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SUMMARY

Diurnal rhythmicity in the gut maintains gut integrity, circadian rhythms, and metabolic homeostasis. How-

ever, existing studies focus on microbial composition rather than transcriptional activity. To understand mi-

crobial functional dynamics, we characterize diurnal fluctuations in the mouse cecal metatranscriptome and

metagenome under high-fat diet and time-restricted feeding (TRF). We show that metatranscriptomics un-

covers TRF-induced time-dependent microbial functional shifts that are undetectable with metagenomics

alone. We also found bile salt hydrolase (bsh) from Dubosiella newyorkensis exhibits diurnal expression

in the TRF group. Engineering this bsh, along with other candidates, into a native E. coli chassis reveals

distinct differences in deconjugation and amidation activities, underscoring functional specificity. In vivo, a

D. newyorkensis bsh improves insulin sensitivity, glucose tolerance, and body composition, suggesting a

direct role in TRF metabolic benefits. This study highlights how coupling metatranscriptomics with engi-

neered bacterial systems is a powerful approach for uncovering time-dependent bacterial functions related

to health and disease.

INTRODUCTION

The healthy gut microbiome is dynamic, exhibiting oscillations in

microbial populations over a diurnal cycle.1–4 Disruptions to

these patterns—such as those caused by xenobiotics or a

high-fat diet (HFD)1–5—contribute to metabolic dysfunction.

Time-restricted feeding (TRF), a behavioral strategy that limits

food access to specific periods aligned with the circadian cycle,

has emerged as a promising intervention to restore rhythmicity.

In mice, TRF mitigates HFD-induced insulin resistance,

adiposity, and inflammation while also realigning circadian

gene expression and bile acid (BA) metabolism.1,3,6–9
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TRF restores diurnal oscillations in bile salt hydrolase (BSH)-

mediated BA deconjugation, a microbial activity associated

with improved host metabolic outcomes.3,10,11 Despite these

changes, TRF only partially restores microbial cycling compared

with normal chow diet (NCD) conditions.1,3 This disconnect sug-

gests that compositional data alone—typically assessed by 16S

rRNA or metagenomic sequencing—are insufficient to capture

the dynamic functional landscape of the microbiome.

Metatranscriptomics is the study of the transcriptional profile

of a microbial community.12 It offers a more direct view of micro-

bial activity by profiling RNA transcripts, which reflect real-time

functional states.13,14 With short half-lives and high responsive-

ness to environmental cues,5,15–17 transcripts enable detection

of rapid microbiome shifts that are often missed by DNA-based

methods. Metatranscriptomics can reveal functionally active

pathways in microbial communities16,18 in diseases such as in-

flammatory bowel disease (IBD),19 obesity,20 cancer,21 and

type 1 (T1D) and type 2 diabetes (T2D)22 and lead to the discov-

ery of new microbial functions, such as a bacterial catechol de-

hydrogenase.23 Despite its potential, metatranscriptomics has

rarely been used to guide the development of live bacterial ther-

apeutics (LBTs), largely because the functional hypotheses it

generates are often difficult to test experimentally, representing

a missed opportunity to functionally link microbial gene expres-

sion with host metabolic outcomes.

To understand the functional activity of microbes under TRF,

we used metatranscriptomics and metagenomics to profile mi-

crobial activity in the cecum of diet-induced obese (DIO) mice

under ad libitum or TRF conditions across a 24-h cycle. Given

the temporal sensitivity of metatranscriptomics, we hypothe-

sized that it would reveal time-dependent microbial functions

driven by TRF. Our goal was to identify TRF-responsive microbial

functions and test their therapeutic relevance by engineering

candidate genes into a native Escherichia coli chassis. This

study demonstrates that metatranscriptomics can uncover

time-dependent microbial activities and directly inform the

development of function-based microbial therapeutics.

RESULTS

Metatranscriptomics captures functional dynamics

driven by diet and feeding behavior

To understand the impact of diet and feeding behavior on micro-

bial functions, we subjected 8-week-old wild-type male C57BL/6

mice to different diets and food access patterns as previously

described.1 Briefly, mice were divided into three groups based

on the following diet/feeding conditions: (1) NCD with ad libitum

food access (NA; n = 18), (2) HFD with ad libitum food access

(FA; n = 18), and (3) HFD under 8-h TRF from Zeitgeber time

(ZT) 13 to 21 (FT; n = 18) (Figure 1A). After 8 weeks on these reg-

imens, metabolic phenotyping confirmed that FT mice were pro-

tected from HFD-induced metabolic dysfunction (Figures S1A

and S1B).1 Whole-cecal contents were collected every 4 h

over a 24-h period (ZT1, 5, 9, 13, 17, and 21; n = 3 mice/time

point/condition) to characterize diurnal microbial activity.

We first analyzed α-diversity across all conditions and

omics methods (16S, metagenomics, and metatranscriptomics)

without considering time of collection. No significant differences

were observed in microbial composition (16S; one-way ANOVA,

p = 0.80) or genes/functional potential (metagenomics; p = 0.26)

across diet and feeding patterns (Figure S1C). By contrast, tran-

script-level α-diversity (metatranscriptomics) differed signifi-

cantly between conditions (p < 0.001), particularly between NA

and both HFD groups (Mann-Whitney U test, NA vs. FA:

p < 0.001; NA vs. FT: p < 0.001). When time points were analyzed

individually, α-diversity differences emerged at ZT9 for both 16S

(Student’s t test, NA vs. FA: p = 0.017; NA vs. FT: p = 0.01) and

metagenomics (NA vs. FA and NA vs. FT: p < 0.001, Figure S1D).

These oscillations, observed only in NA mice, suggest diurnal

variation in composition and functional potential, consistent

with prior studies.1,7 Interestingly, transcript-level α-diversity

did not vary by time (one-way ANOVA, p = 0.78, Figures S1C

and S1D). These results suggest diet exerts a stronger influence

on microbial transcriptional α-diversity than on taxonomic

composition or functional potential.

β-diversity analysis showed that both diet and feeding pattern

significantly altered microbial composition, based on 16S

(PERMANOVA, p = 0.0012, Figure 1B). Diet was also the primary

driver of functional compositional shifts in both metagenomic

and metatranscriptomic profiles (NA vs. FA and NA vs. FT,

p = 0.0015, Figures 1C and 1D). To assess whether metatran-

scriptomics is more sensitive to time-dependent effects of TRF

than metagenomics, we compared FA and FT β-diversity within

each dataset. Metagenomic analysis showed no significant dif-

ferences (p = 0.16, Figure 1C), while metatranscriptomic profiles

trended toward significance (p = 0.073, Figure 1D), suggesting

that metatranscriptomics may better capture TRF-induced func-

tional compositional shifts.

We next evaluated whether collection time influenced β-diver-

sity by comparing light (ZT1–ZT9) and dark (ZT13–ZT21) phases

and which omics method best captured these temporal differ-

ences. In NA mice, significant diurnal variation was observed

across all omics methods (PERMANOVA, 16S: p = 0.027, metage-

nomics: p = 0.045, metatranscriptomics: p = 0.041, Figure 1E). By

contrast, no diurnal differences were detected in FA mice (16S: p =

0.45, metagenomics: p = 0.47, metatranscriptomics: p = 0.46,

Figure 1F). TRF did not restore the NA-like diurnal pattern. Instead,

FT mice resembled FA mice, showing no significant time-of-day

differences across any omics method (16S: p = 0.79, metagenom-

ics: p = 0.74, metatranscriptomics: p = 0.71, Figure 1G). This may

reflect differences in feeding status: at ZT13, FT mice are fasted,

while NA mice are fed, revealing a shift in feeding relative to diurnal

phase. To test this, we reanalyzed FT samples by feeding status

(fasted: ZT5–ZT13; fed: ZT17, ZT21, ZT1) across omics methods.

Only metatranscriptomics detected significant differences be-

tween fasted and fed states (p = 0.035, Figure 1G), while 16S

and metagenomics showed no such effect (p = 0.52 and 0.74,

respectively; Figure 1G). These findings indicate that diet strongly

shapes the microbial functional landscape and that TRF promotes

distinct, feeding-dependent shifts in microbial activity—detect-

able only through metatranscriptomics.

Metatranscriptomics captures TRF-driven diurnal

differential expression of microbial functions

To evaluate functional differential abundance between condi-

tions, we used ALDEx2—analysis of differential abundance

taking sample and scale variation into account, a method de-

signed to identify differentially abundant features in microbiome
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and RNA sequencing (RNA-seq) datasets24,25—to compare mi-

crobial gene (metagenomics) and transcript (metatranscriptom-

ics) profiles independent of time. Diet drove the largest differ-

ences across both omics layers, but the extent varied by

method. A significantly greater proportion of transcripts were

differentially abundant compared with genes between NA and

FA (χ2, p = 0.031) and NA and FT (p < 0.001), while the TRF

contrast (FA vs. FT) revealed a small yet significant difference

A B C D

E

F

G

Figure 1. Metatranscriptomics captures functional dynamics driven by diet and feeding behavior

(A) Experimental design and sample collection.

