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Abstract

Multi-organ biological aging clocks derived from clinical phenotypes and neuroimaging have
emerged as valuable tools for studying human aging and disease™***. Plasma proteomics
provides an additional molecular dimension to enrich these clocks’. Building on previous
work™3, | developed 11 multi-organ proteome-based biological age gaps (ProtBAGSs) using 2448
plasma proteins from 43,498 participantsin the UK Biobank. I highlighted key methodological
and clinical considerations for developing and using ProtBAG, including age bias correction®,
and investigated the impact of training data sample size, protein organ specificity, and the
underlying pathologies of the training data on model generalizability and clinical interpretability.
| then integrated the 11 ProtBAGs with our previously developed 9 multi-organ phenotype-based
biological age gaps (PhenoBAG!) to investigate their genetic underpinnings, causal associations
with 525 disease endpoints (DE) from FinnGen and PGC, and their clinical potential in
predicting 14 disease categories and mortality. Genetic analyses revealed overlap between
ProtBAGs and PhenoBAGs via shared loci, genetic correlations, and colocalization signals. A
three-layer causal network linked ProtBAG, PhenoBAG, and DE, exemplified by the pathway of
obesity—renal PhenoBAG—renal ProtBAG to holistically understand human aging and disease.
Combining features across multiple organs improved predictions for disease categories and
mortality. These findings provide aframework for integrating multi-organ and multi-omics
biological aging clocksin biomedicine.
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Main

Multi-organ biological aging clocks, derived from in vivo medical image (e.g., neuroimaging)
and clinical phenotypes, areincreasingly being explored in clinical research and computational
neuroscience as tools to understand human aging, disease, and mortality>**’. These clocks
provide a comprehensive view of biological age, reflecting the functional and structural changes
across different organs. While significant advancements have been made in leveraging
phenotypic data for such models, there remains a growing interest in incorporating molecular-
level data, such as plasma proteomics’, epigenetics®, and metabolomics’, to enrich the landscape
of the multi-organ biological aging clocks. Plasma proteomics from different platforms (e.g.,
Olink™ and SomaScan™) offers the unique ability to identify and quantify proteins and post-
trandational modifications with high sensitivity, potentially uncovering new insights into organ-
specific aging and its relationship with health and disease™.

Despite its promise, deriving proteome-based biological age biomarkers presents several
challenges and unresolved questions. One common practice observed in neuroimaging-derived
brain age isto correct the age bias in an age prediction model, which may be critical for
associations between the biological age gap (BAG) and disease outcomes™>*®*°, That is, brain
age tends to be overestimated for younger individuals and underestimated for older individuals,
while predictions are most accurate for those whose ages are closer to the mean of the training
dataset (Fig. 1b). Furthermore, the lack of organ specificity of plasma proteins (analogous to
pleiotropy in genetics), where a protein is over-expressed in multiple organ tissues may
complicate model development, leading to overfitting and reduced interpretability. Previous
studiesidentified similar overfitting issues and addressed them by employing data-driven feature
selection methods to mitigate the problem®*°. Furthermore, key factors that influence model
performance and generalizability, such as the type of omics data, sample size, and underlying
pathology of the training population, as well as the balance between the tightness of mode fit
and the clinical power of BAG, have not been systematically evaluated. These challenges
highlight the need for systematic and reproducible evaluations of proteome-derived BAGs (i.e.,
ProtBAG)*’. Addressing these gaps s essential to unlocking the full potential of plasma
proteomics in aging research and its clinical applications.

Phenome-wide BAGs (PhenoBAG) and ProtBAG represent two essential aspects of
human aging and disease causal pathways, connecting genetics—transcriptomics— proteomics
(ProtBAG)—endophenotypes (PhenoBA G)—disease endpoint (DE). Our prior studies" have
examined the genetic architecture of 12 multi-organ PhenoBAG in 9 organ systems through
genome-wide association studies (GWAS) and post-GWAS validations, such as genetic
correlation’®, polygenic risk scores™, and causal inference®. A comprehensive framework to
explore the overlap and distinctions between ProtBAG and PhenoBAG is currently lacking.
Addressing this gap requires connecting genetics, ProtBAG, PhenoBAG, and DE. Such an
integrative approach is essential for developing a holistic understanding of the causal pathways
for potential therapeutic devel opment.

Multi-organ and multi-omics approach are gaining prominencein
modeling human aging and disease, driven by the hypothesis that integrating insights across
multiple spatial and temporal scales better captures underlying disease-related neurobiological
processes, thus enhancing diagnostic and prognostic biomarker discovery. For instance, Zhao et
al.?° demonstrated improved cognitive prediction by integrating brain and heart MRI features
with PRS. Similarly, our prior work on Al/ML-derived brain disease subtypes showed enhanced
systemic disease prediction when combining these brain imaging-derived biomarkers with
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PRS??#'. However, the potential of multi-omics and multi-organ BAGs as complementary
biomarkers for disease and mortality remains unexplored.

This study used 2448 Olink plasma proteins from 43,498 UK Biobank participants
(UKBB and Supplementary eTable 1) to develop 11 organ-specific ProtBAGs (Method 1). |
systematically compared the 11 ProtBAGs with 9 PhenoBAGs derived from our previous
studies® (Method 2-3). | evaluated the influence of key methodological components (M ethod
4) on model performance and clinical interpretation using the 11 ProtBAGs. Subsequently, |
examined their genetic architecture and causal relationships with 525 DEs from FinnGen™ and
PGC* (Method 5). Finally, | assessed the potential of ProtBAGs, PhenoBAGs, and their PRSs
for predicting disease categories and mortality (Method 6). All results and pre-trained Al/ML
models are publicly disseminated at the MEDICINE portal: https://|abs-
laboratory.com/medicine/.
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99 Reaults
100
101  Ageprediction performance of the 11 ProtBAGsderived from three AI/ML models
102 Torigorously evaluate the performance of biological age prediction models, | partitioned the
103 5089 hedlthy control (CN, without any pathologies) participants into the CN
104  training/validation/test (N=4589) and independent test (ind. test; N=500) datasets. Extended
105 DataFig. 1 details this study's population selection and overall workflow. The CN
106 training/validation/test datasets were used for model selection and nested cross-validation when
107  applicable, while the independent test dataset provided an unbiased assessment of the model for
108 overfitting and generalizability to unseen data. Notably, the cross-validation procedure used in
109 thisstudy differs slightly from two recent proteome-based aging clocks™° in two key ways: i) |
110  explicitly implemented nested cross-validation for hyperparameter tuning of the model, and ii)
111  modd training was conducted exclusively on 5,089 CN participants to assess generalizability to
112  unseen independent test data.
113 When fitting the organ-specific proteins (M ethod 3) to the three AI/ML models|i.e,,
114  lasso regression, support vector regressor (SVR), and neural network (NN)], | observed marginal
115 variability in model performance, with no single mode consistently outperforming the others
116  (Fig. 1a). For instance, lasso outperformed NN and SVR for the hepatic ProtBAG (P-value <
117  2.27x10°), though a two-sample t-test may be permissive™ in a complex cross-validation setting.
118  On the other hand, the brain ProtBAG derived from NN obtained alower MAE than lasso and
119  SVR modéls (P-value < 2.31x10°%). Across different organ systems, the best model performance,
120  before applying the age bias correction®, was achieved for the brain ProtBAG via NN (ind. test
121  MAE=4.86; Pearson’s r=0.65); the highest MAE was achieved for the hepatic ProtBAG viaNN
122 (MAE=10.19; r=0.61). Notably, | found instances where MAE and r coefficient were not aligned
123 —alower MAE (reflecting the magnitude of errors) did not always correspond to a higher r
124  (indicating the strength and direction of predictions), as these metrics capture different aspects of
125 the mode performance and can serve as a potential bias-variance tradeoff and the nonlinear
126  dynamics of proteomics aging™. For example, the hepatic ProtBAG predicted using the NN
127  exhibited a high (r=0.61) despite a substantial MAE (MAE=10.19), while the eye ProtBAG
128  using the same model achieved alower MAE (MAE=6.78) but a much weaker correlation
129 (r=0.13). Supplementary eTable 2 presents detailed statistics for the age prediction tasks before
130  and after the age bias correction®. Extended Data Fig. 2 shows the Pearson’s r coefficient
131  between predicted and chronological age. Supplementary eNote 1 presents the detailed tissue-
132  enriched proteinsin each organ to train the 11 multi-organ ProtBAGs in the primary results (Fig.
133 laand Method 3c).
134
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Figurel: Three AI/M L modelsto derivethe 11 multi;organ ProtBAGs

x

Hs

[ |
] S |
[ r—
—
Ronal LASEO| — Ik

Sain-NY —-—# |‘
Epe-sva| —
HearLagsso| —I——
Pulmonary-NN{ —f——
Hopatic-LASSO| it — 34

Endocrine-Sv3{ —l——

Endooing-Ny{ —FfE———i4:
Immune-3v| —EN—
skniasso| —Ele—3:
SKin-NN| —fE T — —
Faproductive malg-LASS0 —-—-'ﬁ:

PulmonaryLAS50| —f= = }—
Pulmongry-3va{ —f=f=}——h
Cndocrine-LABBO| ——
Reproductive_temaleLAS50] ——— 3

FiZgtzgtz TZoEZoCipizplzglzats
$E399 2958 tE23¢ $iesissi£50 ¢
1§R389154 f833835§13:22893883¢¢
R = gXE€ aE¢€ GEEE L
E HE

g B
BEZEE
r g:

Wilhoul age corraclion |

p<227e-"8@

p <220e-18
1a-07 *

| Withaul age correclion |

G.8e-09
———
P=222e-10

p<2.5%-18
—

043

A 4
wu PT-b-ain PT-30Z PT-AD

2

B

NECN'IMDSOQMEHN
Chronological age

47 50 80 7040 S0 80 FOA0 &0 80 W
Chronological age

| with age correation | | With age correction |

3##03”003‘00”00)

Chronologlcal age
a) Age prediction performance quantified by the mean absolute error (M AE for the independent
test data) across 3 Al models and 11 organ systems using Olink plasma proteomics from UKBB.
The Human Protein Atlas project determined the organ-specific proteins (i.e., enriched genes for
at least four-fold higher mRNA level in the tissue of interest than other tissues;
https.//www.protel natlas.org/humanproteome/tissue). The # symbol denotes the model achieving
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the lowest MAE; the * symbol indicates statistical significance (P-value<0.05) using atwo-
sample t-test between two models. The dots present the model performance for the 50
repetitions. b) When the model was trained in healthy control and applied to other populations,
age bias correction should be explicitly applied. Without implementing age bias correction, we
showed that group comparisons between the healthy control (CN: training/validation and
independent test) group and the patient (PT) groups [PT-brain for participants with brain
disorders classified under ICD codes G and F, PT-SCZ for those with schizophrenia (F20 and
F21), and PT-AD for those with Alzheimer’ s disease (G30)] could lead to biased conclusions.
Two approaches for age bias correction were considered: i) using the parameters trained in the
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CN group to correct the independent test and PT populations (i.e., “training correction”), and ii)
performing independent corrections within the independent test and PT populations (i.e.,
“independent correction”). Abbreviations. Ind. test: independent test; BAG: biological age gap.
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155 Key considerationsfor aging clock generation and inter pretation

156  Ikram® and Ferrucci et al® recently discussed the use and misuse of biological aging in

157  biomedicine. This study provided additional critical cons derations regarding methodology and
158 clinical interpretation in deriving the 11 multi-organ ProtBAGs (M ethod 4). In this section, |
159  used thebrain ProtBAG as a case study to examine the impact of key factors on model

160  performance and clinical interpretability.

