidobacterium

27

IV (NCT05220124) 190 Urothelial bladder
carcinoma

Probiotic Immunotherapy PFS 312

II/III (NCT03686202) 65 Solid tumors MET-4 ICI Change in microbiota, AEs 313

I (NCT03775850) 69 Solid tumors EDP1503 αPD-1 mAb Safety, ORR 314,322

I/II (NCT03637803) 63 Solid tumors MRx0518 αPD-1 mAb Safety, clinical benefit 315

I/II (NCT04208958) 56 Solid tumors VE800 αPD-1 mAb Safety, ORR 316

NA (NCT06508034) 30 Solid tumors VSL3 αPD-1/ PDL-1/ CTLA-4 mAb or αPD-1/
PDL-1 plus chemotherapy

ICI-related colitis, safety 317

NSCLC non-small-cell lung cancer, TNBC triple negative breast cancer, AEs adverse events,ORR objective response rate, PFS progression-free survival,OS overall survival,CR complete remission, ICI
immune checkpoint inhibitor, RCC renal cell carcinoma.
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immunotherapy by reshaping gut microbiota composition330–335. For
example, dietary restriction in mice promotes the accumulation of
memory T cells in the bone marrow, strengthening immune responses
against infections and tumors336. Consistent with the previous study,
during chronic or intermittent fiber deficiency, the gut microbiota
utilizes host-secreted mucus glycoproteins as a nutrient source, leading
to a disruption of the colonicmucosal barrier and inducing a decrease in
Bifidobacterium abundance and an increase inMucococcus abundance2
8,337. Consequently, a poor response to anti-PD-1 therapy was observed
in mice fed a low-fiber diet28. A ketogenic diet and its primary meta-
bolite, 3-hydroxybutyrate, have been shown to enhance anti-PD-1
therapy by preventing PD-L1 upregulation in bone marrow cells and
promoting the expansion of CXCR3+ T cells328. In addition, a serine/
glycine-free diet has been shown to slow CRC growth while promoting
the accumulation of cytotoxic T cells to enhance anti-tumor immunity.
And blocking the PD-1/PD-L1 pathway further enhances the effects of
this dietary approach, which highlight the potential of combining the
serine/glycine-free diet with immunotherapy338.

Clinical studies further support the role of diet in immunotherapy
outcomes. An analysis byWastyk et al. found that high-fiber and fermented
food diets influenced gutmicrobiota and immune function in distinct ways:
high-fiber diets increased carbohydrate-active enzymes involved in glycan
metabolism with moderate effects on microbial diversity, while fermented
diets enhancedmicrobial diversity and reduced inflammatorymarkers339. A
prospective study of melanoma patients undergoing ICI therapy across
multiple cohorts found that higher dietaryfiber intake correlatedwithbetter
clinical outcomes, particularly in patients with greater bacterial diversity65.
Additionally, dietary fiber produces SCFAs, such as butyrate, which can
directly activate tumor-fighting CD8+ T cells and enhance anti-PD-1
therapy109,339,340. However, conflicting evidence suggests that elevated SCFA
levels in peripheral blood may limit anti-CTLA-4 efficacy, indicating that
the role of metabolites in antitumor immunity may vary across tissues341.

Therefore, precision in dietary interventions is crucial for optimizing their
therapeutic potential.

Prebiotics, amore targeted dietary approach, are chemically defined
non-digestible fibers—primarily oligosaccharides and polysaccharides
such as inulin and pectin—that selectively promote the growth of ben-
eficial gut microbes342–344. Prebiotics improve epithelial integrity,
enhance mucosal barrier function, and activate innate immune cells,
contributing to improved immunotherapy outcomes345–348. Han et al.
demonstrated that an oral inulin gel, designed to release in the colon,
effectively modulated gut microbiota, promoted SCFA metabolism,
induced systemic memory T cell responses, and strengthened anti-PD-1
therapy349. Meanwhile, pectin has been shown to enhance ICI efficacy
through multiple mechanisms and it improves anti-PD-1 responses in
colorectal cancer by increasing butyrate-producing gut flora and mod-
ulating T cell infiltration into the TME350. Additionally, pectin has been
linked to increased abundance of mucophilic bacilli, which produce
cyclic AMP and activate STING signaling, resulting in type I interferon-
mediated immunity229.

