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Abstract

Histopathology image evaluation is indispensable for cancer diagnoses and subtype classification. 

Standard artificial intelligence (AI) methods for histopathology image analyses have focused on 

optimizing specialized models for each diagnostic task1,2. Although such methods have achieved 

some success, they often have limited generalizability to images generated by different digitization 

protocols or samples collected from different populations3. To address this challenge, we devised 

the Clinical Histopathology Imaging Evaluation Foundation (CHIEF) model, a general-purpose 

weakly supervised machine learning framework to extract pathology imaging features for 

systematic cancer evaluation. CHIEF leverages two complementary pretraining methods to extract 

diverse pathology representations: unsupervised pretraining for tile-level feature identification 

and weakly supervised pretraining for whole-slide pattern recognition. We developed CHIEF 

using 60,530 whole-slide images (WSIs) spanning 19 anatomical sites. Through pretraining 

on 44 terabytes of high-resolution pathology imaging datasets, CHIEF extracted microscopic 

representations useful for cancer cell detection, tumor origin identification, molecular profile 

characterization, and prognostic prediction. We successfully validated CHIEF using 19,491 

whole-slide images from 32 independent slide sets collected from 24 hospitals and cohorts 

internationally. Overall, CHIEF outperformed the state-of-the-art deep learning methods by up to 

36.1%, showing its ability to address domain shifts observed in samples from diverse populations 

and processed by different slide preparation methods. CHIEF provides a generalizable foundation 

for efficient digital pathology evaluation for cancer patients.
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Introduction

Histopathology image evaluation is integral to the diagnosis of cancers and cancer 

subtype classification. Previous studies on artificial intelligence (AI)-based histopathology 

image analysis primarily rely on training task-specific models optimized for each use 

case1,2. For example, specialized deep neural networks have been developed for cancer 

cell identification4,5, histological and molecular subtype classification6–10, prognosis 

evaluation11–14, and treatment response prediction using gigapixel whole-slide images 

(WSIs)15–17. Moreover, state-of-the-art computational pathology analyses have revealed 

quantitative morphological signals indicative of clinically important molecular markers18,19, 

demonstrating the potential of AI methods in identifying cellular features imperceptible 

to the human eyes20. While these advances offer promising avenues for improving cancer 

evaluation, several limitations continue to plague quantitative pathology image analyses. 

To begin with, standard deep learning methods require a large amount of data to train a 

performing model for each task. Because it is difficult to obtain comprehensive pathology 

representations that cover the heterogeneity of diverse tissue microenvironments, existing 

approaches mainly focus on solving each narrow diagnostic task individually1,7. In addition, 

most AI models for pathology imaging analyses are tailored from general computer vision 

models designed for classifying macroscopic objects (e.g., animals, cars, and buses)2. These 

conventional approaches do not leverage the general tissue pathology patterns when training 

specialized diagnostic models. Furthermore, AI models trained by images from a single 

source tend to overfit the training data distribution and suffer from substantial performance 

deterioration when applied to images processed by different pathology laboratories3,21. 

These limitations have hindered the effective application of state-of-the-art AI models for 

reliable pathology evaluation.

Self-supervised learning (SSL) has emerged as a promising approach for obtaining robust 

image feature representation useful for a wide range of prediction tasks using samples 

collected in diverse settings22,23. Because diverse unlabeled training data is relatively 

straightforward to collect and the model training process is task-agnostic, SSL has achieved 

robust performance across different tasks and data distributions, such as image retrieval24–26 

and weakly supervised WSI analysis27. Recent advancements in SSL for pathology image 

analyses further utilized both images and their text descriptions to augment the performance 

of computer vision models28,29. However, these methods have two major limitations. First, 

they primarily focus on individual image tiles within the WSIs, without considering the 

interactions of different regions of the same tissue. Second, previous studies focused on 

narrow diagnostic tasks and did not evaluate the generalizability of the extracted quantitative 

imaging features in different prediction tasks across cancer types and samples from multiple 

sources. Because pathologists often face a variety of disease samples and need to assimilate 

contextual information from the tissue microenvironment, developing a general-purpose 

pathology AI system capable of accommodating a wide range of tissue types and evaluation 

tasks is of paramount importance.

To address these pressing clinical needs, we established the Clinical Histopathology Imaging 

Evaluation Foundation (CHIEF) model, a general-purpose machine learning framework 

that provides the foundation for various pathology diagnosis and prediction tasks (Fig. 
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1a). We leveraged two complementary forms of AI model pretraining: self-supervised 

pretraining using 15 million pathology image tiles for tile-level feature representation 

and weakly-supervised pretraining on 60,530 WSIs across 19 anatomical sites for tissue 

context representation. In addition, we devised an efficient framework for tile-level 

feature aggregation in large-scale WSI analysis. We further validated CHIEF’s capability 

in cancer detection, tumor origin characterization, genomic mutation identification, and 

survival prediction using 32 independent datasets consisting of 19,491 weakly annotated 

WSIs. Our approach challenges conventional attention-based tile-aggregation methods, 

offering a holistic representation of whole-slide image features. CHIEF enables systematic 

microscopic feature identification and lays the groundwork for reliable pathology evaluation.

Results

An overview of CHIEF.

We established the CHIEF model, a general-purpose machine learning framework for 

weakly supervised histopathological image analyses. Unlike commonly used self-supervised 

feature extractors27,30, CHIEF leveraged two types of pretraining procedures: unsupervised 

pretraining on 15 million unlabeled tile images and weakly supervised pretraining 

on over 60 thousand WSIs. Tile-level unsupervised pretraining established a general 

feature extractor30 for H&E-stained histopathological images collected from heterogeneous 

publicly available databases, which captured diverse manifestations of microscopic cellular 

morphologies. Subsequent WSI-level weakly supervised pretraining constructed a general-

purpose model by characterizing the similarities and differences between cancer types. 

We evaluated the performance of CHIEF in a wide range of pathology evaluation tasks, 

including cancer detection, tumor origin prediction, genomic profile identification, and 

survival prediction (Fig. 1a).

CHIEF augmented cancer cell detection.

Detecting malignant cells from pathological images is crucial for cancer diagnoses4,5. 

State-of-the-art AI methods for cancer cell detection predominantly concentrate on training 

models for specific cancer types, without leveraging the commonalities of malignant cell 

morphology across cancers. The resulting models are not easily extensible to other cancer 

categories. To address this gap, we built a weakly supervised cancer detection platform using 

CHIEF and evaluated its generalizability across cancers. We conducted an extensive external 

validation using 15 independent datasets with a total of 13,661 WSIs. These datasets 

encompass both public (e.g., Clinical Proteomic Tumor Analysis Consortium (CPTAC), 

Diagset-B31, Dataset-PT32, DROID-Breast, and TissueNet33 cohorts) and institutional data 

sources (e.g., samples from Shenzhen Maternity & Child Healthcare Hospital (SMCH) and 

Chongqing University Cancer Hospital (CUCH)) and span 11 different primary cancer sites. 

To better assess the performance of CHIEF, we compared it with three weakly supervised 

WSI classification methods: CLAM6, ABMIL34, and DSMIL35.

CHIEF consistently attained superior performance in a variety of cancer identification 

tasks using either biopsy or surgical resection slides (Fig. 2a). CHIEF achieved a macro-

average AUROC of 0.9397 across 15 datasets representing 11 cancer types (Fig. 2a), 
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which is approximately 10% higher than that attained by DSMIL, 12% higher than that 

of ABMIL, and 14% higher than that of CLAM. In all five biopsy datasets collected from 

independent cohorts, CHIEF possessed AUROCs of greater than 0.96 across multiple cancer 

types, including esophagus (CUCH-Eso), stomach (CUCH-Sto), colon (CUCH-Colon), 

and prostate (Diagset-B and CUCH-Pros). On independent validation with seven surgical 

resection slide sets spanning five cancer types (i.e., colon (Dataset-PT), breast (DROID-

Breast), endometrium (SMCH-Endo and CPTAC-UCEC), lung (CPTAC-LSCC), and cervix 

(SMCH-Cervix and TissueNet)), CHIEF attained AUROCs greater than 0.90. Both CHIEF 

and the set of baseline methods had lower performance in CPTAC. Nonetheless, CHIEF 

significantly outperformed all other methods in cancer cell identification in these datasets 

(DeLong test P-value < 0.001). These results demonstrated CHIEF’s generalizability across 

diverse cancer tissues and samples obtained from heterogeneous sources internationally.