(B–D) β-diversity/robust Aitchison based on diet and feeding conditions for 16S composition (B), functional metagenomics (C), and metatranscriptomics (D). n =

12–18 mice/condition; p values from PERMANOVA with α < 0.05.

(E–G) β-diversity/robust Aitchison based on ZT separated by (E) NA, (F) FA, and (G) FT and method of analysis (columns). ZT1–9 are considered in the light phase

and ZT13–21 in the dark phase. The TRF fasted period is ZT5–13, while its non-fasted/fed period is ZT17, ZT21, and ZT1. n = 6–9 mice/phase/condition; p values

from PERMANOVA with α < 0.05. metaG, metagenomics; metaT, metatranscriptomics.

See also Figure S1.
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(p = 0.004), with 0.28% of transcripts differentially expressed and

no gene-level differences (Figure 2A; Table S1). These results

confirm diet as the primary driver of microbial functional change

and suggest that metatranscriptomics detects finer TRF-related

shifts not captured by metagenomics.

Because time of sample collection can affect microbiome re-

sults,26 we stratified samples by light (ZT1–ZT9) and dark (ZT13–

ZT21) phases to assess whether metatranscriptomics more

effectively captures TRF-driven changes. This analysis revealed

a diurnal, TRF-specific transcriptional response. In the dark

phase—but not the light—significantly more transcripts were

differentially expressed between FA and FT in the metatranscrip-

tomics, an effect not observed in the metagenomics (χ2,

p < 0.001; Figure 2B; Table S2). In fact, there were no gene-level

TRF contrast differences in either the light or dark phase

(Figure 2B; Table S2). Echoing our time-independent analysis,

metatranscriptomics revealed more significant differences be-

tween NA and either HFD condition (FA or FT) than metagenomics

across both light and dark phases (p < 0.001, Figure 2B). These re-

sults were consistent even after rarefying the metatranscriptomic

A B C

D
E

F

Figure 2. Metatranscriptomics captures TRF-driven diurnal differential expression of microbial functions

(A and B) Percent of transcriptional and gene results determined using ALDEx2 and α < 0.1 that are differentially expressed between conditions in the meta-

genomics and metatranscriptomics when (A) not accounting for time (n = 12–18 mice/condition) and (B) stratifying by light and dark phase (n = 6–9 mice/phase/

condition). ***p < 0.001, **p < 0.01, *p < 0.05 using χ2 test.

(C) Jaccard distance showing the similarity of the differentially expressed transcripts and abundant genes between conditions in the metatranscriptomics and

metagenomics for the light (left) or dark (right) phase.

(D) Summary of GO processes represented in the metatranscriptomics data that were differentially expressed between NA and FA in the light and dark phase.

Bold GO processes are shared with those differentially expressed between NA and FT.

(E and F) Transcripts of interest that were differentially expressed between FA and FT in the dark phase that are more highly expressed under either (E) FA or (F) FT

(n = 6–9 mice/phase/condition; ALDEx2. p < 0.1). metaG, metagenomics; metaT, metatranscriptomics.

See also Figure S2 and Tables S1 and S2.
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data to match the metagenomic sequencing depth (Figure S2A).

Finally, Jaccard distance analysis of differentially expressed fea-

tures revealed minimal overlap between genes and transcripts

across conditions and diurnal phases (Figure 2C). These observa-

tions indicate that microbial gene content does not reliably reflect

transcriptional activity.

Since metatranscriptomics captured diurnal TRF-specific

expression changes, we next examined transcripts differentially

expressed across conditions (NA, FA, and FT). Jaccard distance

analysis of pairwise comparisons in both light and dark phases re-

vealed minimal overlap in differentially expressed transcripts be-

tween phases (Figure S2B). Despite this, Gene Ontology (GO)

enrichment revealed similar biological processes affected in

both phases. In particular, the diet comparison between NA and

FA showed transcriptional changes in translation, proteolysis,

and carbohydrate metabolism across both phases (Figure 2D),

with similar patterns observed in the NA vs. FT comparison

(Figure S2C). These results suggest that diet induces phase-inde-

pendent transcriptional shifts in core microbial functions.

We summarized GO processes for the FA vs. FT comparison

across light and dark phases but observed no clear patterns,

likely due to sparse annotation, with most GO terms linked to a

single transcript (Figure S2D). However, focused analysis of tran-

scripts differentially expressed between FA and FT only in

the dark phase revealed enrichment in genes related to lipid

and carbohydrate metabolism. For example, diacylglycerol ki-

nase and enoyl-acyl carrier protein (ACP) reductase—enzymes

in lipid signaling and fatty acid synthesis27,28—were more highly

expressed under FA than FT (Figures 2E and S2E). By

contrast, uridine triphosphate (UTP)–glucose-1-phosphate uri-

dylyltransferase and chemotaxis receptor (CheR) methyltrans-

ferase—involved in carbohydrate metabolism and chemo-

taxis29,30—were more expressed under FT than FA (Figures 2F

and S2F). These findings suggest TRF modulates microbial lipid

and carbohydrate gene expression in a time-dependent manner,

specifically during the dark phase.

Metatranscriptomics captures functional cyclical

fluctuations driven by diet and feeding behavior

Microbial communities are dynamic, exhibiting diurnal fluctuations

over 24h,1,26 but whether microbial transcripts follow similar rhyth-

mic patterns remains unclear. To investigate this, we compared

cycling behavior in microbial genes (metagenomics) and tran-

scripts (metatranscriptomics). In NA mice, ∼8% of both genes

and transcripts showed diurnal oscillation. This rhythmicity was

significantly reduced under FA in both omics methods (χ2, metage-

nomics: p < 0.001; metatranscriptomics: p < 0.001, Figure 3A;

Table S3), consistent with prior reports of HFD-induced loss of mi-

crobial cycling.1,2 In metagenomics, the number of cycling genes

in FT was comparable to FA (p = 0.83). By contrast, metatranscrip-

tomics revealed that TRF preserves transcript cycling lost under

FA (p < 0.001), reaching levels comparable to or slightly higher

than NA (9%). Despite the larger number of transcripts (over

7,000 vs. ∼3,500 genes), rarefaction of the metatranscriptomic

data to match metagenomic depth still showed significantly

more cycling transcripts in FT than FA (p < 0.001, Figure S3A), indi-

cating that this effect was not due to sequencing depth. Thus,

metatranscriptomics—but not metagenomics—captures the dy-

namic nature of the luminal environment induced by TRF.

There was minimal overlap in cycling features across condi-

tions (Figure 3B) or between omics types (Figure 3C), even after

rarefaction (Figures S3B and S3C), suggesting distinct rhythmic

profiles by condition and method. Importantly, cycling detected

at the DNA level does not imply rhythmic transcriptional activity.

Given that metatranscriptomics more accurately reflects func-

tional cycling, we focused further analyses on this method type.

While TRF restored transcriptional cycling, only 10% of FT

cycling transcripts overlapped with those from either NA or FA

(Figure 3B), indicating that TRF induces a distinct rhythmic pro-

file. To determine whether shared cycling transcripts maintained

consistent timing, we analyzed phase distribution. Transcripts

cycling in both FA and FT (but not NA, Figure 3D) peaked at

ZT17 (dark) under FA and ZT9 (light) under FT, indicating a

TRF-induced phase shift (Figure 3E). Transcripts shared be-

tween NA and FT peaked at ZT9 with a secondary peak at

ZT17 (Figure 3F). Many of these transcripts that cycled in at least

two conditions were related to lipid and glucose metabolism

(Figures S3D and S3E). These findings suggest that TRF can pre-

serve the normal cycling patterns disrupted by HFD, which may

underlie its ability to prevent the adverse physiological effects

associated with DIO.

We also examined the unique cycling metatranscriptional pro-

files of each condition. In NA mice, most uniquely cycling tran-

scripts were associated with translation and regulation of tran-

scription and carbohydrate metabolic processes (Figure 3G).

