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Abstract 17 

Multi-organ biological aging clocks derived from clinical phenotypes and neuroimaging have 18 
emerged as valuable tools for studying human aging and disease1,2,3,4. Plasma proteomics 19 
provides an additional molecular dimension to enrich these clocks5. Building on previous 20 
work1,3, I developed 11 multi-organ proteome-based biological age gaps (ProtBAGs) using 2448 21 
plasma proteins from 43,498 participants in the UK Biobank. I highlighted key methodological 22 
and clinical considerations for developing and using ProtBAG, including age bias correction6, 23 
and investigated the impact of training data sample size, protein organ specificity, and the 24 
underlying pathologies of the training data on model generalizability and clinical interpretability. 25 
I then integrated the 11 ProtBAGs with our previously developed 9 multi-organ phenotype-based 26 
biological age gaps (PhenoBAG1) to investigate their genetic underpinnings, causal associations 27 
with 525 disease endpoints (DE) from FinnGen and PGC, and their clinical potential in 28 
predicting 14 disease categories and mortality. Genetic analyses revealed overlap between 29 
ProtBAGs and PhenoBAGs via shared loci, genetic correlations, and colocalization signals. A 30 
three-layer causal network linked ProtBAG, PhenoBAG, and DE, exemplified by the pathway of 31 
obesity→renal PhenoBAG→renal ProtBAG to holistically understand human aging and disease. 32 
Combining features across multiple organs improved predictions for disease categories and 33 
mortality. These findings provide a framework for integrating multi-organ and multi-omics 34 
biological aging clocks in biomedicine. 35 
  36 
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Main 37 
Multi-organ biological aging clocks, derived from in vivo medical image (e.g., neuroimaging) 38 
and clinical phenotypes, are increasingly being explored in clinical research and computational 39 
neuroscience as tools to understand human aging, disease, and mortality1,2,4,7. These clocks 40 
provide a comprehensive view of biological age, reflecting the functional and structural changes 41 
across different organs. While significant advancements have been made in leveraging 42 
phenotypic data for such models, there remains a growing interest in incorporating molecular-43 
level data, such as plasma proteomics5, epigenetics8, and metabolomics9, to enrich the landscape 44 
of the multi-organ biological aging clocks. Plasma proteomics from different platforms (e.g., 45 
Olink10 and SomaScan11) offers the unique ability to identify and quantify proteins and post-46 
translational modifications with high sensitivity, potentially uncovering new insights into organ-47 
specific aging and its relationship with health and disease12. 48 

Despite its promise, deriving proteome-based biological age biomarkers presents several 49 
challenges and unresolved questions. One common practice observed in neuroimaging-derived 50 
brain age is to correct the age bias in an age prediction model, which may be critical for 51 
associations between the biological age gap (BAG) and disease outcomes13,14,6,15. That is, brain 52 
age tends to be overestimated for younger individuals and underestimated for older individuals, 53 
while predictions are most accurate for those whose ages are closer to the mean of the training 54 
dataset (Fig. 1b). Furthermore, the lack of organ specificity of plasma proteins (analogous to 55 
pleiotropy in genetics), where a protein is over-expressed in multiple organ tissues may 56 
complicate model development, leading to overfitting and reduced interpretability. Previous 57 
studies identified similar overfitting issues and addressed them by employing data-driven feature 58 
selection methods to mitigate the problem5,16. Furthermore, key factors that influence model 59 
performance and generalizability, such as the type of omics data, sample size, and underlying 60 
pathology of the training population, as well as the balance between the tightness of model fit 61 
and the clinical power of BAG, have not been systematically evaluated. These challenges 62 
highlight the need for systematic and reproducible evaluations of proteome-derived BAGs (i.e., 63 
ProtBAG)17. Addressing these gaps is essential to unlocking the full potential of plasma 64 
proteomics in aging research and its clinical applications. 65 

Phenome-wide BAGs (PhenoBAG) and ProtBAG represent two essential aspects of 66 
human aging and disease causal pathways, connecting genetics→transcriptomics→proteomics 67 
(ProtBAG)→endophenotypes (PhenoBAG)→disease endpoint (DE). Our prior studies1,3 have 68 
examined the genetic architecture of 12 multi-organ PhenoBAG in 9 organ systems through 69 
genome-wide association studies (GWAS) and post-GWAS validations, such as genetic 70 
correlation18, polygenic risk scores19, and causal inference20. A comprehensive framework to 71 
explore the overlap and distinctions between ProtBAG and PhenoBAG is currently lacking. 72 
Addressing this gap requires connecting genetics, ProtBAG, PhenoBAG, and DE. Such an 73 
integrative approach is essential for developing a holistic understanding of the causal pathways 74 
for potential therapeutic development. 75 

Multi-organ and multi-omics approaches21,3,1,22,23,7,24,5,25,26,27,28 are gaining prominence in 76 
modeling human aging and disease, driven by the hypothesis that integrating insights across 77 
multiple spatial and temporal scales better captures underlying disease-related neurobiological 78 
processes, thus enhancing diagnostic and prognostic biomarker discovery. For instance, Zhao et 79 
al.29 demonstrated improved cognitive prediction by integrating brain and heart MRI features 80 
with PRS. Similarly, our prior work on AI/ML-derived brain disease subtypes showed enhanced 81 
systemic disease prediction when combining these brain imaging-derived biomarkers with 82 
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PRS23,27. However, the potential of multi-omics and multi-organ BAGs as complementary 83 
biomarkers for disease and mortality remains unexplored. 84 

This study used 2448 Olink plasma proteins from 43,498 UK Biobank participants 85 
(UKBB and Supplementary eTable 1) to develop 11 organ-specific ProtBAGs (Method 1). I 86 
systematically compared the 11 ProtBAGs with 9 PhenoBAGs derived from our previous 87 
studies1,3 (Method 2-3). I evaluated the influence of key methodological components (Method 88 
4) on model performance and clinical interpretation using the 11 ProtBAGs. Subsequently, I 89 
examined their genetic architecture and causal relationships with 525 DEs from FinnGen30 and 90 
PGC31 (Method 5). Finally, I assessed the potential of ProtBAGs, PhenoBAGs, and their PRSs 91 
for predicting disease categories and mortality (Method 6). All results and pre-trained AI/ML 92 
models are publicly disseminated at the MEDICINE portal: https://labs-93 
laboratory.com/medicine/.  94 
 95 
 96 
 97 
  98 
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Results 99 
 100 
Age prediction performance of the 11 ProtBAGs derived from three AI/ML models 101 
To rigorously evaluate the performance of biological age prediction models, I partitioned the 102 
5089 healthy control (CN, without any pathologies) participants into the CN 103 
training/validation/test (N=4589) and independent test (ind. test; N=500) datasets. Extended 104 
Data Fig. 1 details this study's population selection and overall workflow. The CN 105 
training/validation/test datasets were used for model selection and nested cross-validation when 106 
applicable, while the independent test dataset provided an unbiased assessment of the model for 107 
overfitting and generalizability to unseen data. Notably, the cross-validation procedure used in 108 
this study differs slightly from two recent proteome-based aging clocks5,16 in two key ways: i) I 109 
explicitly implemented nested cross-validation for hyperparameter tuning of the model, and ii) 110 
model training was conducted exclusively on 5,089 CN participants to assess generalizability to 111 
unseen independent test data. 112 

When fitting the organ-specific proteins (Method 3) to the three AI/ML models [i.e., 113 
lasso regression, support vector regressor (SVR), and neural network (NN)], I observed marginal 114 
variability in model performance, with no single model consistently outperforming the others 115 
(Fig. 1a). For instance, lasso outperformed NN and SVR for the hepatic ProtBAG (P-value < 116 
2.27x10-6), though a two-sample t-test may be permissive32 in a complex cross-validation setting. 117 
On the other hand, the brain ProtBAG derived from NN obtained a lower MAE than lasso and 118 
SVR models (P-value < 2.31x10-3). Across different organ systems, the best model performance, 119 
before applying the age bias correction6, was achieved for the brain ProtBAG via NN (ind. test 120 
MAE=4.86; Pearson’s r=0.65); the highest MAE was achieved for the hepatic ProtBAG via NN 121 
(MAE=10.19; r=0.61). Notably, I found instances where MAE and r coefficient were not aligned 122 
– a lower MAE (reflecting the magnitude of errors) did not always correspond to a higher r 123 
(indicating the strength and direction of predictions), as these metrics capture different aspects of 124 
the model performance and can serve as a potential bias-variance tradeoff and the nonlinear 125 
dynamics of proteomics aging33. For example, the hepatic ProtBAG predicted using the NN 126 
exhibited a high (r=0.61) despite a substantial MAE (MAE=10.19), while the eye ProtBAG 127 
using the same model achieved a lower MAE (MAE=6.78) but a much weaker correlation 128 
(r=0.13). Supplementary eTable 2 presents detailed statistics for the age prediction tasks before 129 
and after the age bias correction6. Extended Data Fig. 2 shows the Pearson’s r coefficient 130 
between predicted and chronological age. Supplementary eNote 1 presents the detailed tissue-131 
enriched proteins in each organ to train the 11 multi-organ ProtBAGs in the primary results (Fig. 132 
1a and Method 3c). 133 
  134 
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Figure 1: Three AI/ML models to derive the 11 multi-organ ProtBAGs  135 

 136 
a) Age prediction performance quantified by the mean absolute error (MAE for the independent 137 
test data) across 3 AI models and 11 organ systems using Olink plasma proteomics from UKBB. 138 
The Human Protein Atlas project determined the organ-specific proteins (i.e., enriched genes for 139 
at least four-fold higher mRNA level in the tissue of interest than other tissues; 140 
https://www.proteinatlas.org/humanproteome/tissue). The # symbol denotes the model achieving 141 
the lowest MAE; the * symbol indicates statistical significance (P-value<0.05) using a two-142 
sample t-test between two models. The dots present the model performance for the 50 143 
repetitions. b) When the model was trained in healthy control and applied to other populations, 144 
age bias correction should be explicitly applied. Without implementing age bias correction, we 145 
showed that group comparisons between the healthy control (CN: training/validation and 146 
independent test) group and the patient (PT) groups [PT-brain for participants with brain 147 
disorders classified under ICD codes G and F, PT-SCZ for those with schizophrenia (F20 and 148 
F21), and PT-AD for those with Alzheimer’s disease (G30)] could lead to biased conclusions. 149 
Two approaches for age bias correction were considered: i) using the parameters trained in the 150 
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CN group to correct the independent test and PT populations (i.e., “training correction”), and ii) 151 
performing independent corrections within the independent test and PT populations (i.e., 152 
“independent correction”). Abbreviations: Ind. test: independent test; BAG: biological age gap.  153 
  154 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 10, 2025. ; https://doi.org/10.1101/2025.02.06.25321803doi: medRxiv preprint 

https://doi.org/10.1101/2025.02.06.25321803
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