We employed whole-slide attention visualization to identify diagnostic signals utilized by 

the CHIEF models. Fig. 2b, Extended Data Fig. 2, and Supplementary Fig. 1 show the 

original WSIs, pixel-level ground truth annotated by pathologists (see Methods section), 

and attention maps output by CHIEF. CHIEF directed most of its attention to cancerous 

regions, exhibiting a remarkable alignment with ground truth annotations at the pixel level 

despite being trained on slide-level labels only. Notably, tiles receiving high attention from 

CHIEF contained tissue with typical cytologic and architectural patterns of malignancy (e.g., 

increased nuclear/cytoplasmic ratio, irregularly shaped nuclei, cellular pleomorphism, and 

disorganized architecture), showing the model’s capacity to identify key diagnostic features 

using a weakly supervised approach.

CHIEF identified tumor origins.

We successfully employed CHIEF to predict the tissue origin of cancers and validated the 

results using independent test sets from CPTAC. Extended Data Fig. 1 and Supplementary 

Tables 5–7 show the detailed results.

CHIEF predicted genomic profiles.

Genomic profiles of cancer samples indicate patients’ treatment responses and are crucial 

for formulating treatment plans19. The comprehensive genomic profiling of cancer patients 

is not routinely conducted worldwide due to the additional cost and time involved18. 

Identifying quantitative morphological patterns indicative of genomic profiles from routine 

H&E-stained slides offers an instantaneous and cost-effective alternative to genomic 

sequencing. We examined CHIEF’s capability to systematically predict molecular profiles 

of cancer samples. We focused on four clinically important prediction tasks: (1) systematic 

prediction of prevalent genetic mutations across cancer types, (2) identification of mutations 

related to targeted therapies, (3) isocitrate dehydrogenase (IDH) status prediction for the 

new WHO classification of glioma, and (4) microsatellite instability (MSI) prediction for 

assessing the benefits of immune checkpoint blockade in colorectal cancer patients.

Prevalent Genetic Mutations. We conducted a systematic analysis that associated 

prevalent genetic mutations with histopathology images (Fig. 3 and Extended Data Fig. 
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3). Our study involved 13,432 WSIs across 30 cancer types and 53 genes with the top five 

highest mutation rates in each cancer type.

CHIEF predicted the mutation status of 9 genes with AUROCs greater than 0.8 in our 

systematic pan-cancer genetic mutation analyses (Fig. 3). Consistent with prior studies18,36, 

pathology images contain strong signals related to TP53 mutation across 19 cancer types, 

with high AUROCs in low-grade glioma (LGG) (0.8756; 95% CI: 0.8624-0.8888), adrenal 

carcinoma (0.8119; 95% CI: 0.7488-0.8751), and uterine corpus endometrial carcinoma 

(UCEC) (0.8115; 95% CI: 0.7971-0.8259). CHIEF also identified mutations in GTF2I, 
which occur in 43.4% of patients with thymic epithelial tumors37, with an AUROC of 

0.9111 (95% CI: 0.8935-0.9287). Furthermore, CHIEF predicted BAP1 mutation in uveal 

melanoma (AUROC=0.817; 95% CI: 0.7668-0.8672), which is observed in approximately 

45% of uveal melanoma cases38.

We tested CHIEF in an independent patient cohort from CPTAC. CHIEF consistently 

maintained similar AUROCs for various genes in these new patient cohorts (Extended 

Data Fig. 4). Compared with the state-of-the-art method for histopathology-based genomic 

mutation prediction (i.e., the PC-CHiP method36; Supplementary Fig. 2), CHIEF showed 

significantly higher performance (Wilcoxon signed-rank test P-value < 0.001), with a macro-

average AUROC of 0.7043 (range: 0.51 to 0.89). In contrast, the PC-CHiP method attained a 

macro-average AUROC of 0.6523 (range: 0.39 to 0.92).

Mutations Related to Targeted Therapies. We further employed CHIEF 

to predict genes associated with FDA-approved targeted therapies presented in 

OncoKB39(www.oncokb.org) across 18 genes spanning 15 cancer types (Fig. 3). 

CHIEF predicted the mutation status of all 18 genes with AUROCs greater than 

0.6 (Fig. 3). Mutations with high prediction performance included EZH2 in diffuse 

large B-cell lymphoma (AUROC=0.9571; 95% CI: 0.9321-0.9822), NTRK1 in stomach 

adenocarcinoma (AUROC=0.8192; 95% CI: 0.7767-0.8618), BRCA2 in prostate 

adenocarcinoma (AUROC=0.8938; 95% CI: 0.8310-0.9567), BRAF in thyroid carcinoma 

(AUROC=0.8889; 95% CI: 0.87150.9064), ERBB2 in lung squamous cell carcinoma 

(LUSC) (AUROC=0.8211; 95% CI: 0.7597-0.8826), and FGFR3 in bladder urothelial 

carcinoma (AUROC=0.8161; 95% CI: 0.7921-0.8402). On independent validation, CHIEF 

achieved a similar level of performance in the CPTAC cohorts (Extended Data Fig. 4). 

Among these genes, ESR1 in breast cancer, EGFR in lung adenocarcinoma (LUAD), and 

BRAF in colorectal adenocarcinoma (COAD) all exhibited AUROCs greater than 0.7 in both 

held-out and independent test sets.

IDH Status Prediction. The 2021 WHO Classification of Tumors of the Central Nervous 

System distinguished glioblastoma from low-grade glioma based on IDH status instead of 

conventional histological features8,40. Thus, it is crucial to identify patients’ IDH status at 

the time of diagnosis. To identify IDH mutation-related signals independent of histological 

grades, we stratified our study cohorts by histological grade and employed CHIEF to predict 

IDH status in each stratum. We conducted IDH status prediction analyses on six datasets: 

TCGA-LGG, TCGA-GBM, MUV-LGG41, MUV-GBM41, HMS-LGG, and HMS-GBM. The 

CHIEF model demonstrated superior performance compared to other baseline methods in 
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both the held-out and independent test sets (Wilcoxon signed-rank test P-value < 0.01; Fig. 

4a and Supplementary Fig. 3). To increase interpretability, we visualized these representative 

patches and examined the distribution of attention scores determined by CHIEF (Extended 

Data Fig. 5 and Extended Data Fig. 9b). Results showed that necrotic regions received 

significantly higher attention when identifying gliomas with IDH-wildtype status (Mann-

Whitney U test p<0.0001; Extended Data Fig. 9b).

MSI Status Prediction. MSI is a well-established biomarker for responses to immune 

checkpoint blockade in colorectal cancers27. To enable rapid treatment personalization at the 

time of diagnosis, we examined the performance of CHIEF in predicting MSI status using 

histopathological images. CHIEF significantly outperformed the best-performing baseline 

method (DSMIL) in the TCGA-COAD dataset and two independent cohorts (PAIP202042 

and CPTAC-COAD), with an AUROC improvement of approximately 12%, 15%, and 26%, 

respectively (Fig. 4b). Attention analyses showed that regions containing solid tumors, 

luminal necrosis, and tumor-infiltrating lymphocytes received high attention from CHIEF 

(Extended Data Fig. 6).

CHIEF predicted survival outcomes.