161

162  When training modelsin healthy controls and applying them to diseased populations, correction
163 for age bias should be performed

164  The age bias correction was commonly and explicitly practiced in the brain imaging-derived age
165  prediction model®, leading to alower MAE and ahigher r coefficient (Fig. 1b). The first

166  consideration in biological age research is reporting metrics before applying age bias correction®,
167 Reporting uncorrected metrics ensures consstency in comparing model performance across

168  studies, preventing potential confusion or misapplication from comparing model performance
169 acrossstudies. Additionally, age bias correction is essential for deriving age-independent aging
170  clocks, which focus on capturing biological aging rather than merely reflecting chronol ogical
171 age. Inthe analysis comparing brain ProtBAG between the healthy control (CN) and patient (PT-
172 brain) groups with participants for all brain disorders, | found that, without age bias correction™,
173  the PT-brain group exhibited alower brain ProtBAG than the CN group (P-value=2.22 x10™'°).
174  However, after applying age bias correction, | observed a reversed and more clinically plausible
175 trend, with the PT group showing a higher brain ProtBAG than the CN group (P-value=0.045).
176  Similar biases were observed when analyzing single disease entities such as schizophreniaand
177  Alzhemer'sdisease (AD) (Fig. 1b). Additionally, different age bias correction strategies (e.g.,
178 directly applying the parameters trained on the CN training/validation/test data vs. independently
179  deriving parameters from the PT data) should be considered when applying the model to the PT
180 data. Thisis because the parameters trained on the CN training/validation/test data could

181 generalizeto CN independent test data, but may not generalize well to the PT data dueto

182 potential domain shifts resulting from differences in age, pathology, and other factors (Fig. 1b).
183  Thiswas also demonstrated in the work of Oh et al.®, who argued that age gaps were calculated
184  separately for each cohort to account for cohort-specific differences using the locally weighted
185  regression (LOWESS residual-based) method. | also compared the neuroimaging-based approach
186  tothe LOWESS method used in Oh et al.®, assuming proteomics aging clocks nolinear

187 trgectory and implicilty addressing this bias during modeling. Both approaches were effective in
188  reducing this biasto some extent (Supplementary eFigur e 1a-d), although the LOWESS

189 method ill indicated a negative mean brain ProtBAG closeto O (i.e., -0.179 and -0.086 for

190  schizophreniaand AD) when the parameters were learned from the target populations. While
191 including chronological age as a covariatein clinical associations (e.g., mortality) is a standard
192  practiceto control for confounding effects related to the variable of interest (i.e., mortality), this
193  does not resolve the issue of age-dependent variance in the aging clock itself.

194

195 Mode overfitting can be mitigated by increasing the sample size of the training dataset, and

196 introducing participants with mixed-pathologies fromthe UK Biobank

197  Argentieri et a.*® reported an MAE of 2.24 yearsand an r of 0.94 in their holdout test data using
198 UKBB data. My approach differs from Argentieri et al. in several ways. First, | used only 4,589
199 CN participants for training, whereas Argentieri et al. included a much larger training sample
200 (i.e., 31,808 participants from the general population, including mixed-pathology participants).
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201  Although my primary results using tissue-enriched proteins (M ethod 3c) in the 4,589 CN

202  participants did not exhibit clear signs of overfitting or poor generalizability to independent test
203 data(Fig. 1a), thiswas not the case when less organ-specific proteins were included (Fig. 2b).
204  Therefore, | investigated whether increasing the sample size could help aleviate the observed
205 overfitting and improve generalizability.

206 As increasing the sample size inevitably introduces diverse pathologies, | conducted

207  comparative analyses to assess the impact of training sample size (SS) on model generalizability
208 using the 255 brain tissue-elevated proteins (M ethod 3c) as input features. | selected different SS
209 values (4,589, 10,000, 20,000, 30,000, and 31,808) from the general population (with mixed
210 pathologies) to train the model and evaluated its performance on unseen independent test data.
211 Asshownin Fig. 2a, alarger SS enhanced the model's generalizability to independent test data,
212  asindicated by smaller Cohen’s D values (i.e., SS=30,000). | also reproduced this pattern using
213  the complete set of 2,448 proteins, following the approach outlined by Argentieri et al.*®

214  (Supplementary eFigure 1€). However, incorporating participants with mixed pathologies into
215 thetraining data also introduces challenges related to clinical interpretation and potential model
216  ovefitting, particularly when the sample size is small to moderate, as discussed below.

217

218 Biologically-driven feature selection based on protein organ specificity alleviates model

219  overfitting in 4589 healthy controls samples

220  Previous ProtBAG studies have demonstrated that feature selection algorithms can help mitigate
221  model overfitting when applying Al/ML models to unseen test data. For example, Oh et al.”

222  utilized L1 regularization in aggregated lasso models to address overfitting. Similarly, Argentieri
223 et al."® applied the Boruta feature selection algorithm, revealing that the most relevant 204

224 proteins achieved comparable performance to models trained on the complete set of 2,897

225  protens.

226 Using the 4589 healthy controls astraining data, | demonstrated that the generalizability
227  of AI/ML modelsto independent test data diminished further when using less organ-specific
228 proteins (e.g., tissue-elevated proteins) compared to a smaller subset of highly organ-specific
229 proteins(e.g., tissue-enriched proteins). Method 3c details the definition of different levels of
230 organ specificity; more organ-specific proteins resulted in fewer features. In my experiments, |
231  found that restricting the model to brain tissue-enriched proteins (N=53) resulted in better model
232  generalizability from the training/validation/test dataset to the independent test dataset (Cohen’s
233  D=0.15) than the other two scenarios. That is, this discrepancy was larger when models included
234 146 tissue-enhanced proteins (P-value<2.22x10'%; Cohen’s D=1.24), 255 tissue-el evated

235  proteins (P-value<2.22x10™°: Cohen’s D=1.46), and all the 2448 proteins (P-value<2.22x10™*;
236  Cohen’'s D=3.52). This pattern persisted even after randomly down-sampling 53 proteins from
237  thebrain tissue-enhanced, tissue-elevated, and tissue-nonspecific categories, although the

238  magnitude of Cohen’s D was reduced (Fig. 2b).

239

240  Atightly-fitted model does not provide higher statistical power to predict cognition than a

241  moderately-fitted model

242 | underscore that the primary objective of developing ProtBAG, or any biological aging clock, is
243  not to achieve a highly tightly-fitted model (e.g., alower MAE), as this can come at the cost of
244 overfitting and reduced power for cross-domain prediction (Fig. 2¢). Instead, the focus should be
245  on ensuring that the ProtBAGs demonstrate strong statistical associations with cross-domain
246  clinical variables, such as cognitive scores and mortality.
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247 When assessing the association between the brain ProtBAG and the digital symbol

248  subgtitution test (DSST) score using a linear regression model, the model at Epoch 2500

249  (|/=0.024+0.011; P-value=0.03) demonstrated a smaller 4 coefficient compared to the model at
250  Epoch 1000 (]4=0.033+0.011;P-value=0.003); the association at Epoch 1000 was ten times more
251  significant than at Epoch 2500 (with the same sample size), albeit the S coefficient did not reach
252  satigtical significance based on the permutation test (P-value = 0.30 for 10,000 permutations)
253 (Fig. 2d). The observed U-shaped relationship between epochs and the S coefficient reinforces
254  my argument that the primary goal of an aging clock model is not solely to optimize modd fit
255 (e.g., minimizing MAE or maximizing r), but rather to predict cross-domain clinical outcomes,
256  such as cognition and mortality (i.e., asimilar U-shaped relationship for age at deathin

257  Supplementary eFigure 2). Detailed statistics for all 8 cognitive scores and age at death are
258  presented in Supplementary eTable 3.

259

260 Theunderlying pathology of the training sample isimportant for clinical interpretation and

261 model performance

262  Inthisstudy, the AI/ML models were trained exclusively on a healthy population, aligning with
263  the approach used in brain neuroimaging-based BAG models, where training on a healthy

264  population establishes a normative reference for brain aging. This framework enables deviations
265 inthe brain PhenoBAG to be linked to pathological factors when applied to external populations
266  with disease, facilitating clinical interpretability. In prior proteome-based aging clocks, Oh et a.”
267  adopted thistraining approach, while Argentieri et al.™® trained the model on a cohort of over
268 30,000 participants with mixed pathologies.

269 | conducted a comparative experiment with varied training populations to examine how
270  diseasediagnosisinfluences mode performance and generalizability. Models trained on the CN
271  population (N=4589) showed dightly less overfitting, while mixed-population models achieved
272  lower MAE with moderate overfitting (Fig. 2€). This may be due to increased

273  heterogeneity/variability and extreme features tied to pathology, which risk capturing noise over
274  generalizable signals. Another crucial consideration isthat a model trained on mixed-pathology
275  populations, with the availability to increase sample size for training power, may limit the

276  clinical interpretability of the resulting aging clocks within the training sample, as well as their
277  applicability to external datasets. Thisis potentially because different pathologies can lead to
278  digtinct protein perturbations, complicating the generalizability and interpretation of the model.
279

280  Neuroimaging-derived brain PhenoBAG and brain ProtBAG achieved comparable predictive
281  performance

282 | compared the brain PhenoBAG (ind. test MAE=4.47), generated from 119 MRI-derived brain
283  imaging features’, with the brain ProtBAG (ind. test MAE=4.86), constructed using 53 brain
284  tissue-enriched proteins, and found their performance comparable (P-value=0.088) (Fig. 2f).
285

286  Which factor dominates the poor model generalizability to independent test data?

287 | identified three key factors influencing the model's generalizability to an independent test

288  dataset and they may guide the clinical interpretability: i) sample size, ii) the underlying

289  pathology of the training sample, and iii) organ specificity. These factors appear to be

290 interdependent, raising the question of which one plays the dominant role in driving overfitting.
291 | performed additional ablation analyses to identify the key factor influencing the model's
292  generalizability to unseen data. First, | re-assessed the impact of organ specificity (tissue-

10
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293  enriched, -enhanced, -elevated vs. all 2,448 proteins) using the larger sample size (N=31,808), as
294  theoneused in Argentieri et a.*®, which includes both mixed pathologies and healthy

295 participants. | found that alarger sasmple size reduced overfitting (Supplementary eFigure 3a)
296  caused by organ specificity observed in the CN population (Fig. 2a) and potential overfitting
297  from mixed pathologies (Fig. 2e). Additionally, the observed overfitting related to organ

298  specificity may be partly explained by the relatively lower collinearity among organ-enriched
299  proteins compared to other protein categories (Supplementary eFigure 3b). Secondly, |

300 investigated whether organ specificity or the number of features (proteins) contributes to the
301 overfitting issues observed in Fig. 2a. To thisend, | compared model performance using the 53
302  brain tissue-enriched proteins and 53 randomly selected non-organ-specific proteins (excluding
303 any proteins classified as tissue-enriched). This comparison was conducted across two cohorts:
304 4589 CN participants (Fig. 2a and Supplementary eFigur e 4a) and 31,308 participants with
305 mixed pathologies (Supplementary eFigure 4b). | found that when training the model on 4589
306 CN participants, organ specificity significantly contributes to the overfitting phenomenon.

