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Adults with cancer and their caregivers have elevated levels of sleep disturbances. In this cross-
sectional exploratory study, we examined associations between subjective sleep indices and gut 
microbiome features among patients with colorectal cancer (CRC) and their sleep-partner caregivers. 
Forty participants (20 patient-caregiver dyads) completed sleep diaries, stool sampling, and dietary 
intake questionnaires individually. Patients and caregivers had comparable demographics, dietary and 
sleep indices. However, patients had significantly different beta diversity (p = .005) and alpha diversity 
(Inverse Simpson: p = .029) as well as 7 more and 6 less differentially abundant taxa compared with 
their caregivers. Furthermore, only patients categorized with high sleep efficiency (SE) (≥ 85%) also had 
higher gut microbial diversity (Inv Simpson: p = .019 and Shannon Index: p = .035). Additionally, some 
oral and gut microbes were differentially abundant in patients between patients with high or low SE 
scores. Overall, this study highlights a link between sleep health and gut microbiome characteristics 
in patients with CRC. Further research is warranted to replicate the current findings with a larger 
sample, which will allow for the identification of pathways linking sleep to gut microbiome and the 
development of proper psychobehavioral sleep interventions for adults with cancer and their caregivers 
to ultimately improve their overall well-being.
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Patients with cancer experience a myriad of symptoms, including sleep disturbance1. Sleep disturbance includes 
difficulty falling asleep, difficulty staying asleep, and/or sleeping for a nonoptimal duration, resulting in poor 
sleep efficiency (SE)2. Sleep disturbance is highly prevalent across all cancer sites/types and the cancer trajectory 
(33–40%, as opposed to 15–20% in the general population)1,3,4. Sleep disturbance in patients with cancer has 
been viewed as a treatment-related symptom along with other cytokine-induced sickness behaviors, including 
fatigue, depression, and pain5.

In addition, sleep disturbance is highly common in family caregivers of cancer patients6: 36–95% of caregivers 
either self-reported or displayed objective assessed sleep disturbance, and 4 in 10 caregivers reported at least one 
sleep-related problem7,8. A systematic review concluded that over 72% of caregivers of patients with advanced 
cancer reported moderate to severe levels of sleep disturbance and an average sleep duration of 4.5 h, which was 
about a 44% reduction in total sleep time compared with the recommended 8 h9. The rate and severity of sleep 
disturbance in caregivers of patients with cancer are also higher than those in caregivers of patients with other 
diseases10–18 and in demographically similar healthy adults12.
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Sleep and cancer are shared (dyadic) experiences between adult patients with cancer and their sleep-partner 
caregiver. Sleep patterns are likely to influence one another. Indeed, a study supported such an assumption 
illustrating significant correlations between patients with cancer and their sleep-partner caregivers, concurrently 
(Kendall’s tau-c = 0.301, p = 0.02) on indicators of poor sleep quality, operationalized as scores greater than 5 
on the Pittsburgh Sleep Quality Index (PSQI) and short sleep duration19. Such correlation was also observed 
longitudinally: patient’s sleep quality at 2  months was positively associated with caregiver’s sleep quality at 
4 months (r = 0.68, p = 0.01), and patient’s longer sleep latency at 2 months was associated with caregiver’s longer 
sleep latency at 4  months (r = 0.28, p = 0.05)19. Another study assessing 280 dyads with various cancers and 
symptoms showed that the caregiver burden is influenced by the symptoms of the patients with cancer and that 
the interdependences of the associations exist at the start of cancer treatment for the patients20. These findings 
suggest that sleep disturbances in adults with cancer and their family caregivers are interrelated, indicating a 
reciprocal influence on each other’s sleep patterns over time19,20.

In recent years, there has been a large focus on clinical research on the associations of sleep disturbance with 
the gut microbiome21. The gut microbiome has been shown to impact overall health by influencing interactions 
with the immune system, digestion, gastrointestinal health, and mental well-being through metabolites produced 
by gut bacteria22. Disruptions in the gut microbial ecosystem, such as imbalances in the composition of gut 
bacteria or alterations in microbial diversity, have been associated with far-reaching consequences for ill health, 
including numerous morbid conditions such as cancer23. Growing evidence suggests that the gut microbiota may 
mediate the relationship between sleep dysfunction or disrupted circadian rhythm and health outcomes24,25. 
However, the respective association of sleep disturbance with the gut microbiome has been limited to individuals 
with severe levels of sleep disturbance24,25.

Sleep disturbance in patients with cancer may also be associated with markers of disrupted gut microbial 
health or dysbiosis. A study of patients with rectal cancer found an association between sleep disturbance and 
lower Shannon diversity score (gut microbiome alpha diversity measure)26. Another study of patients with 
breast cancer found positive associations between sleep quality and functional taxa abundances; patients with 
higher sleep quality had lower relative abundance of Firmicutes and higher relative abundance of Bacteroidetes 
at the phylum level, and higher relative abundance and lower relative abundance of Acidaminococcus of several 
genera27. Sleep quality and quantity have also been associated with the gut microbiome28–30. For example, sleep 
duration, SOL and sleep efficiency variability have been associated with certain gut genera (e.g. Faecalibacterium, 
Bacteroides), as well as subjective sleep quality related to beta diversity28–30. To date, only a few studies with 
patients with cancer and their caregivers have reported sleep characteristics associated with gut microbiota 
markers and this work builds upon preliminary results presented at the SLEEP 2024 conference in Houston, 
Texas31. This cross-sectional, exploratory research is aimed to compare sleep indices and gut microbiome 
features between patients diagnosed with colorectal cancer (CRC) and their sleep-partner caregivers.