Due to differential responses to standard treatments, cancer patients have varying disease-

specific survival outcomes after their initial diagnoses43. Although many clinical and 

genomic biomarkers have been proposed, they do not fully predict the prognosis of every 

patient. To address this challenge, we extended our CHIEF framework to establish stage-

stratified survival prediction models for each cancer type under study. We employed a total 

of 9,404 WSIs in 17 datasets and focused on 7 cancer types (COADREAD, LUSC, BRCA, 

GBM, UCEC, LUAD, and RCC) with reliable prognostic information in the independent 

cohorts.

In all cancer types and all study cohorts, CHIEF successfully distinguished patients with 

longer-term survival from those with shorter-term survival (log-rank test p< 0.05; Fig. 5 

shows the prediction results of stage I and stage II patients). In comparison, state-of-the-art 

deep learning methods (e.g., PORPOISE12 and DSMIL35) cannot reliably differentiate 

patients with different survival outcomes in the same settings (log-rank test p> 0.05 

in 11 out of 15 cohorts; Supplementary Fig. 4). In addition, the Kaplan-Meier curves 

produced by CHIEF possessed narrower confidence intervals than other methods. Overall, 

CHIEF attained an average c-index of 0.74 across cancer types in the held-out test set 

(Supplementary Table 3), which was 12% and 7% higher than those of PORPOISE and 

DSMIL (0.62 and 0.67, respectively).

We observed similar performance trends in patients with stage III (Supplementary Fig. 6) 

and stage IV cancers (Supplementary Fig. 7), with CHIEF outperforming other methods by 

up to 10%. Because some previously published methods focused on mixed-stage results, 

we computed the results from mixed-stage analyses and showed CHIEF outperformed 

baseline methods in these study settings (Extended Data Fig. 7 and Supplementary Fig. 

5). In addition, we conducted a multivariate analysis that incorporated model-derived risk 

score, patient age, sex, and stage (Supplementary Tables 9 and 10). Results showed that 
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CHIEF-derived risk score is a significant prognostic factor independent of known indicators 

of survival outcomes. Furthermore, our univariate analysis showed that CHIEF-derived risk 

scores are statistically significantly associated with survival outcomes across all cancer types 

in all patient cohorts under investigation (Supplementary Tables 11 and 12).

To better understand the histological features indicative of patients’ survival outcomes, 

four attending pathologists independently reviewed the attention heatmaps generated by 

CHIEF (see Methods). In both longer-term survivors and shorter-term survivors, high-

attention areas contained malignant tissues across cancer types (Extended Data Figs. 8–9 

and Supplementary Figs. 8–9). High-attention areas for longer-term survivors had more 

infiltrating immune cells than patients with higher mortality risks. In cancer samples from 

shorter-term survivors, high-attention regions exhibited larger nuclear/cytoplasmic ratios, 

more pronounced nuclear atypia, less stromal fibrosis, and weak inter-cellular adhesion.

Discussion

We developed CHIEF as a general-purpose, pan-cancer foundation deep learning 

framework for quantitative pathology evaluation. CHIEF leveraged unsupervised tile-level 

pretraining, weakly supervised WSI-level pretraining, and 44 terabytes of histopathology 

imaging data from multiple countries for robust pathology image analysis. The CHIEF 

framework successfully characterized tumor origins, predicted clinically important genomic 

profiles, and stratified patients into longer-term survival and shorter-term survival groups. 

Furthermore, our approach established a general pathology feature extractor capable of 

a wide range of prediction tasks even with small sample sizes. Our results showed that 

CHIEF is highly adaptable to diverse pathology samples obtained from multiple centers, 

digitized by various scanners, and obtained from different clinical procedures (i.e., biopsy 

and surgical resection). This new framework significantly enhanced model generalizability, a 

critical barrier to the clinical penetrance of conventional computational pathology models1,3.

CHIEF effectively leveraged anatomic site information as a source of prior knowledge 

and considered the contextual interactions across different image regions in the 

WSIs, contributing to substantially better generalizability than standard approaches. We 

successfully employed the CHIEF framework in various WSI-level prediction tasks, and our 

models achieved superior performance compared to state-of-the-art methods. For example, 

CHIEF exhibited a robust ability to recognize the origins of the primary tumors in patient 

cohorts not involved in the training process.

In addition, CHIEF substantially outperformed baseline methods in predicting genomic 

variations using pathology imaging profiles36. In particular, CHIEF predicted the mutation 

status of several oncogenes and tumor suppressors with higher performance (AUROCs > 

0.8), such as TP53, GTF2I, BTG2, CIC, CDH1, IGLL5, and NRAS. Because the updated 

WHO diagnostic guidelines incorporated molecular markers in tumor classifications, we 

further showed that CHIEF predicted key mutations related to major diagnostic categories 

and validated the results in multiple patient populations. CHIEF also accurately predicted 

the MSI status of colorectal cancer patients, which may facilitate clinical decisions 

regarding the administration of immune checkpoint inhibitors18,19,27. Finally, imaging 
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features extracted by CHIEF served as the foundation for survival outcome prediction 

models. These models stratified patients into high- and low-mortality risk groups across all 

cancer types under study, and the results were validated in 17 cohorts.

We further interpreted CHIEF models by visualizing imaging regions that received high 

attention from the model. CHIEF employed a weakly supervised machine learning approach, 

which identified the regions of interest automatically by comparing positive and negative 

examples, thereby eliminating the need for pixel-level or region-level annotations. This 

approach made it possible to leverage large-scale publicly available and institutional datasets 

to capture the heterogeneity of pathology manifestations across thousands of samples. 

For example, visualization of survival outcome prediction models indicated that samples 

from cancer patients with lower mortality risks contain more infiltrating immune cells and 

abundant stroma with clear glandular and cribriform structures.

Lastly, we showed that CHIEF outperformed recently released general-purpose foundation 

models and patch-based pathology foundation models with statistically significant 

performance differences26, 44–46 (Supplementary Fig. 10 and Supplementary Tables 25–26). 

The additional weakly-supervised pretraining approach leveraging large-scale WSI datasets 

likely contributed to its enhanced performance.

Our study has a few limitations. First, although CHIEF was trained with a large number 

of samples collected from multiple hospitals and study cohorts worldwide, the inclusion 

of a larger number of non-malignant slides and slides from rare diseases could further 

improve the performance of our general-purpose pathology feature extractor. In addition, our 

prognostic prediction models focused on the disease-specific and overall survival prediction 

of patients receiving standard care. Future research can extend our methods to study the 

predicted benefits and adverse effects of novel cancer treatments.

In conclusion, CHIEF is a foundation model useful for a wide range of pathology evaluation 

tasks across multiple cancer types. We have demonstrated the generalizability of this 

foundation model across several clinical applications using samples collected from 24 

hospitals and patient cohorts worldwide. CHIEF required minimal image annotations and 

extracted detailed quantitative features from WSIs, which enabled systematic analyses of the 

relationships among morphological patterns, molecular aberrations, and important clinical 

outcomes. Accurate, robust, and rapid pathology sample assessment provided by CHIEF will 

contribute to the development of personalized cancer management.

Online Methods

Datasets for CHIEF Pretraining.

The CHIEF model was pretrained using 60,530 WSIs from 14 study cohorts, including eight 

large study consortia (TCGA47, GTex48, PAIP, PANDA49, Basal Cell Carcinomas (BCC)50, 

Early Breast Cancer Core-Needle Biopsy WSI (BCNB)51, AutomatiC Registration Of Breast 

cAncer Tissue (ACROBAT)52, and Treatment effectiveness to Ovarian Cancer (TOC)53) 

and six institutional cohorts (YH-Breast, YH-Eso, YH-Colon, YH-Sto, YH-Cervix, and YH-

Endo) from Yuhuangding Hospital, Yantai, China. The training datasets included cancers 
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from 19 anatomic sites, including brain, breast, bladder, kidney, prostate, testis, lung, 

pancreas, liver, skin, ovary, cervix, uterus, colon, esophagus, stomach, thyroid, adrenal 

gland, and soft tissues. We obtained formalin-fixed paraffin-embedded (FFPE) hematoxylin 

and eosin (H&E) stained tissues from these patient cohorts. Fig. 1.b summarized the 

breakdowns of the slide counts across these cohorts. Below we describe these cohorts in 

detail.