Key considerations for aging clock generation and interpretation  155 
Ikram34 and Ferrucci et al35 recently discussed the use and misuse of biological aging in 156 
biomedicine. This study provided additional critical considerations regarding methodology and 157 
clinical interpretation in deriving the 11 multi-organ ProtBAGs (Method 4). In this section, I 158 
used the brain ProtBAG as a case study to examine the impact of key factors on model 159 
performance and clinical interpretability. 160 
 161 
When training models in healthy controls and applying them to diseased populations, correction 162 
for age bias should be performed 163 
The age bias correction was commonly and explicitly practiced in the brain imaging-derived age 164 
prediction model6, leading to a lower MAE and a higher r coefficient (Fig. 1b). The first 165 
consideration in biological age research is reporting metrics before applying age bias correction6. 166 
Reporting uncorrected metrics ensures consistency in comparing model performance across 167 
studies, preventing potential confusion or misapplication from comparing model performance 168 
across studies. Additionally, age bias correction is essential for deriving age-independent aging 169 
clocks, which focus on capturing biological aging rather than merely reflecting chronological 170 
age. In the analysis comparing brain ProtBAG between the healthy control (CN) and patient (PT-171 
brain) groups with participants for all brain disorders, I found that, without age bias correction14, 172 
the PT-brain group exhibited a lower brain ProtBAG than the CN group (P-value=2.22 ×10-16). 173 
However, after applying age bias correction, I observed a reversed and more clinically plausible 174 
trend, with the PT group showing a higher brain ProtBAG than the CN group (P-value=0.045). 175 
Similar biases were observed when analyzing single disease entities such as schizophrenia and 176 
Alzheimer's disease (AD) (Fig. 1b). Additionally, different age bias correction strategies (e.g., 177 
directly applying the parameters trained on the CN training/validation/test data vs. independently 178 
deriving parameters from the PT data) should be considered when applying the model to the PT 179 
data. This is because the parameters trained on the CN training/validation/test data could 180 
generalize to CN independent test data, but may not generalize well to the PT data due to 181 
potential domain shifts resulting from differences in age, pathology, and other factors (Fig. 1b). 182 
This was also demonstrated in the work of Oh et al.5, who argued that age gaps were calculated 183 
separately for each cohort to account for cohort-specific differences using the locally weighted 184 
regression (LOWESS residual-based) method. I also compared the neuroimaging-based approach 185 
to the LOWESS method used in Oh et al.5, assuming proteomics aging clocks’ nolinear 186 
trajectory and implicilty addressing this bias during modeling. Both approaches were effective in 187 
reducing this bias to some extent (Supplementary eFigure 1a-d), although the LOWESS 188 
method still indicated a negative mean brain ProtBAG close to 0 (i.e., -0.179 and -0.086 for 189 
schizophrenia and AD) when the parameters were learned from the target populations. While 190 
including chronological age as a covariate in clinical associations (e.g., mortality) is a standard 191 
practice to control for confounding effects related to the variable of interest (i.e., mortality), this 192 
does not resolve the issue of age-dependent variance in the aging clock itself. 193 
  194 
Model overfitting can be mitigated by increasing the sample size of the training dataset, and 195 
introducing participants with mixed-pathologies from the UK Biobank 196 
Argentieri et al.16 reported an MAE of 2.24 years and an r of 0.94 in their holdout test data using 197 
UKBB data. My approach differs from Argentieri et al. in several ways. First, I used only 4,589 198 
CN participants for training, whereas Argentieri et al. included a much larger training sample 199 
(i.e., 31,808 participants from the general population, including mixed-pathology participants). 200 
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Although my primary results using tissue-enriched proteins (Method 3c) in the 4,589 CN 201 
participants did not exhibit clear signs of overfitting or poor generalizability to independent test 202 
data (Fig. 1a), this was not the case when less organ-specific proteins were included (Fig. 2b). 203 
Therefore, I investigated whether increasing the sample size could help alleviate the observed 204 
overfitting and improve generalizability. 205 

As increasing the sample size inevitably introduces diverse pathologies, I conducted 206 
comparative analyses to assess the impact of training sample size (SS) on model generalizability 207 
using the 255 brain tissue-elevated proteins (Method 3c) as input features. I selected different SS 208 
values (4,589, 10,000, 20,000, 30,000, and 31,808) from the general population (with mixed 209 
pathologies) to train the model and evaluated its performance on unseen independent test data. 210 
As shown in Fig. 2a, a larger SS enhanced the model's generalizability to independent test data, 211 
as indicated by smaller Cohen’s D values (i.e., SS=30,000). I also reproduced this pattern using 212 
the complete set of 2,448 proteins, following the approach outlined by Argentieri et al.16 213 
(Supplementary eFigure 1e). However, incorporating participants with mixed pathologies into 214 
the training data also introduces challenges related to clinical interpretation and potential model 215 
overfitting, particularly when the sample size is small to moderate, as discussed below. 216 
 217 
Biologically-driven feature selection based on protein organ specificity alleviates model 218 
overfitting in 4589 healthy controls samples  219 
Previous ProtBAG studies have demonstrated that feature selection algorithms can help mitigate 220 
model overfitting when applying AI/ML models to unseen test data. For example, Oh et al.5 221 
utilized L1 regularization in aggregated lasso models to address overfitting. Similarly, Argentieri 222 
et al.16 applied the Boruta feature selection algorithm, revealing that the most relevant 204 223 
proteins achieved comparable performance to models trained on the complete set of 2,897 224 
proteins.  225 

Using the 4589 healthy controls as training data, I demonstrated that the generalizability 226 
of AI/ML models to independent test data diminished further when using less organ-specific 227 
proteins (e.g., tissue-elevated proteins) compared to a smaller subset of highly organ-specific 228 
proteins (e.g., tissue-enriched proteins). Method 3c details the definition of different levels of 229 
organ specificity; more organ-specific proteins resulted in fewer features. In my experiments, I 230 
found that restricting the model to brain tissue-enriched proteins (N=53) resulted in better model 231 
generalizability from the training/validation/test dataset to the independent test dataset (Cohen’s 232 
D=0.15) than the other two scenarios. That is, this discrepancy was larger when models included 233 
146 tissue-enhanced proteins (P-value<2.22x10-16; Cohen’s D=1.24), 255 tissue-elevated 234 
proteins (P-value<2.22x10-16; Cohen’s D=1.46), and all the 2448 proteins (P-value<2.22x10-16; 235 
Cohen’s D=3.52). This pattern persisted even after randomly down-sampling 53 proteins from 236 
the brain tissue-enhanced, tissue-elevated, and tissue-nonspecific categories, although the 237 
magnitude of Cohen’s D was reduced (Fig. 2b). 238 
 239 
A tightly-fitted model does not provide higher statistical power to predict cognition than a 240 
moderately-fitted model 241 
I underscore that the primary objective of developing ProtBAG, or any biological aging clock, is 242 
not to achieve a highly tightly-fitted model (e.g., a lower MAE), as this can come at the cost of 243 
overfitting and reduced power for cross-domain prediction (Fig. 2c). Instead, the focus should be 244 
on ensuring that the ProtBAGs demonstrate strong statistical associations with cross-domain 245 
clinical variables, such as cognitive scores and mortality.  246 
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When assessing the association between the brain ProtBAG and the digital symbol 247 
substitution test (DSST) score using a linear regression model, the model at Epoch 2500 248 
(|β|=0.024±0.011; P-value=0.03) demonstrated a smaller β coefficient compared to the model at 249 
Epoch 1000 (|β|=0.033±0.011;P-value=0.003); the association at Epoch 1000 was ten times more 250 
significant than at Epoch 2500 (with the same sample size), albeit the β coefficient did not reach 251 
statistical significance based on the permutation test (P-value = 0.30 for 10,000 permutations) 252 
(Fig. 2d). The observed U-shaped relationship between epochs and the β coefficient reinforces 253 
my argument that the primary goal of an aging clock model is not solely to optimize model fit 254 
(e.g., minimizing MAE or maximizing r), but rather to predict cross-domain clinical outcomes, 255 
such as cognition and mortality (i.e., a similar U-shaped relationship for age at death in 256 
Supplementary eFigure 2). Detailed statistics for all 8 cognitive scores and age at death are 257 
presented in Supplementary eTable 3. 258 
 259 
The underlying pathology of the training sample is important for clinical interpretation and 260 
model performance 261 
In this study, the AI/ML models were trained exclusively on a healthy population, aligning with 262 
the approach used in brain neuroimaging-based BAG models, where training on a healthy 263 
population establishes a normative reference for brain aging. This framework enables deviations 264 
in the brain PhenoBAG to be linked to pathological factors when applied to external populations 265 
with disease, facilitating clinical interpretability. In prior proteome-based aging clocks, Oh et al.5 266 
adopted this training approach, while Argentieri et al.16 trained the model on a cohort of over 267 
30,000 participants with mixed pathologies. 268 
 I conducted a comparative experiment with varied training populations to examine how 269 
disease diagnosis influences model performance and generalizability. Models trained on the CN 270 
population (N=4589) showed slightly less overfitting, while mixed-population models achieved 271 
lower MAE with moderate overfitting (Fig. 2e). This may be due to increased 272 
heterogeneity/variability and extreme features tied to pathology, which risk capturing noise over 273 
generalizable signals. Another crucial consideration is that a model trained on mixed-pathology 274 
populations, with the availability to increase sample size for training power, may limit the 275 
clinical interpretability of the resulting aging clocks within the training sample, as well as their 276 
applicability to external datasets. This is potentially because different pathologies can lead to 277 
distinct protein perturbations, complicating the generalizability and interpretation of the model. 278 
 279 
Neuroimaging-derived brain PhenoBAG and brain ProtBAG achieved comparable predictive 280 
performance 281 
I compared the brain PhenoBAG (ind. test MAE=4.47), generated from 119 MRI-derived brain 282 
imaging features3, with the brain ProtBAG (ind. test MAE=4.86), constructed using 53 brain 283 
tissue-enriched proteins, and found their performance comparable (P-value=0.088) (Fig. 2f). 284 
 285 
Which factor dominates the poor model generalizability to independent test data? 286 
I identified three key factors influencing the model's generalizability to an independent test 287 
dataset and they may guide the clinical interpretability: i) sample size, ii) the underlying 288 
pathology of the training sample, and iii) organ specificity. These factors appear to be 289 
interdependent, raising the question of which one plays the dominant role in driving overfitting. 290 

I performed additional ablation analyses to identify the key factor influencing the model's 291 
generalizability to unseen data. First, I re-assessed the impact of organ specificity (tissue-292 
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enriched, -enhanced, -elevated vs. all 2,448 proteins) using the larger sample size (N=31,808), as 293 
the one used in Argentieri et al.16, which includes both mixed pathologies and healthy 294 
participants. I found that a larger sample size reduced overfitting (Supplementary eFigure 3a) 295 
caused by organ specificity observed in the CN population (Fig. 2a) and potential overfitting 296 
from mixed pathologies (Fig. 2e). Additionally, the observed overfitting related to organ 297 
specificity may be partly explained by the relatively lower collinearity among organ-enriched 298 
proteins compared to other protein categories (Supplementary eFigure 3b). Secondly, I 299 
investigated whether organ specificity or the number of features (proteins) contributes to the 300 
overfitting issues observed in Fig. 2a. To this end, I compared model performance using the 53 301 
brain tissue-enriched proteins and 53 randomly selected non-organ-specific proteins (excluding 302 
any proteins classified as tissue-enriched). This comparison was conducted across two cohorts: 303 
4589 CN participants (Fig. 2a and Supplementary eFigure 4a) and 31,308 participants with 304 
mixed pathologies (Supplementary eFigure 4b). I found that when training the model on 4589  305 
CN participants, organ specificity significantly contributes to the overfitting phenomenon. 306 
However, increasing the sample size to over 30,000 participants with mixed pathologies helps 307 
mitigate this overfitting issue. 308 