Other prebiotics, such as polysaccharides derived from medicinal
plants, have also shown promise. Ginseng polysaccharides have been found
to enhance anti-PD-1 therapy by remodeling gut metabolite composition,
altering tryptophan metabolism, and suppressing Treg cell responses351.
Similarly, polyphenol-rich Kamagra supplementation inmice increased gut
microbial diversity and boosted beneficial bacteria such as Ruminococca-
ceae, Oscillospiraceae, and Akkermansia muciniphila352. These changes
improved the CD8+ T/Treg cell ratio in the TME and reversed ICI resis-
tance. Unlike whole-food dietary interventions, these extracted or modified
prebiotics allow for more precise modulation of gut microbiota and offer
potential for targeted immunotherapy enhancements. Building on these
findings, a number of clinical trials of dietary or prebiotic interventions for
tumor immunotherapy are underway (Table 5)353–367. We look forward to
the results of these clinical trials.

Table 5 | Clinical trials of diet and prebiotics interventions on immunotherapy

Phase (Trial ID) Patients (n) Cancer type Microbial Intervention Immunotherapy treatment Primary outcomes measures Ref.

II (NCT06466434) 75 Melanoma PreFED ICI Efficacy 353

II (NCT04645680) 50 Melanoma Dietary supplement:
isocaloric high-fiber

αPD-1 mAb and/or αCTLA-
4 mAb

Change in the gut microbiome 354

NA (NCT06298734) 40 Melanoma Dietary supplement: EX/
DT/COMB

αPD-1 mAb /αCTLA-4 mAb
/αLAG-3 mAb

Change in gut microbiome diversity 355

NA (NCT06236360) 30 Melanoma Dietary supplement:
MINI-MD

αPD-1 mAb plus αCTLA-
4 mAb

Efficacy 356

NA (NCT04866810) 80 Melanoma Behavioral: high fiber, plant
based diet+exercise

Immunotherapy Feasibility 357

II (NCT03709147) 64 Lung cancer Dietary supplement: FMD Chemo-immunotherapy PFS 358

NA (NCT03700437) 12 NSCLC Dietary supplement: FMD Chemo-immunotherapy Feasibility, compliance 359

NA (NCT06671613) 66 NSCLC Dietary supplement: FMD αPD-1/PDL-1 mAb Feasibility, compliance 360

II (NCT05763992) 145 TNBC Fasting-Like Approach Chemo-immunotherapy Rate of pCR 361

NA (NCT06610097) 30 TNBC Dietary supplement:
high fiber

Chemo-immunotherapy Species and diversity 362

NA (NCT05083416) 29 HNSCC Behavioral: PNF ICI Rates of PNF compliance, change in
gut microbiome and microbial
metabolites

363

NA (NCT06391099) 60 Melanoma, Kidney
Cancer

Dietary supplement: KD αPD-1 mAb AEs, adherence 364

NA (NCT05356182) 30 Solid tumors Low protein diet ICI Feasibility 365

NA (NCT05832606) 60 Solid tumors Dietary supplement:
high fiber

αPD-1 mAb and/or αCTLA-
4 mAb

Feasibility, irAEs 366

NA (NCT06438588) 10 Solid tumors Dietary supplement: FMD ICI SymptomMeasurement, AEs, physical
function, QOL, fecal calprotectin

367

PreFED prebiotic food-enriched diet, EX high-intensity exercise, DT high-fiber diet, COMB combined high-intensity exercise and high-fiber diet,MDmediterranean diet, FMD fasting-mimicking diet, CR
complete response, PNF prolonged nightly fasting, KD ketogenic diet, QOL quality of life, NSCLC non-small-cell lung cancer, TNBC triple negative breast cancer, HNSCC head and neck squamous cell
carcinoma, AEs adverse events, irAEs immune-related Adverse Events, PFS progression-free survival, ICI immune checkpoint inhibitor.
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Other strategies such as engineered microorganisms
Advancements in synthetic biologyhave enabled the geneticmodificationof
bacteria to selectively target tumors. Engineered strains such as Salmonella,
Escherichia coli, and Bifidobacterium can colonize the TME, exert immu-
nogenic effects, and locally release therapeutic agents to enhance immune-
mediated tumor clearance368–371. For instance, L-arginine plays a crucial role
in T cell metabolism, supporting their survival and anti-tumor activity372.
The engineered probiotic Escherichia coli Nissle 1917 has been designed to
colonize tumors and convert ammonia, a metabolic byproduct, into L-
arginine, thereby promoting CD4+ T and CD8+ T cell infiltration and
enhancing the efficacy of anti-PD-L1 therapy373. Another engineered strain,
SYNB1891, derived from E. coli Nissle, stimulates STING activation in
antigen-presenting cells (APCs), triggering innate immune pathways that
contribute to anti-tumor immunity374. Although a clinical trial
(NCT04167137) evaluating SYNB1891 in combination with atezolizumab
for advanced solid tumors was paused due to funding constraints, its
potential remains promising. Chowdhury et al. engineered a non-
pathogenic E. coli strain to target lysis and release anti-CD47 nanoanti-
bodies in the tumor microenvironment.CD47 is overexpressed in a variety
of human cancers, and inhibition of its function promotes tumor phago-
cytosis by immune cells. The engineered bacteria showed significant anti-
tumor effects in a mouse model, promoting the activation of tumor-
infiltrating T cells, stimulating rapid tumor regression and inhibiting
metastasis, thereby prolonging the survival of the mice375.