307 However, increasing the sample size to over 30,000 participants with mixed pathologies helps
308 mitigate this overfitting issue.

309 In summary, | identified three key factors contributing to overfitting, with sample size
310 having the most significant impact. However, training an age prediction model on alarge-scale
311  population with mixed pathologies, such asthe general UKBB population, also presents certain
312 challenges, as discussed above. | also investigated the influence of sexes (male vs. female) in
313 predicting the brain ProtBAG, aswell as a discussion on sex difference in the literature®3*%1°
314 (Supplementary eNote 2 and eFigure 5). Given that the experiments using organ-specific

315 proteinsto derive 11 ProtBAGsin 4589 CN participants did not show prominent overfitting

316 (Supplementary eTable 2) and facilitated clinical interpretation, | used the 11 ProtBAGs

317  derived from the 4589 CN participants for downstream genetic and predictive analyses.

318

319 Protein importance to derive the brain ProtBAG

320 Usingthebrain ProtBAG as an example, | identified the most influential proteins contributing to
321 theaging clock through shapley additive explanations (SHAP) analysis®’, which explains the
322  contribution of each feature (i.e., a brain tissue-enriched protein) to a mode's prediction for a
323  gpecificindividual or data point in the training dataset.

324 | identified that among the 53 brain tissue-enriched proteins used as input features, only a
325  subset of proteins contributed substantially to the age prediction. The top 9 most influential

326  proteins based on mean absolute SHAP values were: MOG, BCAN, GFAP, PTPRZ1, SEPTINS,
327 MEPE, CNP, C1QL2, and NPTXR (Extended Data Fig. 3 a-b). For example, for the MOG

328 (Myelin Oligodendrocyte Glycoprotein) protein, | observed a high mean absolute SHAP value of
329 1.8, indicating a strong contribution to the predicted brain age. Moreover, the directionality of
330 the SHAP values suggests that higher MOG levels are associated with an older predicted brain
331 age, potentially reflecting age-related demyelination processes. In contrast, the BCAN (brevican)
332  protein, the second most influential protein, showed an inverse relationship, where higher protein
333 levelswerelinked to ayounger predicted brain age, possibly reflecting its role in maintaining
334  extracellular matrix integrity in the aging brain. Protein-protein interaction network analysis

335 (Extended Data Fig. 3d) and subsequent protein-set enrichment analysis® revealed significant
336 involvement of perineuronal nets (Extended Data Fig. 3e), which specialized extracellular

337  matrix structures that envelop parvalbumin-expressing GABAergic interneuronsin the central
338 nervous system. Finally, | compared the all-cause mortality prediction performance of the Cox

11
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339 model using the brain ProtBAG versus the top 9 most influential individual proteins as

340 predictors, and found that the brain ProtBAG demonstrated superior predictive power (Extended
341 DataFig. 3f). Supplementary eFigure 6 presents the SHAP anlaysis results for all the 11

342  ProtBAGs.

343
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345 Figure2: Theimpact of key components on model performance and generalizability via the
346  brain ProtBAG
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348 a) Theissue of poor generalizability observed in the 255 brain tissue-elevated proteins was
349 dlleviated by increasing the training sample size. | expanded the training population to include a
350 mixed cohort encompassing individuals with ICD-based disease diagnoses™®, rather than
351 restricting it to the CN population —acommon practice in the neuroimaging-based brain
352 PhenoBAG. b) Different levels of protein organ specificity serve as a means of feature selection,
353  which refersto protein-coding genes with elevated expression levelsin a specific tissue or organ,
354  categorized asi) tissue-enriched genes, ii) tissue-enhanced genes, and iii) tissue-elevated genes
355  (https://www.proteinatlas.org/humanproteome/brain/human+brain ). Training the model on the
356 4589 healthy controls revealed that using proteins with lower organ specificity (i.e.,
357 incorporating a broader set of proteins as features) led to poor generalizability. c) The loss of the
358 validation dataset for training the NN to predict the chronological age at representative epochs
359  until the 2500™ epoch. The MAE of the age prediction task at epochs 500, 1000, 1500, 2000, and
360 2500 is presented. d) A more "tightly-fitted" model (Epoch = 2500) did not yield greater
361  statistical power in predicting cognition (i.e., digital symbol substitution test) compared to a
362 "moderately-fitted" model (Epoch = 1000), asindicated by the U-shaped relationship. The S
363  coefficient from the linear regression model associating the brain ProtBAG with the cognitive
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364  scorewas evaluated at different epochs. While Epoch 1000 exhibited atrend toward alarger
365 effect size than Epoch 2500, the permutation test yielded a P-value of 0.30 (N=10,000 times). €)
366 Thebrain ProtBAG model trained on a mixed population (comprising both CN and PT)

367 demonstrated alower MAE compared to the modd trained exclusively on the CN population
368 (sample size=4589). f) The brain PhenoBAG and ProtBAG models achieved comparable

369 performance using brain imaging and plasma protein features, respectively. Of note, training
370 referstothe CN training/validation/test results during the nested CV, and test refers to the

371  independent test dataset.

372

373  Thegenetic overlap between ProtBAG and PhenoBAG

374 | conducted GWAS for the 11 ProtBAGs to identify shared genomic loci and regions with the 9
375  PhenoBAGs from our previous study (Method 5a).

376 For the 20 GWASs using European ancestry populations, | identified 129 (P-value<5x10°
377  ¥11) and 308 (P-value<5x10°®9) genomic locus-BAG pairs for the 11 ProtBAGs and 9

378  PhenoBAGs, respectively. | denoted the genomic loci using their top lead SNPs defined by

379 FUMA (Supplementary eNote 3) considering linkage disequilibrium (LD); the genomic loci are
380 presented in Supplementary eTable 4. | visually present the shared genomic loci annotated by
381 cytogenetic regions based on the GRCh37 cytoband (Fig. 3a). Manhattan and QQ plots, as well
382  asthe genomic inflation factor (4) of the 11 ProtBAG and 9 PhenoBAG GWASs, are presented
383 inthe MEDICINE portal (e.g., hepatic ProtBAG: https.//labs-

384  laboratory.com/medicine/hepatic_protbag). The LDSC intercept (LDSC,=1.02 [0.99, 1.03]) of
385 thell ProtBAG GWASs was close to 1, indicating no severe population stratification observed.
386 Extended Data Fig. 4 presentsthe trumpet plots of the effective allele frequency vs. the

387  coefficients of the 11 ProtBAG GWASs.

388 | then computed the pairwise genetic correlation (gc) and phenotypic correlation (pc)
389  between the 11 ProtBAGs and 9 PhenoBAGs (M ethod 5b). | observed strong associations

390 between the renal PhenoBAG with multiple ProtBAG at both genetic and phenotypic levels,
391 including the immune ProtBAG (g.=0.21; p.=0.33) and pulmonary ProtBAG (g.=0.30; p.=0.28).
392  Additionally, within-organ associations were not consistently observed; for instance, the eye
393  exhibited neither significant nor phenotypic correlations between the eye PhenoBAG and

394  ProtBAG (Fig. 3b). Supplementary eT able 5a presents detailed statistics on genetic and

395 phenotypic correlations. Supplementary eNote 4 and eT able 5b present the phenotypic

396 correlation and genetic correlation between the 11 ProtBAGs and the 2448 plasma proteins. A
397 interactive webpage is developed (https.//labs-

398 laboratory.com/medicine/protbag_protein_interaction) to browse significant ProtBAG-protein
399 pairsthat remain both genetically and phenotypically significant after Bonferroni correction.
400

401
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402  The polygenicrisk score of ProtBAG is more predictive than PhenoBAG

403 | conducted split-sample GWAS to devel op the PRS model, using splitl GWAS for training and
404  split2 GWAS for testing, ensuring the two splits had ssmilar age and sex distributions. |

405 evaluated the predictive power of the PRS for the 11 ProtBAG and 9 PhenoBAG by measuring
406  theincremental R? gained when predicting the BAG with the PRS as a feature on top of age and
407  sex (Method 5c).

408 All the PRSs demonstrated significant associations with the BAGs (P-value<4.58x10°%%).
409  The 11 ProtBAG-PRSs showed larger predictive power (incremental R? ranging from 2.03% to
410  26.3%) than the 9 PhenoBAG-PRSs (incremental R? ranging from 2.01% to 5.91%) when

411  predicting the BAGs (Fig. 3c). For instance, the heart ProtBAG exhibited ahigher Pearson’s
412  correlation coefficient with ProtBAG-PRS (r=0.18) compared to the heart PhenoBAG and

413  PhenoBAG-PRS (r=0.12) (Fig. 3d). Supplementary eTable 6 presents detailed statistics of the
414  PRS analyses.

415
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Figure 3: Genetic overlap between PhenoBAG and ProtBAG and the prediction power of
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a) Cytogenetic regions where the genomic region was jointly linked to PhenoBAG and
ProtBAG. Bonferroni correction was applied to denote significant genomic loci associated with
PhenoBAG (P-value<5x10®/9) and ProtBAG (P-value<5x10%/11). b) Phenotypic (p.) and
genetic (gc) associations were evaluated between each pair of the 9 PhenoBAGs and 11
ProtBAGs. Statistically significant associations after Bonferroni correction (0.05/9/11) are
marked with an asterisk (*), and within-organ associations (e.g., between the brain PhenoBAG
and ProtBAG) are highlighted with black squares. c) The bar plot shows the incremental R (i.e.,
the R? of the alternative model minusthat of the null model) for the polygenic risk score (PRS) of
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427  each PhenoBAG and ProtBAG. The PRS was calculated using the split2 target GWAS data, with
428  splitl GWAS data serving as the training set for the PRScs model. d) The scatter plot shows the
429  relationship between the heart ProtBAG, cardiovascular PhenoBAG, and their corresponding
430 PRS, including the P-value and Pearson’sr. Notably, the relationship between PRS and

431 PhenoBAG/ProtBAG islikely not linear (although alinear model was fitted), as PRS inherently
432  accounts for only asmall proportion of the variance in the phenotypes of interest. GWAS results
433  arepublicly disseminated at https.//labs-laboratory.com/medicine/.