In summary, I identified three key factors contributing to overfitting, with sample size 309 
having the most significant impact. However, training an age prediction model on a large-scale 310 
population with mixed pathologies, such as the general UKBB population, also presents certain 311 
challenges, as discussed above. I also investigated the influence of sexes (male vs. female) in 312 
predicting the brain ProtBAG, as well as a discussion on sex difference in the literature1,3,36,16 313 
(Supplementary eNote 2 and eFigure 5). Given that the experiments using organ-specific 314 
proteins to derive 11 ProtBAGs in 4589 CN participants did not show prominent overfitting 315 
(Supplementary eTable 2) and facilitated clinical interpretation, I used the 11 ProtBAGs 316 
derived from the 4589 CN participants for downstream genetic and predictive analyses.  317 

 318 
Protein importance to derive the brain ProtBAG 319 
Using the brain ProtBAG as an example, I identified the most influential proteins contributing to 320 
the aging clock through shapley additive explanations (SHAP) analysis37, which explains the 321 
contribution of each feature (i.e., a brain tissue-enriched protein) to a model's prediction for a 322 
specific individual or data point in the training dataset.  323 
 I identified that among the 53 brain tissue-enriched proteins used as input features, only a 324 
subset of proteins contributed substantially to the age prediction. The top 9 most influential 325 
proteins based on mean absolute SHAP values were: MOG, BCAN, GFAP, PTPRZ1, SEPTIN8, 326 
MEPE, CNP, C1QL2, and NPTXR (Extended Data Fig. 3 a-b). For example, for the MOG 327 
(Myelin Oligodendrocyte Glycoprotein) protein, I observed a high mean absolute SHAP value of 328 
1.8, indicating a strong contribution to the predicted brain age. Moreover, the directionality of 329 
the SHAP values suggests that higher MOG levels are associated with an older predicted brain 330 
age, potentially reflecting age-related demyelination processes. In contrast, the BCAN (brevican) 331 
protein, the second most influential protein, showed an inverse relationship, where higher protein 332 
levels were linked to a younger predicted brain age, possibly reflecting its role in maintaining 333 
extracellular matrix integrity in the aging brain. Protein-protein interaction network analysis 334 
(Extended Data Fig. 3d) and subsequent protein-set enrichment analysis38 revealed significant 335 
involvement of perineuronal nets (Extended Data Fig. 3e), which specialized extracellular 336 
matrix structures that envelop parvalbumin-expressing GABAergic interneurons in the central 337 
nervous system. Finally, I compared the all-cause mortality prediction performance of the Cox 338 
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model using the brain ProtBAG versus the top 9 most influential individual proteins as 339 
predictors, and found that the brain ProtBAG demonstrated superior predictive power (Extended 340 
Data Fig. 3f). Supplementary eFigure 6 presents the SHAP anlaysis results for all the 11 341 
ProtBAGs. 342 
 343 
  344 
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Figure 2: The impact of key components on model performance and generalizability via the345 
brain ProtBAG 346 

 347 
a) The issue of poor generalizability observed in the 255 brain tissue-elevated proteins was 348 
alleviated by increasing the training sample size. I expanded the training population to include a 349 
mixed cohort encompassing individuals with ICD-based disease diagnoses16,5, rather than 350 
restricting it to the CN population – a common practice in the neuroimaging-based brain 351 
PhenoBAG. b) Different levels of protein organ specificity serve as a means of feature selection, 352 
which refers to protein-coding genes with elevated expression levels in a specific tissue or organ, 353 
categorized as i) tissue-enriched genes, ii) tissue-enhanced genes, and iii) tissue-elevated genes 354 
(https://www.proteinatlas.org/humanproteome/brain/human+brain ). Training the model on the 355 
4589 healthy controls revealed that using proteins with lower organ specificity (i.e., 356 
incorporating a broader set of proteins as features) led to poor generalizability. c) The loss of the 357 
validation dataset for training the NN to predict the chronological age at representative epochs 358 
until the 2500th epoch. The MAE of the age prediction task at epochs 500, 1000, 1500, 2000, and 359 
2500 is presented. d) A more "tightly-fitted" model (Epoch = 2500) did not yield greater 360 
statistical power in predicting cognition (i.e., digital symbol substitution test) compared to a 361 
"moderately-fitted" model (Epoch = 1000), as indicated by the U-shaped relationship. The β 362 
coefficient from the linear regression model associating the brain ProtBAG with the cognitive 363 
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score was evaluated at different epochs. While Epoch 1000 exhibited a trend toward a larger 364 
effect size than Epoch 2500, the permutation test yielded a P-value of 0.30 (N=10,000 times). e) 365 
The brain ProtBAG model trained on a mixed population (comprising both CN and PT) 366 
demonstrated a lower MAE compared to the model trained exclusively on the CN population 367 
(sample size=4589). f) The brain PhenoBAG and ProtBAG models achieved comparable 368 
performance using brain imaging and plasma protein features, respectively. Of note, training 369 
refers to the CN training/validation/test results during the nested CV, and test refers to the 370 
independent test dataset. 371 
 372 
The genetic overlap between ProtBAG and PhenoBAG 373 
I conducted GWAS for the 11 ProtBAGs to identify shared genomic loci and regions with the 9 374 
PhenoBAGs from our previous study (Method 5a).  375 

For the 20 GWASs using European ancestry populations, I identified 129 (P-value<5x10-376 
8/11) and 308 (P-value<5x10-8/9) genomic locus-BAG pairs for the 11 ProtBAGs and 9 377 
PhenoBAGs, respectively. I denoted the genomic loci using their top lead SNPs defined by 378 
FUMA (Supplementary eNote 3) considering linkage disequilibrium (LD); the genomic loci are 379 
presented in Supplementary eTable 4. I visually present the shared genomic loci annotated by 380 
cytogenetic regions based on the GRCh37 cytoband (Fig. 3a). Manhattan and QQ plots, as well 381 
as the genomic inflation factor (λ) of the 11 ProtBAG and 9 PhenoBAG GWASs, are presented 382 
in the MEDICINE portal (e.g., hepatic ProtBAG: https://labs-383 
laboratory.com/medicine/hepatic_protbag). The LDSC intercept (LDSCb=1.02 [0.99, 1.03]) of 384 
the 11 ProtBAG GWASs was close to 1, indicating no severe population stratification observed. 385 
Extended Data Fig. 4 presents the trumpet plots of the effective allele frequency vs. the β 386 
coefficients of the 11 ProtBAG GWASs.  387 

I then computed the pairwise genetic correlation (gc) and phenotypic correlation (pc) 388 
between the 11 ProtBAGs and 9 PhenoBAGs (Method 5b). I observed strong associations 389 
between the renal PhenoBAG with multiple ProtBAG at both genetic and phenotypic levels, 390 
including the immune ProtBAG (gc=0.21; pc=0.33) and pulmonary ProtBAG (gc=0.30; pc=0.28). 391 
Additionally, within-organ associations were not consistently observed; for instance, the eye 392 
exhibited neither significant nor phenotypic correlations between the eye PhenoBAG and 393 
ProtBAG (Fig. 3b). Supplementary eTable 5a presents detailed statistics on genetic and 394 
phenotypic correlations. Supplementary eNote 4 and eTable 5b present the phenotypic 395 
correlation and genetic correlation between the 11 ProtBAGs and the 2448 plasma proteins. A 396 
interactive webpage is developed (https://labs-397 
laboratory.com/medicine/protbag_protein_interaction) to browse significant ProtBAG-protein 398 
pairs that remain both genetically and phenotypically significant after Bonferroni correction. 399 

 400 
  401 
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The polygenic risk score of ProtBAG is more predictive than PhenoBAG 402 
I conducted split-sample GWAS to develop the PRS model, using split1 GWAS for training and 403 
split2 GWAS for testing, ensuring the two splits had similar age and sex distributions. I 404 
evaluated the predictive power of the PRS for the 11 ProtBAG and 9 PhenoBAG by measuring 405 
the incremental R2 gained when predicting the BAG with the PRS as a feature on top of age and 406 
sex (Method 5c).  407 

All the PRSs demonstrated significant associations with the BAGs (P-value<4.58×10-81). 408 
The 11 ProtBAG-PRSs showed larger predictive power (incremental R2 ranging from 2.03% to 409 
26.3%) than the 9 PhenoBAG-PRSs (incremental R2 ranging from 2.01% to 5.91%) when 410 
predicting the BAGs (Fig. 3c). For instance, the heart ProtBAG exhibited a higher Pearson’s 411 
correlation coefficient with ProtBAG-PRS (r=0.18) compared to the heart PhenoBAG and 412 
PhenoBAG-PRS (r=0.12) (Fig. 3d). Supplementary eTable 6 presents detailed statistics of the 413 
PRS analyses. 414 
  415 
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Figure 3: Genetic overlap between PhenoBAG and ProtBAG and the prediction power of 416 
their polygenic risk score 417 

 418 
a) Cytogenetic regions where the genomic region was jointly linked to PhenoBAG and 419 
ProtBAG. Bonferroni correction was applied to denote significant genomic loci associated with 420 
PhenoBAG (P-value<5x10-8/9) and ProtBAG (P-value<5x10-8/11). b) Phenotypic (pc) and 421 
genetic (gc) associations were evaluated between each pair of the 9 PhenoBAGs and 11 422 
ProtBAGs. Statistically significant associations after Bonferroni correction (0.05/9/11) are 423 
marked with an asterisk (*), and within-organ associations (e.g., between the brain PhenoBAG 424 
and ProtBAG) are highlighted with black squares. c) The bar plot shows the incremental R2 (i.e., 425 
the R2 of the alternative model minus that of the null model) for the polygenic risk score (PRS) of 426 

., 
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each PhenoBAG and ProtBAG. The PRS was calculated using the split2 target GWAS data, with 427 
split1 GWAS data serving as the training set for the PRScs model. d) The scatter plot shows the 428 
relationship between the heart ProtBAG, cardiovascular PhenoBAG, and their corresponding 429 
PRS, including the P-value and Pearson’s r. Notably, the relationship between PRS and 430 
PhenoBAG/ProtBAG is likely not linear (although a linear model was fitted), as PRS inherently 431 
accounts for only a small proportion of the variance in the phenotypes of interest. GWAS results 432 
are publicly disseminated at https://labs-laboratory.com/medicine/. 433 
 434 
The causal relationship between the 11 ProtBAGs, 9 PhenoBAGs, and 525 DEs 435 
I employed two computational genomics methods to explore the causal relationships among the 436 
11 ProtBAGs, 9 PhenoBAGs, and 525 DEs: i) Bayesian colocalization (Method 5d) and ii) 437 
Mendelian randomization (Method 5e). 438 