Notably, transcripts for acyl-coenzyme A (CoA) dehydrogenase,

which catalyzes the first step in fatty acid β-oxidation, and glyc-

erol-3-phosphate (G3P) acyltransferase, a rate-limiting enzyme

in de novo glycerolipid synthesis,31,32 both exhibited rhythmic

expression (Figure 3H). Acyl-CoA dehydrogenase expression

showed a trough, while G3P acyltransferase expression peaked

during the light (inactive) phase. In FT mice, uniquely cycling

transcripts were enriched in proteolysis and carbohydrate meta-

bolic processes (Figure 3I) but also included lipid metabolism

genes. Enoyl-ACP reductase, involved in fatty acid elongation,

and diacylglycerol kinase, which converts diacylglycerol to

phosphatidic acid,28,33 cycled exclusively under FT (Figure 3J),

with both showing reduced expression during the dark

phase—suggesting that TRF may suppress microbial fatty acid

synthesis in the gut lumen at this time period. FA mice exhibited

very few cycling transcripts (Figure S3F), limiting interpretation.

However, among those detected were genes related to antibiotic

resistance (erythromycin esterase) and CRISPR maintenance

(Cas5) (Figure S3G). Together, these findings suggest that

TRF restores cycling of bacterial glucose and lipid metabolism

transcripts, with peak expression more prominent during the

light phase.

The bsh of D. newyorkensis exhibits time-dependent

differential expression

Thus far, we have established that metatranscriptomics effec-

tively captures time-dependent microbial responses to diet

and feeding pattern. We also described how TRF influences

the differential abundance and cycling of transcripts related to

bacterial lipid and glucose metabolism. One bacterial enzyme

we were interested in exploring further using metatranscriptom-

ics was BSH, due to its role in BA modification and its relevance

to host health. BSH deconjugates BAs, reducing their polarity
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Figure 3. Metatranscriptomics captures functional cyclical fluctuations driven by diet and feeding behavior

(A) Summary of cycling results determined using MetaCycle (n = 12–18 mice/condition; p < 0.05) in the metagenomic and metatranscriptomic data. **p < 0.01,

***p < 0.001; n.s., not significant using χ2 test.

(B) Venn diagram showing the overlap of functional results among the diet and feeding conditions for the metagenomics and metatranscriptomics.

(C) Jaccard distance showing the similarity among the cycling results in the metatranscriptomics and metagenomics for each condition.

(D) Heatmap of transcript abundance at each ZT for the functional results that were cycling in at least two conditions.

(E and F) Density plots illustrating cycling phases of transcripts shared between (E) FA and FT and (F) NA and FT.

(G) Top GO processes represented in the cycling metatranscriptomics results unique to the NA condition.

(H) Representative fatty acid metabolism transcripts that cycled just in NA.

(I) Top GO processes represented in the cycling metatranscriptomics results unique to the FT condition.

(J) Representative fatty acid metabolism transcripts that cycled just in FT. ZT1–12 indicates the light phase (white), and ZT12–23 the dark phase (black). N, not

rhythmic; R, rhythmic; metaG, metagenomics; metaT, metatranscriptomics.

See also Figure S3 and Table S3.
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and reabsorption and altering their activity at various BA and ste-

rol receptors. More recent studies also show that BSH has ami-

dation activity, leading to the production of a wide array of previ-

ously uncharacterized conjugated BAs.34

Our previous work shows that NA mice have a higher ratio of

deconjugated to conjugated BAs during the light but not the

dark phase. This pattern is disrupted under FA but restored in

FT (Figure S4A),1,3 supporting the potential role of BAs acting

as feeding or circadian entraining agents for peripheral, metabol-

ically important organs (e.g., liver, intestines, etc.).35–37 We

therefore hypothesized that bsh expression would follow a

similar pattern—elevated in the light phase under NA and FT

and disrupted under FA (Figure 4A). However, differential

expression and cycling analyses did not identify bsh as a TRF-

responsive diurnal transcript. Instead, bsh expression was

diet-dependent (NA vs. FA and NA vs. FT, ALDEx2 p < 0.001)

and showed no significant TRF-driven differences (FA vs. FT,

p = 0.23) or evidence of diurnal cycling (Tables S1, S2, and S3).

To investigate further, we quantified total bsh expression

normalized to RNA polymerase B (rpoB, a housekeeping tran-

script) across the entire microbiome, not separating by species.

NA mice had significantly higher bsh expression than both FA

and FT, regardless of phase (Mann-Whitney U test, light:

p = 0.0012, dark: p < 0.001), with no TRF-specific differences

(FA vs. FT, light: p = 0.59, dark: p = 0.065; Figure 4B). We verified

these findings using a curated BSH protein database to search

and quantify the metatranscriptomics data. This targeted anal-

ysis also showed higher bsh expression in NA compared with

FA and FT (top/bottom 10% transcript ratio, light: p < 0.001,

dark: p = 0.0012), with no difference between FA and FT in either

phase (light: p = 0.59, dark: p = 0.18, Figure 4C). These results

suggest that overall bsh expression is not subject to TRF-driven

temporal variation, though coverage limitations in the database

remain possible.

Given the functional diversity of BSH enzymes in the micro-

biome39,40 and the observed variation in bsh expression across

known taxa in a species-level summary (Figure S4B), we hypoth-

esized that these species-specific differences may be masked in

bulk expression data. To test this, we used BIRDMAn (Bayesian

inferential regression for differential microbiome analysis), a

Bayesian differential abundance framework,38 to analyze bsh

expression by species across conditions and diurnal phases.

In the NA vs. FA comparison, bsh expression varied widely

across taxa, with some transcripts exhibiting potential diurnal

differences (Figures S4C and S4D; Table S4). Interestingly,

Lachnospiraceae CAG-95, Eubacterium_J plexicaudatum, and

Lachnospiraceae 14-2 (highlighted in blue) had credibly (the

high-density interval [hdi] excluded 0) higher bsh expression in

NA during both phases. By contrast, Lachnospiraceae CAG-

317 and Lactobacillus gasseri (highlighted in orange) were en-

riched under FA. While CAG-317 bsh was consistently enriched

in both phases, L. gasseri bsh (LgBSH) was enriched only in the

dark phase but exhibited a larger overall effect size (Figures S4C

and S4D). These results demonstrate species-level variation in

diet-associated bsh expression, regardless of diurnal phase.

In the FA vs. FT comparison, species-level bsh expression also

showed high variability (Table S4). Lachnospiraceae 14-2, previ-

ously enriched in NA relative to FA, was similarly enriched in FT

during the dark phase (Figure 4D). However, only one bsh—from

D. newyorkensis—showed credible TRF-specific enrichment: it

was enriched under FA in the dark phase and showed borderline

enrichment under FT in the light phase. This pattern corroborates

our hypothesis, with higher expression in the light phase and

reduced expression in the dark phase under TRF.

We also repeated this analysis using a targeted search for bsh

transcripts to validate our untargeted findings. The results were

consistent: two D. newyorkensis bsh transcripts (protein IDs

A0A1U7NP31 and A0A1U7NKD7) showed credible enrichment

under FA in the dark phase and borderline enrichment under

FT in the light phase (highlighted in green, Figure 4E; Table S4).

Additional bsh transcripts from Bacteroides uniformis followed

a similar diurnal enrichment pattern but were not detected in

the untargeted analysis. Finally, when we performed this analysis

using metagenomics, no bsh gene showed significant diurnal

or TRF-specific abundance differences (Figures S4E–S4G).

Together, these results indicate that D. newyorkensis bsh ex-

hibits a diurnal expression pattern consistently captured by

metatranscriptomics but not by metagenomics.

TRF identified BSHs have an increased capacity for

amidation

Through both targeted and untargeted searches of bsh tran-

scripts, we identified species-level variation in bsh expression,

with some microbes exhibiting higher expression under specific

conditions. Among these, two unique bsh transcripts from

D. newyorkensis—exclusive to TRF and showing time-depen-

dent expression differences—were of particular interest. To

investigate their potential functional contribution to TRF’s phys-

iological effects, we engineered these and other selected bsh

genes into a previously characterized native E. coli chassis,

EcAZ, which expresses genes under a constitutive pro-

moter.10,41 We selected this chassis for its ability to stably colo-

nize the gut after a single gavage without antibiotic pretreat-

ment42 and to introduce new functions and metabolites into

the gut lumen without altering microbiome composition—mak-

ing it an ideal tool for studying specific microbial functions.10,41

We selected seven bsh candidates for engineering: (1)

D. newyorkensis A0A1U7NKD7 (DnBSH1), (2) D. newyorkensis

A0A1U7NP31 (DnBSH2), (3) Lactobacillus gasseri (LgBSH), (4)

Eubacterium plexicaudatum (EpBSH), (5) Lachnospiraceae

CAG-95 (LCAG95BSH), (6) Lachnospiraceae 14-2, and (7) Bac-

teroides uniformis A0A3E5F5J9. Selection was based on TRF-

driven diurnal expression (DnBSHs, B. uniformis), enrichment

under FA (L. gasseri), and consistent expression under NA

(E. plexicaudatum, Lachnospiraceae CAG-95) (Figures 4D, 4E,

S4C, and S4D). Five of seven bsh genes were successfully engi-

neered (Figure 5A), and the B. uniformis and Lachnospiraceae

14–2 bsh constructs could not be maintained due to mutations

likely affecting the fitness of the E. coli chassis.