434

435 Thecausal relationship between the 11 ProtBAGs, 9 PhenoBAGs, and 525 DEs

436 | employed two computational genomics methods to explore the causal relationships among the
437 11 ProtBAGs, 9 PhenoBAGs, and 525 DEs: i) Bayesian colocalization (M ethod 5d) and ii)

438 Mendedlian randomization (M ethod 5e).

439 Guided by the strong genetic correlation between the hepatic ProtBAG, hepatic

440 PhenoBAG (g.=0.32), and renal PhenoBAG (g.=0.29), | investigated the shared causal variants
441  between two traits via Approximate Bayes Factor colocalization™ analyses. | demonstrated one
442  genomic locus where the hepatic ProtBA G shared a potential causal variant with both the hepatic
443  PhenoBAG and rena PhenoBAG (Fig. 4a). The shared causal variant (rs7212936 at 17p13.3)
444 showed a PP.H4.ABF (Approximate Bayes Factor)=0.99, which examines the posterior

445  probability (PP) to evaluate the hypothesis of a single shared causal variant associated with both
446  traits within this genomic locus. Thiscausal SNV was mapped to the SERPINF2 gene and has
447  been previoudly linked in the GWAS Catalog to traits such as serum albumin levels and urate
448  measurements. Additionally, other variants within this locus have been associated with various
449  traits, including blood protein levels and waist-to-hip ratio. These associations, initially identified
450 inthe GWAS Catalog, were further validated using the GWAS Atlas platform (Supplementary
451 eFigure?). | mapped this causal SNP to its corresponding gene based on its physical location
452  and evaluated its tissue-specific gene expression profiles using the GTEx* database.

453  Additionaly, | analyzed single-cell type enrichment through data curated by the HPA* platform,
454  examined RNA expression across cancer types using the TCGA* database, investigated protein-
455  protein interactions via the STRING® database, and conducted biological pathway enrichment
456  analysis using the Gene Ontology (GO™) database. (Supplementary eFigure 8).

457 Using bi-directional, two-sample Mendelian randomization analyses, | subsequently

458  established athree-layer causal network that linked ProtBAG, PhenoBAG, and DE (Fig. 4b).
459  The ProtBAG2PhenoBAG network did not show any significant causal signals (P-value<0.05/10
460  exposure variables). The PhenoBAG2ProtBAG network found 9 causal relationships, including
461  from the renal PhenoBAG to the renal ProtBAG [P-value=4.11x10%<0.05/11; OR (95%

462  CI)=1.18 (1.05, 1.31); number of IVs=46] and from the hepatic PhenoBAG to the brain

463  ProtBAG [P-value=3.44x10>; OR (95% Cl)=1.12 (1.04, 1.21); number of IVs=41]. The

464  PhenoBAG2DE network found 41 causal relationships, including from the cardiovascular

465  PhenoBAG to hypertension [FinnGen code: 19 HY PTENS; P-value=3.00x10'<0.05/455; OR
466  (95% CI)=1.73 (1.37, 2.17); number of 1Vs=37] and from the pulmonary PhenoBAG to chronic
467  obstructive pulmonary disease [FinnGen code: JI0_ COPD; P-value=1.48x10"%; OR (95%

468 CI)=1.79 (1.58, 2.03); number of IVs=58]. Finally, for the DE2PhenoBAG network, | found 40
469  causal relationships, including from AD (PGC) to the brain PhenoBAG [P-value=5.00x10

470  °<0.05/179; OR (95% C1)=1.06 (1.03, 1.09); number of IVs=20]. Thiswas further strengthened
471 by the causal link from AD (FinnGen code: G6_ AD_WIDE) to the brain PhenoBAG [P-

472 value=3.10x10"; OR (95% CI)=1.10 (1.06, 1.14); number of 1Vs=8], aswell as other PhenoBAG
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473  (e.g., immune and renal PhenoBAGs) (Fig. 4b). | highlighted a causal pathway connecting three
474  layers. obesity—renal PhenoBAG—renal ProtBAG. Obesity (FinnGen code: E4 OBESITY)
475  demonstrated a positive causal relationship with the renal PhenoBAG [P-value=2.18x10®; OR
476  (95% Cl)=1.11 (1.07, 1.15); number of 1Vs=19], which subsequently exerted a causal effect on
477  therenal ProtBAG [P-value=4.11x10%; OR (95% C1)=1.18 (1.05, 1.31); number of |\Vs=46],
478  among other ProtBAGs (i.e., eye, immune, male reproductive, and pulmonary) (Fig. 4b).

479 Mendelian randomization relies on stringent assumptions that can sometimes be violated.
480 | conducted comprehensive sensitivity analyses for the significant signals identified to scrutinize
481 this. Extended Data Fig. 5 provides the results of these analyses for the abovementioned causal
482  pathway, with a detailed discussion available in Supplementary eNote 5. Detailed statistics for
483  dl five estimators are presented in Supplementary eTable 7, and the results of the sensitivity
484  analyses are presented in Supplementary eDataset 1.

485

486
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Figure 4: Casual relationship between ProtBAG, PhenoBAG, and disease endpoints
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probability (PP) of hypothesis H4, which suggests that both traits share the same causal SNP
(rs7212936). Representative GWAS hits are annotated based on previous studies available on the
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network by employing bi-directional two-sample Mendelian randomization, following a rigorous

#M13_RHEUMA A_ » [l Musculoskalatal

19


https://doi.org/10.1101/2025.02.06.25321803
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2025.02.06.25321803; this version posted June 10, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

498  quality control procedure to select exposure and instrumental variables (number of 1Vs>7),

499  corrected for multiple comparisons (based on either the number of exposure or outcome

500 variables whichever islarger), and performed sensitivity analyses (e.g., horizontal pleiotropy and
501 removing overlap populations) to scrutinize the robustness of my results. Four causal networks
502 wereanalyzed: i) ProtBAG2PhenoBAG, ii) PhenoBAG2ProtBAG, iii) PhenoBAG2DE, and iv)
503 DE2PhenoBAG. Notably, the ProtBAG GWASs (N>40,000) were underpowered compared to
504  the PhenoGWASs (N>11,000 for body PhenoBAG), providing no evidence of established

505 causality from ProtBAG to PhenoBAG; Instrumental variables were selected via clumping for
506 these genome-wide significant SNPs considering LD. The arrows indicate the direction of the
507 established causal relationship from the exposure variable to the outcome variable. The

508 interactive network visualization is also available at https.//labs-

509 |aboratory.com/medicine/protbag_mr. Abbreviations: DE: disease endpoint; LD: linkage

510 disequilibrium. It is crucial to approach the interpretation of these potential causal relationships
511  with caution despite my efforts in conducting multiple sensitivity checks to assess any potential
512  violations of underlying assumptions.

513

20


https://doi.org/10.1101/2025.02.06.25321803
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2025.02.06.25321803; this version posted June 10, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

514 Theclinical promise of the 11 ProtBAGs, 9 PhenoBAGs, and 20 PRSs

515 | demonstrated the clinical promise of the 11 ProtBAGs, 11 ProtBAG-PRSs, 9 PhenoBAGs, and
516 9 PhenoBAG-PRSsin predicting various clinical outcomes through binary classification and
517 survival analysis: i) the classification of 14 systemic disease categories and ii) the risk of

518 mortality (Method 6a-b).

519 | assessed the prediction ability of support vector machines (SVM) at the individual level
520 toclassify the 14 disease categories (M ethod 6a). The highest performance was observed for the
521 respiratory disease category (ICD-codes: J; balanced accuracy (BA)=0.62). The PRS and

522  ProtBAG individually exhibited lower predictive accuracy for disease categories than

523  PhenoBAG. Furthermore, combining all three feature sets failed to outperform the PhenoBAG
524  aone (Fig. 5a). Adding age and sex enhanced the classification accuracy (Supplementary

525  eFigure9). Furthermore, | used the circulatory system disease categories (ICD code: 1) asan
526  example (Fig. 5b) and demonstrated that adding cross-organ features can improve classification
527  performance. The full evaluation metrics of the cross-validated results are presented in

528  Supplementary eTable 8.

529 | also used the 40 BAGs to predict mortality risk using UKBB data (M ethod 6b). The
530 analysisreveded that 24 BAGs or PRSs, including ProtBAGs, PhenoBAGs, and their PRSs,
531  showed significant associations (P-value<0.05/9/11) with mortality. The brain ProtBAG showed
532  thehighest mortality risks [HR (95% Cl)=1.58 (1.54, 1.63); P-value=7.09x10 "], followed by
533  theimmune ProtBAG [HR (95% Cl)=1.44 (1.40, 1.48); P-value=3.07x10*#!], and pulmonary
534  ProtBAG [HR (95% CI)=1.43 (1.40, 1.47); P-value=1.98x10""*°]. Among the 9 PhenoBAGs, the
535  rena PhenoBAG [HR (95% C1)=1.22 (1.21, 1.24); P-value=1.85x10%? and brain PhenoBAG
536 [HR (95% Cl)=1.21 (1.14, 1.30); P-value=8.63x10"°] showed the highest risks. For the 20 PRSs,
537  thehighest mortality risk was achieved with the heart ProtBAG-PRS [HR (95% CI)=1.13 (1.10,
538  1.16); P-value=1.99x10*® (Fig. 5¢). Given the population differences among ProtBAGs,

539 PhenoBAGs, and PRSs, comparing hazard ratios (HR) directly is not advisable, as variationsin
540 basdine hazard could affect the interpretation. | conducted a cumulative prediction analysis

541  based on the substantial associationsidentified in the 22 significant BAGs (excluding the brain
542  and eye PhenoBAGs due to their limited sample sizes). This analysis demonstrated that

543  combining these features provided additional predictive power beyond age and sex, achieving an
544  average concordance index of 0.76 + 0.014 (Fig. 5d). The brain and immune ProtBAGs

545  contributed most significantly to this improvement. Comprehensive statistics, including HRs, P-
546  values, and sample sizes, are available in Supplementary eTable 9. Finally, | also investigated
547  whether the 11 multi-organ ProtBAGs offer additional statistical power compared to the

548 conventional, non-organ-specific ProtBAG trained on the full UKBB Olink protein set (>2000
549  proteins and 31808 mixed-pathology participants), asin Argentieri et al*. The additional

550 variance explained by the 11 ProtBAGs, beyond age (the largest contributor), sex, and the

551  conventiona ProtBAG, was minimal for the 8 cognitive scores (0.16%<incremental R?<0.50%;
552  P-value< 10 and age at death (incremental Re=0.64%; P-value < 10™°) (Supplementary

553 eTable 10). Multi-organ aging clocks are initially motivated by the assumption that different
554  organs may age at distinct rates, offering opportunitiesto study cross-organ interactions and

555  organ-specific aging dynamics”. While their added predictive value over conventional clocks
556  may be modest in some contexts, as shown in my experiments, even small improvements can
557  yield biologically meaningful insights, especially in understanding systemic aging and informing
558  therapeutic strategies™.