Methods
Sample participants and procedure
This study employed an observational, cross-sectional design, which included a subset of the data drawn from 
a longitudinal study focusing on examining the effects of stress regulation on health outcomes in patients with 
CRC and their spousal caregivers. Written informed consent was obtained from all participants before data 
collection. All procedures were performed in accordance with the Institutional Review Board of the University 
of Miami and the research protocol complied with all relevant human research guidelines. All experimental 
protocols were approved by the University of Miami Institutional Review Board: 20,160,736. This study is 
comprised of 20 patient-caregiver dyads (N = 40). Dyads were recruited from oncology clinics in Miami, Florida, 
and data were collected between January and August of 2020. Eligibility criteria for patients were 18  years 
or older, newly diagnosed with stage I to IV colon or rectal cancer within the past 10 months at the time of 
enrollment, and who had a partner who shared daily activities, including sleep. Eligibility criteria for caregivers 
were 18 years or older and a sleep-partner of the patient. Both patients and caregivers were able to read and 
speak English or Spanish at least at the 5th grade level. Exclusion criteria for both patients and caregivers were 
(a) active yet untreated psychosis, dementia, substance dependence, phobia pertaining to medical treatment 
procedure, and suicidal ideation in the past year; (b) active yet untreated sleep apnea, narcolepsy, and restless 
leg syndrome (sleep apnea: 3 on the Berlin Questionnaire without the use of positive airway pressure machines 
during sleep; narcolepsy: >  = 14 on the Ullanlinna Narcolepsy Scale32,33, (c) inability to see or hear; (d) poor 
cognitive functioning status (< = 24 on the Mini Mental State Examination34; or (e) patients who are under 
end-of-life care or endorsed poor physical functioning status (< = 50 on the Karnofsky Performance Status 
and >  = 3 on the Eastern Cooperative Oncology Group Performance Status;35,36. Cancer treatment status was 
unknown for 1 patient; only 3 patients were in active cancer treatment during the time of the study. Patients were 
diagnosed approximately 7 months (N = 7), 1.5 years (N = 11), and 2.5 years (N = 2) prior to participating in this 
study. Educational status was grouped into low (high school diploma/GED or less) or high (technical/vocational 
school, some college, associate degree or higher).

Participants filled out a one-time questionnaire about their sociodemographic characteristics and completed 
daily sleep diaries for 14 consecutive days. Participants provided two stool samples approximately 10 days apart. 
Additionally, participants completed a web-based dietary assessment on the day of stool sample collection. 
Written informed consent was obtained from all participants before data collection. All procedures were 
performed in accordance with the Institutional Review Board of the University of Miami.

Sleep indices
Sleep diaries were completed by participants in the morning upon waking using the Consensus Sleep Diary37. 
Sleep duration, defined as the total number of hours spent sleeping, was quantified by the duration between 
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“[after getting into bed] What time did you try to go to sleep?” and “What time was your final awakening?”. Sleep 
onset latency (SOL) is defined as minutes between intending to sleep and sleep onset. Waking after sleep onset 
(WASO), defined as minutes awake between sleep onset and final awakening, was quantified by the total number 
of minutes reported for the item, “If [woke up] more than once, in total, how long were these awakenings?”. 
Total time in bed is described as the total time spent in bed with the intention of sleeping (e.g., “Time of final 
awakening—time of initial sleep attempt”). Sleep efficiency (SE) was calculated by [total time spent asleep (Sleep 
Duration: SD)—time between trying to and actually falling asleep (Sleep Onset Latency: SOL)—time awake after 
sleep onset and before final awakening (Wake After Sleep Onset)] divided by total time in bed with the intention 
of sleeping. In other words, SE is the percentage of time spent asleep while in the bed intending to sleep. Sleep 
efficiency was evaluated in this study using the continuous value of percent of efficiency score and also as a 
dichotomized variable using previously established cutoffs for dichotomization as follows: ‘low (SE < 85%)’ or 
‘high (SE: ≥ 85%)’38.

Dietary intake indices
Participants completed a web-based version of the 2018 version of the Automated Self-Administered 24-h 
Dietary Assessment Tool (ASA24) as their dietary assessment. To support data accuracy and comprehension 
across varying literacy and education levels, study personnel were available to assist all participants during 
completion of the ASA24, either in person or by phone. This assistance was particularly important for ensuring 
data collection quality among participants. Total macronutrients, including carbohydrates, protein, fat, and the 
percent of energy from carbohydrates, protein, and fat, as well as total energy (kcal), alcohol intake, and daily 
fiber (g) were calculated per individual. Diet quality was assessed using the Healthy Eating Index-2020 (HEI-
2020)39. Average dietary intake indices were calculated from the daily totals across days for each participant.

Stool sample collection
Stool samples were collected from participants using provided kits that included two Fecotainer® kits, dry-
ice packs, gloves, and a cooling bag. Participants were instructed to collect the stool samples in the morning 
(first bowel movement of the day) and to store the sample either in their home refrigerator (at 4C) or in the 
insulated bag with dry ice. To minimize in-person contact during the COVID-19 pandemic, all materials (e.g., 
collection kits, gloves, labeled containers) were delivered and returned via courier or drop-off at designated 
collection points. Study staff adhered to institutional biosafety protocols and COVID-19 safety guidelines 
during all stages of handling and processing, including the use of personal protective equipment (PPE) and 
surface decontamination procedures. This flexibility was provided to accommodate participant comfort and 
household logistics, particularly in the context of the COVID-19 pandemic. Stool depositions were collected in 
a Fecotainer (Fisherbrand Commode Specimen Collection System, Fisher Scientific, Inc.), which was kept in an 
insulated cooling bag in below 40° F (4 °C) until shipped to the study lab. All stool samples were aliquoted in 
5 ml centrifuge tubes with caps to be stored in − 80 °C freezer until sequencing.