Guided by the strong genetic correlation between the hepatic ProtBAG, hepatic 439 
PhenoBAG (gc=0.32), and renal PhenoBAG (gc=0.29), I investigated the shared causal variants 440 
between two traits via Approximate Bayes Factor colocalization39 analyses. I demonstrated one 441 
genomic locus where the hepatic ProtBAG shared a potential causal variant with both the hepatic 442 
PhenoBAG and renal PhenoBAG (Fig. 4a). The shared causal variant (rs7212936 at 17p13.3) 443 
showed a PP.H4.ABF (Approximate Bayes Factor)=0.99, which examines the posterior 444 
probability (PP) to evaluate the hypothesis of a single shared causal variant associated with both 445 
traits within this genomic locus. This causal SNV was mapped to the SERPINF2 gene and has 446 
been previously linked in the GWAS Catalog to traits such as serum albumin levels and urate 447 
measurements. Additionally, other variants within this locus have been associated with various 448 
traits, including blood protein levels and waist-to-hip ratio. These associations, initially identified 449 
in the GWAS Catalog, were further validated using the GWAS Atlas platform (Supplementary 450 
eFigure 7). I mapped this causal SNP to its corresponding gene based on its physical location 451 
and evaluated its tissue-specific gene expression profiles using the GTEx40 database. 452 
Additionally, I analyzed single-cell type enrichment through data curated by the HPA41 platform, 453 
examined RNA expression across cancer types using the TCGA42 database, investigated protein-454 
protein interactions via the STRING38 database, and conducted biological pathway enrichment 455 
analysis using the Gene Ontology (GO43) database. (Supplementary eFigure 8). 456 

Using bi-directional, two-sample Mendelian randomization analyses, I subsequently 457 
established a three-layer causal network that linked ProtBAG, PhenoBAG, and DE (Fig. 4b). 458 
The ProtBAG2PhenoBAG network did not show any significant causal signals (P-value<0.05/10 459 
exposure variables). The PhenoBAG2ProtBAG network found 9 causal relationships, including 460 
from the renal PhenoBAG to the renal ProtBAG [P-value=4.11x10-3<0.05/11; OR (95% 461 
CI)=1.18 (1.05, 1.31); number of IVs=46] and from the hepatic PhenoBAG to the brain 462 
ProtBAG [P-value=3.44x10-3; OR (95% CI)=1.12 (1.04, 1.21); number of IVs=41]. The 463 
PhenoBAG2DE network found 41 causal relationships, including from the cardiovascular 464 
PhenoBAG to hypertension [FinnGen code: I9_HYPTENS; P-value=3.00x10-7<0.05/455; OR 465 
(95% CI)=1.73 (1.37, 2.17); number of IVs=37] and from the pulmonary PhenoBAG to chronic 466 
obstructive pulmonary disease [FinnGen code: J10_COPD; P-value=1.48x10-19; OR (95% 467 
CI)=1.79 (1.58, 2.03); number of IVs=58]. Finally, for the DE2PhenoBAG network, I found 40 468 
causal relationships, including from AD (PGC) to the brain PhenoBAG [P-value=5.00x10-469 
5<0.05/179; OR (95% CI)=1.06 (1.03, 1.09); number of IVs=20]. This was further strengthened 470 
by the causal link from AD (FinnGen code: G6_AD_WIDE) to the brain PhenoBAG [P-471 
value=3.10x10-5; OR (95% CI)=1.10 (1.06, 1.14); number of IVs=8], as well as other PhenoBAG 472 
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(e.g., immune and renal PhenoBAGs) (Fig. 4b). I highlighted a causal pathway connecting three 473 
layers: obesity→renal PhenoBAG→renal ProtBAG. Obesity (FinnGen code: E4_OBESITY) 474 
demonstrated a positive causal relationship with the renal PhenoBAG [P-value=2.18x10-8; OR 475 
(95% CI)=1.11 (1.07, 1.15); number of IVs=19], which subsequently exerted a causal effect on 476 
the renal ProtBAG [P-value=4.11x10-3; OR (95% CI)=1.18 (1.05, 1.31); number of IVs=46], 477 
among other ProtBAGs (i.e., eye, immune, male reproductive, and pulmonary) (Fig. 4b).  478 

Mendelian randomization relies on stringent assumptions that can sometimes be violated. 479 
I conducted comprehensive sensitivity analyses for the significant signals identified to scrutinize 480 
this. Extended Data Fig. 5 provides the results of these analyses for the abovementioned causal 481 
pathway, with a detailed discussion available in Supplementary eNote 5. Detailed statistics for 482 
all five estimators are presented in Supplementary eTable 7, and the results of the sensitivity 483 
analyses are presented in Supplementary eDataset 1.  484 
 485 
 486 

 487 
 488 
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Figure 4: Casual relationship between ProtBAG, PhenoBAG, and disease endpoints 490 

 491 
a) Genetic colocalization was evidenced at one locus (17p13.3) between the hepatic ProtBAG, 492 
hepatic PhenoBAG, and renal PhenoBAG. The signed PP.H4.ABF (>0.8) denotes the posterior 493 
probability (PP) of hypothesis H4, which suggests that both traits share the same causal SNP 494 
(rs7212936). Representative GWAS hits are annotated based on previous studies available on the495 
NHGRI-EBI GWAS Catalog. b) I constructed a three-layer (ProtBAG-PhenoBAG-DE) causal 496 
network by employing bi-directional two-sample Mendelian randomization, following a rigorous 497 
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quality control procedure to select exposure and instrumental variables (number of IVs>7), 498 
corrected for multiple comparisons (based on either the number of exposure or outcome 499 
variables whichever is larger), and performed sensitivity analyses (e.g., horizontal pleiotropy and 500 
removing overlap populations) to scrutinize the robustness of my results. Four causal networks 501 
were analyzed: i) ProtBAG2PhenoBAG, ii) PhenoBAG2ProtBAG, iii) PhenoBAG2DE, and iv) 502 
DE2PhenoBAG. Notably, the ProtBAG GWASs (N>40,000) were underpowered compared to 503 
the PhenoGWASs (N>11,000 for body PhenoBAG), providing no evidence of established 504 
causality from ProtBAG to PhenoBAG; Instrumental variables were selected via clumping for 505 
these genome-wide significant SNPs considering LD. The arrows indicate the direction of the 506 
established causal relationship from the exposure variable to the outcome variable. The 507 
interactive network visualization is also available at https://labs-508 
laboratory.com/medicine/protbag_mr. Abbreviations: DE: disease endpoint; LD: linkage 509 
disequilibrium. It is crucial to approach the interpretation of these potential causal relationships 510 
with caution despite my efforts in conducting multiple sensitivity checks to assess any potential 511 
violations of underlying assumptions.  512 
  513 
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The clinical promise of the 11 ProtBAGs, 9 PhenoBAGs, and 20 PRSs 514 
I demonstrated the clinical promise of the 11 ProtBAGs, 11 ProtBAG-PRSs, 9 PhenoBAGs, and 515 
9 PhenoBAG-PRSs in predicting various clinical outcomes through binary classification and 516 
survival analysis: i) the classification of 14 systemic disease categories and ii) the risk of 517 
mortality (Method 6a-b). 518 

I assessed the prediction ability of support vector machines (SVM) at the individual level 519 
to classify the 14 disease categories (Method 6a). The highest performance was observed for the 520 
respiratory disease category (ICD-codes: J; balanced accuracy (BA)=0.62). The PRS and 521 
ProtBAG individually exhibited lower predictive accuracy for disease categories than 522 
PhenoBAG. Furthermore, combining all three feature sets failed to outperform the PhenoBAG 523 
alone (Fig. 5a). Adding age and sex enhanced the classification accuracy (Supplementary 524 
eFigure 9). Furthermore, I used the circulatory system disease categories (ICD code: I) as an 525 
example (Fig. 5b) and demonstrated that adding cross-organ features can improve classification 526 
performance. The full evaluation metrics of the cross-validated results are presented in 527 
Supplementary eTable 8. 528 

I also used the 40 BAGs to predict mortality risk using UKBB data (Method 6b). The 529 
analysis revealed that 24 BAGs or PRSs, including ProtBAGs, PhenoBAGs, and their PRSs, 530 
showed significant associations (P-value<0.05/9/11) with mortality. The brain ProtBAG showed 531 
the highest mortality risks [HR (95% CI)=1.58 (1.54, 1.63); P-value=7.09x10-176], followed by 532 
the immune ProtBAG [HR (95% CI)=1.44 (1.40, 1.48); P-value=3.07x10-181], and pulmonary 533 
ProtBAG [HR (95% CI)=1.43 (1.40, 1.47); P-value=1.98x10-156]. Among the 9 PhenoBAGs, the 534 
renal PhenoBAG [HR (95% CI)=1.22 (1.21, 1.24); P-value=1.85x10-252] and brain PhenoBAG 535 
[HR (95% CI)=1.21 (1.14, 1.30); P-value=8.63x10-9] showed the highest risks. For the 20 PRSs, 536 
the highest mortality risk was achieved with the heart ProtBAG-PRS [HR (95% CI)=1.13 (1.10, 537 
1.16); P-value=1.99x10-18 (Fig. 5c). Given the population differences among ProtBAGs, 538 
PhenoBAGs, and PRSs, comparing hazard ratios (HR) directly is not advisable, as variations in 539 
baseline hazard could affect the interpretation. I conducted a cumulative prediction analysis 540 
based on the substantial associations identified in the 22 significant BAGs (excluding the brain 541 
and eye PhenoBAGs due to their limited sample sizes). This analysis demonstrated that 542 
combining these features provided additional predictive power beyond age and sex, achieving an 543 
average concordance index of 0.76 ± 0.014 (Fig. 5d). The brain and immune ProtBAGs 544 
contributed most significantly to this improvement. Comprehensive statistics, including HRs, P-545 
values, and sample sizes, are available in Supplementary eTable 9. Finally, I also investigated 546 
whether the 11 multi-organ ProtBAGs offer additional statistical power compared to the 547 
conventional, non-organ-specific ProtBAG trained on the full UKBB Olink protein set (>2000 548 
proteins and 31808 mixed-pathology participants), as in Argentieri et al16. The additional 549 
variance explained by the 11 ProtBAGs, beyond age (the largest contributor), sex, and the 550 
conventional ProtBAG, was minimal for the 8 cognitive scores (0.16%<incremental R²<0.50%; 551 
P-value < 10-10) and age at death (incremental R²=0.64%; P-value < 10-10) (Supplementary 552 
eTable 10). Multi-organ aging clocks are initially motivated by the assumption that different 553 
organs may age at distinct rates, offering opportunities to study cross-organ interactions and 554 
organ-specific aging dynamics2. While their added predictive value over conventional clocks 555 
may be modest in some contexts, as shown in my experiments, even small improvements can 556 
yield biologically meaningful insights, especially in understanding systemic aging and informing 557 
therapeutic strategies44. 558 
 559 
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Figure 5: ProtBAG, PhenoBAG, and their PRS predict systemic disease categories and 560 
mortality 561 