559
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560 Figure5: ProtBAG, PhenoBAG, and their PRS predict systemic disease categoriesand
561 mortality
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563 a) Theclassification balanced accuracy (BA) for 14 ICD-based disease categories was evaluated
564 using PRS, ProtBAG, and PhenoBAG as features within a support vector machine (SVM)

565 framework employing a nested cross-validation (CV) approach (training/validation/test datasets).
566  Balanced accuracy results from the CV are presented, with additional metrics provided in the
567  Supplement. Overall, PhenoBAG demonstrated greater predictive power than other omics data,
568 and smply combining ProtBAG, PhenoBAG, and PRS did not enhance classification

569 performance. The brain and eye PhenoBA G were excluded because merging them with the

570 populations of other features resulted in a very small sample size (N<1000). b) The cumulative
571 inclusion of organ-specific features enhanced classification performance in predicting circulatory
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572  system diseases (ICD code: 1). The* symbol indicates statistical significance (<0.05) from a
573 two-samplet-test comparing CV test accuracy between two SVM models, however, a standard t-
574  test isliberal® and should be interpreted cautiously. c) ProtBAG, PhenoBAG, and their PRS
575  show significant associations with the risk of mortality. Age and sex were included as covariates
576 inthe Cox proportional hazard model. The symbol * indicates significant results that survived
577  the Bonferroni correction (<0.05/9/11). It isimportant to note that the population sample sizes
578 for ProtBAG and PhenoBAG differ, making their HRs not directly comparable. d) The

579 dignificant ProtBAG, PhenoBAG, and PRS were cumulatively included as features for mortality
580 risk prediction. The* symbol indicates statistical significance (<0.05) from a two-sample t-test
581  comparing results between two Cox models. The populations across omics layers were kept

582 consistent for afair comparison in panels a, b, and d. However, in panel c, | used omics-specific
583  populations since the analysis focused on assessing the predictive power of individual featuresin
584 asurvival anaysis. HR: hazard ratio; Cl. concordance index.

585

586

23


https://doi.org/10.1101/2025.02.06.25321803
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2025.02.06.25321803; this version posted June 10, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

587 Discussion

588 Thisstudy systematically benchmarks the age prediction performance across 11 multi-organ

589  ProtBAGs, revealing insghtsinto the factors influencing model performance and

500 generalizability to unseen data. Inspired by common practices in brain age research®, |

591 introduced critical methodological considerationsto enhance rigor and clinical interpretability in
592  multi-organ aging research. Subsequently, | comprehensively compared the genetic overlap

593  between the 11 multi-organ ProtBAGs and the 9 PhenoBAGs. By constructing a three-layer

594  causal network, | connected genetics, proteomics, imaging/phenotypic endophenotypes, and

595  disease outcomes, providing an integrative framework for understanding these complex

596 interactions. Finally, | delivered compelling evidence of the clinical potentia of the ProtBAGs,
597 PhenoBAGs, and their PRSsin predicting disease categories and mortality, positioning these
598  biomarkers as powerful tools for trandational medicine.

599

600 Reproducibleand systematic evaluation of ProtBAG generation

601 | addressed several critical considerations for developing and applying ProtBAG. First, |

602 emphasized the importance of age bias correction, a technique that enhances the clinical

603 relevance of ProtBAG models. In neuroimaging-based brain age research, age bias correction has
604  been explicitly investigated™*®*. | provided specific scenarios using proteomics data to

605 emphasize the importance of practicing thisin ProtBAG. Thisis strongly recommended when
606 age prediction models are trained solely on healthy control populations and then applied to other
607  clinical cohorts. Interestingly, the neuroimaging-based age bias correction® for brain ageis

608 statistically and mathematically similar to the concept of residual-based aging clocksin

609  epigenetics (i.e., relative aging acceleration in Teschendorff and Horvath™), as well as a previous
610  proteomics-based aging clock study”. | applied the LOWESS approach from Oh et al. to correct
611 for age biasand found that it alleviated this bias to some extent (Supplementary eFigure 1). In
612  Argentieri et a.', the authors did not apply any methods to correct for age bias but included age
613 asacovariate in their downstream analyses when evaluating associations with clinical outcomes
614 (e.g., diseasediagnosis). They concluded that age bias correction had no significant impact on
615 downstream associations. To verify this, | conducted a comparative analysis by linking DSST
616 and age at death to both the brain ProtBAG with and without age bias correction, while including
617 ageand sex as covariates for both approaches. | found that age bias correction did not alter the
618 direction of the association; the brain ProtBAG with correction (£$=-0.026+0.011) yielded a

619 dlightly larger S coefficient for DSST compared to the uncorrected version (-0.012+0.013;

620 permutation P-value=0.70), while results for age at death were comparable (Supplementary

621 eTablell). | also performed an additional sensitivity analysis by comparing the GWAS signals
622  of the brain ProtBAG obtained from two distinct training datasets: 4589 CN participants (my
623  approach and this from Oh et al.®) and 31,808 participants with mixed pathologies (as used in the
624  training approach by Argentieri et al.*). The findings demonstrated a significant overlap in

625 genetic correlations between these two training methodol ogies (9.=0.97), as well as the two

626  different approaches for age bias correction (g.=0.98) (Supplementary eFigure 10).

627 My findings also demonstrated the significance of biologically-driven feature selection in
628 dlleviating overfitting. Focusing on organ-specific proteins, such as brain tissue-enriched

629 proteins, | achieved better generalizability to unseen data than models using broader, less

630  specific protein sets. Methodol ogically-driven feature selection algorithms, such as the Boruta
631  algorithm used by Argentieri et al.’, offer valuable tools in refining predictive models by

632 identifying a subset of proteins most relevant to biological aging. However, several critical
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633  considerations must be addressed. First, complex feature selection should be incorporated within
634 the (nested) cross-validation framework to prevent potential "data leakage,” as highlighted in
635  prior research on AD classification®. Second, integrating feature selection within cross-

636 validation can complicate the application of trained models to unseen data, as the features

637  selected may vary across different folds.

638 Moreover, increasing the training sample size reduced overfitting, emphasizing the

639 importance of large and diverse training populations for enhancing mode performance.

640 However, mixed-pathology populations may obscure clinical interpretation, and increased data
641  heterogeneity remains acritical area for further investigation®’. In addition, | noted that a tighter
642 mode fit, reflected in lower MAE, does not necessarily equate to stronger clinical associations,
643 asshownin my analysis of cognitive prediction using the brain ProtBAG. This observation

644  alignswith findings from a previous study that reported similar results using neuroimaging-

645  derived brain age models™. Additionally, evaluation metrics such as MAE, Pearson’sr, and

646 others may reflect different aspects of the model, and should be considered together for a

647  comprehensive assessment of model performance. A deeper understanding of age prediction
648 modelsiscrucial for accurate interpretation. Practitioners using these aging clocks should have a
649 clear grasp of the model choicesto interpret the results correctly, rather than treating them as a
650 ‘'black box'.

651

652 Thegenetic overlap and associations between the 11 ProtBAGs, 9 PhenoBAGs, and 525
653 DEs

654 My findings underscore the substantial genetic overlap between ProtBAGs and PhenoBAGs,
655  offering perspectives on the shared and distinct genetic architectures underlying proteomics-

656 driven and phenotypic aging profiles. The identification of hundreds of significant genomic loci
657 linked to these BAGs, along with strong cross-omics and cross-organ genetic correlations,

658  emphasizes the interconnected nature of systemic and organ-specific processes in aging™>>*,
659 Notably, the observed associations, such as those between the renal PhenoBAG and immune and
660 pulmonary ProtBAGs, suggest the existence of genetic networks that transcend traditional organ
661  boundaries. Our previous research®! explored the genetic overlap across organs among the 9
662 PhenoBAGs. Building on that foundation, the current study expands this scope by integrating 11
663  ProtBAGs with cross-omics data spanning multiple organs, offering a comprehensive multi-scale
664  framework for understanding human aging and disease.

665 The superior predictive performance of ProtBAG-PRSs compared to PhenoBAG-PRSs
666  underscores the potential of proteomics-based approaches to advance precision medicine in

667  genetic aging research'®****°. The observed differences suggest that ProtBAG may capture
668  distinct genetic signals with stronger biological relevance. This supports the growing recognition
669  of proteomics asa critical component in aging studies, offering deeper insightsinto novel

670 biomarkers and pathways that may remain elusive through traditional phenotypic analyses. Since
671 proteomicsis more closely linked to the underlying genetics and etiology of aging, it offersa
672  valuable molecular layer for studying human aging.

673 Causal inference analyses provided further insightsinto the intricate relationships

674  between BAGs and DEs. The colocalization signal of a shared causal variant in the hepatic and
675 renal BAGs exemplifies how integrating proteomic and phenotypic dimensions can uncover

676 biologically relevant loci with tranglational potential. Similarly, the causal pathway linking

677 obesity, renal PhenoBAGs, and renal ProtBAGs highlights the systemic impact of metabolic
678  factors on organ-specific aging processes. Renal aging clocks can causally link to other organ-
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679  specific aging clocks and diseases due to systemic aging processes. The kidneys play a crucial
680 rolein metabolic regulation, detoxification, and maintaining homeostasis, meaning their decline
681 can influence cardiovascular, hepatic, and even neurobiological aging or AD. For example,

682  reduced renal function is associated with vascular aging, increased inflammation, and metabolic
683  dysregulation, which can accelerate aging in the heart and brain. Additionally, shared molecular
684  mechanisms, such as oxidative stress, mitochondrial dysfunction, and epigenetic modifications,
685 may drive parald aging trgectories across multiple organs.

686 In summary, | demonstrated the value of integrative analyses for BAGs for uncovering
687 the genetic and causal underpinnings of aging across multiple scales. Expanding sample sizes
688 and incorporating diverse ancestrieswill be critical to enhancing the generalizability of these
689 findings. In addition, exploring the functional consequences of shared loci and causal pathways
690 may provide actionable insights for therapeutic interventions targeting age-related conditions™.
691 Finadly, itisalso crucial to understand the impact of gene-environment interactions on aging
692  clocks. A recent study has linked proteome-based aging clocks to the exposome, including

693  various environmental factors™.

694

695 The prediction power of the 11 ProtBAGs, 9 PhenoBAGs, and their PRSs

696 The observed differencesin predictive power for systemic disease categories between

697 PhenoBAG, ProtBAG, and PRS can be attributed to the nature of the data and how they relate to
698  disease categories versus mortality outcomes. For disease category prediction, PhenoBAG,

699  which incorporates phenotypic traits directly linked to specific diseases, islikely more predictive
700  because these traits often represent the clinical manifestation of disease, offering immediate and
701 tangibleinsightsinto diseaserisk. Clinical features such as biomarkers, imaging data, and

702  medical history are more directly associated with disease effects, which makes phenotypic data
703  moreinformative for predicting disease outcomes. In contrast, PRS, based on genetic

704  predisposition, and ProtBAGs, which rely on proteomic data, may not effectively capture

705  disease-specific features. In particular, the current study focused exclusively on common genetic
706  variants, excluding rare onestypically associated with larger effect sizes®. These omics layers
707  provide broader insightsinto genetic risk and molecular pathways, but their relationships to

708  specific disease categories may be more complex and indirect, making them less predictive for
709  disease classfication. Similarly, arecent study showed that multi-omics data and biomarkers can
710  beeffectively integrated to outperform PRSin disease predictions™.