Datasets from Large Research Consortia. We first obtained 46,340 publicly available 

H&E stained WSIs. These included 29,001 slides of 19 anatomical sites from The Cancer 

Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx)48. In addition, we acquired 

2,405 WSIs of five cancer types from PAIP. These WSIs contained cancers from the liver 

(558 WSIs), colon (894 WSIs), prostate (399 WSIs), kidney (390 WSIs), and pancreas 

cancers (164 WSIs). We further incorporated data from PANDA49, BCC50, BCNB51, 

ACROBAT52, and TOC53. Each of these research consortia focuses on a single cancer type 

(e.g., prostate, skin, breast by two consortia, and ovary). Among these datasets, PANDA is 

the largest publicly available prostate histopathological image set, containing 10,616 WSIs 

of prostate biopsies from 2,113 patients. Two pathologists (J.J. and F.W.) reviewed these 

digital pathology slides in PANDA and removed 13 low-quality slides. The BCC dataset 50 

contained 1,832 WSIs of basal cell carcinomas. The BCNB 51 and ACROBAT52 datasets 

contain 1,058 and 1,153 H&E stained WSIs obtained by breast cancer biopsy and surgical 

resection, respectively. The TOC53 dataset contained 288 H&E-stained pathology slides 

from ovarian cancer patients. Supplementary Table 13 summarizes the detailed information 

for each patient cohort.

Institutional Datasets. Because most participants in the large research consortia are 

Caucasians, we further included 6 institutional datasets from a wide range of demographic 

groups for model pretraining. Specifically, we collected an additional 14,190 slides 

from six patient cohorts from Yuhuangding Hospital, Yantai, China. This sample set 

contains pathology slides of breast, esophagus, stomach, cervix, uterus, and colon cancers. 

Supplementary Table 13 summarizes the detailed information of these study cohorts.

CHIEF Model Architecture.

CHIEF is pretrained with a two-stage process to capture pathology manifestations useful for 

a wide range of evaluation tasks. First, we employed self-supervised pretraining to obtain 

patch-level feature representations from unlabeled data. Second, we integrate patch-level 

features using weakly supervised learning and an attention module, thereby generating 

global pathology representations of WSIs. The second stage only requires WSI-level labels, 

enabling CHIEF to construct a holistic understanding of pathology images from global 

features.

Fig. 1 shows an architecture overview of the CHIEF model. CHIEF integrated multi-

modality information from microscopic imaging and anatomical site information to enhance 

feature representation for quantitative pathology analyses. By incorporating both histological 

images and text information from the pathology reports, the CHIEF pre-training strategy 

enhances the model’s capability to account for anatomical information and optimize 
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structural feature embeddings, thereby enhancing the model’s feature representations. In 

short, we established a histopathological image branch for image encoding and another text 

branch for anatomic site encoding. The image encoder used the self-supervised CTransPath 

backbone30 for extracting histopathology image feature representations. We aggregated 

these features using attention-based feature fusion, with assistance from instance-level 

feature identification and WSI-level contrastive learning (Supplementary Fig. 13). The 

text encoder adopted the pre-trained text encoder from the Contrastive Language-Image 

Pre-training (CLIP) model54, which was obtained by pretraining on diverse datasets of 

images and their captions to learn the rich and multimodal representations that capture the 

relationships between images and text descriptions. Below we elaborate on our methods in 

detail.

Anatomical Site Information Encoding. The anatomic site information for each WSI 

is often available but rarely utilized to improve machine learning models for pathology 

image evaluation. To address this gap, we added text information on the anatomic sites into 

the feature representation to enhance supervision during the training process of CHIEF. To 

ensure the effectiveness of the text feature representation, we leveraged the text encoder of 

the CLIP model for text embedding extraction. This encoder is a transformer-based model 

and pre-trained with a 400 million paired image-text dataset54.

Because pathology samples from many large research consortia lack detailed text 

descriptions, we employed simple text prompts as the input of the text encoding branch. 

Our prompt took the form of “This is a histopathological image of the [CLS]”, where 

the [CLS] was the anatomic site of the samples, such as the brain, stomach, or other 

organs. Mathematically, let Tn and Fn be the text embedding (CLIP embedding) and image 

embedding of the nth slides, respectively. The text embedding is further passed through two 

fully connected layers and then concatenated with the visual features on the image branch, 

i.e., Fn
fusion = MLP Tn + Fn. Through the pretraining process, the CHIEF model learned to 

associate visual features with corresponding text descriptions, thereby identifying their 

semantic relevance across organs.

Histopathological Image Feature Encoding. Because most histopathology images 

from clinical sources do not come with detailed region-level annotations, we designed an 

image processing branch for weakly-supervised WSI analysis. Our approaches effectively 

learn the relationships between WSIs and labels assigned to these slides, without requiring 

region-level annotations from pathologists. Two key elements of our image feature encoding 

branch are data preprocessing and a weakly-supervised feature aggregation network. During 

data preprocessing, we processed each WSI using the Otsu thresholding method55 to 

remove the image background not representing any tissues. Next, we cropped the WSIs 

into non-overlapping tiles with a size of 256×256 pixels at a magnification of 10× with 

a resolution of 1.0 microns per pixel (MPP). We employed CTransPath pre-trained on 15 

million image patches to obtain the quantitative representation of each tile. We further 

designed the feature aggregator network to integrate the context information across tiles 

within each WSI. This core element of the histopathological image branch employed the 

attention-based pooling strategy and consisted of three modules. First, the main module 
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is a deep attention aggregation method with class-specific attention computation, which 

generates a learnable attention score for each tile within WSIs. To enhance the efficiency 

of these attention scores, we included two auxiliary modules to perform the inter-WSI 

and intra-WSI feature learning, respectively. Specifically, the instance branch assigned an 

attention score of 1 for tiles receiving the highest attention levels and a score of 0 for tiles 

obtaining the lowest attention. The WSI branch performed WSI-level contrastive learning 

to facilitate information integration across regions within WSIs, enabling robust separation 

for each category labeled at the WSI level. Supplementary Method describes these three 

modules in greater detail.

CHIEF Pretraining Details.

We pretrained CHIEF with 60,530 WSIs from 14 cohorts which were split into 90% training 

data and 10% validation data. We split the training data at the patient level and ensured that 

samples from different anatomic sites were represented in the training and validation sets 

proportionally. In the training phase, the memory banks in the WSI-level contrastive learning 

module were constructed separately for different cancer types. In the validation phase, we 

calculated the AUROC, sensitivity, specificity, and other validation set performance metrics 

for each anatomic site individually. In the pan-cancer pretraining phase, we optimized 

the model hyperparameters to maximize the average AUROC across sites. The weakly 

supervised learning adopted a batch size of one WSI and a max epoch number of 50. 

We used the Adam optimizer56 with an initial learning rate of 3.0e-4. We employed the 

cosine annealing method57 to determine the learning rate schedule. We exploited the early 

stop strategy to mitigate overfitting, which terminated network training when the validation 

AUROC no longer increased within ten consecutive epochs. CHIEF was pre-trained using 8 

NVIDIA V100 32GB GPUs.

Evaluation.