 562 
a) The classification balanced accuracy (BA) for 14 ICD-based disease categories was evaluated 563 
using PRS, ProtBAG, and PhenoBAG as features within a support vector machine (SVM) 564 
framework employing a nested cross-validation (CV) approach (training/validation/test datasets). 565 
Balanced accuracy results from the CV are presented, with additional metrics provided in the 566 
Supplement. Overall, PhenoBAG demonstrated greater predictive power than other omics data, 567 
and simply combining ProtBAG, PhenoBAG, and PRS did not enhance classification 568 
performance. The brain and eye PhenoBAG were excluded because merging them with the 569 
populations of other features resulted in a very small sample size (N<1000). b) The cumulative 570 
inclusion of organ-specific features enhanced classification performance in predicting circulatory 571 
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system diseases (ICD code: I). The * symbol indicates statistical significance (<0.05) from a 572 
two-sample t-test comparing CV test accuracy between two SVM models; however, a standard t-573 
test is liberal32 and should be interpreted cautiously. c) ProtBAG, PhenoBAG, and their PRS 574 
show significant associations with the risk of mortality. Age and sex were included as covariates 575 
in the Cox proportional hazard model. The symbol * indicates significant results that survived 576 
the Bonferroni correction (<0.05/9/11). It is important to note that the population sample sizes 577 
for ProtBAG and PhenoBAG differ, making their HRs not directly comparable. d) The 578 
significant ProtBAG, PhenoBAG, and PRS were cumulatively included as features for mortality 579 
risk prediction. The * symbol indicates statistical significance (<0.05) from a two-sample t-test 580 
comparing results between two Cox models. The populations across omics layers were kept 581 
consistent for a fair comparison in panels a, b, and d. However, in panel c, I used omics-specific 582 
populations since the analysis focused on assessing the predictive power of individual features in 583 
a survival analysis. HR: hazard ratio; CI: concordance index. 584 
 585 
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Discussion 587 

This study systematically benchmarks the age prediction performance across 11 multi-organ 588 
ProtBAGs, revealing insights into the factors influencing model performance and 589 
generalizability to unseen data. Inspired by common practices in brain age research6, I 590 
introduced critical methodological considerations to enhance rigor and clinical interpretability in 591 
multi-organ aging research. Subsequently, I comprehensively compared the genetic overlap 592 
between the 11 multi-organ ProtBAGs and the 9 PhenoBAGs. By constructing a three-layer 593 
causal network, I connected genetics, proteomics, imaging/phenotypic endophenotypes, and 594 
disease outcomes, providing an integrative framework for understanding these complex 595 
interactions. Finally, I delivered compelling evidence of the clinical potential of the ProtBAGs, 596 
PhenoBAGs, and their PRSs in predicting disease categories and mortality, positioning these 597 
biomarkers as powerful tools for translational medicine. 598 
 599 
Reproducible and systematic evaluation of ProtBAG generation 600 
I addressed several critical considerations for developing and applying ProtBAG. First, I 601 
emphasized the importance of age bias correction, a technique that enhances the clinical 602 
relevance of ProtBAG models. In neuroimaging-based brain age research, age bias correction has 603 
been explicitly investigated13,14,6,15. I provided specific scenarios using proteomics data to 604 
emphasize the importance of practicing this in ProtBAG. This is strongly recommended when 605 
age prediction models are trained solely on healthy control populations and then applied to other 606 
clinical cohorts. Interestingly, the neuroimaging-based age bias correction6 for brain age is 607 
statistically and mathematically similar to the concept of residual-based aging clocks in 608 
epigenetics (i.e., relative aging acceleration in Teschendorff and Horvath45), as well as a previous 609 
proteomics-based aging clock study5. I applied the LOWESS approach from Oh et al.5 to correct 610 
for age bias and found that it alleviated this bias to some extent (Supplementary eFigure 1). In 611 
Argentieri et al.16, the authors did not apply any methods to correct for age bias but included age 612 
as a covariate in their downstream analyses when evaluating associations with clinical outcomes 613 
(e.g., disease diagnosis). They concluded that age bias correction had no significant impact on 614 
downstream associations. To verify this, I conducted a comparative analysis by linking DSST 615 
and age at death to both the brain ProtBAG with and without age bias correction, while including 616 
age and sex as covariates for both approaches. I found that age bias correction did not alter the 617 
direction of the association; the brain ProtBAG with correction (β=-0.026±0.011) yielded a 618 
slightly larger β coefficient for DSST compared to the uncorrected version (-0.012±0.013; 619 
permutation P-value=0.70), while results for age at death were comparable (Supplementary 620 
eTable 11). I also performed an additional sensitivity analysis by comparing the GWAS signals 621 
of the brain ProtBAG obtained from two distinct training datasets: 4589 CN participants (my 622 
approach and this from Oh et al.5) and 31,808 participants with mixed pathologies (as used in the 623 
training approach by Argentieri et al.16). The findings demonstrated a significant overlap in 624 
genetic correlations between these two training methodologies (gc=0.97), as well as the two 625 
different approaches for age bias correction (gc=0.98) (Supplementary eFigure 10). 626 

My findings also demonstrated the significance of biologically-driven feature selection in 627 
alleviating overfitting. Focusing on organ-specific proteins, such as brain tissue-enriched 628 
proteins, I achieved better generalizability to unseen data than models using broader, less 629 
specific protein sets. Methodologically-driven feature selection algorithms, such as the Boruta 630 
algorithm used by Argentieri et al.16, offer valuable tools in refining predictive models by 631 
identifying a subset of proteins most relevant to biological aging. However, several critical 632 
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considerations must be addressed. First, complex feature selection should be incorporated within 633 
the (nested) cross-validation framework to prevent potential "data leakage," as highlighted in 634 
prior research on AD classification46. Second, integrating feature selection within cross-635 
validation can complicate the application of trained models to unseen data, as the features 636 
selected may vary across different folds.  637 

Moreover, increasing the training sample size reduced overfitting, emphasizing the 638 
importance of large and diverse training populations for enhancing model performance. 639 
However, mixed-pathology populations may obscure clinical interpretation, and increased data 640 
heterogeneity remains a critical area for further investigation47. In addition, I noted that a tighter 641 
model fit, reflected in lower MAE, does not necessarily equate to stronger clinical associations, 642 
as shown in my analysis of cognitive prediction using the brain ProtBAG. This observation 643 
aligns with findings from a previous study that reported similar results using neuroimaging-644 
derived brain age models48. Additionally, evaluation metrics such as MAE, Pearson’s r, and 645 
others may reflect different aspects of the model, and should be considered together for a 646 
comprehensive assessment of model performance. A deeper understanding of age prediction 647 
models is crucial for accurate interpretation. Practitioners using these aging clocks should have a 648 
clear grasp of the model choices to interpret the results correctly, rather than treating them as a 649 
'black box'. 650 
 651 
The genetic overlap and associations between the 11 ProtBAGs, 9 PhenoBAGs, and 525 652 
DEs 653 
My findings underscore the substantial genetic overlap between ProtBAGs and PhenoBAGs, 654 
offering perspectives on the shared and distinct genetic architectures underlying proteomics-655 
driven and phenotypic aging profiles. The identification of hundreds of significant genomic loci 656 
linked to these BAGs, along with strong cross-omics and cross-organ genetic correlations, 657 
emphasizes the interconnected nature of systemic and organ-specific processes in aging1,2,5,4. 658 
Notably, the observed associations, such as those between the renal PhenoBAG and immune and 659 
pulmonary ProtBAGs, suggest the existence of genetic networks that transcend traditional organ 660 
boundaries. Our previous research3,1 explored the genetic overlap across organs among the 9 661 
PhenoBAGs. Building on that foundation, the current study expands this scope by integrating 11 662 
ProtBAGs with cross-omics data spanning multiple organs, offering a comprehensive multi-scale 663 
framework for understanding human aging and disease.  664 

The superior predictive performance of ProtBAG-PRSs compared to PhenoBAG-PRSs 665 
underscores the potential of proteomics-based approaches to advance precision medicine in 666 
genetic aging research10,49,11,50. The observed differences suggest that ProtBAG may capture 667 
distinct genetic signals with stronger biological relevance. This supports the growing recognition 668 
of proteomics as a critical component in aging studies, offering deeper insights into novel 669 
biomarkers and pathways that may remain elusive through traditional phenotypic analyses. Since 670 
proteomics is more closely linked to the underlying genetics and etiology of aging, it offers a 671 
valuable molecular layer for studying human aging.  672 

Causal inference analyses provided further insights into the intricate relationships 673 
between BAGs and DEs. The colocalization signal of a shared causal variant in the hepatic and 674 
renal BAGs exemplifies how integrating proteomic and phenotypic dimensions can uncover 675 
biologically relevant loci with translational potential. Similarly, the causal pathway linking 676 
obesity, renal PhenoBAGs, and renal ProtBAGs highlights the systemic impact of metabolic 677 
factors on organ-specific aging processes. Renal aging clocks can causally link to other organ-678 
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specific aging clocks and diseases due to systemic aging processes. The kidneys play a crucial 679 
role in metabolic regulation, detoxification, and maintaining homeostasis, meaning their decline 680 
can influence cardiovascular, hepatic, and even neurobiological aging or AD. For example, 681 
reduced renal function is associated with vascular aging, increased inflammation, and metabolic 682 
dysregulation, which can accelerate aging in the heart and brain. Additionally, shared molecular 683 
mechanisms, such as oxidative stress, mitochondrial dysfunction, and epigenetic modifications, 684 
may drive parallel aging trajectories across multiple organs.  685 

In summary, I demonstrated the value of integrative analyses for BAGs for uncovering 686 
the genetic and causal underpinnings of aging across multiple scales. Expanding sample sizes 687 
and incorporating diverse ancestries will be critical to enhancing the generalizability of these 688 
findings. In addition, exploring the functional consequences of shared loci and causal pathways 689 
may provide actionable insights for therapeutic interventions targeting age-related conditions51. 690 
Finally, it is also crucial to understand the impact of gene-environment interactions on aging 691 
clocks. A recent study has linked proteome-based aging clocks to the exposome, including 692 
various environmental factors52. 693 

 694 
The prediction power of the 11 ProtBAGs, 9 PhenoBAGs, and their PRSs 695 
The observed differences in predictive power for systemic disease categories between 696 
PhenoBAG, ProtBAG, and PRS can be attributed to the nature of the data and how they relate to 697 
disease categories versus mortality outcomes. For disease category prediction, PhenoBAG, 698 
which incorporates phenotypic traits directly linked to specific diseases, is likely more predictive 699 
because these traits often represent the clinical manifestation of disease, offering immediate and 700 
tangible insights into disease risk. Clinical features such as biomarkers, imaging data, and 701 
medical history are more directly associated with disease effects, which makes phenotypic data 702 
more informative for predicting disease outcomes. In contrast, PRS, based on genetic 703 
predisposition, and ProtBAGs, which rely on proteomic data, may not effectively capture 704 
disease-specific features. In particular, the current study focused exclusively on common genetic 705 
variants, excluding rare ones typically associated with larger effect sizes53. These omics layers 706 
provide broader insights into genetic risk and molecular pathways, but their relationships to 707 
specific disease categories may be more complex and indirect, making them less predictive for 708 
disease classification. Similarly, a recent study showed that multi-omics data and biomarkers can 709 
be effectively integrated to outperform PRS in disease predictions54.  710 

For mortality prediction, however, ProtBAG and PhenoBAGs show strong predictive 711 
power. This is likely because a complex interplay of molecular and clinical factors influences 712 
mortality. ProtBAG, which captures proteomic profiles, offers a more direct measure of the 713 
molecular processes that underlie aging and disease, such as inflammation, cellular stress, and 714 
metabolic dysfunction. These processes are key contributors to mortality, especially in aging 715 
populations16,55. PhenoBAG, incorporating clinical traits, also reflects the cumulative effects of 716 
health deterioration and is strongly correlated with mortality outcomes13. PRS, while valuable for 717 
predicting genetic susceptibility, may not fully capture the dynamic and multifactorial nature of 718 
mortality risk, which involves genetic predisposition, lifestyle factors, physiological markers, 719 
and environmental factors56. 720 