711 For mortality prediction, however, ProtBAG and PhenoBA Gs show strong predictive
712  power. Thisislikely because acomplex interplay of molecular and clinical factors influences
713  mortality. ProtBAG, which captures proteomic profiles, offers a more direct measure of the

714  molecular processes that underlie aging and disease, such asinflammation, cellular stress, and
715  metabolic dysfunction. These processes are key contributors to mortality, especially in aging
716  populations ®>°. PhenoBAG, incorporating clinical traits, also reflects the cumulative effects of
717  hedlth deterioration and is strongly correlated with mortality outcomes™. PRS, while valuable for
718  predicting genetic susceptibility, may not fully capture the dynamic and multifactorial nature of
719  mortality risk, which involves genetic predisposition, lifestyle factors, physiological markers,
720  and environmental factors™.

721 Interestingly, combining multi-omics BAGs did not significantly improve disease

722 prediction, suggesting that integrating multiple omic layers does not necessarily lead to enhanced
723  performance for disease categories. This may be because disease prediction requires biomarkers
724  gpecifically relevant to each disease or the broad category, and the multi-omics approach may
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725 il lack the necessary disease-specific biomarkers®. However, when predicting mortality, the
726  multi-organ BAGs and PRS improved prediction, highlighting the importance of integrating
727  different biological layers across multiple organs. Mortality isamore complex outcome that
728 involves systemic processes across the entire body, making multi-organ and multi-omic

729  approaches more effective. This suggests that combining various molecular layers across

730 organs/omics for comprehensive risk prediction is crucial for capturing the full spectrum of
731 biological processes that influence aging and mortality.

732

733  Outlook

734  Thisstudy investigates several pivotal aspects of biological age research. Future research should
735  expand on this foundation by integrating epigenetic, transcriptomic, and metabolomic™ data.

736  Thiswill enrich the causal pathways from genetics to disease outcomes, provide a more

737  comprehensive perspective on human aging and disease™®, and aid in the development of future
738  anti-aging and disease-targeted therapeutics.
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739 Methods

740 Method 1: The MULTI consortium

741  The MULTI consortium is an ongoing initiative to integrate and consolidate multi-organ data
742  (e.g., brain and heart MRI and eye OCT) with multi-omics data, including imaging, genetics, and
743  proteomics. Building on existing consortia and studies, MULTI aims to curate and harmonize the
744  datato model human aging and disease across the lifespan. This study used individual-level and
745  summary-level multi-omics data from UKBB, FinnGen, and PGC to derive the multi-omics and
746  multi-organ BAGs. Supplementary eT able 1 details the sample characterigtics.

747

748 UK Biobank

749  UKBB® isapopulation-based research initiative comprising around 500,000 individuals from
750 the United Kingdom between 2006 and 2010. Ethical approval for the UKBB study has been
751  secured, and information about the ethics committee can be found here:

752  https://www.ukbiobank.ac.uk/learn-more-about-uk-bi obank/governance/ethi cs-advisory-

753  committee. This study used brain MRI, eye OCT, and clinical phenotypes (e.g., physiological
754  and physical biomarkers) to derive the 9 PhenoBAGs; our previous studies"” detailed the

755  generation and the phenotypes used for each organ-specific PhenoBAGs. The 11 ProtBAGs were
756  derived from 2448 plasma proteomics data derived from the Olink platform. Imputed genotype
757  datacovering the populations of ProtBAG and PhenoBAG were used for all genetic analyses.
758

759  FinnGen

760 TheFinnGen® study is alarge-scale genomics initiative that has analyzed over 500,000 Finnish
761  biobank samples and correlated genetic variation with health data to understand disease

762  mechanisms and predispositions. The project is a collaboration between research organizations
763  and biobankswithin Finland and international industry partners. For the benefit of research,

764  FinnGen generously made their GWAS findings accessible to the wider scientific community
765  (https://www.finngen.fi/en/access results). This research utilized the publicly released GWAS
766 summary statistics (version R9), which became available on May 11, 2022, after harmonization
767 by the consortium. No individual datawere used in the current study.

768 FinnGen published the R9 version of GWAS summary statistics via REGENIE software
769  (v2.2.4)% covering 2272 DEs, including 2269 binary traits and 3 quantitative traits. The GWAS
770 model encompassed covariates like age, sex, theinitial 10 genetic principal components, and the
771  genotyping batch. Genotype imputation was referenced on the population-specific SISu v4.0
772  pand. | included GWAS summary statistics for 521 FinnGen DEs in my analyses.

773

774  Psychiatric Genomics Consortium

775 PGC¥ isaninternational collaboration of researchers studying the genetic basis of psychiatric
776  disorders. PGC aimsto identify and understand the genetic factors contributing to various

777  psychiatric disorders such as schizophrenia, bipolar disorder, major depressive disorder, and
778  others. The GWAS summary statistics were acquired from the PGC website

779  (https.//pgc.unc.edu/for-researchers/downl oad-results/), underwent quality checks, and were
780 harmonized to ensure seamless integration into my analysis. No individual data were used from
781 PGC. Each study detailed its specific GWAS models and methodol ogies, and the consortium
782  consolidated the release of GWAS summary statistics derived from individual studies. In the
783  current study, | included summary data for 4 brain diseases for which allele frequencies were
784  present.
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785

786 Method 2: Phenotype analysesto derive the 9 PhenoBAGs

787  We derived the 9 PhenoBAGsin our previous study™?, and we also present the final included
788  phenotypes for the 9 human organsin Supplementary eTable 1. In summary, we selected brain
789  MRI, physical and physiological measures indicative of key organ systems' function, structure,
790  or general hedlth, including the brain (e.g., brain volume), cardiovascular (e.g., pulserate),

791  pulmonary (e.g., peak expiratory flow), musculoskeletal (e.g., BMI), immune (e.g., leukocytes),
792 renadl (e.g., glomerular filtration), hepatic (e.g., albumin), and metabolic systems (e.g., lipid).
793 Datawere processed to ensure reliability: averages were calculated for bilateral measures (e.g.,
794 handgrip strength), repeated tests (e.g., blood pressure), or the best performance from multiple
795  attempts (e.g., lung function via spirometry). The eye PhenoBAG was subsequently derived in
796 our follow-up study using eye OCT data’.

797 To derive the 9 PhenoBAGs, we used a linear support vector regressor (SVR) and fit the
798  organ-specific phenotypes as features with a 20-fold cross-validation procedure. Optimization of
799 the SVR'shyperparameters (box constraint, kernel function, and ¢) did not substantially improve
800 performance. Critically, the SVR models were trained exclusively on healthy individuals,

801 defined asthose without self-reported or healthcare-documented lifetime chronic medical

802  conditions. This approach supports the clinical interpretation of the trained models when applied
803  todisease groups, with deviationsin these PhenoBAGs presumed to reflect specific pathological
804 factors.

805

806 Method 3: Proteomicsanalysesto derivethe 11 ProtBAGs

807 (a) Additional quality checks: | downloaded the original data (Category code: 1838), which
808  were analyzed and made available to the community by the UKB-PPP®. Theinitial quality

809  check was detailed in the original work®: | performed additional quality check steps as below. |
810 focused on thefirst instance of the proteomics data ("instance'=0). Subsequently, | merged the
811 Olink files containing coding information, batch numbers, assay details, and limit of detection
812 (LOD) data(Category ID: 1839) to match the ID of the proteomics dataset. | eliminated

813 Normalized Protein eXpression (NPX) values below the protein-specific LOD. Furthermore, |
814  restricted my analysis to proteins with sample sizes exceeding 10,000. Thisresulted in 2448
815 proteinsin 43,498 participants.

816

817 (b) Missing protein NPX imputation: | observed a substantial missing rate for the 2448

818 proteins (1229 proteins with > 10% missing values), which made it challenging to employ

819 downstream Al/ML models for age prediction because many of these models do not directly
820  handle missing features. | used the AutoComplete™ deep learning algorithm to impute the

821 missing proteinsto overcome this. In the original paper, the authors have thoroughly evaluated
822  theimpact of the missing rate on the imputation accuracy. Here, | followed the same approach
823  proposed in the paper, assessed the impact of the probability of an individual’s being masked
824  during training, and found that thisimpact is minimal for the imputation accuracy

825  (Supplementary eFigure 11). | observed amean R? value of 0.45 between the imputed values
826  and the ground truth for the 2448 proteins, showing improved model performance compared to
827 theoriginal study on cardiometabolic and psychiatric phenotypes (0.14<R?<0.30).

828

829  (c) Organ-specific profiles of the 2448 plasma proteins. | used the Human Protein Atlas

830 (HPA) project (https.//www.protei natlas.org/humanproteome/tissue) to profile the over-
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831 expression of a specific protein at both RNA-seq and protein levels. The HPA highlightsthe
832  expression profiles of genesin human tissues, primarily at the mRNA level, and complements
833 thiswith protein-level localization using antibody-based methods such as immunohistochemistry
834  and immunofluorescence. Protein expression datafrom 44 normal human tissue types were

835  obtained through antibody-based protein profiling using conventional and multiplex

836  immunohistochemistry. Accompanying the resource are annotated protein expression levels and
837  dl images of immunohistochemically stained tissues. Protein data encompass 15,302 genes

838  (76%) with available antibodies. Additionally, mRNA expression data were generated through
839 RNA sequencing (RNA-seq) of 40 different normal tissue types. In my primary analyses to

840 derivethe 11 organ-specific ProtBAGs, | considered defining whether a protein is over-

841 expressed in aparticular organ/tissue using the following criterion: tissue-enriched genes are
842  characterized by mRNA expression levels at least four times higher in the tissue or organ of

843 interest compared to all other tissues. This approach aligns with the definition employed by Oh et
844  a.°, which relied solely on data from the Genotype-Tissue Expression (GTEX) project. In

845  contrast, the Human Protein Atlas (HPA) integrates resources from multiple consortia, extending
846  beyond GTEx data. A more recent study® employed a protein-centric, mass spectrometry—based
847  strategy to systematically profile tissue-enriched proteins across 18 organs and directly connect
848 them to their abundance and behavior in human plasma.

849 An important yet unexplored question is the relative lack of organ specificity in plasma
850 proteinscirculating throughout the human body compared to clinical phenotypes, such as brain
851 MRI features. Many proteins are frequently over-expressed across multiple tissues or organs,
852  akintothe pleiotropic effects observed in genetics. This observation is biologically plausible, as
853  proteomicsis more closely linked to underlying genetic mechanisms, whereas clinical

854  phenotypes are more directly associated with disease endpoints. Additionally, Argentieri et al.*
855  demonstrated through feature selection that 204 out of 2,897 proteins from the UKBB Olink
856 platform could accurately predict chronological age. However, the impact of protein organ-

857  gpecificity definitions on model overfitting remains an unresolved question. In this study, |

858 explored thisissue by systematically relaxing the organ-specific profiles of proteins under three
859  distinct scenarios. Using the brain ProtBAG as an example, | assessed how varying the number
860 of proteinsincluded in the training of Al/ML models influences performance and overfitting
861 phenomena.