To evaluate deconjugation activity, we cultured each BSH-ex-

pressing engineered native bacteria (ENB) in rich media supple-

mented with one of ten glycine- or taurine-conjugated BAs and

performed untargeted liquid chromatography tandem mass

spectrometry (LC-MS/MS) at 0 and 48 h (Figure 5B). Significant

differences in the abundance of known or predicted BA were

observed between strains and supplemented BAs over time

(Student’s t test, p < 0.05, Figure S5A; Table S5). Annotations

were confirmed by MS/MS and retention time matching to

ll
Article

Cell Host & Microbe 33, 1057–1072, July 9, 2025 1063



synthetic standards (Figure S5B). Deconjugation capacity, in-

ferred from reduced levels of supplemented BAs from baseline,

varied by ENB strain and culture (Student’s t test, p < 0.05,

Figure 5C). For example, EcAZ-1DnBSH1 reduced both glycine-

and taurine-conjugated BAs, whereas EcAZ-2BSH⁺ (expressing

a well-described Lactobacillus salivarius bsh)10,11,43 reduced

only taurine-conjugated BAs (Figure 5C). Despite both possess-

ing a taurine-preferring GTG motif (Figure 5D),44 EcAZ-1DnBSH1

A D

B

C

E

Figure 4. The bile salt hydrolase of Dubosiella newyorkensis exhibits time-dependent differential expression

(A) Schematic describing the hypothesized BSH activity based on changes in conjugated and secondary BAs in the diet and feeding conditions stratified

by phase.

(B) Natural log ratio of bsh to rpob transcripts separated by condition and phase from the untargeted search for bsh in the WoL2 database (n = 6–9 mice/phase/

condition; pairwise Mann-Whitney U test, ***p < 0.001, **p < 0.01, *p < 0.05; n.s., not significant).

(C) Natural log ratio of the top and bottom 10% of bsh transcripts separated by condition and phase from the targeted bsh search using a curated database of

BSH proteins (n = 6–9 mice/phase/condition; pairwise Mann-Whitney U test, ***p < 0.001, **p < 0.01, *p < 0.05; n.s., not significant).

(D and E) Ratio of bsh expression between FA and FT in either the light or dark phase: (D) untargeted bsh search of species with bsh arranged by the effect size of

credible results in the light phase and (E) targeted bsh search species-protein matches ordered by the effect size of credible results in the dark phase (n = 6–9

mice/phase/condition; BIRDMAn,38 hdi range < 10, credible if the hdi does not cross 0). hdi, high-density interval.

See also Figure S4 and Table S4.
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A B D
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E F

G

H

I

Figure 5. TRF identified BSHs have an increased capacity for amidation

(A) bsh chosen and successfully engineered based on the diet and feeding conditions its expression was most enriched in.

(B) Design of the culture experiment performed on the various BSH ENBs.

(C) Change from baseline of the BA supplemented into the cultures, a measurement of the deconjugative activity of BSH, for each of the BSH ENBs (n = 3 cultures/

time point/BA supplement/BSH ENB; Student’s t test, ***p < 0.001, **p < 0.01, *p < 0.05).

(D) Protein sequence alignment using CLUSTAL Omega, highlighting the selectivity loop region containing motifs associated with taurine or glycine preference.

(E) Difference in the normalized abundance of amidated BAs between 0 and 48 h in the cultures of BSH ENBs, faceted by the different BAs supplemented in the

cultures.

(F–I) BBAAs with significant normalized abundance differences between 0 and 48h for EcAZ-2BSH+ and EcAZ-1DnBSH1 in the (F and G) GUDCA and TUDCA and (H

and I) other BA-supplemented cultures (n = 3 cultures/time point/BA supplement/BSH ENB; Student’s t test, ***p < 0.001, **p < 0.01, *p < 0.05). BSH+ = EcAZ-

2BSH+; DnBSH1 = EcAZ-1DnBSH1; DnBSH2 = EcAZ-1DnBSH2; LgBSH = EcAZ-1LgBSH; LCAG95BSH = EcAZ-1LCAG95BSH; EpBSH = EcAZ-1EpBSH. GCA, glycocholic

acid; GCDCA, glycochenodeoxycholic acid; GDCA, glycodeoxycholic acid; GLCA, glycolithocholic acid; GUDCA, glycoursodeoxycholic acid; TCA, taurocholic

acid; TCDCA, taurochenodeoxycholic acid; TDCA, taurodeoxycholic acid; TLCA, taurolithocholic acid; TUDCA, tauroursodeoxycholic acid. BlonBSH,

(legend continued on next page)
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exhibited broader substrate promiscuity compared with EcAZ-

2BSH⁺. Similarly, EcAZ-1LCAG95BSH deconjugated both taurine

and glycine conjugates despite having a glycine-selective SRG

motif. These findings indicate that the BSH ENBs differ in sub-

strate specificity and that factors beyond the selectivity loop

motif likely contribute to their deconjugation activity.

BSHs can catalyze amidation reactions,34,45 prompting our

investigation into amidation activity across BSH ENB cultures.

Several bacterial bile acid amidates (BBAAs) differed significantly

between 0 and 48 h (Figure S5A). Using retention time matching,

we validated four of six BBAAs detected in culture (Figures 5E,

S5C, and S5D), and Trp- and Tyr-ursodeoxycholic acid (UDCA)

were excluded as background culture components potentially

modulated by BSHs. After normalizing to a no-ENB control to

assess BBAA abundance change over time—our proxy for

measuring amidation activity—we observed that EcAZ-2BSH⁺ and

EcAZ-1DnBSH1 exhibited similar amidation profiles (Figure 5E).

For instance, isoleucine/leucine-conjugated UDCA (Ile/Leu-

UDCA) increased significantly in both strains when cultured with

tauroursodeoxycholic acid (TUDCA) (Student’s t test, EcAZ-2BSH+:

p = 0.040, EcAZ-1DnBSH1: p < 0.001) or glycoursodeoxycholic acid

(GUDCA) (EcAZ-2BSH+: p < 0.001, EcAZ-1DnBSH1: p = 0.015,

Figure 5F). In addition, alanine-conjugated UDCA (Ala-UDCA)

increased in the EcAZ-2BSH⁺ cultures (TUDCA: p = 0.002, GUDCA:

p = 0.002) but not in EcAZ-1DnBSH1 (TUDCA: p = 0.65, GUDCA:

p = 0.83), likely due to high baseline levels at t = 0 (Figure 5G).

Both strains produced lysine-conjugated cholic acid (Lys-CA) in

taurocholic acid (TCA) cultures (EcAZ-2BSH+: p = 0.025, EcAZ-

1DnBSH1: 0.026, Figure 5H), while lysine-conjugated chenodeoxy-

cholic acid (Lys-CDCA) increased only in EcAZ-2BSH⁺ in the glyco-

chenodeoxycholic acid (GCDCA) culture (p < 0.001) and not in

EcAZ-1DnBSH1, again likely due to high starting abundance

(Figure 5I). Given sampling lag, the patterns observed for Ala-

UDCA and Lys-CDCA with EcAZ-1DnBSH1 suggest this strain

may produce BBAAs more rapidly than EcAZ-2BSH. Aside from

Ala-UDCA—which also increased in EcAZ-1LCAG95BSH with

TUDCA (p = 0.046)—these BBAAs were unique to EcAZ-2BSH+

and EcAZ-1DnBSH1. Interestingly, despite sharing the most closely

related BSH protein sequences (Figures S5E and S5F), EcAZ-

1DnBSH1 and EcAZ-1DnBSH2 differed in both deconjugation and

amidation activity, highlighting the functional specificity of individ-

ual BSHs. Overall, EcAZ-2BSH⁺ and EcAZ-1DnBSH1 exhibit similar

deconjugation and amidation capacities, which may underlie com-

parable phenotypic effects in vivo.

Engineered E. coli expressing DnBSH1 has a more

pronounced phenotypic effect than other BSHs

BA quantification revealed that EcAZ-2BSH+ and EcAZ-1DnBSH1

exhibit similar amidation activity. We previously showed that

EcAZ-2BSH+ can improve insulin sensitivity and glucose toler-

ance in fully conventional mice when tested 12 weeks after a sin-

gle gavage.10 To investigate whether EcAZ-1DnBSH1 can produce

similar metabolic effects to EcAZ-2BSH+, we introduced it, along

with EcAZ-1LgBSH (from FA mice, no amidation activity) and

EcAZ-2 (empty chassis), into 8-week-old fully conventional

C57BL/6 male mice on a NCD and assessed metabolic out-

comes at a shorter time interval, 6 weeks after a single gavage

(Figure 6A).