Interestingly, combining multi-omics BAGs did not significantly improve disease 721 
prediction, suggesting that integrating multiple omic layers does not necessarily lead to enhanced 722 
performance for disease categories. This may be because disease prediction requires biomarkers 723 
specifically relevant to each disease or the broad category, and the multi-omics approach may 724 
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still lack the necessary disease-specific biomarkers57. However, when predicting mortality, the 725 
multi-organ BAGs and PRS improved prediction, highlighting the importance of integrating 726 
different biological layers across multiple organs. Mortality is a more complex outcome that 727 
involves systemic processes across the entire body, making multi-organ and multi-omic 728 
approaches more effective. This suggests that combining various molecular layers across 729 
organs/omics for comprehensive risk prediction is crucial for capturing the full spectrum of 730 
biological processes that influence aging and mortality. 731 
 732 
Outlook 733 

This study investigates several pivotal aspects of biological age research. Future research should 734 
expand on this foundation by integrating epigenetic, transcriptomic, and metabolomic58 data. 735 
This will enrich the causal pathways from genetics to disease outcomes, provide a more 736 
comprehensive perspective on human aging and disease59,60, and aid in the development of future 737 
anti-aging and disease-targeted therapeutics.  738 
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Methods 739 

Method 1: The MULTI consortium  740 
The MULTI consortium is an ongoing initiative to integrate and consolidate multi-organ data 741 
(e.g., brain and heart MRI and eye OCT) with multi-omics data, including imaging, genetics, and 742 
proteomics. Building on existing consortia and studies, MULTI aims to curate and harmonize the 743 
data to model human aging and disease across the lifespan. This study used individual-level and 744 
summary-level multi-omics data from UKBB, FinnGen, and PGC to derive the multi-omics and 745 
multi-organ BAGs. Supplementary eTable 1 details the sample characteristics. 746 
 747 
UK Biobank 748 
UKBB61 is a population-based research initiative comprising around 500,000 individuals from 749 
the United Kingdom between 2006 and 2010. Ethical approval for the UKBB study has been 750 
secured, and information about the ethics committee can be found here: 751 
https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/governance/ethics-advisory-752 
committee. This study used brain MRI, eye OCT, and clinical phenotypes (e.g., physiological 753 
and physical biomarkers) to derive the 9 PhenoBAGs; our previous studies1,2 detailed the 754 
generation and the phenotypes used for each organ-specific PhenoBAGs. The 11 ProtBAGs were 755 
derived from 2448 plasma proteomics data derived from the Olink platform. Imputed genotype 756 
data covering the populations of ProtBAG and PhenoBAG were used for all genetic analyses. 757 
 758 
FinnGen 759 
The FinnGen30 study is a large-scale genomics initiative that has analyzed over 500,000 Finnish 760 
biobank samples and correlated genetic variation with health data to understand disease 761 
mechanisms and predispositions. The project is a collaboration between research organizations 762 
and biobanks within Finland and international industry partners. For the benefit of research, 763 
FinnGen generously made their GWAS findings accessible to the wider scientific community 764 
(https://www.finngen.fi/en/access_results). This research utilized the publicly released GWAS 765 
summary statistics (version R9), which became available on May 11, 2022, after harmonization 766 
by the consortium. No individual data were used in the current study.  767 

FinnGen published the R9 version of GWAS summary statistics via REGENIE software 768 
(v2.2.4)62, covering 2272 DEs, including 2269 binary traits and 3 quantitative traits. The GWAS 769 
model encompassed covariates like age, sex, the initial 10 genetic principal components, and the 770 
genotyping batch. Genotype imputation was referenced on the population-specific SISu v4.0 771 
panel. I included GWAS summary statistics for 521 FinnGen DEs in my analyses.  772 
 773 
Psychiatric Genomics Consortium 774 
PGC31 is an international collaboration of researchers studying the genetic basis of psychiatric 775 
disorders. PGC aims to identify and understand the genetic factors contributing to various 776 
psychiatric disorders such as schizophrenia, bipolar disorder, major depressive disorder, and 777 
others. The GWAS summary statistics were acquired from the PGC website 778 
(https://pgc.unc.edu/for-researchers/download-results/), underwent quality checks, and were 779 
harmonized to ensure seamless integration into my analysis. No individual data were used from 780 
PGC. Each study detailed its specific GWAS models and methodologies, and the consortium 781 
consolidated the release of GWAS summary statistics derived from individual studies. In the 782 
current study, I included summary data for 4 brain diseases for which allele frequencies were 783 
present. 784 
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 785 
Method 2: Phenotype analyses to derive the 9 PhenoBAGs 786 
We derived the 9 PhenoBAGs in our previous study1,2, and we also present the final included 787 
phenotypes for the 9 human organs in Supplementary eTable 1. In summary, we selected brain 788 
MRI, physical and physiological measures indicative of key organ systems’ function, structure, 789 
or general health, including the brain (e.g., brain volume), cardiovascular (e.g., pulse rate), 790 
pulmonary (e.g., peak expiratory flow), musculoskeletal (e.g., BMI), immune (e.g., leukocytes), 791 
renal (e.g., glomerular filtration), hepatic (e.g., albumin), and metabolic systems (e.g., lipid). 792 
Data were processed to ensure reliability: averages were calculated for bilateral measures (e.g., 793 
handgrip strength), repeated tests (e.g., blood pressure), or the best performance from multiple 794 
attempts (e.g., lung function via spirometry). The eye PhenoBAG was subsequently derived in 795 
our follow-up study using eye OCT data1. 796 
 To derive the 9 PhenoBAGs, we used a linear support vector regressor (SVR) and fit the 797 
organ-specific phenotypes as features with a 20-fold cross-validation procedure. Optimization of 798 
the SVR’s hyperparameters (box constraint, kernel function, and ε) did not substantially improve 799 
performance. Critically, the SVR models were trained exclusively on healthy individuals, 800 
defined as those without self-reported or healthcare-documented lifetime chronic medical 801 
conditions. This approach supports the clinical interpretation of the trained models when applied 802 
to disease groups, with deviations in these PhenoBAGs presumed to reflect specific pathological 803 
factors. 804 
 805 
Method 3: Proteomics analyses to derive the 11 ProtBAGs 806 
(a) Additional quality checks: I downloaded the original data (Category code: 1838), which 807 
were analyzed and made available to the community by the UKB-PPP63. The initial quality 808 
check was detailed in the original work64; I performed additional quality check steps as below. I 809 
focused on the first instance of the proteomics data ("instance"=0). Subsequently, I merged the 810 
Olink files containing coding information, batch numbers, assay details, and limit of detection 811 
(LOD) data (Category ID: 1839) to match the ID of the proteomics dataset. I eliminated 812 
Normalized Protein eXpression (NPX) values below the protein-specific LOD. Furthermore, I 813 
restricted my analysis to proteins with sample sizes exceeding 10,000. This resulted in 2448 814 
proteins in 43,498 participants. 815 
 816 
(b) Missing protein NPX imputation: I observed a substantial missing rate for the 2448 817 
proteins (1229 proteins with > 10% missing values), which made it challenging to employ 818 
downstream AI/ML models for age prediction because many of these models do not directly 819 
handle missing features. I used the AutoComplete65 deep learning algorithm to impute the 820 
missing proteins to overcome this. In the original paper, the authors have thoroughly evaluated 821 
the impact of the missing rate on the imputation accuracy. Here, I followed the same approach 822 
proposed in the paper, assessed the impact of the probability of an individual’s being masked 823 
during training, and found that this impact is minimal for the imputation accuracy 824 
(Supplementary eFigure 11). I observed a mean R2 value of 0.45 between the imputed values 825 
and the ground truth for the 2448 proteins, showing improved model performance compared to 826 
the original study on cardiometabolic and psychiatric phenotypes (0.14<R2<0.30). 827 
 828 
(c) Organ-specific profiles of the 2448 plasma proteins: I used the Human Protein Atlas 829 
(HPA) project (https://www.proteinatlas.org/humanproteome/tissue) to profile the over-830 
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expression of a specific protein at both RNA-seq and protein levels. The HPA highlights the 831 
expression profiles of genes in human tissues, primarily at the mRNA level, and complements 832 
this with protein-level localization using antibody-based methods such as immunohistochemistry 833 
and immunofluorescence. Protein expression data from 44 normal human tissue types were 834 
obtained through antibody-based protein profiling using conventional and multiplex 835 
immunohistochemistry. Accompanying the resource are annotated protein expression levels and 836 
all images of immunohistochemically stained tissues. Protein data encompass 15,302 genes 837 
(76%) with available antibodies. Additionally, mRNA expression data were generated through 838 
RNA sequencing (RNA-seq) of 40 different normal tissue types. In my primary analyses to 839 
derive the 11 organ-specific ProtBAGs, I considered defining whether a protein is over-840 
expressed in a particular organ/tissue using the following criterion: tissue-enriched genes are 841 
characterized by mRNA expression levels at least four times higher in the tissue or organ of 842 
interest compared to all other tissues. This approach aligns with the definition employed by Oh et 843 
al.5, which relied solely on data from the Genotype-Tissue Expression (GTEx) project. In 844 
contrast, the Human Protein Atlas (HPA) integrates resources from multiple consortia, extending 845 
beyond GTEx data. A more recent study66 employed a protein-centric, mass spectrometry–based 846 
strategy to systematically profile tissue-enriched proteins across 18 organs and directly connect 847 
them to their abundance and behavior in human plasma. 848 
 An important yet unexplored question is the relative lack of organ specificity in plasma 849 
proteins circulating throughout the human body compared to clinical phenotypes, such as brain 850 
MRI features. Many proteins are frequently over-expressed across multiple tissues or organs, 851 
akin to the pleiotropic effects observed in genetics. This observation is biologically plausible, as 852 
proteomics is more closely linked to underlying genetic mechanisms, whereas clinical 853 
phenotypes are more directly associated with disease endpoints. Additionally, Argentieri et al.16 854 
demonstrated through feature selection that 204 out of 2,897 proteins from the UKBB Olink 855 
platform could accurately predict chronological age. However, the impact of protein organ-856 
specificity definitions on model overfitting remains an unresolved question. In this study, I 857 
explored this issue by systematically relaxing the organ-specific profiles of proteins under three 858 
distinct scenarios. Using the brain ProtBAG as an example, I assessed how varying the number 859 
of proteins included in the training of AI/ML models influences performance and overfitting 860 
phenomena. 861 

• Tissue-enriched genes/proteins: At least four-fold higher mRNA level in the tissue of 862 
interest than in other tissues (N=53 proteins). 863 

• Tissue-enhanced genes/proteins: At least four-fold higher mRNA level in the tissue of 864 
interest compared to the average level in all other tissues (N=146 proteins). 865 

• Tissue-elevated genes/proteins: tissue-enriched genes (including group-enriched genes) 866 
and tissue-enhanced genes (N=255 proteins). 867 