Gut microbiome sample preparation and sequencing
Shotgun metagenomics sequencing was performed at the University of Minnesota Genomics Center ​(​​​h​t​t​p​s​:​/​/​g​
e​n​o​m​i​c​s​.​u​m​n​.​e​d​u​/​​​​​)​. DNA quantification was performed using a fluorimetric PicoGreen assay and purity was 
assessed through Nanodrop. For a sample to pass quality control methods (QC), it had to be greater than 0.2 ng/
ul. Quality controlled samples were submitted to TruSeq NexteraXT DNA library preparation steps. Illumina 
sequencing libraries using Illumina’s NexteraXT DNA Sample Preparation Kit (Cat. # FC-131-1096) were 
generated from genomic DNA samples. In summary, 1 ng of gDNA is simultaneously fragmented and tagged 
with a unique adapter sequence. This “tagmentation” step is mediated by a transposase. The tagmented DNA 
is simultaneously indexed and amplified for 12 PCR cycles. Final library size distribution was validated using 
capillary electrophoresis and quantified using fluorimetry (PicoGreen). Pooled libraries were denatured and 
diluted to the appropriate clustering concentration. Sequencing libraries were loaded onto a NovaSeq paired-
end flow cell, and on-instrument clustering was performed. Sequencing was then initiated using Illumina’s 
2-color sequencing-by-synthesis (SBS) chemistry. Following completion of Read 1, two separate index reads 
(8 or 10 base pairs each) were performed to capture sample barcodes. The clustered library fragments were 
then re-synthesized in the reverse direction to generate the template for Read 2. Base call (.bcl) files for each 
cycle of sequencing were generated by Illumina Real Time Analysis (RTA) software. The base call files and run 
folders were streamed to servers maintained at the Minnesota Supercomputing Institute. Primary analysis and 
de-multiplexing were performed using Illumina’s bcl2fastq v2.20, a software for converting sequencing data into 
BCL or FASTQ files. The final result of the bcl2fastq workflow was de-multiplexed FASTQ files that were released 
to client accounts for subsequent analysis by the mapping software and aligner of their own choosing.

Gut microbiome bioinformatic methods
FASTQ file processing and taxonomic classification
Shotgun sequence reads were trimmed and filtered, and host DNA contaminated reads were removed using 
KneadData workflow (https://huttenhower.sph.harvard.edu/kneaddata/). Metagenomic profiling of microbial 
abundance and taxonomy assignment was performed with MetaPhlAn (ver.2)40, which uses clade-specific 
marker genes from 17,000 reference genomes. Species level taxa were filtered to remove low abundance and 
prevalence taxa. Species level counts had to have at least a count of 10 or greater in at least 60% of the averaged 
samples to be included for statistical analysis comparisons. This filter removes low abundance and low prevalence 
taxa. Functional composition and abundance were determined using HUMAnN241 with the complete UniRef 
gene family42, KEGG functional modules and pathways 43–45, and MetaCyc metabolic pathway databases46. Gene 
abundance was calculated in read per kilobase (RPK), and pathway abundance was obtained after computing the 
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sum over abundances of pathway-associated genes. Alpha diversity was calculated, and the following 3 metrics 
were reported: Chao1, Shannon, Inverse Simpson indices. Multi-dimensional scaling analysis plots were used 
for beta diversity assessment using Bray–Curtis distance, and the associations between patients and caregivers 
were analyzed based on permutational analysis of variance (PERMANOVA) test using methods provided by 
the phyloseq47 and vegan48 Bioconductor packages. Functional composition data was filtered requiring that 
at least 40% of the averaged samples have an abundance of 100 or more. The centered log ratio (CLR) with a 
parameterization transformation to account for zeros was computed on the taxa counts ​(​​​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​t​h​o​
m​a​z​b​a​s​t​i​a​a​n​s​s​e​n​/​d​e​l​e​u​z​e​​​​​)​. Differential abundance testing using Wilcoxon Signed Rank testing procedures of the 
paired data was performed on centered-log-ratio-transformed abundance values. Gut microbial alpha diversity 
indices and taxa abundance data from each participant’s replicate stool sample were averaged, and the averages 
were used as descriptive data and for statistical testing.

Statistical analysis
IBM SPSS version 29.02.2 and JMP version 16 Statistical Computing Software (SAS Headquarters, Cary, NC) 
were utilized for visualization and statistical testing procedures. Descriptive statistics (mean and standard 
deviation for continuous data, frequencies and percentages for categorical data) were computed for all study 
variables for patients and caregivers. Differences in demographics, dietary and sleep indices between patients 
and caregivers were tested using paired non-parametric testing procedures (Wilcoxon signed rank test for 
continuous data and McNemar test for nominal data). Alpha diversity features including Chao1, Shannon, and 
Inverse Simpson indices were compared between patients and caregivers using paired non-parametric testing 
procedures. To assess potential associations between dietary intake and gut microbial diversity, we conducted 
within-group exploratory analyses using Spearman’s rank correlation coefficients. Correlations were calculated 
separately for patients with colorectal cancer and their sleep-partner caregivers to examine relationships between 
dietary quality measures (HEI-2020) and total dietary fiber intake (g/day) and alpha diversity metrics, including 
the Shannon diversity index, Chao1, and Inverse Simpson index. Spearman correlation was chosen due to its 
nonparametric robustness and suitability for small sample sizes and non-normally distributed data.

Bray Curtis dissimilarity, assessing gut microbial composition differences, was assessed between patients 
and caregivers using PERMANOVA. Differential gut taxa abundances between patients and caregivers 
were investigated using a Wilcoxon signed rank testing procedure with the Benjamini–Hochberg multiple 
comparisons correction significance level set at > 20% false discovery rate (FDR)49. Log fold change (LFC) refers 
to differential fold-change abundances between patients and caregivers, which were calculated using the central 
log ratio (CLR) transformed data. Spearman correlation tests were performed to examine the associations of 
sleep indices with gut microbiome features, including alpha diversity measures and CLR transformed taxa 
abundances within patients and caregivers separately. Mann–Whitney U test was used to test the differences of 
gut microbial features between dichotomized sleep efficiency groups (low vs. high) within patients and caregivers 
separately. In addition, only for patients, a Mann–Whitney U test was used to examine whether active cancer 
treatment status (active vs inactive cancer treatment) was associated with gut microbial diversity measures. 
Statistical significance was determined by a 2-tailed p value < 0.05 and for gut microbial features, the adjusted 
significance level was set at 20% FDR.