All BSH ENBs successfully colonized the host (Figure 6B), with

no significant differences in colonization levels (n = 10/group,

pairwise Student’s t test, α < 0.05). However, qualitative differ-

ences in taurodeoxycholic acid (TDCA) deconjugation emerged

after fecal isolation: EcAZ-1DnBSH1 showed less TDCA deconju-

gation than EcAZ-2BSH⁺ and EcAZ-1LgBSH, indicated by fewer de-

oxycholic acid (DCA) precipitates (Figure 6C). Food intake and

body weight also did not differ across groups (n = 10 mice/group;

pairwise Student’s t test, α < 0.05, Figures 6D and 6E). These

outcomes are consistent with earlier findings for EcAZ-2 BSH+.10

EcAZ-2BSH⁺ significantly reduced postprandial blood glucose

compared with EcAZ-2 (Student’s t test, p = 0.011), consistent

with prior findings. EcAZ-1DnBSH1 also lowered postprandial

glucose (p = 0.041), whereas EcAZ-1LgBSH had no effect

(Figure 6F). Although EcAZ-2BSH⁺did not reduce postprandial insu-

lin at this 6-week time point (p = 0.22), our previous studies showed

robust reduction at 12 weeks. By contrast, EcAZ-1DnBSH1 signifi-

cantly lowered insulin at 6 weeks levels (p = 0.02), while EcAZ-

1LgBSH again showed no effect (Figure 6G). Fasting glucose was

unaffected by EcAZ-2BSH⁺ (p = 0.316) but decreased in mice en-

grafted with EcAZ-1DnBSH1 (p = 0.028) and EcAZ-1LgBSH (Student’s

t test, p = 0.0044; Figure S6A). These findings suggest that EcAZ-

1DnBSH1 may improve insulin sensitivity and glucose homeostasis

more effectively than EcAZ-2BSH⁺.

Body composition analysis revealed no change in fat or lean

mass with EcAZ-2BSH⁺ or EcAZ-1LgBSH (Figures 6H and 6I).

By contrast, EcAZ-1DnBSH1 significantly decreased fat mass

(p = 0.0075) and increased lean mass (p = 0.033) compared

with EcAZ-2. These results suggest that EcAZ-1DnBSH1 influ-

ences lipid deposition more effectively than EcAZ-2BSH⁺ and

may offer greater overall metabolic benefits.

To investigate in vivo BA modification by the BSH ENBs, we

performed untargeted LC-MS/MS on fecal samples collected

at ZT3 and ZT15 and assessed BA profiles by phase. These

time points were selected because, although the bsh transgenes

were driven by constitutive promoters, circadian variation from

the host or microbiome could still influence BA dynamics. The

BSH ENBs altered the fecal BA pool (Figure S6B; Table S6),

and one BBAA, Ser-CDCA, was significantly enriched in EcAZ-

1DnBSH1 vs. EcAZ-2—specifically in the light phase (Tukey’s

Bifidobacterium longum BSH; BspBSH, Bacteroidales sp. BSH; BtheBSH, Bacteroides thetaiotaomicron BSH; CspBSH, Clostridiales sp. BSH; EfaeBSH,

Enterococus faecalis BSH; FspBSH, Faecalibacterium sp. BSH; LaciBSHa, Lactobacillus acidophilus BSHa; LaciBSHb, Lactobacillus acidophilus BSHb;

LaviBSH, Ligilactobacillus aviarius BSH; LcolBSH, Limosilactobacillus coleomonis BSH; LcriBSHa, Lactobacillus crispatus BSHa; LcriBSHb, Lactobacillus

crispatus BSHb; LgasBSHa, Lactobacillus gasseri BSHa; LgasBSHb, Lactobacillus gasseri BSHb; LgigBSH, Lactobacillus gigeriorum BSH; LingBSH, Limosi-

lactobacillus ingluveiei BSH; LjohBSHa, Lactobacillus johnsonii BSHa; LjohBSHb, Lactobacillus johnsonii BSHb; LjohBSHc, Lactobacillus johnsonii BSHc;

LmurBSH, Ligilactobacillus murinus BSH; LplaBSH, Lactiplantibacillus plantarum BSH; LreuBSH, Limosilactobacillus reuteri; LrogBSH, Lactobacillus rogoseae

BSH; LsalBSH, Ligilactobacillus Salivarius BSH. Ile/Leu-UDCA, isoleucine/leucine-conjugated ursodeoxycholic acid; Ala-UDCA, alanine-conjugated urso-

deoxycholic acid; Lys-CA, lysine-conjugated cholic acid; Lys-CDCA, lysine-conjugated chenodeoxycholic acid.

See also Figure S5 and Table S5.
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LSD, p = 0.017). This suggests that EcAZ-1DnBSH1 may confer

metabolic benefits through either direct or indirect phase-

dependent modification of the luminal BA pool.

DISCUSSION

This study highlights the unique value of metatranscriptomics in

capturing time-dependent microbial changes that remain unde-

tectable with metagenomics. Unlike metagenomics, metatran-

scriptomics revealed TRF-driven differences in β-diversity

(Figure 1D), differential expression (Figures 2A and 2B), and

restored diurnal cycling (Figure 3A). These findings confirm our

hypothesis and extend previous work by showing that metatran-

scriptomics not only responds to environmental perturba-

tions5,15 but also reveals functional shifts associated with host

metabolic outcomes. The minimal overlap in differentially ex-

pressed or cycling functions detected by metagenomics and

metatranscriptomics (Figures 2C and 3C) underscores that

gene presence does not reliably predict gene expression—

consistent with prior studies of microbial transcriptional regula-

tion relative to abundance.46,47 Furthermore, while interest in

metaproteomics is growing,48,49 microbial proteins have half-

lives ranging from 12 to 42 h,50 limiting their ability to detect rapid

temporal changes. By contrast, microbial RNA degrades within

fractions of a minute to an hour,17 allowing metatranscriptomics

to capture fast, dynamic microbial responses. This underscores

A B

D

C

E

F G H I

Figure 6. Engineered E. coli expressing D. newyorkensis bsh1 has a more pronounced phenotypic effect than other BSHs

(A) Experimental design and sample collection protocol.

(B) Colonization of the BSH ENBs 6 weeks post single gavage (n = 10 mice/group; pairwise Student’s t test; n.s., not significant at α < 0.05).

(C) Plating of fecal samples from mice gavaged with the BSH ENBs on LB containing TDCA plates. White precipitate around colonies indicates BSH is

deconjugating TDCA to DCA, qualitatively indicating enzyme functionality.

(D and E) (D) Average cumulative food intake and (E) body weight of mice after single gavage (n = 10 mice/group; pairwise Student’s t test; n.s., not significant

at α < 0.05).

(F and G) Postprandial (F) blood glucose and (G) serum insulin concentrations of mice 6 weeks post single gavage (n = 10 mice/group; pairwise Student’s

t test, *p < 0.05).

(H and I) Percent change in (H) fat and (I) lean mass from week 0 to 6 (n = 10 mice/group; pairwise Student’s t test, **p < 0.01, *p < 0.05).

See also Figure S6 and Table S6.
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metatranscriptomics’ ability to provide a deeper, more dynamic

view of microbiome activity than other omics methods.

The transcripts restored by TRF primarily pertained to bacte-

rial lipid and carbohydrate metabolism (Figures 2E, 2F, and

3J). In particular, the expression of prokaryotic diacylglycerol ki-

nase and enoyl-ACP reductase—enzymes in lipid signaling and

fatty acid metabolism —were significantly lower in TRF mice dur-

ing the dark phase compared with FA mice, based on both differ-

ential expression and cycling analyses. These results suggest

that TRF suppresses microbial lipid synthesis in DIO mice,

consistent with prior reports of TRF improving obesity pheno-

types1,3 and host transcriptional profiles.51 These findings

further raise the possibility that microbial nutrient metabolism

contributes to diet-induced dysmetabolism and should be

further explored using tools for functional microbiome manipula-

tion, such as ENBs. While prior metatranscriptomic studies have

shown enrichment of carbohydrate, protein, and lipid meta-

bolism pathways in obesity,20 our data uniquely reveal their tem-

poral modulation by dietary intervention through TRF. By pin-

pointing bacterial functions that are both diurnally regulated

and therapeutically relevant, our findings offer a blueprint for en-

gineering microbial interventions that operate in real time with

host physiology.