Recent studies have further expanded the use of engineered
microorganisms in tumor immunotherapy. Engineered E. coli Nissle
1917 strains have been developed to deliver tumor-specific neoantigens,
and stimulate a robust anti-tumor immune response by activating DCs,
NK cells, and tumor-infiltrating T cells. This targeted approach
enhances immunotherapy specificity while minimizing toxicity to nor-
mal tissues376. Other strategies include using engineered E. coli to deliver
an IL-18 mutant, which significantly boosts CD8+ T cell and NK cell
activity, suppresses tumor growth, and enhances the tumor-targeting
abilities of CAR-NK cells377. Several engineered bacterial strains, such as
ADXS11-001, Ty21a, JNJ-64041809, and VXM01, have also demon-
strated potential in immunotherapy by leveraging tumor-specific anti-
gen presentation378–383. In addition, Chen et al. genetically engineered the
skin-dwelling bacterium Staphylococcus epidermidis to express tumor
antigens, thereby eliciting T-cell responses againstmelanoma. Following
colonization, these engineered bacteria induce tumor-specific T cells
that mature, enter systemic circulation, and infiltrate both local and
metastatic tumor sites which exert cytotoxic effects and suppress tumor
growth384. Notably, recent studies have identified that microbiota, such
as Bifidobacterium and Lactobacillus derive vesicles—such as outer
membrane vesicles (OMVs) and extracellular vesicles (EVs)—that have
the ability to deliver immunomodulatory molecules, antigens, or adju-
vants to immune cells385–387. For example, Lactobacillus-derived EVs can
inhibit colon tumor formation by modulating the SIRT5/p53 axis and
thereby inhibiting colon tumor formation. These studies further expand
the scope of microbiota-based oncology interventions.

Beyond engineered bacteria, other microbiota-based approaches are
being explored to improve immunotherapy. Phage therapy, particularly
CRISPR-Cas3 engineered phages, can modulate the gut microbiota,
immune system, and TME388–392. Microbial metabolites, such as valproic
acid (VPA), function as histone deacetylase (HDAC) inhibitors, influencing
immune signaling pathways andpromoting tumor cell apoptosis393. Clinical
trials assessing VPA in combination with immune checkpoint inhibitors
(NCT02446431, NCT02624128, NCT01106872) are underway. Small-
molecule peptides derived from the microbiota also hold promise394.
EO2401, a microbial peptide that mimics tumor-associated antigens
(TSAs), has been shown to activate memory T cells and elicit a strong
immune response395. In the ROSALIE Phase 1/2 trial, EO2401 combined
with nivolumab and bevacizumab in glioblastoma patients led to a median
survival of 14.5 months and an 18-month survival rate of 43.1%, with
favorable tolerability396.

Furthermore, the field ismoving towards the development of synthetic
consortia with defined immunomodulatory properties and the imple-
mentation of longitudinal studies linking microbiota dynamics to the dur-
ability of therapeutic responses. By tracking temporal changes in the
microbiome and immune parameters, researchers can identify predictive
biomarkers of long-termresponse and resistance397.Meanwhile, advances in
synthetic biology enable the rational design of microbial communities or
synthetic constructs that integrate multiple immunoregulatory mechan-
isms, thus providing a multi-faceted and precise approach to cancer
immunotherapy. These studies underscore the potential of microbiota-
based interventions in cancer treatment. Engineered microorganisms not
only provide precise modulation of the TME but may also offer systemic
protection against metastasis. While challenges remain, continued research
and technological advancements are expected to positionmicrobiota-based
therapies as a key component of future cancer treatment strategies.

Challenges and future directions
Understanding the relationship between gut microbiota and immu-
notherapy remains complex. The microbiota influences immune responses
through various mechanisms such as metabolite production and inflam-
mation regulation, but these interactions are bidirectional—somemicrobial
communities enhance immunity, while others suppress it. Moreover, var-
iations in TMEs further complicate microbiota-driven immune
modulation398. Many current findings are derived from animal models, yet
differences in microbial composition and immune function between mice
and humans limit their clinical relevance399,400. The absence of standardized
research methodologies also contributes to inconsistent data, making it
difficult to draw definitive conclusions. Critically, this field faces additional
limitations. First, technical variability in microbiome sequencing methods
—such as differences in 16S rRNA gene regions targeted, DNA extraction
protocols, and sequencing platforms—can result in substantial dis-
crepancies between studies401,402. Second, inter-trial inconsistencies,
including patient selection, sample handling, and data processing, further
undermine reproducibility403. FMT also suffers from significant ‘donor
effects,’ where outcomes depend strongly on the specific microbiota com-
position of the donor, complicating interpretation and clinical
standardization404. Moreover, host genetics can profoundly shapemicrobial
composition and immune responses, yet is often underappreciated in cur-
rent research designs405,406. Addressing these methodological and biological
confounders is essential for the field’s progress.