Results
Sample characteristics
Sociodemographic and clinical characteristics of this study sample (N = 40; 20 dyads) are shown in Table 1. No 
significant differences between patients and caregivers in the demographics and BMI were observed. Participants 
were primarily middle-aged, Hispanic, employed, overweight, and had some college education. Patients were 60% 
female, had an average age of 54.63 ± 9.22, and an average body mass index (BMI) of 27.30 ± 5.47. Furthermore, 
55% (N = 11) of patients were employed and 85% (N = 17) had a high level of education. Distribution of cancer 
stage diagnosis among patients was as follows: 45% (N = 9) with stage I and II and 55% (N = 11) with stage III and 
IV CRC. Three patients were actively undergoing chemotherapy at the time of the study collection. Caregivers 
were 60% male with an average age of 56.34 ± 11.19, and an average BMI of 29.80 ± 5.31. Additionally, 70% 
(N = 14) of the caregivers were employed with, and 90% (N = 18) had a high level of education. Thirty-three 
participants (N = 16 patients; N = 17 caregivers) completed dietary recalls. Descriptive averages of diet quality 
and dietary intake indices for patients and caregivers are shown in Supplemental Table 1 and no significant 
differences were observed between patient and caregiver among any of the dietary intake indices assessed.

Comparisons of sleep indices between patients and caregivers
As shown in Table 2, patients had comparable levels of sleep indices with their caregivers. On average, 
participants spent about 9 h in bed and were asleep for 8.5 of those hours. Sleep duration was slightly outside 
of the optimal range of 7–8 h of sleep, with most patients (85%) and caregivers (90%) falling outside of this. In 
addition, for other sleep indices, participants had normative levels of sleep onset latency (SOL), wake after sleep 
onset (WASO), and sleep efficiency (SE). Similarly, only a few participants showed suboptimal levels of sleep 
patterns. Specifically, 2 patients had suboptimal SOL (> 20 min), and 2 participants (1 patient and 1 caregiver) 
had suboptimal WASO (> 20 min). Twenty % of patients (N = 4) and 25% of caregivers (N = 5) had suboptimal 
(or low) SE (< 85%).

Investigating gut microbiome features of patients with colorectal cancer and their caregivers
A total of 80 fecal samples were submitted for gut microbiome shotgun metagenomics sequencing. The average 
mapped reads across all samples were 33,292,434 ± 5,535,927. Overall, the gut microbiome over this cohort was 
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represented with 14 phyla, 211 genera, and 613 species. Low abundance and low prevalence filtering removed 
474 species level taxa, which allowed for 139 taxa to be investigated for further analysis.

A significant difference between patients and caregivers of the gut microbial compositional structure 
(assessed by Bray–Curtis Dissimilarity PERMANOVA) was observed (R-squared: 0.070, p = 0.005) (Fig. 1A). 
Furthermore, patients had lower gut microbial alpha diversity assessed by the Inverse Simpson Index than 
caregivers (p = 0.030) (Fig.  1B). However, other alpha diversity measures assessed showed no significant 
differences between patients and caregivers (Shannon Diversity: p = 0.058 and Chao1: p = 0.227) (Table 3). 
Among patients, chemotherapy treatment status (Supplemental Table 2) and cancer stage (Supplemental 
Table 3) showed no significant differences of alpha diversity indices. As an exploratory analysis, we examined 
correlations between alpha diversity, diet quality and fiber intake (HEI-2020 scores and fiber intake) within each 
group. Among patients with CRC, higher HEI-2020 scores were significantly associated with greater microbial 
diversity, as measured by the Shannon index (Spearman ρ = 0.464, p = 0.006) and the Inverse Simpson index 
(Spearman ρ = 0.405, p = 0.018). No significant correlations were observed between HEI-2020 and diversity 
indices among caregivers, nor were fiber intake measures significantly associated with any alpha diversity metric 
in either group (Supplemental Table 4).

Of the 139 species level taxa included for analysis, the most abundant phyla were Firmicutes (61.94% in 
patients, 61.69% in caregivers) and Actinobacteria (25.14% in patients, 28.79% in caregivers) (Supplemental 
Fig. 1A). Individual relative abundances of the filtered species level taxa across all participants are shown in a 

Sleep indices All (N = 40) Patients (N = 20) Caregivers (N = 20) Test statistic P valuea

Mean (SD)

Time in Bed (h) 9.23 (1.47) 9.35 (1.51) 9.12 (1.46) S = 13.0 .641

Sleep Duration (h) 8.51 (1.37) 8.17 (1.20) 8.85 (1.42) S = − 44.0 .105

Sleep Onset Latency (m) 5.13 (6.94) 5.73 (8.72) 4.54 (4.71) S = 4.0 .890

Wake after Sleep Onset (m) 3.19 (6.91) 3.31 (6.49) 3.08 (7.47) S = 16.0 .574

Sleep Efficiency (SE) .888 (.01) .872 (.12) .904 (.07) S = − 34.5 .205

High or Low SE N (%) P valueb

Low or < 85% 9 (20%) 4 (20%) 5 (25%)
Χ2 = .126 .723

High or ≥ 85% 31 (80%) 16 (80%) 15 (75%)

Table 2.  Sleep indices across the whole sample and between patients and caregivers. aWilcoxon Signed Rank 
Test. bChi-Square Test; Abbreviations: h = hours, m = minutes.

 

All
N = 40

Patients
N = 20

Caregivers
N = 20 Test statistic P valuea

Mean (SD) and range or N (%)

Age (years) 54.89 (9.76), 34.31–77.13 54.63 (9.22), 38.81–74.50 55.15 (10.51), 34.31–77.13 S = 28.0 .312

BMI (kg/m2) 28.55 (5.53),
18–43

27.30 (5.55),
18–40

29.80 (5.38),
22–43 S = − 37.5 .165

N (%) P valueb

Gender (female) 20 (50.0%) 12 (60.0%) 8 (40.0%) Χ2 = 0 .80 .371

Race/ethnicity

 Non-hispanic black 4 (10.0%) 2 (10.0%) 2 (10.0%)

Χ2 = 1.31 .933 Non-hispanic white 11 (27.5%) 5 (25.0%) 6 (30.0%)

 Hispanic 25 (62.5%) 13 (65.0%) 12 (60.0%)

Employment statusc

 Employed 25 (62.5%) 11 (55.0%) 14 (70.0%)
Χ2 = 1.28 .256

 Unemployed 15 (37.5%) 9 (45.0%) 6 (30.0%)

Education leveld

 Low 5 (12.5%) 3 (15.0%) 2 (10.0%)
Χ2 = 0.33 .564

 High 35 (87.5%) 17 (85.0%) 18 (90.0%)

On cancer treatment – 3 (15%) – – –

Cancer stage

 Non-advanced (I-II) 9 (45.0%) – –

 Advanced (III-IV) 11 (55.0%) – –

Table 1.  Sociodemographic and clinical characteristics of sample. aWilcoxon Signed Rank Test; bChi-Square 
Test. cEmployment Status: Employed = full-time or part-time employed, or self-employed; Unemployed =  = not 
employed. dEducation: low =  = high school diploma/GED or less; high = technical/vocational school, some 
college, associate degree or higher. Abbreviations: BMI = Body Mass Index; SD = Standard Deviation.