We evaluated the performance and generalizability of the pre-trained CHIEF models 

using four different WSI-level prediction tasks, i.e., cancer cell detection, tumor origin 

identification, genomic profile characterization, and survival outcome prediction. We 

conducted external validation using samples from 24 hospitals and study cohorts, including 

five collaborating medical centers worldwide (Dana–Farber Cancer Institute, Brigham 

and Women’s Hospital, the Medical University of Vienna, Shenzhen Maternity & Child 

Healthcare Hospital, and Chongqing University Cancer Hospital), 11 study cohorts from 

the Clinical Proteomic Tumor Analysis Consortium (CPTAC-CCRCC, CPTAC-LSCC, 

CPTAC-PDA, CPTAC-CM, CPTACUCEC, CPTAC-HNSCC, CPTAC-COAD, CPTAC-OV, 

CPTAC-GBM, CPTAC-LUAD, and CPTAC-BRCA), three National Cancer Institute 

(NCI)-sponsored study cohorts (PLCO-BRCA, PLCO-COLON, and PLCOLUAD), and 

five publicly available pathology image datasets (TissueNet, DROID-breast, Dataset-PT, 

Diagset-B, and Pathology AI Platform). Below we present the detailed evaluation settings 

for these tasks.

Cancer Cell Detection Task: We first evaluated the performance of CHIEF in detecting 

cancer cells in WSIs. We examined the performance of CHIEF on 11 primary cancer sites 

(endometrium, breast, esophagus, stomach, prostate, cervix, colon, pancreas, lung, kidney, 
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and skin) with available data. These cancer types were represented by 13,661 WSIs from 

15 datasets. We included 9 publicly available datasets from large research consortia (i.e., 

CPTAC-CCRCC, CPTAC-LSCC, CPTAC-PDA, CPTAC-CM, CPTAC-UCEC, TissueNet, 

Dataset-PT, DROID-breast, and Diagset-B) and 6 institutional datasets (i.e., SMCH-Endo, 

SMCH-Cervix, CUCH-Sto, CUCH-Eso, CUCH-Colon, and CUCH-Pros) from multiple 

hospitals as independent test sets to evaluate the robustness of our model. Below are the 

details of these sample sets.

We first obtained 9,686 publicly available WSIs from CPTAC, Diagset-B, Dataset-

PT, DROID-breast, and TissueNet. Specifically, we included 3,712 WSIs from five 

working groups (kidney (CPTAC-CCRCC), lung (CPTAC-LSCC), pancreas (CPTAC-PDA), 

Melanoma (CPTAC-CM), and endometrium (CPTAC-UCEC)) of the CPTAC. We further 

included pathology images of prostate, colon, breast, and cervix cancer samples from 

Diagset-B (4,626 WSIs)31, Dataset-PT (498 WSIs)32, DROID-breast (361 WSIs)58, and 

TissueNet (489 WSIs)33. Supplementary Table 13 summarizes the detailed descriptions of 

these patient cohorts.

To increase the diversity of our validation datasets, we further included 3,975 WSIs 

from two hospitals (i.e., Shenzhen Maternity & Child Healthcare Hospital (SMCH) and 

Chongqing University Cancer Hospital (CUCH)). SMCH provided two datasets, SMCH-

Endo (164 WSIs) and SMCH-Cervix (290 WSIs), from endometrium and cervix cancer 

patients, respectively. CUCH provided four datasets (CUCH-Sto (550 WSIs), CUCH-Eso 

(385 WSIs), CUCH-Colon (1,742 WSIs), and CUCH-Pros (844 WSIs)) from stomach, 

esophagus, colon, and prostate cancer patients.

Tumor Origin Identification Task. We further examined the performance of CHIEF in 

identifying the primary sites of tumor origin using WSIs. We first employed FFPE slides 

from primary tumors in TCGA to fine-tune the CHIEF model for tumor origin prediction 

(Supplementary Table 14). We focused on pathology slides obtained from 18 anatomical 

sites to enhance comparability with a previous study59. After removing WSIs without 

magnification information in their metadata, we retained 9,432 slides, which were split into 

training, validation, and held-out test sets in a ratio of 7:1:2. We processed the test set only 

after we finalized all model parameters.

To objectively evaluate our model’s generalizability, we employed slides of primary tumors 

from CPTAC for independent validation. These slides represented 9 types of primary 

cancers. After removing WSIs without magnification information, a total of 3,019 slides 

remained from CPTAC, which included 853 slides with lung cancers, 277 with endometrial 

cancers, 328 with breast cancers, 287 with head and neck cancers, 192 with colorectal 

cancers, 116 with ovarian cancers, 239 with gliomas, 331 with renal cancers, and 396 with 

pancreatic cancers.

Genomic Profile Prediction Task. We next evaluated the performance of CHIEF 

in predicting genomic profiles using whole-slide pathology images. We focused on 

four clinically important prediction tasks: (1) systematic prediction of prevalent genetic 

mutations across cancer types, (2) identification of mutations related to targeted therapies, 
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(3) IDH status prediction for WHO classification of gliomas, and (4) MSI prediction for 

immunotherapy administration in colorectal cancers. We summarize each of these tasks and 

their implementation details below.

We employed the TCGA dataset to train machine learning models for predicting prevalent 

genetic mutations across cancer types. For each cancer type, we selected the top five genes 

with the highest mutational prevalence for this prediction task. The TCGA training data 

included a total of 11,483 WSIs and covered 30 cancer types (Supplementary Table 17). 

In total, we investigated CHIEF’s capability of predicting the mutational status of 53 genes 

across these cancer types. We developed separate models for each mutation prediction task. 

To evaluate CHIEF models’ generalizability to patient populations not included in the model 

development process, we conducted independent validations using the CPTAC datasets, 

which contained 1,949 WSIs from 7 cancer types (Supplementary Table 19).

We employed TCGA and CPTAC datasets as the training and independent test sets for 

predicting genetic mutations related to FDA-approved targeted therapies. Our training 

dataset included 6,013 WSIs (Supplementary Table 18), covering 15 cancer types and 18 

genes related to targeted therapies. These genes included ALK, BRAF, BRCA1, BRCA2, 
EGFR, ERBB2, ESR1, EZH2, FGFR2, FGFR3, KRAS, MET, NTRK1, NTRK2, NTRK3, 
PIK3CA, RET, and ROS1. Our independent test set contained 1,705 WSIs (Supplementary 

Table 20) and covered six cancer types and 14 different genes.

To predict IDH mutation status in brain cancer patients from H&E-stained pathology 

images, we collected WSIs from three study cohorts: the Medical University of Vienna 

(MUV)41, Harvard Medical School and the University of Pennsylvania (HMS; with data 

from Brigham and Women’s Hospital and the Hospital of the University of Pennsylvania), 

and TCGA. We obtained samples from low-grade gliomas and glioblastomas. We stratified 

these samples by their histological grade to identify additional IDH-related morphological 

signals independent of histological grade. We trained our CHIEF model using TCGA 

cohorts (i.e., TCGA-LGG with 842 WSIs and TCGA-GBM with 834 WSIs) and then 

externally evaluated the models using MUV and HMS cohorts (i.e., MUV-LGG with 365 

WSIs, HMS-LGG with 82 WSIs, MUV-GBM with 507 WSIs, and HMS-GBM with 88 

WSIs) (Supplementary Table 15).

MSI status in colorectal cancers is a well-established predictor of responses to immune 

checkpoint blockade. To enable real-time MSI identification at the time of diagnosis, 

we employed H&E-stained pathology specimens of colorectal cancers for MSI mutation 

prediction (Supplementary Table 16). We collected our training data from TCGA, which 

contained 437 WSIs (63 WSIs with MSI-high and 374 WSIs with MSI-low status), and we 

split this dataset into 4 folds for cross-validation. We further validated our models using 

independent patient cohorts from PAIP2020 42 and CPTAC-COAD, which contained 77 

WSIs (19 WSIs with MSI-high and 58 WSIs with MSI-low) and 221 WSIs (53 WSIs with 

MSI-high and 168 WSIs with MSI-low), respectively.