862 e Tissue-enriched genes/proteins. At least four-fold higher mRNA level in the tissue of
863 interest than in other tissues (N=53 proteins).

864 e Tissue-enhanced genes/proteins: At least four-fold higher mRNA level in the tissue of
865 interest compared to the average level in all other tissues (N=146 proteins).

866 e Tissue-elevated genes/proteins: tissue-enriched genes (including group-enriched genes)
867 and tissue-enhanced genes (N=255 proteins).

868

869 (d) Three AI/ML models: | systematically benchmarked age prediction performance using 4
870 Al/ML models on multi-modal brain MRI featuresin our previous study®. Using the same

871 methodology, | assessed the performance of modelsin deriving the 11 ProtBAGs using two

872  linear approaches (lasso regression and SVR) and one non-linear method (neural networks). For
873 thelinear moddls, hyperparameter selection (e.g., the C parameter for SVR) was conducted

874  through nested, repeated hold-out cross-validation'” with 50 repetitions (80% training/validation
875 and 20% testing) for the outer loop and 10-fold cross-validation for theinner loop for
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876  hyperparameter selection. Nested cross-validation was not applied to the neural network due to
877 theimpracticality of exhaustively exploring hyperparameter combinations.

878

879  (e) Population selections. To rigorously train the AI/ML models, | split the CN data (N=5089)
880 into thefollowing datasets:

881 e CN independent test dataset: 500 participants were randomly drawn from the CN

882 population;

883 e CN training/validation dataset: 80% of the remaining 4589 CN were used for the inner
884 loop 10-fold CV for hyperparameter selection;

885 e CN cross-validation test dataset: 20% of the remaining 4589 CN were used for the
886 outer loop 50 repetitions,

887 e PT dataset: 38,409 participants that have at least one ICD-10-based diagnosis.

888 Model evaluation metrics included mean absolute error (MAE) and Pearson’sr.

889  Importantly, consistent with our prior studies, only healthy control participants were included in
890 thetraining/validation dataset, while individuals with any disease diagnosis were reserved for the
891 independent test dataset. Supplementary eFigure 12 outlines my modeling considerations and
892 thenested cross-validation procedure; Supplementary eTable 1 provides the basic demographic
893 information, including age and sex.

894

895 Method 4: Influence of key componentsin deriving the brain ProtBAG

896 | systematically evaluated key factors influencing model performance using the brain ProtBAG
897 asacase study. These factors included i) the choice of AI/ML models (i.e., SVR, lasso, and

898  neural networks), ii) theimpact of age bias correction on downstream clinical applications, such
899  asgroup differences between CN and PT groups, iii) the effect of protein organ specificity on
900 model overfitting, comparing enriched, enhanced, and elevated gene categories, iv) the influence
901 of model fitting tightness on cross-domain prediction, particularly associations with cognitive
902  outcomes at various epochs (i.e., 500, 1000, 1500, 2000, and 2500 epochs), and v) the impact of
903 featuretype on model performance, comparing brain imaging-derived features with brain over-
904  expressed plasma proteins. These analyses provide practical guidance for using plasma proteins
905 todevelop ProtBAGs while enhancing clinical interpretability and methodological rigor. | also
906 evaluated the feature importance of the 11 ProtBAGs using the SHAP method on the training
907 data

908

909 Method 5: Genetic analyses

910 | used theimputed genotype datafor all genetic analyses. My quality check pipeline focused on
911 European ancestry in UKBB (6,477,810 SNPs passing quality checks), and the quality-checked
912  genetic data were merged with respective organ-specific populations for GWAS. | summarize
913  my genetic quality check steps. First, | skipped the step for family relationship inference®’

914  because the linear mixed model via fastGWA® inherently addresses population stratification,
915 encompassing additional cryptic population stratification factors. | then removed duplicated
916 variantsfrom all 22 autosomal chromosomes. Individuals whose genetically identified sex did
917 not match their self-acknowledged sex were removed. Other excluding criteriawere: i)

918 individuals with more than 3% of missing genotypes; ii) variants with minor allele frequency
919 (MAF; dosage mode) of less than 1%; iii) variants with larger than 3% missing genotyping rate;
920 iv) variantsthat failed the Hardy-Weinberg test at 1x10*°. To further adjust for population
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921  tratification,® | derived the first 40 genetic principle components using the FlashPCA

922  software™. Details of the genetic quality check protocol are described elsewhere™3*7%73,

923

924 (a) GWAS:

925 | applied alinear mixed model regression to the European ancestry populations using fassGWA®
926  implemented in GCTA™.

927

928 PhenoBAG GWAS: In our initial investigation, | conducted GWAS for the 9 PhenoBAGs using
929 alinear model in PLINK, with fatGWA employed as a sensitivity analysis. For consistency with
930 theProtBAG GWASsin this study, | used the fatGWA summary statistics for the 9 PhenoBAGs
931 inall post-GWAS analyses. The fastGWA GWAS accounted for key confounders, including age,
932  dataset status (training/validation/test or independent test), age-squared, sex, interactions of age
933  with sex, and the first 40 genetic principal components. For the brain BAG GWAS specifically,
934  additional covariates for total intracranial volume and brain position in the scanner were

935 included. A genome-wide significance threshold (5C1x 110011/9), was applied.

936

937 ProtBAG GWAS: | used fastGWA to perform the 11 ProtBAGs, adjusting age, dataset status
938 (training/validation/test or independent test), age-squared, sex, interactions of age with sex,

939 systolic/diastolic blood pressure, BMI, waist circumstance, standing height, weight, and the first
940 40 genetic principal components. | applied a genome-wide significance threshold

941 (5Cx[110C11/11) to annotate the significant independent genomic loci.

942

943  Annotation of genomic loci: For all GWASs, genomic loci were annotated using FUMA". For
944  genomic loci annotation, FUMA initially identified lead SNPs (correlation r? < 0.1, distance <
945 250 kilobases) and assigned them to non-overlapping genomic loci. The lead SNP with the

946 lowest P-value (i.e., the top lead SNP) represented the genomic locus. Further details on the

947  definitions of top lead SNP, lead SNP, independent significant SNP, and candidate SNP can be
948 found in Supplementary eNote 3. For visualization purposesin Fig. 3, | have mapped the top
949 lead SNP of each locusto the cytogenetic regions based on the GRCh37 cytoband.

950

951 (b) Genetic correlation: | estimated the genetic correlation (gc) between each PhenoBAG-

952  ProtBAG pair using the LDSC software. | employed precomputed LD scores from the 1000

953  Genomes of European ancestry, maintaining default settings for other parametersin LDSC. It's
954  worth noting that LDSC corrects for sample overlap, ensuring an unbiased genetic correlation
955  estimate™. | also computed the pairwise Pearson’sr correlation coefficient to understand

956  whether the genetic correlation largely mirrors the phenotypic correlation (pc). Stetistical

957  dignificance was determined using Bonferroni correction (0.05/9/11).

958

959 (c) PRScalculation: PRS was computed using split-sample sensitivity GWASs (splitl and

960 gplit2) for the PhenoBAG and ProtBAG GWASs. The PRS weights were established using

961 gplitl/discovery GWAS data as the base/training set, while the split2/replication GWAS

962 summary statistics served as the target/testing data. Both base and target data underwent rigorous
963  quality control proceduresinvolving severa steps. i) excluding duplicated and ambiguous SNPs
964 inthe basedata; ii) excluding high heterozygosity samples in the target data; and v) eliminating
965  duplicated, mismatching, and ambiguous SNPsin the target data.
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966 After completing the QC procedures, PRS for the split2 group was calculated using the
967 PRS-CS’’ method. PRS-CS applies a continuous shrinkage prior, which adjusts the SNP effect
968  sizesbased on their LD structure. SNPs with weaker evidence are "shrunk” toward zero, while
969 thosewith stronger evidence retain larger effect sizes. This avoids overfitting and improves
970 prediction performance. No clumping was performed because the method takes LD into account.
971 The shrinkage parameter was not set, and the algorithm learned it via afully Bayesian approach.
972
973 (d) Bayesian colocalization: | used the R package (coloc) to investigate the genetic
974  colocalization signals between two traits (i.e., hepatic ProtBAG vs. hepatic PhenoBAG, and
975  hepatic ProtBAG vs. renal PhenoBAG) at each genomic locus. | employed the Fully Bayesian
976  colocalization analysis using Bayes Factors (col oc.abf). This method examines the posterior
977  probability (PP.H4.ABF:. Approximate Bayes Factor) to evaluate hypothesis H4, which suggests
978  the presence of a single shared causal variant associated with both traits within a specific
979  genomic locus. To determine the significance of the H4 hypothesis, | set athreshold of
980 PP.H4.ABF>0.8%. All other parameters (e.g., the prior probability of p1) were set as default. For
981 each pair of traits, the genomic locus (N>100 SNPs) was defined by default from FUMA for one
982 trait, and then the coloc package extracted and harmonized the GWAS summary statistics within
983 thislocusfor the other trait.
984
985 (e) Two-sample bidirectional Mendelian randomization: | constructed amulti-layer causal
986 network linking ProtBAG, PhenoBAG, and DE using a bi-directional Mendelian randomization
987  approach. In total, 4 bi-directional causal networks were established: i) ProtBAG2PhenoBAG, ii)
988 PhenoBAG2ProtBAG, iii) PhenoBAG2DE, and iv) DE2PhenoBAG. These networks used
989  summary statistics from our ProtBAG and PhenoBAG GWAS in the UKBB, the FinnGen®, and
990 the PGC™ study for the 525 DEs. For example, the ProtBAG2PhenoBAG causal network
991 employed the 11 ProtBAG as exposure variables and the 9 PhenoBAGs as outcome variables.
992  The systematic quality-checking procedures to ensure unbiased exposure/outcome variable and
993 instrumental variable (1Vs) selection are detailed below.
994 | used a two-sample Mendelian randomization approach implemented in the
995  TwoSampleMR package™ to infer the causal relationships within these networks. | employed five
996 distinct Mendelian randomization methods, presenting the results of the inverse variance
997  waeighted (IVW) method in the main text and the outcomes of the other four methods (Egger,
998 weighted median, simple mode, and weighted mode estimators) in the supplement. The
999 STROBE-MR Statement” guided my analyses to increase transparency and reproducibility,
1000 encompassing the selection of exposure and outcome variables, reporting statistics, and
1001  implementing sensitivity checksto identify potential violations of underlying assumptions. First,
1002 | performed an unbiased quality check on the GWAS summary statistics. Notably, the absence of
1003  population overlapping bias™ was confirmed, given that FinnGen and UKBB participants largely
1004  represent populations of European ancestry without explicit overlap. PGC GWAS summary data
1005 were ensured to exclude UKBB participants. For the ProtBAG2PhenoBAG and
1006  PhenoBAG2ProtBAG networks from UKBB, | reran the ProtBAG GWAS and ensured no
1007  overlapping populations with PhenoBAG. Furthermore, all consortia's GWAS summary statistics
1008 were based on or lifted to GRCh37. Subsequently, | selected the effective exposure variables by
1009  assessing the tatistical power of the exposure GWAS summary statisticsin terms of
1010 instrumental variables (IVs), ensuring that the number of Vs exceeded 7 before harmonizing the
1011  data. Crucialy, the function "clump_data" was applied to the exposure GWAS data, considering
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1012  LD. Thefunction "harmonise_data" was then used to harmonize the GWAS summary statistics
1013  of the exposure and outcome variables. Bonferroni correction was applied to all tested traits
1014  based on the number of effective ProtBAGs, PhenoBAGs, or DES, whichever was larger.