 

Scientific Reports |        (2025) 15:32624 5| https://doi.org/10.1038/s41598-025-18402-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


stacked bar plot in Supplemental Fig. 1B. The most abundant species of the entire cohort were Faecalibacterium 
prausnitzii (7.10% ± 6.88), Collinsella aerofaciens (6.69% ± 7.99), Eubacterium rectale (5.57% ± 7.32), 
Fusicatenibacter saccharivorans (4.79% ± 5.50), Bifidobacterium longum (4.75% ± 5.50), and Bifidobacterium 
adolescentis (3.94% ± 7.49).

Patients and caregivers showed 13 taxa to be differentially abundant (p < 0.05 and 20% FDR), with seven of 
those less abundant in patients and six more abundant in patients (Fig. 1C) (Supplemental Table 5). Among these 
taxa that showed differential abundance, Coprococcus catus (p < 0.001 and 6% FDR, LFC:4.87) and Gemmiger 

Alpha diversity indices

Alpha diversity measures All N = 40 Patients N = 20 Caregivers N = 20 Statistic P valuea

Mean (SD), Range

 Shannon 2.95 (0.38)
1.92–3.44 2.80 (0.44), 1.92–3.38 3.10 (0.25), 2.57–3.44 S = 51.00 .058

 Inverse Simpson 11.38 (4.00)
4.15–18.44 9.88 (3.85), 4.15–17.48 12.89 (3.65), 6.18–18.44 S = − 58.00 .030

 Chao1 159.18 (19.29)
119.50–210 155.25 (19.30), 119.50–187 163.1 (18.93), 126.50–210 S = − 33.00 .227

Table 3.  Alpha diversity between patients and caregivers. aWilcoxon Signed Rank Test; Observed features are 
reported at the species level. Significant values are in bold.

 

Fig. 1.  Gut microbiome features of caregivers and patients. (A) Principal Coordinate Analysis based on Bray–
Curtis dissimilarity of gut compositional differences (R-squared: 0.070, p = .005). (B) Box-and-whisker plot of 
alpha diversity measured by Shannon Diversity Index (p = .058) and Inverse Simpson Diversity Index (p = .030) 
between patients and caregivers. (C) Differentially abundant taxa between patients and caregivers by log 
differential abundance (x-axis) (p < .05 and 20% FDR). Heat map gradient indicates log fold change difference. 
(D) Box plot of the two most abundant species and the two least abundant species in patients. Red: patients 
(PT); Blue: caregivers (CG).
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formicilis (p < 0.001 and 4% FDR, LFC: − 3.85) had the highest significant abundance in caregivers (lowest in 
patients), whereas Clostridium clostridioforme (p < 0.001 and 9% FDR, LFC: 3.74) and Blautia coccoides (p < 0.001 
and 13% FDR, LFC: 5.22) had the highest significant abundance in patients (lowest in caregivers) (Fig. 1D). 
The HUMAnN2 workflow, for which bacterial genomic functional potential was measured using the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway identifiers (see Methods), revealed 468 KEGG pathways. 
After filtering to remove low abundance and low prevalence abundance pathways, 267 KEGG identifiers were 
retained for further analysis. Testing differential abundance of KEGG pathways between patients and caregivers 
revealed 13 KEGG pathways that were differentially abundant at an unadjusted p < 0.05 but none were significant 
at 20% FDR. (Supplemental Fig. 2A and B, Supplemental Table 6).

Investigating the associations of sleep indices with gut microbial features
The relationship between sleep indices and gut microbial alpha diversity was explored separately for patients 
(Fig. 2A) and caregivers (Fig. 2B) (Table 4). Among patients, continuous SE scores showed a trend toward a 
positive association with alpha diversity as measured by Inverse Simpson index (p = 0.051). No other significant 
associations were observed among patients or caregivers across any alpha diversity metrics (p > 0.05). Additionally, 
among caregivers, sleep indices were not correlated with gut microbial diversity nor were any trends observed. 
When correlations were assessed at the taxa level, 12 taxa were found to be significantly correlated with the 
continuous SE scores within patients only (p < 0.05 and > 20% FDR) (Fig. 2C, Table 5, Supplemental Fig. 3). Of the 
12 taxa, SE was most negatively correlated with three taxa: Actinomyces oris (Spearman ρ = − 0.80, p < 0.001, FDR 
0%), Streptococcus mitis (Spearman ρ = -0.73, p < 0.001, FDR 2%), and Streptococcus parasanguinis (Spearman 
ρ = − 0.70, p < 0.001, FDR 3%), whereas SE was most positively correlated at a 10% FDR or less with two taxa: 
Dorea formicigenerans (Spearman ρ = 0.61, p = 0.004, FDR 8%) and Lactobacillus rogosae (Spearman = 0.60, 
p = 0.005, FDR 9%). Among caregivers, no taxa were found to be significantly correlated with continuous sleep 
indices.

Gut microbial genomic potential (indicated by KEGG pathways) showed that five pathways were associated 
with sleep indices for both patients and caregivers at p < 0.05 and 20% FDR (Supplemental Table 7). Specifically, 
among patients, SOL was negatively correlated with super pathway of menaquinol-9 biosynthesis (Spearman ρ: 
− 0.807, p < 0.001, FDR: 4%) and super pathway of menaquinol-10 biosynthesis (Spearman ρ: − 0.807, p < 0.001, 
FDR: 4%) within caregivers, while patients’ SOL was negatively correlated with pyruvate fermentation to acetone 
(Spearman ρ: − 0.167, p < 0.001, FDR: 5%). In addition, patients’ time in bed was negatively correlated with both 
pyruvate fermentation to butanoate and super pathway of Clostridium acetobutylicum acidogenic fermentation 
(Spearman ρ: − 0.734, p < 0.001, FDR: 5%).