Despite its promise, microbiota modulation faces significant clinical
hurdles.Many studies have small sample sizes, limiting statistical power and
generalizability. Standardization is another major challenge, as microbiota
composition varies widely among individuals due to factors such as diet,
medication use, and environmental exposure. Additionally, the lack of
uniform protocols for microbiome analysis affects reproducibility. Safety
concerns further complicate clinical translation—approaches like FMTmay
not reliably restore beneficial bacteria, and unintended microbial shifts
could lead to adverse effects407. Addressing these issues will be critical for
integrating microbiota-based strategies into clinical practice.

Advancements in genomics, metabolomics, and microbiomics are
drivingmore precise microbiota research408. Non-invasive techniques, such
as microbial DNA analysis from blood samples, hold potential for early
cancer detection and treatment monitoring409. Emerging tools, including
artificial gut models and ingestible biosensors, will enhance real-time
microbiota analysis410,411. Multi-omics approaches combining microbiome,
immune, andmetabolic datamay identify keymicrobial factors influencing
immunotherapy responses, paving the way for targeted interventions.
Notably, recent studies have revealed a significant influence of the gut
microbiota on vaccine efficacy, particularly highlighting the roles of Bifi-
dobacterium and Bacteroides412. These bacteria can interact with DCs,
which are pivotal for initiating anti-tumor immune responses. Modulating
the gut microbiota through dietary interventions or targeted microbial
supplementationmay enhance the host’s ability to recognize and respond to
tumor antigens introduced by vaccines. For example, Jing et al.
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demonstrated that the synergistic administration of Lactobacillus rham-
nosus GG and jujube powder markedly improved the efficacy of whole-cell
cancer vaccines in theMC38murine cancer model, primarily by increasing
the proportion of CD8+ IFNγ+ T cells413. Moreover, vaccine efficacy has
been found to correlate with gut microbiota composition414. Therefore,
integrating gutmicrobiotamodulationwith cancer vaccination represents a
promising therapeutic strategy. As research progresses, personalized cancer
immunotherapy may become a reality. Patients with an imbalanced
microbiome might benefit from interventions, such as strain-specific pro-
biotics, engineered bacterial therapies, or dietary modifications, while those
with a favorable microbiota profile associated with positive immune
responses may require only minor adjustments to optimize treatment
outcomes. Beyond the gut, microbial communities in the oral cavity, skin,
and TME may also influence immune responses, broadening the scope of
personalized therapeutic strategies415–417.

Achieving clinical translation will require interdisciplinary collabora-
tionamong immunologists,microbiologists, oncologists, anddata scientists.
Large-scale, multi-center studies and standardized data collection methods
are essential for generating clinically relevant insights. Artificial intelligence
(AI) and machine learning can improve patient stratification and help
identifymicrobiota-drivenmechanisms that influence treatment outcomes.
By integrating expertise across multiple fields, microbiota research can play
a central role in advancing precision medicine for cancer treatment.

Conclusion
In summary, the gutmicrobiota plays a pivotal role inmodulating cancer
immunotherapy, influencing treatment efficacy, patient response, and
therapy-associated toxicity. Recent advances in sequencing technologies
and microbiota-targeted interventions, such as FMT, probiotics, and
dietary modifications, have opened new avenues for enhancing immu-
notherapy outcomes. However, significant challenges remain in trans-
lating these findings into clinical practice, primarily due to inter-
individual variability and the complexity of host-microbiota interac-
tions. Future research should focus on integrating multi-omics approa-
ches, AI, and precision medicine to establish causal relationships
between microbiota composition and immunotherapy response. Addi-
tionally, exploring the mechanisms by which microbial metabolites
influence tumor immune microenvironments will be crucial for devel-
oping novel therapeutic strategies. By harnessing the potential of the gut
microbiota, clinicians may be able to personalize immunotherapy regi-
mens, improve treatment efficacy, and overcome drug resistance. Ulti-
mately, continued interdisciplinary research will be essential to fully
unlock the clinical potential ofmicrobiota-targeted interventions, paving
the way for more effective and individualized cancer treatments.
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