Survival Prediction Task. Lastly, we evaluated the performance of CHIEF for predicting 

cancer patients’ survival outcomes. We conducted this analysis for seven cancer types 
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with extensive survival information: colorectum cancer (COADREAD), lung squamous 

cell carcinoma (LUSC), breast cancer (BRCA), glioblastoma (GBM), endometrioid cancer 

(UCEC), lung adenocarcinoma (LUAD), and renal cell carcinoma (RCC). We collected 17 

datasets, consisting of 9,404 WSIs from 6,464 patients (Supplementary Table 21). We used 

seven publicly available TCGA cohorts with a total of 4,749 WSIs to train the model, and 

we employed four publicly available CPTAC datasets (1,541 WSIs) and six institutional 

datasets (3,114 WSIs) for independent validations. The CPTAC datasets included in this 

analysis included CPTAC-GBM (244 WSIs), CPTAC-LUSC (292 WSIs), CPTAC-RCC (459 

WSIs), and CPTAC-UCEC (546 WSIs). Three additional consortia datasets were obtained 

from the Prostate, Lung, Colorectal and Ovarian (PLCO) study 60 (i.e., PLCO-COLON 

with 333 WSIs, PLCO-LUAD with 176 WSIs, and PLCO-BRCA with 1,893 WSIs). 

We further included three institutional datasets collected from the Dana–Farber Cancer 

Institute (DFCI) and Brigham and Women’s Hospital: the DFCI-Breast Cancer (152 WSIs), 

DFCI-LUAD (486 WSIs), and BWH-RCC datasets (74 WSIs). In this prediction task, we 

used all available overall survival data from CPTAC, PLCO-LUAD, and PLCO-COLON 

and disease-specific survival information from all other datasets. Supplementary Table 21 

summarizes the detailed demographic information for each patient cohort.

CHIEF Fine-Tuning Details.

We fine-tuned CHIEF models for various histopathological image analytical tasks. We 

fine-tuned these models by employing CHIEF’s pre-trained weights as the initial weights 

and added a task-specific fully connected layer. We implemented the tumor origin prediction 

task as an 18-class weakly supervised classification task by changing the prediction head 

into an 18-way classifier. We formulated genetic mutation predictions as two-class weakly 

supervised WSI classification tasks. We enabled prognostic predictions by appending a 

regression model as a head to CHIEF’s backbone, which outputted an estimated mortality 

risk score by a single neuron in the last layer of the neural network. For each dataset, we 

used the median value of the predicted risk scores to divide samples into longer-term and 

shorter-term survival groups. We then tested the difference between these two groups using 

the log-rank test. During fine-tuning, we set the mini-batch size to 1 for all tasks except 

the prognostic prediction task, which had a mini-batch size of 32 to increase efficiency. 

We fine-tuned models for all prediction tasks using the Adam optimizer with an initial 

learning rate of 0.0003. The learning rate is adjusted using the cosine annealing strategy. We 

fine-tuned all weakly-supervised prediction tasks on one NVIDIA V100 32GB GPU.

Model Visualization.

To enhance model interpretability, we visualized the prediction for each WSI by highlighting 

the image regions of relatively high importance in the prediction6. To generate fine-grained 

attention heatmaps, we cropped WSIs into highly overlapped tiles (85% overlap ratio) and 

computed the attention scores for these tiles within each WSI. We scaled these scores 

between 0.0 (low attention) and 1.0 (high attention). To identify regions with high prediction 

confidence, we multiplied these attention scores with the prediction probability obtained 

from the instance-level classification branch. Finally, we overlaid the weighted attention 

score heatmaps with their corresponding original H&E images. We used a transparency 

value of 0.5 for the heatmaps to facilitate visualization of both the spatial distribution of 
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attention scores and the associated pathology patterns. J.J., F.W., Y.P., C.R.J., J.A.G., and 

M.P.N. independently evaluated the highlighted regions from the heatmaps. To objectively 

compare model attention and regions occupied by cancer cells, J.J. and F.W. annotated 

the pixel-level ground truth of cancerous regions independently without viewing the model 

output.

Comparative Analysis.

In the cancer detection task, we compared CHIEF with three state-of-the-art weakly-

supervised WSI classification methods: CLAM6, ABMIL34, and DSMIL35. We reproduced 

these three baseline methods using their officially released codes. We used the same 

pretraining data to train our CHIEF model and these alternative methods to ensure the 

comparability of our results. In the tumor origin identification task, we implemented three 

baseline methods (i.e., TOAD59, TransMIL61, and DSMIL35) using their released codes 

and compared them with CHIEF. In the genetic profile prediction tasks, we compared 

CHIEF with PC-CHiP36. Because PC-CHiP used the same training data for genetic mutation 

prediction, we directly compared our results with the reported performance of this baseline 

method. In the patient prognosis prediction task, we compared CHIEF, DSMIL35, and the 

histopathology branch of PORPOISE12 to ensure fair comparisons. We further compared 

CHIEF with other recently released foundation models in comparable tasks. Supplementary 

Information includes the detailed methods for these comparisons. To simplify the result 

presentation, we reported the absolute percentage point differences of AUROCs in all 

comparisons.

Inclusion & Ethics Statement.

The research included local researchers throughout the research process. In collaboration 

with local research partners, the research is determined locally relevant in all our research 

sites. The roles and responsibilities were agreed upon among collaborators ahead of the 

research, and capacity-building plans for local researchers were discussed. The research 

does not result in stigmatization, incrimination, discrimination, or otherwise personal 

risk to participants. The research does not involve health, safety, security, or other risks 

to researchers. Benefit-sharing measures have been discussed. We have taken local and 

regional research relevant to this study into account in citations.
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Extended Data

Extended Data Fig. 1. CHIEF accurately identified the origins of tumors, with results validated 
in independent patient cohorts from the Clinical Proteomic Tumor Analysis Consortium 
(CPTAC).
a. The confusion matrix of CHIEF’s prediction in the held-out test sets. The overall 

macro-averaged accuracy of CHIEF is 0.895. b. CHIEF achieved high prediction 

performance and generalizability to independent cohorts in tumor origin prediction 

(AUROC=0.9853±0.0245). Micro-averaged one-versus-rest ROC curves for tumor origin 

classification are shown. We presented the AUROC±s.d. calculated across 18 tumor 

origins. In comparison, state-of-the-art methods have substantially lower performance 

in the independent cohorts (two-sided Wilcoxon signed-rank test P-value=0.000015). c. 
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CHIEF attained higher accuracy than state-of-the-art deep learning methods in tumor origin 

prediction. Overall accuracies for the held-out (n=1,895) and independent test sets (n=3,019) 

for CHIEF and other deep learning methods are shown. d. CHIEF attained higher AUROC, 

sensitivity, and specificity for each tumor origin in the held-out test sets (n=1,895) compared 

with other methods. The model performance for all 18 tumor origins is shown. e. CHIEF 

possessed significantly higher AUROC, sensitivity, and specificity for each origin in the 

independent test sets (n=3,019, P-value=0.003906, two-sided Wilcoxon signed-rank test). In 

contrast, standard machine learning approaches suffer from substantial performance drops 

when applied to patient cohorts not involved in model development. In c-e, error bars 

represent 95% confidence intervals computed by the bootstrap method (n=1,000 replicates), 

and the centers represent the values of various performance metrics specified in these 

figure panels. The detailed sample size for each cancer type shown in d-e can be found in 

Supplementary Table 14.

Extended Data Fig. 2. Visualization of model attention scores showed CHIEF accurately 
identified cancerous regions of melanoma, lung, and kidney cancers.
For each cancer type, the left image panel represented the ground truth annotations labeled 

by experienced pathologists. Because CHIEF employs a weakly supervised approach that 
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only requires slide-level annotations, these region-level annotations were not used during 

the training phase. The middle panel visualized the amount of attention CHIEF paid 

to each region in the WSIs. The right panel showed the zoomed-in view of regions 

receiving high (image tiles with red outlines) and low (image tiles with black outlines) 

attention scores. The original WSIs and their corresponding heatmaps are available at https://

yulab.hms.harvard.edu/projects/CHIEF/CHIEF.htm.