Investigating the associations of low versus high sleep efficiency with gut microbiota 
features
The dichotomized sleep efficiency (low < 85% versus high ≥ 85%) was tested for its associations with gut microbial 
features. Among patients, low SE was significantly associated with lower alpha diversity, measured by both 
Shannon (p = 0.035) and Inverse Simpson (p = 0.019) indices (Fig. 3A, Supplemental Table 5). Among caregivers, 
the low versus high SE groups were not significantly related to alpha diversity (p > 0.05) (Fig. 3B, Supplemental 

Fig. 2.  Associations of sleep indices with gut microbial features among patients and caregivers. Spearman 
correlation dot plot with sleep indices (y-axis) and alpha diversity indices (x-axis: Chao1, InverseSimpson, 
Shannon) of the gut microbiome for (A) Patients and (B) Caregivers. Dot color indicates Spearman 
Correlation coefficient and size indicates absolute value of the Spearman ρ. (*p < 0 .05). (C) Twelve taxa 
significantly correlated with SE scores within patients (p < .05; 20% FDR). Spearman correlation coefficient 
(x-axis). Heat map gradient indicates Spearman correlation coefficient.
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Table 8). At the taxa level, among patients, 20 taxa were significantly different between the two groups (p < 0.05), 
but only five of those passed 20% FDR (Fig. 3B, Table 5). Those five taxa were found to be significantly depleted 
in patients with high SE and all were related to the oral microbiome: Actinomyces oris (p = 0.005 and FDR 18.5%), 
Actinomyces sp. oral taxon 181 (p = 0.007 and FDR 19.7%), Atopobium parvulum (p = 0.003 and FDR 18.5%), 
Atopobium rimae (p = 0.003 and FDR 18.5%), and Streptococcus mitis (p = 0.005 and FDR 18.5%). The depletion 
of the oral bacteria in patients with high sleep efficiency suggests that they may play a role in regulating sleep, 
or conversely, that sleep efficiency might influence the balance of the microbiome specifically for patients with 
CRC. Among caregivers, four taxa, primarily part of the gut microbiome within the colon and large intestine, 
were significantly different between high and low SE (p < 0.05), but they did not pass 20% FDR (Supplemental 
Table 9, Supplemental Fig. 4).

Species

Spearman correlation 
with SE High/Low SE

ρ P Valuea FDR Z-Statistic P Valueb FDR

Actinomyces oris − 0.805 < .001* 0% 2.787 .005* 18%

Streptococcus mitis − 0.735 < .001* 2% 2.787 .005* 18%

Atopobium rimae − 0.407 .075 39% 2.976 .003* 18%

Atopobium parvulum − 0.640 .002* 7% 2.976 .003* 18%

Actinomyces sp. oral taxon 181 − 0.636 .003* 7% 2.693 .007* 20%

Dorea formicigenerans 0.612 .004* 8% − 2.315 .021 24%

Lactobacillus rogosae 0.601 .005* 9% − 2.315 .021 24%

Streptococcus parasanguinis − 0.702 < .001* 3% 2.504 .012 24%

Actinomyces graevenitzii − 0.589 .006* 9% 2.409 .016 24%

Streptococcus vestibularis − 0.588 .006* 9% 1.464 .143 52%

Streptococcus salivarius − 0.615 .004* 8% 1.275 .202 60%

Lactococcus lactis − 0.532 .016* 19% 1.275 .202 60%

Paludisphaera borealis 0.529 .016* 19% − .1417 .887 94%

Table 5.  Associations of sleep efficiency (continuous or categorical) with taxa among patients. * indicates 
FDR < 20%; Abbreviations: FDR = False Discovery Rate. aSpearman correlation test. bMann Whitney U 
test. Significant values at ≤ 20% FDR are in bold.

 

Alpha diversity measures

Patients Caregivers

Spearman’s ρ P valuea Spearman’s ρ P valuea

Sleep Efficiency

 Inverse Simpson .443 .051 .010 .967

 Chao 1 − .108 .652 .149 .531

 Shannon .413 .071 .045 .852

Sleep Duration

 Inverse Simpson .050 .835 .139 .558

 Chao 1 .058 .807 .317 .174

 Shannon .072 .762 .108 .649

Time in Bed

 Inverse Simpson − .378 .101 .117 .624

 Chao 1 .059 .806 .261 .266

 Shannon − .304 .193 .087 .715

Sleep Onset Latency

 Inverse Simpson − .093 .696 − .154 .516

 Chao 1 .032 .893 − .165 .486

 Shannon − .090 .705 − .284 .225

Wake after Sleep Onset

 Inverse Simpson − .119 .616 .027 .910

 Chao 1 .209 .377 − .029 .903

 Shannon − .066 .783 − .069 .774

Table 4.  Associations between alpha diversity with sleep measures within patients and caregivers. aSpearman 
Correlation Test. Significant values are in bold.
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Discussion
In this study, we compared the sleep and gut microbiome features of adult patients with CRC with those of their 
sleep-partner caregivers and investigated the associations of sleep indices with gut microbiome features. Patients’ 
demographics, sleep indices, dietary intake indices, and diet quality were similar to those of their caregivers. 
Participants also had normative levels of sleep patterns, except for sleep duration. Despite these similarities in 
patients and caregivers who live together, patients had different gut microbial compositional structure from their 
caregivers.

Our study showed that patients and caregivers had comparable sleep behaviors, such as sleep onset latency, 
wake after sleep onset, time in bed, sleep duration, and sleep efficiency. This corroborates previous research 
indicating that couples tend to have similar sleep behaviors50. However, our sample having close to normative 
levels of sleep patterns is not consistent with existing studies with adult cancer patients1,3,4,51. Our sample 
also showed participants’ dietary patterns were comparable to the Standard American Diet52. Similar dietary 
patterns, which is consistent to existing studies reporting individuals who live together tend to consume similar 
foods and diets53–55. Additionally, exploratory analyses identified significant positive correlations between diet 
quality and alpha diversity in patients with CRC, suggesting that greater overall diet quality may be associated 
with increased gut microbial diversity in this population (Supplemental Table 4). These findings align with 
previous research indicating that dietary patterns influence the gut microbiome and highlight the need for future 
studies to incorporate dietary quality as a potential modifier or confounder when examining gut microbiome 
associations56,57. Notably, no such associations were observed among caregivers, and fiber intake alone was not 
significantly correlated with diversity metrics in either group. These results suggest that broader dietary patterns 
may play a more important role in shaping the microbiome than individual nutrients alone.