TRF induced a distinct cycling signature in metatranscriptom-

ics (Figures 3A and 3B), restoring transcripts previously rhythmic

under NCD but lost under HFD. These included β-galactosidase,

lipoate protein ligase, and glycosyltransferase (Figure S3E)—en-

zymes associated with weight loss, improved insulin sensitivity,

and reduced inflammation.52–57 TRF also shifted the phase of

transcripts that cycled under FA but not NA—such as glycosyl

hydrolases and 2-thiouracil desulfuratase, enzymes involved

in carbohydrate breakdown and protein translation,58,59

(Figure S3D)—from the dark to the light phase. This suggests

that HFD disrupts the timing and availability of microbial func-

tions, potentially contributing to metabolic dysfunction.

Despite the known diurnal dynamics of the microbiome,1–3,26

most studies overlook timing in sample collection. We show

that TRF-induced changes in microbial composition (16S,

Figure 1E) and function (metatranscriptomics, Figure 2B) would

have been missed without accounting for the timing of sample

collection. This reinforces the principle—known in host tran-

scriptomics—that timing of transcript presence can critically

impact physiological outcomes.

Using metatranscriptomics, we uncovered diet- and TRF-spe-

cific bsh expression patterns at the species level, consistent

with prior work demonstrating functional specificity among

BSHs.39,44 We also found that bsh expression varies in its diurnal

regulation. While L. gasseri and D. newyorkensis bsh were en-

riched under HFD and TRF, respectively, only D. newyorkensis

bsh transcripts exhibited diurnal oscillations (Figures 4D and

4E). D. newyorkensis has emerged as a potential therapeutic

agent due to its role in colitis amelioration,60 anti-aging,61 and

metabolic improvement in metabolic dysfunction-associated

steatoic liver disease (MASLD) models.62 These findings suggest

D. newyorkensis bsh may potentially contribute to the effects

of TRF.

In the native E. coli chassis, the D. newyorkensis bsh1

(DnBSH1) demonstrated broader substrate specificity, deconju-

gating both glycine- and taurine-conjugated BAs, despite having

a taurine-preferring motif. This promiscuity may explain its stron-

ger physiological metabolic impact relative to BSHs limited to a

single conjugate class. Structural studies of such BSHs could

inform the design of precision microbial therapeutics. We also

tested amidation activity and discovered that DnBSH1 (from

the TRF metatranscriptome) produced multiple BBAAs in vitro,

while the LgBSH (from DIO) did not (Figures 5E–5H). Although

some BBAAs may act as farnesoid X receptor (FXR) ago-

nists,34,63 their broader interactions with receptors like Takeda

G-protein coupled receptor 5 (TGR5), pregnane X receptor

(PXR), and aryl hydrocarbon receptor (AhR) remain unknown.34

Nevertheless, our findings demonstrate that metatranscriptom-

ics can uncover microbial enzymes with distinct substrate pro-

files and regulatory properties shaped by diet—offering a path

to engineer therapeutics targeting diet-sensitive metabolic

pathways.

In vivo, mice colonized with EcAZ-1DnBSH1—the TRF-derived

DnBSH1— showed improved glucose regulation, enhanced in-

sulin response, reduced fat mass, and increased lean mass

(Figures 6F–6I), mirroring TRF-associated metabolic bene-

fits.1,6,7 This study demonstrates that an engineered BSH

microbe can alter body composition in a non-obese back-

ground, a result not previously reported. Since two of the

BSHs we engineered were enriched under HFD, we hypothesize

that these ENBs may yield similar improvements in HFD-fed

mice—though this remains to be tested. These findings suggest

that D. newyorkensis BSH may contribute to TRF’s phenotypic

effects and exert greater metabolic benefits than previously

characterized BSHs.

Fecal metabolomics provided evidence that these BSH ENBs

could modify the luminal BBAA pool. Interestingly, differences in

BBAA levels were diurnal, despite the bsh genes being under

constitutive promoters. This implies that interactions between

the ENBs and the host or microbiome circadian rhythms are crit-

ical for their activity. Further studies are needed to test this and

clarify the role of the gut microbiome–BA axis in metabolic ben-

efits associated with feeding behaviors like TRF. Altogether, our

results show that metatranscriptomics enables discovery of

potent microbial functions that influence host physiology and

opens the door to developing microbial therapies tuned to die-

tary and temporal contexts.

Limitations of our study include our use of Woltka for annota-

tion, which favors biological relevance but lacks comprehensive

coverage. The Web of Life database may underrepresent bsh

genes, which we addressed by supplementing with a curated

BSH database to improve detection. Similarly, Pfam-based an-

notations limited pathway analyses and hindered species-level

comparisons for non-bsh genes without further validation.

Future studies could build on our dataset to identify other micro-

bial enzymes responsive to TRF. Differences in sequencing

depth between metagenomics and metatranscriptomics could

pose another challenge. However, even after rarefying the meta-

transcriptomics data to match the metagenomics depth, we still

observed TRF-specific effects not seen in the metagenome,

underscoring metatranscriptomics’ greater sensitivity. Deter-

mining statistical power and sample size in circadian micro-

biome studies remains challenging because it is less well-char-

acterized than RNA-seq, underscoring the need for further

research to define optimal sampling strategies per time point.
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Our in vivo work focused on 6-week outcomes. Long-term

effects and performance in DIO models should be further

explored in future studies. Spatial variation in bsh expression

along the gastrointestinal tract is another factor not assessed

here. Lastly, several transcripts annotated as bsh (e.g.,

DnBSH2) lacked enzymatic activity, illustrating a broader issue

in microbiome research: functionally distinct genes can share

the same annotation, complicating predictions of microbial

activity.

In this study, we demonstrated that metatranscriptomics can

capture time-sensitive microbial changes driven by TRF and

can be used to guide microbial engineering. We show that this

approach led to the development of a BSH-expressing ENB

with stronger metabolic effects than previously reported strains.

Metatranscriptomics is thus a powerful platform for understand-

ing dynamic microbial functions and for creating the next gener-

ation of personalized LBTs.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

HFD and TRF animal experiment

A total of 54 8-week-old, wild-type male C57BL/6 mice (Jackson Laboratories, Bar Harbor, ME) were subject to different diet and

food access patterns for 8 weeks as previously described.1 We used male mice as females do not develop DIO or high-fat diet dys-

metabolism. Mice were split into three groups: (1) mice fed a normal chow (NCD, LabDiet 5001): 3.36 kcal/gm with ad libitum food

access (n = 18, NA), (2) High-fat diet (HFD, TestDiet 58Y1): 5.16 kcal/gm with ad libitum food access (n = 18, FA), or (3) HFD with time-

restricted food access (n = 18, FT). Time-restricted food access refers to restricting food access to a period of 8 hours during the dark

period (ZT13–21). FT mice were most fasted at ZT13 during the dark phase, while NA and FA mice were most fasted at ZT9 during the

light phase. For every 4h time point, three animals from each condition from separate cages were euthanized and cecum samples

were collected during a 24h period for each of the 6 timepoints on the Zeitgeber time scale (ZT1, ZT5, ZT9, ZT13, ZT17, ZT21) and

stored at -80 ◦C until further processing. Tissue samples were powderized through mechanical homogenization (mortar and pestle) in

liquid nitrogen. We note that six of the FA and FT samples had insufficient RNA yield during nucleic acid extraction processing. This

issue arose due to low cecal content from the HFD-fed mice consuming less food by gram, and the high acidity of the cecal environ-

ment under HFD conditions interfering with our RNA extraction protocols. Nonetheless, we do not believe this compromises our abil-

ity to draw statistically and biologically meaningful conclusions.74

ENB in vivo animal experiment

All animals were maintained and used in accordance with the guidelines of the IACUC of the University of California, San Diego. Eight-

week-old mice were purchased from Jackson Laboratories and housed in a specific pathogen free facility with a 12h light–12h dark

cycle, an ambient temperature of 20–24 ◦C and humidity of 40–60%. After acclimation for one week, mice were pseudorandomized

into four groups based on their initial body weight and body composition and gavaged with 0.2 ml of 1x1010 CFU/mL EcAZ, EcAZ-

2BSH+, EcAZ-1DnBSH1 or EcAZ-1LgBSH. Body weight and food intake were measured every week.

METHOD DETAILS

Microbial Engineering

Based on the differential expression results of different BSH genes, we chose 5 bsh candidates to engineer into our previously

described native E. coli chassis with added cat resistance and no GFP (referred to here as EcAZ-1-cat).10 Briefly, all bsh genes

were codon optimized for E. coli expression and placed under the regulation of constitutive promoter J23119. Using CRISPR coupled

with homologous recombination, EcAZ-1DnBSH1, EcAZ-1DnBSH2, EcAZ-1LgBSH, EcAZ-1LCAG95BSH, and EcAZ-1EpBSH were integrated
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at formerly identified E. coli Safe Site 9 (SS9).75 Additionally, each strain had the chloramphenicol acetyltransferase gene, cat, inte-

grated at an attB site in the genome to allow for strain selection using antibiotics. Correct genomic editing was verified by Sanger

sequencing across the site of insertion. Long-read nanopore sequencing of EcAZ-1LCAG95BSH strain confirmed that no off-target edits

occurred during the engineering process.