 868 
(d) Three AI/ML models: I systematically benchmarked age prediction performance using 4 869 
AI/ML models on multi-modal brain MRI features in our previous study3. Using the same 870 
methodology, I assessed the performance of models in deriving the 11 ProtBAGs using two 871 
linear approaches (lasso regression and SVR) and one non-linear method (neural networks). For 872 
the linear models, hyperparameter selection (e.g., the C parameter for SVR) was conducted 873 
through nested, repeated hold-out cross-validation17 with 50 repetitions (80% training/validation 874 
and 20% testing) for the outer loop and 10-fold cross-validation for the inner loop for 875 
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hyperparameter selection. Nested cross-validation was not applied to the neural network due to 876 
the impracticality of exhaustively exploring hyperparameter combinations.  877 
 878 
(e) Population selections: To rigorously train the AI/ML models, I split the CN data (N=5089) 879 
into the following datasets: 880 

• CN independent test dataset: 500 participants were randomly drawn from the CN 881 
population; 882 

• CN training/validation dataset: 80% of the remaining 4589 CN were used for the inner 883 
loop 10-fold CV for hyperparameter selection;  884 

• CN cross-validation test dataset: 20% of the remaining 4589 CN were used for the 885 
outer loop 50 repetitions; 886 

• PT dataset: 38,409 participants that have at least one ICD-10-based diagnosis. 887 
Model evaluation metrics included mean absolute error (MAE) and Pearson’s r. 888 

Importantly, consistent with our prior studies, only healthy control participants were included in 889 
the training/validation dataset, while individuals with any disease diagnosis were reserved for the 890 
independent test dataset. Supplementary eFigure 12 outlines my modeling considerations and 891 
the nested cross-validation procedure; Supplementary eTable 1 provides the basic demographic 892 
information, including age and sex.  893 
 894 
Method 4: Influence of key components in deriving the brain ProtBAG 895 
I systematically evaluated key factors influencing model performance using the brain ProtBAG 896 
as a case study. These factors included i) the choice of AI/ML models (i.e., SVR, lasso, and 897 
neural networks), ii) the impact of age bias correction on downstream clinical applications, such 898 
as group differences between CN and PT groups, iii) the effect of protein organ specificity on 899 
model overfitting, comparing enriched, enhanced, and elevated gene categories, iv) the influence 900 
of model fitting tightness on cross-domain prediction, particularly associations with cognitive 901 
outcomes at various epochs (i.e., 500, 1000, 1500, 2000, and 2500 epochs), and v) the impact of 902 
feature type on model performance, comparing brain imaging-derived features with brain over-903 
expressed plasma proteins. These analyses provide practical guidance for using plasma proteins 904 
to develop ProtBAGs while enhancing clinical interpretability and methodological rigor. I also 905 
evaluated the feature importance of the 11 ProtBAGs using the SHAP method on the training 906 
data. 907 
 908 
Method 5: Genetic analyses 909 
I used the imputed genotype data for all genetic analyses. My quality check pipeline focused on 910 
European ancestry in UKBB (6,477,810 SNPs passing quality checks), and the quality-checked 911 
genetic data were merged with respective organ-specific populations for GWAS. I summarize 912 
my genetic quality check steps. First, I skipped the step for family relationship inference67 913 
because the linear mixed model via fastGWA68 inherently addresses population stratification, 914 
encompassing additional cryptic population stratification factors. I then removed duplicated 915 
variants from all 22 autosomal chromosomes. Individuals whose genetically identified sex did 916 
not match their self-acknowledged sex were removed. Other excluding criteria were: i) 917 
individuals with more than 3% of missing genotypes; ii) variants with minor allele frequency 918 
(MAF; dosage mode) of less than 1%; iii) variants with larger than 3% missing genotyping rate; 919 
iv) variants that failed the Hardy-Weinberg test at 1x10-10. To further adjust for population 920 
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stratification,69 I derived the first 40 genetic principle components using the FlashPCA 921 
software70. Details of the genetic quality check protocol are described elsewhere71,3,1,72,73.  922 
 923 
(a) GWAS:  924 
I applied a linear mixed model regression to the European ancestry populations using fastGWA68 925 
implemented in GCTA74.  926 
 927 
PhenoBAG GWAS: In our initial investigation, I conducted GWAS for the 9 PhenoBAGs using 928 
a linear model in PLINK, with fastGWA employed as a sensitivity analysis. For consistency with 929 
the ProtBAG GWASs in this study, I used the fastGWA summary statistics for the 9 PhenoBAGs 930 
in all post-GWAS analyses. The fastGWA GWAS accounted for key confounders, including age, 931 
dataset status (training/validation/test or independent test), age-squared, sex, interactions of age 932 
with sex, and the first 40 genetic principal components. For the brain BAG GWAS specifically, 933 
additional covariates for total intracranial volume and brain position in the scanner were 934 
included. A genome-wide significance threshold (5�×�10��/9), was applied. 935 
 936 
ProtBAG GWAS: I used fastGWA to perform the 11 ProtBAGs, adjusting age, dataset status 937 
(training/validation/test or independent test), age-squared, sex, interactions of age with sex, 938 
systolic/diastolic blood pressure, BMI, waist circumstance, standing height, weight, and the first 939 
40 genetic principal components. I applied a genome-wide significance threshold 940 
(5�×�10��/11) to annotate the significant independent genomic loci. 941 
 942 
Annotation of genomic loci: For all GWASs, genomic loci were annotated using FUMA75. For 943 
genomic loci annotation, FUMA initially identified lead SNPs (correlation r2 ≤ 0.1, distance < 944 
250 kilobases) and assigned them to non-overlapping genomic loci. The lead SNP with the 945 
lowest P-value (i.e., the top lead SNP) represented the genomic locus. Further details on the 946 
definitions of top lead SNP, lead SNP, independent significant SNP, and candidate SNP can be 947 
found in Supplementary eNote 3. For visualization purposes in Fig. 3, I have mapped the top 948 
lead SNP of each locus to the cytogenetic regions based on the GRCh37 cytoband. 949 
 950 
(b) Genetic correlation: I estimated the genetic correlation (gc) between each PhenoBAG-951 
ProtBAG pair using the LDSC software. I employed precomputed LD scores from the 1000 952 
Genomes of European ancestry, maintaining default settings for other parameters in LDSC. It's 953 
worth noting that LDSC corrects for sample overlap, ensuring an unbiased genetic correlation 954 
estimate76. I also computed the pairwise Pearson’s r correlation coefficient to understand 955 
whether the genetic correlation largely mirrors the phenotypic correlation (pc). Statistical 956 
significance was determined using Bonferroni correction (0.05/9/11).  957 
 958 
(c) PRS calculation: PRS was computed using split-sample sensitivity GWASs (split1 and 959 
split2) for the PhenoBAG and ProtBAG GWASs. The PRS weights were established using 960 
split1/discovery GWAS data as the base/training set, while the split2/replication GWAS 961 
summary statistics served as the target/testing data. Both base and target data underwent rigorous 962 
quality control procedures involving several steps: i) excluding duplicated and ambiguous SNPs 963 
in the base data; ii) excluding high heterozygosity samples in the target data; and v) eliminating 964 
duplicated, mismatching, and ambiguous SNPs in the target data. 965 
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After completing the QC procedures, PRS for the split2 group was calculated using the 966 
PRS-CS77 method. PRS-CS applies a continuous shrinkage prior, which adjusts the SNP effect 967 
sizes based on their LD structure. SNPs with weaker evidence are "shrunk" toward zero, while 968 
those with stronger evidence retain larger effect sizes. This avoids overfitting and improves 969 
prediction performance. No clumping was performed because the method takes LD into account. 970 
The shrinkage parameter was not set, and the algorithm learned it via a fully Bayesian approach. 971 

 972 
(d) Bayesian colocalization: I used the R package (coloc) to investigate the genetic 973 
colocalization signals between two traits (i.e., hepatic ProtBAG vs. hepatic PhenoBAG, and 974 
hepatic ProtBAG vs. renal PhenoBAG) at each genomic locus. I employed the Fully Bayesian 975 
colocalization analysis using Bayes Factors (coloc.abf). This method examines the posterior 976 
probability (PP.H4.ABF: Approximate Bayes Factor) to evaluate hypothesis H4, which suggests 977 
the presence of a single shared causal variant associated with both traits within a specific 978 
genomic locus. To determine the significance of the H4 hypothesis, I set a threshold of 979 
PP.H4.ABF>0.839. All other parameters (e.g., the prior probability of p12) were set as default. For 980 
each pair of traits, the genomic locus (N>100 SNPs) was defined by default from FUMA for one 981 
trait, and then the coloc package extracted and harmonized the GWAS summary statistics within 982 
this locus for the other trait.    983 
 984 
(e) Two-sample bidirectional Mendelian randomization: I constructed a multi-layer causal 985 
network linking ProtBAG, PhenoBAG, and DE using a bi-directional Mendelian randomization 986 
approach. In total, 4 bi-directional causal networks were established: i) ProtBAG2PhenoBAG, ii) 987 
PhenoBAG2ProtBAG, iii) PhenoBAG2DE, and iv) DE2PhenoBAG. These networks used 988 
summary statistics from our ProtBAG and PhenoBAG GWAS in the UKBB, the FinnGen30, and 989 
the PGC31 study for the 525 DEs. For example, the ProtBAG2PhenoBAG causal network 990 
employed the 11 ProtBAG as exposure variables and the 9 PhenoBAGs as outcome variables. 991 
The systematic quality-checking procedures to ensure unbiased exposure/outcome variable and 992 
instrumental variable (IVs) selection are detailed below. 993 

I used a two-sample Mendelian randomization approach implemented in the 994 
TwoSampleMR package78 to infer the causal relationships within these networks. I employed five 995 
distinct Mendelian randomization methods, presenting the results of the inverse variance 996 
weighted (IVW) method in the main text and the outcomes of the other four methods (Egger, 997 
weighted median, simple mode, and weighted mode estimators) in the supplement. The 998 
STROBE-MR Statement79 guided my analyses to increase transparency and reproducibility, 999 
encompassing the selection of exposure and outcome variables, reporting statistics, and 1000 
implementing sensitivity checks to identify potential violations of underlying assumptions. First, 1001 
I performed an unbiased quality check on the GWAS summary statistics. Notably, the absence of 1002 
population overlapping bias80 was confirmed, given that FinnGen and UKBB participants largely 1003 
represent populations of European ancestry without explicit overlap. PGC GWAS summary data 1004 
were ensured to exclude UKBB participants. For the ProtBAG2PhenoBAG and 1005 
PhenoBAG2ProtBAG networks from UKBB, I reran the ProtBAG GWAS and ensured no 1006 
overlapping populations with PhenoBAG. Furthermore, all consortia's GWAS summary statistics 1007 
were based on or lifted to GRCh37. Subsequently, I selected the effective exposure variables by 1008 
assessing the statistical power of the exposure GWAS summary statistics in terms of 1009 
instrumental variables (IVs), ensuring that the number of IVs exceeded 7 before harmonizing the 1010 
data. Crucially, the function "clump_data" was applied to the exposure GWAS data, considering 1011 
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LD. The function "harmonise_data" was then used to harmonize the GWAS summary statistics 1012 
of the exposure and outcome variables. Bonferroni correction was applied to all tested traits 1013 
based on the number of effective ProtBAGs, PhenoBAGs, or DEs, whichever was larger. 1014 