1015 Finally, | conducted multiple sensitivity analyses. First, | conducted a heterogeneity test
1016  to scrutinize potential violationsin the 1V's assumptions. To assess horizontal pleiotropy, which
1017  indicates the IV's exclusivity assumption™, | utilized afunnel plot, single-SNP Mendelian

1018 randomization methods, and the Egger estimator. Furthermore, | performed a leave-one-out
1019 anaysis, systematically excluding one instrument (SNP/IV) at atime, to gauge the sensitivity of
1020 theresultsto individua SNPs.

1021

1022 Method 6: Prediction analysesfor 14 systemic disease categories and therisk of mortality
1023 | investigated the clinical promise of the 11 ProtBAGs, 9 PhenoBAGs, and their PRSsin two sets
1024  of prediction analyses: i) classification tasks for predicting 14 systemic disease categories based
1025 onthelCD-10 code (Supplementary eTable 8) and ii) survival analysis for the risk of all-cause
1026  mortality.

1027

1028 (a) Support vector machinesto classify patients of disease categoriesvs. controls: | applied
1029 SVM with ProtBAG, PhenoBAG, and their PRS, implementing a nested cross-validation

1030  procedure® to optimize the hyperparameter C and predict individual-level outcomes. Unlike
1031  previous studies™’, | did not set aside an independent test dataset due to the relatively small

1032 sample size of the control population without any disease diagnoses (N=1651); patients for each
1033  disease category were defined by the ICD-10 code (Field-1D: 41270). Brain and eye PhenoBAGs
1034  were excluded from the analysis due to insufficient sample sizes after integrating all features.
1035 Figure 5a-b reports the balanced accuracy (BA) obtained from the nested test data. The nested
1036  cross-validation procedure involved an outer loop repeated 50 times, with 80% of the data

1037  randomly allocated for training/validation and 20% for testing. Within the inner loop, the

1038 training/validation data underwent a 10-fold split for model optimization. Supplementary

1039 eTable 8 provides detailed metrics, including balanced accuracy, sensitivity, specificity, negative
1040 predictive value, positive predictive value, and sample sizes for the training/validation/test

1041 datasets.

1042

1043  (b) Survival analysisfor mortality risk: | employed a Cox proportional hazard model while
1044  adjusting for covariates(i.e., age and sex) to test the associations of the 11 ProtBAGs, 9

1045 PhenoBAGs, and their PRS with all-cause mortality. The covariates were included as additional
1046 right-side variablesin the model. The hazard ratio (HR), exp(fr), was calculated and reported as
1047  theeffect size measure that indicates the influence of each biomarker on therisk of mortality. To
1048 train the model, the "time" variable was determined by calculating the difference between the
1049  date of death (Field ID: 40000) for cases (or the censoring date for non-cases) and the date

1050 attending the assessment center (Field ID: 53). Participants who passed away after enrolling in
1051 the study were classified as cases.

1052

1053
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1054 Data Availability

1055 The GWAS summary statistics and pre-trained Al models from this study are publicly accessible
1056 viathe MEDICINE Knowledge Portal (https://|abs-laboratory.com/medicine/) and Synapse

1057  (https.//www.synapse.org/Synapse:syn64923248/wiki/630992). My study used data generated by
1058  the human protein atlas (HPA: https.//www.proteinatlas.org). GWAS summary datafor the DEs
1059  were downloaded from the official websites of FinnGen (R9:

1060  https:.//www.finngen.fi/en/access results) and PGC (https://pgc.unc.edu/for-

1061  researchers/download-results/). Individual datafrom UKBB can be requested with proper

1062  registration at https.//www.ukbiobank.ac.uk/. Certain sengitive data (e.g., allele frequency

1063  information) supporting the findings are also available from the author upon request. The MR
1064  sensitivity analysis results (Supplementary eDataset 1), the 5 main figures, and the scriptsto
1065  reproduce the methodological evaluations are publicly available on Synapse

1066  (https://zenodo.org/records/15211957%).

35


https://doi.org/10.1101/2025.02.06.25321803
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2025.02.06.25321803; this version posted June 10, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

1067 Code Availability
1068  The software and resources used in this study are all publicly available:

1069 e  MLNI® (v0.1.2): https.//github.com/anbai 106/mini, ProtBAG generation and

1070 classification for disease categories,

1071 e AutoComplete (git version de78189): https.//github.com/sriramlab/AutoCompl ete,
1072 Proteomics imputation;

1073 e FUMA (v1.5.0): https://fuma.ctglab.nl/, Gene mapping, genomic locus annotation;
1074 e GCTA (v1.94.1): https.//yanglab.westlake.edu.cn/software/gcta/#Overview, fastGWA,;
1075 e LDSC (git version aa33296): https://github.com/bulik/Idsc, genetic correlation

1076 e TwoSampleMR (v0.5.6): https://mrcieu.github.io/TwoSampleM R/index.html, Mendelian
1077 randomi zation;

1078 e PRScs (release date: Aug 10, 2023): https://github.com/getian107/PRScs, PRS

1079 calculation;

1080 e Lifelines(v0.27.8): https./lifelines.readthedocs.io/en/latest/, Survival analysis;

1081 coloc (v5): https.//github.com/chrlswallace/coloc; Bayesian colocalization.

1082 The pre-trained Al models are accessible to the public through the MEDICINE portal

1083  (https://labs-laboratory.com/medicing/). Users can directly apply these models to external
1084  datasets, provided the data has been preprocessed (e.g., missing value imputation) using my
1085 MLNI package (https://anbai 106.github.io/mini/; Version: 0.1.2).

1086
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1298  (N=38,409) were used as independent datasets. ¢) The analytical workflow of this study involved
1299  deriving 11 ProtBAGs, integrating them with 9 PhenoBAGs, and conducting GWAS and post-
1300 GWAS analyses. The ProtBAGs, PhenoBAGs, and their PRSs were then evaluated for their
1301  predictive power across 14 systemic disease categories and mortality outcomes.
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Extended Data Figure 2: The scatter plot between Al/ML-predicted biological age and
chronological age before and after age bias correction

a Without age bias correction
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a) The scatter plot between the Al/ML-derived biological age and chronol ogi cal age without

applying the age bias correction. b) The scatter plot between the Al/ML-derived biological age
and chronological age after the age bias correction is applied.
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1310 Extended Data Figure 3: Feature importance of the organ-enriched proteinsfor the brain
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1313 a) SHAP analysis of key brain tissue-enriched proteins for the brain ProtBAG. The left panel
1314  presentsabar plot of mean absolute SHAP values, indicating each protein’s overall contribution
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1315 tothemode’s predictions. b) The right panel shows a bee swarm plot, illustrating the

1316 distribution of SHAP values across individual training samples. Positive SHAP values indicate
1317 that theincreasing protein abundance contributes to predicting an older biological age, while
1318 negative values suggest a contribution toward a younger predicted age. Protein abundance values
1319 arecolor-coded: red for high values and blue for low. ¢) STRING conducts protein-protein
1320 interaction (PPI) analysis by combining various sources of interaction evidence, such as

1321  experimental data, computational predictions, and text mining. In addition to interactions,

1322  STRING can carry out functional enrichment analysis to identify Gene Ontology (GO) terms
1323 (e.g., biological processes, molecular functions), KEGG pathways (e.g., metabolic and signaling
1324  pathways), and protein domains (e.g., shared structural motifs). Protein-protein interaction

1325 network of the 9 most influential brain ProtBAG-related proteins. d) Functional protein-set
1326  enrichment analysis of the brain ProtBAG-related proteins. Results and figures are generated
1327 using STRING v12.0 (https.//string-db.org/). €) All-cause mortality prediction (M ethod 6b)
1328 using the brain ProtBAG compared to the predictions power using the 9 most influential brain
1329 ProtBAG-related proteins.

1330
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Extended Data Figure 4: Trumpet plots of the effect allele frequency vs. the B coefficient of

the 11 ProtBAG GWASs
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The trumpet plots display the inverse relationship between the alternative (effect) alele
frequency and the effect size (4 coefficient) for the 11 ProtBAGs. | present the independent
significant SNPs defined in FUMA. The dot size corresponds to the effect size, while the
transparency of the dot is proportional to its statistical significance.
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1339 Extended Data Figure5: Sensitivity check analysesfor the causal pathway of
1340 “obesity—renal PhenoBAG—renal ProtBAG”
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1342  a) Scatter plot for the MR effect sizes of the SNP-obesity association (x-axis, log OR) and the
1343  SNP-renal PhenoBAG associations (y-axis, log OR) with standard error bars. The dopes of the
1344  fivelines correspond to the causal effect sizes estimated by the five MR estimators, respectively.
1345 b) Forest plot for the single-SNP MR results. Each dot represents the MR effect (log OR), and
1346 theerror bar displays the 95% CI for Obesity on renal PhenoBAG using only one SNP; the red
1347  line showsthe MR effect using all SNPs together for IVW and MR Egger estimators. ¢) Leave-
1348 one-SNP-out analysis of obesity on renal PhenoBAG. Each dot represents the MR effect (log
1349 OR), and the error bar displays the 95% CI by excluding that SNP from the analysis. Thered line
1350 depictsthe IVW estimator using all SNPs. d) Funnel plot for the relationship between the causal
1351 effect of obesity on renal PhenoBAG. Each dot represents MR effect sizes estimated using each
1352  SNP as a separate instrument against the inverse of the standard error of the causal estimate. €)
1353  Scatter plot for the MR effect sizes of the SNP-renal PhenoBAG association (x-axis, log OR) and
1354  the SNP-renal ProtBAG associations (y-axis, SD units) with standard error bars. The slopes of
1355 thefivelines correspond to the causal effect sizes estimated by the five MR estimators,

53


https://doi.org/10.1101/2025.02.06.25321803
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2025.02.06.25321803; this version posted June 10, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

1356  respectively. f) Forest plot for the single-SNP MR results. Each dot represents the MR effect (log
1357 OR), and the error bar displays the 95% CI for renal PhenoBAG on renal ProtBAG using only
1358 one SNP; thered line shows the MR effect using all SNPs together for IVW and MR Egger

1359 estimators. g) Leave-one-SNP-out analysis of renal PhenoBAG on renal ProtBAG. Each dot
1360 representsthe MR effect (log OR), and the error bar displays the 95% CI by excluding that SNP
1361 from the analysis. Thered line depicts the IVW estimator using all SNPs. h) Funnel plot for the
1362 relationship between the causal effect of renal PhenoBAG on renal ProtBAG. Each dot

1363 represents MR effect sizes estimated using each SNP as a separate instrument against the inverse
1364  of the standard error of the causal estimate.
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