Bile Acid quantification in vitro

The bsh-expressing engineered native bacteria were grown in Brain Heart Infusion broth (BHI) at 37 ◦C overnight, with shaking. After

24h, 1:100 subcultures were inoculated in a 96-deep well plate and incubated at 37 ◦C with shaking for 4 hours. 10 mM working

stocks of bile acids were prepped in 50% methanol (MeOH) (TDCA, TCA, GCDCA, GUDCA), 45% MeOH/10% DMSO (TUDCA,

TCDCA), 35% MeOH/30% DMSO (GDCA), or 30%MeOH/40% DMSO (TLCA). 5 mM GLCA was prepared in 25% MeOH/50%

DMSO and increased volume of the stock and vehicle were added to final 96-deep well plates for a final 100 μM concentration.

1 mL BHI with 100 μM of each respective bile acid (or vehicle control) was then inoculated in a 96-deep well plate with 10 μL of

the subcultured strains. Plates were done in triplicate. Wells were gently mixed using a multichannel pipette and 250 μL of each cul-

ture was put in a 96-well plate that was then stored at -80 ◦C until further processing. The deep well plates were then incubated at

37 ◦C with shaking for 48 hours, with 250 μL of culture collected and frozen at the 24- and 48-hours marks. Samples were subse-

quently lysed via 3 rounds of freeze-thaw lysis.

Bacterial colonization and BSH activity

Feces were collected from mice 6 weeks after one single gavage with the ENBs, then fecal samples were homogenized in 1 ml sterile

PBS. Next, homogenized feces from EcAZ colonized mice were either plated on Luria Broth (LB) agar plates containing chloramphen-

icol (40 μg/mL) to check for unintended bacterial contamination or diluted and plated on LB agar plates containing kanamycin

(12.5 μg/mL) to calculate the number of bacteria colonized in the gut. Fecal samples from EcAZ-2BSH+, EcAZ-1DnBSH1 or EcAZ-1LgBSH

colonized mice were plated on LB + chloramphenicol agar plates to calculate the bacterial colonization level. To assess the

maintenance of BSH enzyme functionality in the gut, we streaked single colonies from the antibiotic-containing plates on an LB plate

containing TDCA, then the white precipitates with colonies and halo surrounding the colonies were evaluated after overnight

incubation.

Blood glucose and insulin quantification

At week 6 after one single gavage with different ENBs, mice were fasted for 16h (Pur-O-Cel bedding) and then orally gavaged with

0.7g sugar/kg body weight of a mixed meal (Ensure, Abbott, Columbus, Ohio). After 0.5 h, postprandial blood glucose was measured

by the tail snip using a Nova Max Plus glucose meter. Tail tips were anesthetized with a 5% lidocaine cream (Actavis, Parsippany-

Troy Hills, NJ) prior to snip. Postprandial blood was also collected through a submandibular bleed 0.5 h after oral gavage, then centri-

fuged at 1000 g for 20-30 minutes at 4 ◦C. Serum was collected, and insulin levels were measured using a mouse ELISA (Crystal

Chem Ultra Sensitive Mouse ELISA Kit). This data is deposited in Mendeley Data, V1, https://doi.org/10.17632/r3t9jm798y.1.

Fat and lean mass quantification

Body composition was measured before ENB treatment and 6 weeks after one single gavage with ENBs. Whole body fat mass and

lean mass of live mice were scanned using an EchoMRI™ 3-in-1 Body Composition Analyzer (EchoMRI) with EchoMRI 2022 software.

QUANTIFICATION AND STATISTICAL ANALYSIS

16S data processing

The 16S data was sequenced, cleaned, trimmed and processed as previously described.1,3 We used the taxon filtered DADA2 pro-

cessed ASV tables for the diversity analysis.

Metatranscriptomics sample and data processing

Metatranscriptome sequencing was performed on the mechanically homogenized cecum tissues. Powdered tissue samples were

homogenized in TRIzol Reagent (Life Technologies). RNA was isolated with PureLink RNA mini kit (Life Technologies) and rRNA

depleted with Ribo-Zero kit (Illumina) according to the manufacturer’s instructions. Sample quality control and library preparation

were performed by the IGM core at UC San Diego. RNA ScreenTape was used to assess RNA quality and quantity. A sequencing

library was obtained based on mRNA. Sequencing was performed on the NovaSeq Illumina platform using 150bp paired-end reads

to a mean read count per sample of 71,390,000. All paired reads were cleaned using fastp, trimming 3’ polyX and adapter sequence,

and using default quality filtering scores and lengths. Mouse reads were removed from the metatranscriptomic data by using bowtie2

v2.3.5 to map to the mouse genome (GRCm38.p5) and removing mapped reads.64 rRNA and tRNA was then removed from meta-

transcriptomic data via infernal cmscan v1.1.14 against RFAMs RF00005 (tRNA) and RF00001, RF02541, RF00177 (bacterial rRNA

clans) with the parameter –cut_nc to match to the noise cutoff.65 We aligned the clean reads using bowtie2 v.2.4.5 using the –very-

sensitive preset option and ran the alignment against the WoL2 database, the most current and comprehensive version, using

the ‘‘woltka classify’’ function in Woltka to get the per genome mapping tables.66,76 On average 71% of total reads mapped success-

fully. Followed by collapsing the per genome table using ‘‘woltka tool collapse’’ to pfam functional classifications. To get the genus|
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function and species|function tables, we first used ‘‘woltka classify’’ with the flag –outmap to get taxonomy mapping information and

then ran ‘‘woltka classify’’ using –stratify and the outmap file as its input to get the genus and species functional pfam tables. Meta-

transcriptomic sequences are deposited under ENA project PRJEB89098.

Metagenomics sample and data processing

DNA was extracted as previously described.1 Sample quality and quantity was assessed prior to preparation for shotgun metage-

nomic sequencing. Sample quality control and library preparation were performed by the IGM core at UC San Diego. Sequencing

was performed on the NovaSeq Illumina platform using 150bp paired-end reads to a mean read-count per sample of 28,000. All

raw paired reads were cleaned, trimmed, filtered in the same way as for the metatranscriptomics. We aligned these raw paired reads

using bowtie2 v.2.4.5 using the –very-sensitive preset option and then filtered the.sam files using Zebra Filter for any reads with a

coverage threshold below 0.001.64,77 We then ran the cleaned alignment against the WoL2 database and Woltka in the same way

we ran the metatranscriptomics.66,76 Metagenomic sequences are deposited under ENA project PRJEB89098.

Diversity analysis

To run the α diversity analysis using the Shannon metric, we rarefied the metatranscriptomics pfam counts table to a depth of 1.4M,

metagenomics to a depth of 12000, and 16S to a depth of 6000 on Qiime2.67 We calculated for the significant differences in α diversity

irrespective of collection time using pairwise Man-Whitney U test (two-tailed), FDR corrected using Benjamin-Hochberg at 0.05. To

find the effect of condition and collection time on α diversity, we ran the one-way ANOVA model shannon∼condition*zt_time on each

omics method. We supplement this analysis by performing pairwise Student’s t-tests (two-tailed), corrected at FDR using Benjamin-

Hochberg of 0.05, as a post-hoc test to find differences between the conditions at each collection time point. We tested for normality

to perform these parametric tests. As RPCA (robust aitchison distance metric) central log normalizes its input table, we used the non-

rarefied counts for the β diversity analysis.78 We ran the PERMANOVA in Qiime2 to find if there were any significant differences in the

16s, metagenomics, and metatranscriptomics β-diversity by condition and phase.67

Differential expression

The metatranscriptomics pfam counts were TPM normalized before determining the differential expression of each transcript. All the

differential pairwise analysis of the diet/feeding conditions by light or dark phase were performed using ALDEx2 with a Welch’s t-test

and a p-value cut-off of 0.1.24 To determine if there were significant differences in the number of results determined by metatranscrip-

tomics or metagenomics we used a χ2 test and p-value cut-off of 0.05. From the significantly different results in the three pairwise

group comparisons (FA vs. FT, FA vs. NA, and FT vs. NA), we used venn in R to subset the data further to understand what functions

were specific for each comparison. Similarity between groups (e.g., metagenomics vs. metatranscriptomics or Light vs. Dark) was

calculated using the jaccard distance matrix. To determine the functional pathways these pfams belong to, we used the pfam-to-go-

process.map file from woltka.66 All plots were generated using ggplot2 on Rstudio.79