Finally, I conducted multiple sensitivity analyses. First, I conducted a heterogeneity test 1015 
to scrutinize potential violations in the IV's assumptions. To assess horizontal pleiotropy, which 1016 
indicates the IV's exclusivity assumption81, I utilized a funnel plot, single-SNP Mendelian 1017 
randomization methods, and the Egger estimator. Furthermore, I performed a leave-one-out 1018 
analysis, systematically excluding one instrument (SNP/IV) at a time, to gauge the sensitivity of 1019 
the results to individual SNPs. 1020 
 1021 
Method 6: Prediction analyses for 14 systemic disease categories and the risk of mortality  1022 
I investigated the clinical promise of the 11 ProtBAGs, 9 PhenoBAGs, and their PRSs in two sets 1023 
of prediction analyses: i) classification tasks for predicting 14 systemic disease categories based 1024 
on the ICD-10 code (Supplementary eTable 8) and ii) survival analysis for the risk of all-cause 1025 
mortality. 1026 
 1027 
(a) Support vector machines to classify patients of disease categories vs. controls: I applied 1028 
SVM with ProtBAG, PhenoBAG, and their PRS, implementing a nested cross-validation 1029 
procedure17 to optimize the hyperparameter C and predict individual-level outcomes. Unlike 1030 
previous studies57, I did not set aside an independent test dataset due to the relatively small 1031 
sample size of the control population without any disease diagnoses (N=1651); patients for each 1032 
disease category were defined by the ICD-10 code (Field-ID: 41270). Brain and eye PhenoBAGs 1033 
were excluded from the analysis due to insufficient sample sizes after integrating all features. 1034 
Figure 5a-b reports the balanced accuracy (BA) obtained from the nested test data. The nested 1035 
cross-validation procedure involved an outer loop repeated 50 times, with 80% of the data 1036 
randomly allocated for training/validation and 20% for testing. Within the inner loop, the 1037 
training/validation data underwent a 10-fold split for model optimization. Supplementary 1038 
eTable 8 provides detailed metrics, including balanced accuracy, sensitivity, specificity, negative 1039 
predictive value, positive predictive value, and sample sizes for the training/validation/test 1040 
datasets.  1041 
 1042 
(b) Survival analysis for mortality risk: I employed a Cox proportional hazard model while 1043 
adjusting for covariates(i.e., age and sex) to test the associations of the 11 ProtBAGs, 9 1044 
PhenoBAGs, and their PRS with all-cause mortality. The covariates were included as additional 1045 
right-side variables in the model. The hazard ratio (HR), exp(βR), was calculated and reported as 1046 
the effect size measure that indicates the influence of each biomarker on the risk of mortality. To 1047 
train the model, the "time" variable was determined by calculating the difference between the 1048 
date of death (Field ID: 40000) for cases (or the censoring date for non-cases) and the date 1049 
attending the assessment center (Field ID: 53). Participants who passed away after enrolling in 1050 
the study were classified as cases. 1051 
 1052 
  1053 
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Data Availability 1054 

The GWAS summary statistics and pre-trained AI models from this study are publicly accessible 1055 
via the MEDICINE Knowledge Portal (https://labs-laboratory.com/medicine/) and Synapse 1056 
(https://www.synapse.org/Synapse:syn64923248/wiki/630992). My study used data generated by 1057 
the human protein atlas (HPA: https://www.proteinatlas.org). GWAS summary data for the DEs 1058 
were downloaded from the official websites of FinnGen (R9: 1059 
https://www.finngen.fi/en/access_results) and PGC (https://pgc.unc.edu/for-1060 
researchers/download-results/). Individual data from UKBB can be requested with proper 1061 
registration at https://www.ukbiobank.ac.uk/. Certain sensitive data (e.g., allele frequency 1062 
information) supporting the findings are also available from the author upon request. The MR 1063 
sensitivity analysis results (Supplementary eDataset 1), the 5 main figures, and the scripts to 1064 
reproduce the methodological evaluations are publicly available on Synapse 1065 
(https://zenodo.org/records/1521195782).  1066 
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Code Availability 1067 

The software and resources used in this study are all publicly available:  1068 
• MLNI83 (v0.1.2): https://github.com/anbai106/mlni, ProtBAG generation and 1069 

classification for disease categories; 1070 
• AutoComplete (git version de78189): https://github.com/sriramlab/AutoComplete, 1071 

Proteomics imputation; 1072 
• FUMA (v1.5.0): https://fuma.ctglab.nl/, Gene mapping, genomic locus annotation; 1073 
• GCTA (v1.94.1): https://yanglab.westlake.edu.cn/software/gcta/#Overview, fastGWA; 1074 
• LDSC (git version aa33296): https://github.com/bulik/ldsc, genetic correlation 1075 
• TwoSampleMR (v0.5.6): https://mrcieu.github.io/TwoSampleMR/index.html, Mendelian 1076 

randomization; 1077 
• PRScs (release date: Aug 10, 2023): https://github.com/getian107/PRScs, PRS 1078 

calculation; 1079 
• Lifelines (v0.27.8): https://lifelines.readthedocs.io/en/latest/, Survival analysis;  1080 
• coloc (v5): https://github.com/chr1swallace/coloc; Bayesian colocalization. 1081 

The pre-trained AI models are accessible to the public through the MEDICINE portal 1082 
(https://labs-laboratory.com/medicine/). Users can directly apply these models to external 1083 
datasets, provided the data has been preprocessed (e.g., missing value imputation) using my 1084 
MLNI package (https://anbai106.github.io/mlni/; Version: 0.1.2). 1085 
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Dxtended Data Figures 1289 

Extended Data Figure 1: Schematic diagram of the definition of populations to derive 1290 
ProtBAG and overall analytic workflow of the study 1291 

 1292 
a) I first split the entire proteomics population in the UK Biobank into 5089 healthy control (CN) 1293 
and 38,409 patient (PT) populations based on the ICD-10 code and other clinical history 1294 
information. b) To derive the 11 ProtBAGs, I trained three AI/ML models using only the CN 1295 
training/validation/test population (N=4589) with a (nested) cross-validation procedure to select 1296 
the optimal model. The CN independent test (ind. test; N=500) and the PT population 1297 

N) 
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(N=38,409) were used as independent datasets. c) The analytical workflow of this study involved 1298 
deriving 11 ProtBAGs, integrating them with 9 PhenoBAGs, and conducting GWAS and post-1299 
GWAS analyses. The ProtBAGs, PhenoBAGs, and their PRSs were then evaluated for their 1300 
predictive power across 14 systemic disease categories and mortality outcomes. 1301 
  1302 
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Extended Data Figure 2: The scatter plot between AI/ML-predicted biological age and 1303 
chronological age before and after age bias correction  1304 

 1305 
a) The scatter plot between the AI/ML-derived biological age and chronological age without 1306 
applying the age bias correction. b) The scatter plot between the AI/ML-derived biological age 1307 
and chronological age after the age bias correction is applied. 1308 
  1309 
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Extended Data Figure 3: Feature importance of the organ-enriched proteins for the brain 1310 
ProtBAG 1311 

 1312 
a) SHAP analysis of key brain tissue-enriched proteins for the brain ProtBAG. The left panel 1313 
presents a bar plot of mean absolute SHAP values, indicating each protein’s overall contribution 1314 
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to the model’s predictions. b) The right panel shows a bee swarm plot, illustrating the 1315 
distribution of SHAP values across individual training samples. Positive SHAP values indicate 1316 
that the increasing protein abundance contributes to predicting an older biological age, while 1317 
negative values suggest a contribution toward a younger predicted age. Protein abundance values 1318 
are color-coded: red for high values and blue for low. c) STRING conducts protein-protein 1319 
interaction (PPI) analysis by combining various sources of interaction evidence, such as 1320 
experimental data, computational predictions, and text mining. In addition to interactions, 1321 
STRING can carry out functional enrichment analysis to identify Gene Ontology (GO) terms 1322 
(e.g., biological processes, molecular functions), KEGG pathways (e.g., metabolic and signaling 1323 
pathways), and protein domains (e.g., shared structural motifs). Protein-protein interaction 1324 
network of the 9 most influential brain ProtBAG-related proteins. d) Functional protein-set 1325 
enrichment analysis of the brain ProtBAG-related proteins. Results and figures are generated 1326 
using STRING v12.0 (https://string-db.org/). e) All-cause mortality prediction (Method 6b) 1327 
using the brain ProtBAG compared to the predictions power using the 9 most influential brain 1328 
ProtBAG-related proteins. 1329 
  1330 
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Extended Data Figure 4: Trumpet plots of the effect allele frequency vs. the β coefficient of 1331 
the 11 ProtBAG GWASs 1332 

 1333 
The trumpet plots display the inverse relationship between the alternative (effect) allele 1334 
frequency and the effect size (β coefficient) for the 11 ProtBAGs. I present the independent 1335 
significant SNPs defined in FUMA. The dot size corresponds to the effect size, while the 1336 
transparency of the dot is proportional to its statistical significance. 1337 
  1338 
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Extended Data Figure 5: Sensitivity check analyses for the causal pathway of 1339 
“obesity→renal PhenoBAG→renal ProtBAG” 1340 

 1341 
a) Scatter plot for the MR effect sizes of the SNP-obesity association (x-axis, log OR) and the 1342 
SNP-renal PhenoBAG associations (y-axis, log OR) with standard error bars. The slopes of the 1343 
five lines correspond to the causal effect sizes estimated by the five MR estimators, respectively. 1344 
b) Forest plot for the single-SNP MR results. Each dot represents the MR effect (log OR), and 1345 
the error bar displays the 95% CI for Obesity on renal PhenoBAG using only one SNP; the red 1346 
line shows the MR effect using all SNPs together for IVW and MR Egger estimators. c) Leave-1347 
one-SNP-out analysis of obesity on renal PhenoBAG. Each dot represents the MR effect (log 1348 
OR), and the error bar displays the 95% CI by excluding that SNP from the analysis. The red line 1349 
depicts the IVW estimator using all SNPs. d) Funnel plot for the relationship between the causal 1350 
effect of obesity on renal PhenoBAG. Each dot represents MR effect sizes estimated using each 1351 
SNP as a separate instrument against the inverse of the standard error of the causal estimate. e) 1352 
Scatter plot for the MR effect sizes of the SNP-renal PhenoBAG association (x-axis, log OR) and 1353 
the SNP-renal ProtBAG associations (y-axis, SD units) with standard error bars. The slopes of 1354 
the five lines correspond to the causal effect sizes estimated by the five MR estimators, 1355 
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respectively. f) Forest plot for the single-SNP MR results. Each dot represents the MR effect (log 1356 
OR), and the error bar displays the 95% CI for renal PhenoBAG on renal ProtBAG using only 1357 
one SNP; the red line shows the MR effect using all SNPs together for IVW and MR Egger 1358 
estimators. g) Leave-one-SNP-out analysis of renal PhenoBAG on renal ProtBAG. Each dot 1359 
represents the MR effect (log OR), and the error bar displays the 95% CI by excluding that SNP 1360 
from the analysis. The red line depicts the IVW estimator using all SNPs. h) Funnel plot for the 1361 
relationship between the causal effect of renal PhenoBAG on renal ProtBAG. Each dot 1362 
represents MR effect sizes estimated using each SNP as a separate instrument against the inverse 1363 
of the standard error of the causal estimate.  1364 
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