Contrary to sleep and dietary patterns, our patients had differentially abundant bacteria from their 
caregivers: patients had slightly lower gut microbial alpha diversity (measured by the Inverse Simpson index) 
than their caregivers and had different abundance from caregivers in 13 taxa. The findings are inconsistent with 
existing studies that showed similarities of gut microbial features among individuals within the same household, 
especially spousal pairs58–61. We can speculate that the differences in gut microbiome features between patients 
and cohabiting caregivers may be due in part to the impact of colorectal cancer and its treatment on the patients’ 
gut microbiome62. Colorectal cancer evokes significant changes to the gut microbiomes of patients, where 
past studies have shown significantly lesser gut microbial diversity, compositional structure, and differential 
bacteria63. A recent study by Zhou et al., showed that 20 patients with colorectal cancer reported significantly less 
alpha diversity in CRC patients compared to the control group and significantly different beta diversity between 
the groups and that genera such as Parabacteroides, Bacteroides, and Dialister were significantly more abundant 
in CRC patients in this study63. Our patients with colorectal cancer also had lower alpha diversity and differential 
beta diversity, and 13 differential taxa abundances compared with those of the caregivers. Of the 13 differential 
taxa, Coprococcus catus, Gemmiger formicilis (G.formicilis), Lachnospira pectinoschiza (L.pectinoschiza), 
Bacteroides thetaiotaomicron (B.thetaiotaomicron) were found to be significantly depleted (lesser in abundance) 
in patients. Coprococcus catus is a species of anaerobic cocci which produces propionate and butyrate, both of 
which are beneficial metabolites to human health64. B.thetaiotaomicron is involved in polysaccharide breakdown. 
The depletion of these taxa may be implicated in the pathogenesis of cancer65,66. Furthermore, the depletion of G. 
formicilis and L.pectinoschiza that have protective roles in maintaining gut health may suggest gut microbiome’s 
alterations in patients with colorectal cancer as67. Interestingly, Faecalibacterium prausnitzii (F. prausnitzii) was 
significantly depleted in the patients in this study compared to their sleep-partner caregivers, which is consistent 

Fig. 3.  Alpha diversity and differential abundance between individuals grouped as high or low sleep efficiency. 
(A) Box plot alpha diversity indices between high and low SE groups within patients and caregivers. * indicates 
p < 0.05. (B) Patient differential CLR abundances (y-axis) of five taxa significantly different between high (1) 
and low (0) SE.
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with previous research that has reported that F. prausnitzii act as an anti-tumorigenic bacterium within the 
colon to significantly reduce abnormal growths in the lining of the colon in preclinical rat models with colorectal 
cancer68. These results underscore the importance of the gut microbiome composition in colorectal cancer and 
suggest that further research into the role of beneficial microbes, like F. prausnitzii, could provide valuable 
insights for potential therapeutic strategies at improving patient outcomes.

This report is the first to present a comparison of gut microbiome features between patients with CRC and 
their sleep-partner caregivers while also exploring associations between sleep and the gut microbiota in couples 
coping with cancer. Among patients only, higher sleep efficiency trended toward a positive association with 
gut microbial alpha diversity, along with an increased abundance of three taxa, and decreased abundance of 
nine taxa. These findings are consistent with previous studies demonstrating links between sleep quality and 
quantity gut microbiome composition28–30. For example, previous research has shown associations with certain 
gut bacteria with sleep duration, SOL and sleep efficiency variability, as well as associations with differential 
beta diversity and subjective sleep quality28–30. In 2019, Smith et al. reported positive correlations between 
gut microbiome diversity and total sleep time and SE, and they reported negative correlations between gut 
microbiome diversity and WASO69. Wu et al. furthered these results by portraying a causal association between 
seven sleep-related traits and 68 bacterial taxa70. This significant association between the gut microbiome 
and sleep may be explained by the gut-brain axis, and perturbations in gut microbial homeostasis that can 
affect overall sleep health71,72. In particular, sleep physiology and the gut microbiome are also interconnected 
through the immune system, as sleep physiology is linked with the cytokines IL-1β and IL-6, and IL-1β and IL-6 
production has been shown to be induced by the gut microbiota69,73. Our findings help to support this previous 
work but additional analyses with large sample sizes should be conducted to build upon our knowledge on sleep-
gut links in patients with CRC.

This study assessed subjective sleep indices using sleep diaries and we found a trend within patients only 
where SE scores were slightly associated with alpha diversity which is consistent with an existing population-
based study of 720 participants published in 202428. Holzhausen et al., assessed sleep indices using actigraphy 
methodology where they showed that lower SE scores were also associated with lower microbiome richness and 
diversity. Our study found 12 taxa to be significantly correlated with patients’ SE and of those, 3 were positively 
correlated with patients’ higher SE scores. One of those, Lactobacillus rogosae, which indicates a healthy gut 
microbiome, was more abundant in patients with higher SE, also consistent with an existing study74. Of note, 8 
of the 12 taxa found to be significantly correlated with SE scores in patients, have been described to be part of the 
oral microbiome. While specific research investigating the oral microbiome with sleep behaviors is limited, some 
research has shown the translocation of oral microbes to the gut in people with colorectal cancer75. For example, 
specific oral bacteria, such as Fusobacterium nucleatum (F. nucleatum), Parvimonas micra, and Peptostreptococcus 
stomatitis, have been associated with CRC whereas the bacterium F. nucleatum has been shown to be associated 
with the development of tumor growth in CRC models76–78. Additionally, a review in 2019 discussed the link 
between various oral bacteria and their roles in different types of cancer including colorectal cancer78 and in 
2020, a study investigated the origin of the bacterium F. nucleatum as originating in the oral microbiome and 
migrating to the gut microbiome of 7 people with CRC79. As the link between oral microbes and sleep behaviors 
has yet to be established, investigating the potential role of high sleep efficiency in lowering these oral bacteria 
and in CRC prognosis is warranted in future studies. While finding oral bacteria to be associated with sleep 
efficient in colorectal cancer patients is a somewhat unexpected finding, there has been research showing a link 
in people with colorectal cancer. This area could be beneficial for future research directions. This suggests the 
importance of exploring crosstalk between the oral and gut microbiomes, especially in patients with colorectal 
cancer, and could lead to new avenues for understanding how microbiome shifts might affect cancer outcomes, 
beyond the gut alone. Potentially, future research in this area could lead to new approaches for early detection or 
monitoring of colorectal cancer patients based on sleep patterns and microbiome composition.