Cycling analysis

To determine cycling, we ran the metatranscriptomics and metagenomics TPM normalized pfam tables sub-setted by condition

against MetaCycle v.1.2.0 using the JTK_cycle algorithm and a p-value cut-off of 0.05.68 To determine if there were significant dif-

ferences in the number of cycling results determined by metatranscriptomics or metagenomics we used a χ2 test and p-value cut-off

of 0.05. We used venn in R to determine what functions overlap and are uniquely cycling among the three conditions. Similarity be-

tween metagenomics and metatranscriptomics was calculated using the jaccard distance matrix. All plots were generated using

ggplot2 on Rstudio.79

bsh expression analysis

To find the per microbe differential expression of bsh, we filtered our species|pfam tables for just bsh (PF02275). We normalized the

transcripts to the housekeeping gene rpob, which encodes the beta-subunit of RNA polymerase to find the overall differential expres-

sion of bsh under the three conditions and two phases using a pairwise Mann-Whitney U test, FDR corrected using Benjamin-

Hochberg at 0.05. rpob did not show any cycling or diurnal differences modulated by TRF. We then used BIRDMAn, a Bayesian

framework for performing differential abundance analysis,38 to find individual species BSH differences between the three pairwise

groups (FA vs. FT, FA vs. NA, and FT vs. NA) in either the light or dark phase. The model we used was a negative binomial model

from the SingleFeatureModel class with a beta prior of 5, individual dispersion lognormal prior of 0.5, and 500 iterations. To determine

which transcripts had the differential expression patterns of interest, we filtered for transcripts whose 95% high density interval (hdi)

had a ratio value range less than 10. Transcripts were considered credible if their hdi did not include an effect size of 0. To perform a

targeted search for bsh, we aligned the clean reads against a custom database of BSH protein sequences using DIAMOND (v 2.1.9)

blastx with default parameters.69 A custom BSH database was compiled based on amino acid sequences for putative BSHs from the

Interpro family IPR029132 (choloylglycine hydrolase, NAAA C-terminal) using the EFI-EST web server in Familes mode.80 Sequences

were manually filtered to those with species-level information available, resulting in a total of 6,638 unique protein sequences. Acces-

sion numbers were mapped to amino acid sequences using UniProt ID mapping to compile the database. Quantification of the
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abundance of the bsh transcripts was performed with the ‘‘woltka classify’’ function in Woltka (v 0.1.5).66 We then followed the same

method to find differential expression for these transcripts and the bsh metagenomic genes using BIRDMAn between our pairwise

conditions.

LC-MS/MS sample processing and data acquisition

The lysed samples (about 180 μL) was transferred to a deep 96-well plate and 600 μL of LC-MS grade methanol:water 50:50 v/v was

added to each well. The sample plates were sealed with aluminium seal and sonicated for 10 min followed by incubation at -20 ◦C and

then centrifuged for 15 min at 2000 r.p.m. A 200 μL aliquot from each sample’s supernatant was transferred to a shallow 96-well plate

and the liquid was evaporated in vacuo under centrifugation. The dried extracts were resuspended in 200 μL of 50% methanol:water

containing 1 μM sulfadimethoxine as internal standard, mixed thoroughly by pipetting and then sonicated for 15 min. The LC-MS/MS

data acquisition was carried out with a Vanquish UHPLC system coupled to a Q-Exactive Orbitrap mass spectrometer (Thermo

Fisher Scientific, Bremen, Germany). The chromatographic separation was performed on a Polar C18 column (Kinetex C18, 100 x

2.1 mm, 2.6 μm particle size, 100A pore size – Phenomenex, Torrance, USA), and the mobile phase consisted of H2O (solvent A),

and ACN (solvent B), both acidified with 0.1% formic acid. The LC method consisted of 0-0.5 min 5% B, 0.5-1.1 min 5-25% B,

1.1-7.5 min 25-40% B, 7.5-8.5 min 40-100% followed by a 1.5 min washout phase at 100% B, and a 2.0 min re-equilibration phase

at 5% B. The flow rate was set at 0.5 mL/min, the injection volume was fixed at 5 μL, and the column temperature was set at 40 ◦C.

Data-dependent acquisition (DDA) of MS/MS spectra was performed in the positive ionization mode. Electrospray ionization (ESI)

parameters were set as: 52.5 AU sheath gas flow, 13.75 AU auxiliary gas flow, 2.7 AU spare gas flow, and 400 ◦C auxiliary gas tem-

perature; the spray voltage was set to 3.5 kV and the inlet capillary to 320 ◦C and 50 V S-lens level was applied. MS scan range was

set to 150-1500 m/z with a resolution of 35,000 with one micro-scan. The maximum ion injection time was set to 100 ms with an auto-

mated gain control (AGC) target of 1.0E6. Up to 5 MS/MS spectra per MS1 survey scan were recorded in DDA mode with a resolution

of 17,500 with one micro-scan. The maximum ion injection time for MS/MS scans was set to 150 ms with an AGC target of 5E5 ions.

The MS/MS precursor isolation window was set to 1 m/z. The normalized collision energy was set to a stepwise increase from 25 to

40 to 60 with z = 1 as the default charge state. MS/MS scans were triggered at the apex of chromatographic peaks within 2 to 5 s from

their first occurrence. The quality and reproducibility of the analyses were evaluated considering the retention time and the m/z of a

standard solution containing a mixture of six standards, which was analyzed every 10 samples.

Bile acid annotations and relative quantification using peak area abundances extracted using MZmine 4.1.0 were achieved using

Feature Based Molecular Networking (FBMN) on GNPS2 and an expanded set of bile acid libraries.63,70–72,81 Peak areas for poly-

amine bile amidates were extracted using Skyline after matching the retention time using synthetic standards.82 Heatmap and box-

plots showing the quantification of the bile acids from the cultures and fecal samples were generated in R using pheatmap and

ggplot2.79,83 Retention time matching was performed by extracting EICs for selected bile acids using the Python pyrawr package

and an in-house script deposited on GitHub (https://github.com/wilhan-nunes/raw-xic-export.git). The metabolomic files are depos-

ited in MassIVE under MSV000094578 and MSV000097414 and the GNPS FBMN jobs are https://gnps2.org/status?task=f67

a6015e87942fab913beedd63a36aa and https://gnps2.org/status?task=092d720b607e4957ab6b2cd67d15d98f.

BSH protein sequence characterization

We performed a protein sequence alignment of the BSH proteins we engineered against previously characterized BSHs using Clustal

Omega v1.2.4 with default parameters.44,73 This alignment allowed us to determine phylogeny and protein sequence identity using

the UniProt align tool84 and to identify the location of the glycine- and taurine-preferring motif on the BSH selectivity loop (alignment

position 345–347) using the NCBI Multiple Sequence Alignment Viewer v1.25.3.

ll
Article

Cell Host & Microbe 33, 1057–1072.e1–e5, July 9, 2025 e5

https://github.com/wilhan-nunes/raw-xic-export.git
https://gnps2.org/status?task=f67a6015e87942fab913beedd63a36aa
https://gnps2.org/status?task=f67a6015e87942fab913beedd63a36aa
https://gnps2.org/status?task=092d720b607e4957ab6b2cd67d15d98f

	Metatranscriptomics uncovers diurnal functional shifts in bacterial transgenes with profound metabolic effects
	Introduction
	Results
	Metatranscriptomics captures functional dynamics driven by diet and feeding behavior
	Metatranscriptomics captures TRF-driven diurnal differential expression of microbial functions
	Metatranscriptomics captures functional cyclical fluctuations driven by diet and feeding behavior
	The bsh of D. newyorkensis exhibits time-dependent differential expression
	TRF identified BSHs have an increased capacity for amidation
	Engineered E. coli expressing DnBSH1 has a more pronounced phenotypic effect than other BSHs

	Discussion
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	Declaration of generative AI and AI-assisted technologies in the writing process
	Supplemental information
	References
	STAR★Methods
	Key resources table
	Experimental model and study participant details
	HFD and TRF animal experiment
	ENB in vivo animal experiment

	Method details
	Microbial Engineering
	Bile Acid quantification in vitro
	Bacterial colonization and BSH activity
	Blood glucose and insulin quantification
	Fat and lean mass quantification

	Quantification and statistical analysis
	16S data processing
	Metatranscriptomics sample and data processing
	Metagenomics sample and data processing
	Diversity analysis
	Differential expression
	Cycling analysis
	bsh expression analysis
	LC-MS/MS sample processing and data acquisition
	BSH protein sequence characterization