Extended Data Fig. 3. Detailed genetic mutation prediction results organized by cancer types.
Prediction performance of prevalent genetic mutations (n=11,483) and targeted-therapy-

associated genetic mutations (n=6,013) is shown. The detailed sample counts for each 

genetic mutation are available in Supplementary Tables 17–18. CHIEF predicted several 

prevalent mutations (e.g., TP53 in ACC, LGG, and UCEC) with AUROCs > 0.80. The mean 
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± 95% confidence interval is shown for each prediction task. Error bars represent the 95% 

confidence intervals estimated by 5-fold cross-validation (5 independent runs).

Extended Data Fig. 4. CHIEF attained a high performance in predicting genetic mutation status 
from histopathology images across cancer types.
Prediction performance in the held-out test set (TCGA) and independent test set (CPTAC) 

were shown side by side. These results were grouped by the genes to highlight the prediction 

performance of the same genes across cancer types. The red and blue horizontal lines 

represent the average AUROCs in the held-out and independent test sets, respectively. a. 
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CHIEF’s performance in predicting mutation status for frequently mutated genes across 

cancer types. Supplementary Table 17 shows the detailed sample count for each cancer 

type. b. CHIEF’s performance in predicting genetic mutation status related to FDA-approved 

targeted therapies. Supplementary Table 18 shows the detailed sample count for each cancer 

type. In a and b, results are presented as mean ± 95% confidence interval. Error bars 

represent the 95% confidence intervals estimated by 5-fold cross-validation.

Extended Data Fig. 5: CHIEF predicted IDH status of glioma samples in multiple patient 
cohorts.
CHIEF classified glioma samples with and without IDH mutation. Here, we showed that 

CHIEF successfully predicted IDH mutation status in both high and low histological 

grade groups defined by conventional visual-based histopathology assessment. a. Regions 
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with increased cellularity and perinuclear halos received high model attention in IDH-

mutant samples, while regions showing poorer cell adhesion received high attention in 

IDH-wildtype slides. We used samples from the MUV-GBM dataset as an example 

for this visualization. The bottom figures show the corresponding image tiles. Six 

experienced pathologists (see Methods) examined these tiles independently and annotated 

the morphological patterns correlated with regions receiving high and low attention. b. 
IDH-mutant gliomas from the six cohorts exhibit a similar bi-modal distribution along the 

attention score axis. In contrast, IDH-wildtype gliomas display an unimodal distribution 

with mostly low-attention image regions. We normalized the attention scores to a range 

from 0 to 1, representing the importance of each image tile to the prediction output by 

CHIEF. These analyses included samples from TCGA-GBM (n=834), MUV-GBM (n=507), 

HMS-GBM (n=88), TCGA-LGG (n=842), MUV-LGG (n=365), and HMS-LGG (n=82). In 

these violin plots, the central white dots represent the median, the thick black bars indicate 

the interquartile range (IQR), and the thin black lines (whiskers) extend to 1.5 times the IQR 

from the first and third quartiles. The width of the violin represents the density of data at 

different values.

Extended Data Fig. 6. CHIEF predicted MSI status in multiple colorectal cancer patient cohorts.
a. Solid tumor regions of MSI-high samples received high attention scores, while adjacent 

benign mucosal epithelium regions received low attention scores. In MSI-low samples, 
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most regions received low attention scores. Example images from the PAIP2020 dataset 

were shown in this visualization. The bottom portion of this figure panel showed image 

tiles receiving high and low attention scores. Malignant regions were highly attended in 

both MSI-low and MSI-high samples. Solid tumors, intraluminal and extraluminal mucin, 

and signet ring cells received high attention in MSI-high samples. In MSI-low samples, 

infiltrative malignant glands interfacing with fibroblasts, luminal necrosis, and lymphocytic 

infiltrates received relatively high attention. Adjacent benign colonic epithelium receives low 

attention in both MSI-high and MSI-low patients. b. CHIEF paid high levels of attention 

to 30% of regions in MSI-high samples, while more regions in MSI-low samples received 

low attention scores. Attention score distributions of the three patient cohorts (n=437 in 

TCGA-COAD, n=77 in PAIP2020, and n=221 in CPTAC-COAD) are shown. In these 

violin plots, the central white dots represent the median, the thick black bars indicate the 

interquartile range (IQR), and the thin black lines (whisker) extend to 1.5 times the IQR 

from the first and third quartiles. The width of the violin represents the density of data at 

different values.

Extended Data Fig. 7. Survival prediction results for patients with all stages.
Previous methods pooled patients with all stages in their survival outcome prediction12, 

62, 63. To facilitate comparisons with these previous reports, we compared CHIEF with 

baseline methods in this study setting, using 9,404 whole slide images from 6,464 patients. 

CHIEF attained substantially better survival prediction performance (unadjusted two-sided 

log-rank test P-value < 0.05 in all patient cohorts under study) and distinguished patients 

with different survival outcomes using histopathology images alone. Supplementary Fig. 5 

shows results from two baseline methods (PORPOISE and DSMIL). Error bands represent 

95% confidence intervals.
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Extended Data Fig. 8. Visualization of model attention showed regions of importance in survival 
prediction for lung cancer patients.
In patients with shorter-term survival, CHIEF paid high levels of attention to lesional regions 

with high tumor cellularity and strands of fibrosis in lung adenocarcinoma, tumor budding 

in squamous cell carcinoma, and necrotic regions in both types of lung cancers. In contrast, 

highly attended regions in patients with lower mortality risks highlighted dyskeratosis in 

lung squamous cell carcinoma. The original WSIs and their corresponding heatmaps are 

available at https://yulab.hms.harvard.edu/projects/CHIEF/CHIEF_survival.htm.
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Extended Data Fig. 9. Quantitative analyses of regions receiving high attention revealed 
pathology microenvironments predictive of molecular profiles and survival outcomes.
For each WSI, we selected the top 1% of patches with the highest attention from CHIEF 

at 40× magnification. We excluded WSIs with fewer than 100 image patches. We employed 

Hover-Net64 trained with pathologists’ annotations in the PanNuke dataset (including tumor 

cells, lymphocytes, stromal cells, necrotic cells, and epithelial cells) for cell segmentation 

and classification. We compared the cell type compositions across different patient groups. 

a. Colorectal cancer samples with MSI-high status have significantly more tumor-infiltrating 

lymphocytes in the high-attention regions (unadjusted two-sided Mann-Whitney U test P-

value=0.00052 in PAIP2020, P-value=0.00016 in CPTAC-COAD). b. IDH wild-type glioma 

samples have significantly more necrotic cells (unadjusted two-sided Mann-Whitney U test 

P-value=0.00006 in TCGA-GBM and P-value=0.000001 in TCGA-LGG). c. Samples from 

longer-term colorectal cancer survivors have a larger number of stromal cells, more tumor-

infiltrating lymphocytes, and fewer tumor cells in the high-attention regions, compared with 

those with shorter-term survival. Samples from shorter-term lung squamous cell carcinoma 
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survivors have a larger fraction of tumor cells and smaller fractions of lymphocytes and 

epithelial cells in the high-attention regions, compared with those with longer-term survival. 

These analyses included samples from PAIP2020 (n=77), CPTAC-COAD (n=221), TCGA-

GBM (n=825), TCGA-LGG (n=834), TCGA-COADREAD (n=520), and TCGA-LUSC 

(n=400). In these box plots, the central lines indicate the median, box bounds are the 25th 

and 75th percentiles, and whiskers extend to 1.5 times the interquartile range. In these 

figures, one star (*), two stars (**), three stars (***), and four stars (****) represent P-value 

< 0.05, P-value < 0.01, P-value < 0.001, and P-value < 0.0001, respectively.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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aida/drbr), Dataset-PT (https://github.com/CSU-BME/pathology_SSL), Diagset-B (https://

github.com/michalkoziarski/DiagSet), MUV (https://doi.org/10.25493/WQ48-ZGX), and 

PLCO (https://cdas.cancer.gov/plco/). Additional datasets, PAIP2020 and TissueNet, can 

be requested from the respective data science challenge organizers: PAIP2020 (https://

paip2020.grand-challenge.org/) and TissueNet (https://www.drivendata.org/competitions/67/

competition-cervical-biopsy/). Supplementary Table 22 provides the links to the raw data 

from these sources. We obtained institutional data for CHIEF pretraining and validation 
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from Dana–Farber Cancer Institute, Brigham & Women’s Hospital, Yuhuangding Hospital, 

Shenzhen Maternity & Child Healthcare Hospital, Chongqing University Cancer Hospital, 

and the Hospital of the University of Pennsylvania. These data are not publicly available due 

to patient privacy obligations, IRB, and Data Use Agreement requirements. Researchers may 

obtain de-identified data directly from Dana-Farber Cancer Institute, Brigham and Women’s 

Hospital, Yuhuangding Hospital, Shenzhen Maternity & Child Healthcare Hospital, 

Chongqing University Cancer Hospital, and the Hospital of the University of Pennsylvania 

by reasonable request and subject to institutional ethical approvals. Data access inquiries 

could be directed to the corresponding author (Kun-Hsing_Yuhms.harvard.edu). We aim to 

forward all requests to the managers of these institutional datasets within 2 weeks, and these 

requests will be evaluated according to their institutional policies. Data is strictly for non-

commercial academic use only. This study relies on retrospective analysis of anonymized 

pathology slides.
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Fig. 1. An overview of the Clinical Histopathology Imaging Evaluation Foundation (CHIEF) 
model.
a. CHIEF is a generalizable machine learning framework for weakly supervised 

histopathological image analysis. CHIEF extracts pathology imaging representations useful 

for cancer classification, tumor origin prediction, genomic profile prediction, and prognostic 

analyses. During the pretraining process, we cropped the WSIs into non-overlapping 

imaging tiles, and we encoded the anatomic site information of each WSI using the CLIP 

embedding method to obtain a feature vector for each anatomic site. We merged the text and 

image embeddings to represent the heterogeneous pathology information from the training 

data. We then employed the pathology imaging features extracted by CHIEF to infer cancer 

types directly. In the genomic profile and prognostic prediction tasks, CHIEF features served 

as the foundation for fine-tuning models for each specific task. These graphics were created 

with BioRender.com. b. A summary of the 60,530 slides for training the CHIEF model. We 

collected these pathology slides belonging to 19 anatomical sites from 14 cohorts. c. CHIEF 
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significantly outperformed state-of-the-art methods in cancer classification, genomic profile 

identification, and survival prediction tasks by up to 36.1%.
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Fig. 2. CHIEF outperformed state-of-the-art deep learning methods in detecting cancer cells 
using whole slide pathology images.
We validated CHIEF’s capability of cancer detection using 15 independent datasets collected 

from multiple hospitals worldwide. Our test datasets encompassed 13,661 whole-slide 

images from 11 sites of origin. a. CHIEF attained up to 0.9943 in the AUROCs across 15 

independent test datasets and consistently outperformed (two-sided Wilcoxon signed-rank 

test P-value=0.000061) three deep learning methods (i.e., CLAM, ABMIL, and DSMIL). 

The receiver operating characteristic (ROC) curves of CHIEF and baseline methods 

are shown. The mean AUROC and its 95% confidence intervals, calculated using the 

nonparametric bootstrapping method (n=1,000 replicates), are presented. b. Visualization of 

model attention scores showed CHIEF accurately identified cancerous regions within WSIs. 

For each cancer type, the left image panel represented the ground truth annotations labeled 

by experienced pathologists. The middle panel visualized the amount of attention CHIEF 

paid to each region in the WSIs. The right panel showed the zoomed-in view of regions 

receiving high (image tiles with red outlines) and low (image tiles with black outlines) 
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attention scores. The original WSIs and their corresponding heatmaps are available at https://

yulab.hms.harvard.edu/projects/CHIEF/CHIEF.htm.
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Fig. 3. CHIEF successfully predicted genetic mutations across cancer types using histopathology 
images.
CHIEF predicted prevalent somatic mutations (n=11,483) and mutations related to targeted 

therapies (n=6,013) in multiple cancer types using histopathology images alone. We 

stratified our analyses by cancer types and organized the prediction results by genes. The 

detailed sample counts for each cancer type can be found in Supplementary Tables 17–18. 

Due to differences in the tumor microenvironment in different cancer types, variations in 

the prediction performance were observed. The mean ± 95% confidence interval for each 

prediction task is shown. Error bars represent the 95% confidence intervals estimated by 

5-fold cross-validation.
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Fig. 4: CHIEF predicted the IDH status of glioma samples and the MSI status of colorectal 
cancer patients in multiple cohorts.
a. CHIEF successfully identified IDH mutation status in low histological grade groups 

(n=1,289). These results indicated that CHIEF characterized IDH-related morphological 

signals independent of histological grades. The left figures show the mean ROCs of 

10-fold cross-validations using the TCGA-LGG (n=842) dataset. The middle and right 

figures show the validation results in the independent datasets (MUV-LGG (n=365) and 

HMS-LGG (n=82)). b. CHIEF identified MSI-high patients with AUROCs of 0.869-0.875. 

The left figure panel represented the MSI prediction performance in the TCGA-COAD 

dataset (n=437) using 4-fold cross-validation. The middle and right panels illustrated 

the performance of two independent test sets (i.e., PAIP2020 (n=77) and CPTAC-COAD 

(n=221)). Results in a-b are presented as mean ± s.d. across cross-validation.
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Fig. 5: CHIEF predicted survival outcomes of cancer patients, with the results validated in 15 
validation cohorts collected from multiple hospitals worldwide.
a. CHIEF distinguished longer-term survivors from shorter-term survivors among stage I 

and stage II cancer patients (n=4,147). Kaplan-Meier curves for CHIEF-based predictions 

are shown. Two-sided log-rank test without adjustment is used to compare the survival 

distributions between the high-risk and low-risk groups (P=0.0005 in TCGA-BRCA, 

P=0.0189 in DFCI-BRCA, P=0.0013 in PLCO-BRCA, P<0.0001 in TCGA-RCC, P=0.0495 

in CPTAC-RCC, P=0.0293 in BWH-RCC, P=0.0006 in TCGA-LUAD, P=0.035 in DFCI-

LUAD, P=0.011 in PLCO-LUAD, P=0.0144 in TCGA-LUSC, P<0.0001 in CPTAC-LUSC, 

P=0.0004 in TCGA-UCEC, P=0.0176 in CPTAC-UCEC, P=0.0003 in TCGA-COADREAD, 

and P=0.0008 in PLCO-Colon). Error bands represent 95% confidence intervals. b. CHIEF 

significantly outperformed other methods in predicting cancer patients’ survival outcomes. 

Concordance indices (c-index) of held-out (n=2,593) and independent cohorts (n=1,554) 

are shown. Box plots were generated based on 5-fold cross-validation. Dashed lines 

represent the mean c-indices across datasets. In these box plots, the central line is the 

median, box bounds are the 25th and 75th percentiles, and whiskers extend to 1.5 times 

the interquartile range. These statistics included samples from TCGA-BRCA (n=760), 

TCGA-COADREAD (n=294), TCGA-LUAD (n=344), TCGA-LUSC (n=334), TCGA-RCC 

(n=507), TCGA-UCEC (n=354), DFCI-BRCA (n=48), PLCO-BRCA (n=647), DFCI-LUAD 

(n=235), PLCO-LUAD (n=139), CPTAC-LUSC (n=81), CPTAC-RCC (n=124), BWH-RCC 

(n=49), CPTAC-UCEC (n=183), and PLCO-COLON (n=48).
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