Not only were oral microbiota correlated with SE scores among patients, but several were also found to be 
differentially abundant between dichotomized patients with low vs. high SE including: Streptococcus mitis (S. 
mitis), Atopobium parvulum (A. parvulum), and Atopobium rimae (A. rimae). S. mitis, a facultative anaerobe, 
is commonly found in the mouth and upper respiratory tract, where it plays a role in oral and gut interactions; 
imbalances with this bacterium may contribute to gastrointestinal issues80. While it aids in oral plaque formation, 
poor oral hygiene can lead to systemic inflammation, potentially impacting gut health through the gut-liver 
axis80. A. parvulum, an anaerobic bacterium in the gut, supports gut health by producing beneficial short-
chain fatty acids like butyrate, which have anti-inflammatory effects and promote colonocyte energy81. This 
bacterium was found to be less abundant in our patients with higher SE. However, an overgrowth of A. parvulum 
or A. rimae (which while not as extensively documented as A. parvulum, is linked to similar gut dysbiosis and 
metabolic functions) could disrupt the gut microbiome, contributing to conditions like inflammatory bowel 
disease, though further research is needed to fully understand their roles in gastrointestinal diseases82. Overall, 
the findings in our study suggest that the oral microbiome plays a role in SE among CRC patients, potentially 
influencing not only oral and gut health but also broader aspects of systemic health. Given that the oral 
microbiota is intricately linked to both local (oral and gastrointestinal) and systemic inflammation, alterations 
in specific bacterial populations may serve as a pathway through which gut health impacts sleep patterns. The 
potential disruption of the gut microbiome by overgrowths of bacteria like S. mitis, A. parvulum, and A. rimae 
could contribute to dysbiosis, affecting immune responses, metabolism, and inflammatory processes that, in 
turn, might influence SE. However, while these associations provide valuable insights, the exact mechanisms 
linking oral microbiota to SE in CRC patients remain unclear. Further studies with larger sample sizes and more 
detailed analyses are essential to elucidate the specific microbial interactions and their clinical significance in 
sleep regulation, cancer progression, and overall health. Expanding research into this area could potentially lead 
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to novel therapeutic approaches, where modulating the oral or gut microbiome may help improve both sleep 
quality and the general well-being of CRC patients.

Within this sample, a relatively low abundance of Bacteroidetes and a higher proportion of Actinobacteria 
compared to typical distributions reported in Western gut microbiome studies were observed. These differences 
might be partially explained by the demographic composition of the participant cohort, who self-identified 
as predominantly Hispanic (62.5%). Previous research has shown that gut microbial profiles vary significantly 
across racial and ethnic groups, with Hispanic individuals often exhibiting increased levels of Actinobacteria, 
particularly Bifidobacterium, and greater variability in Bacteroidetes abundance depending on dietary and 
lifestyle patterns83,84. Additionally, these findings could also be linked to the presence of colorectal cancer and 
any active cancer treatments that the patients were undergoing although no effect was found with the alpha 
diversity measures on treatment status. Though, cancer treatment may disrupt expected microbial signatures, 
particularly among the patients. These findings highlight the importance of considering race, ethnicity, and 
culturally specific dietary practices when interpreting gut microbiome composition, especially in clinical 
populations.

While the present study presents a novel exploration regarding the association of sleep with gut microbiome 
in patients with CRC and their sleep-partner caregivers, it is not without limitations. The current study used a 
cross-sectional analysis, which does not allow for causal interpretations. Longitudinal research would build on 
these findings and would allow for a broader understanding in investigating how gut health changes across cancer 
trajectories. Additionally, the relatively small sample size (n = 32; 16 dyads) limited our ability to statistically 
adjust for potential confounders in multivariable models. Although no significant differences were observed 
between patients and caregivers in demographic, dietary, or sleep indices, factors such as age, BMI, gender, and 
race/ethnicity are known to influence gut microbiome composition and may have contributed to the observed 
associations. Future studies with larger and more diverse samples will be needed to disentangle these effects and 
to control for key covariates. Other contributing environmental and lifestyle factors, such as stress and exercise 
levels, which were not examined in this study, should be considered in future work. Additionally, medication 
use and cancer treatment other than the chemotherapy type status of patients were not considered in the current 
analysis; previous research has shown interactions with pharmaceutical drugs with gut microbial features so this 
is an area that could potentially confound the findings in this work. Moreover, only three patients in our sample 
were undergoing active cancer treatment at the time of data collection, limiting our ability to draw meaningful 
conclusions about microbiome differences by treatment status. Thus, while no differences in alpha diversity 
were observed between treated and untreated patients, the small number of treated individuals prevents us from 
ruling out potential effects of cancer therapy on gut microbial composition. Future studies with larger cohorts 
and stratification by treatment status will be critical to better understand these relationships. Finally, the current 
participants did not have overly disrupted sleep, which limits the generalizability of findings. Furthermore, 
although self-reported sleep diaries are widely used to assess sleep patterns and efficiency, they have several 
limitations, including subjectivity, recall bias, and variability in participant compliance. Future research should 
explore the integration of self-reported data with objective measures, such as actigraphy, polysomnography, 
dim light melatonin onset (DLMO), and real-time ecological momentary assessment (EMA), to enhance the 
accuracy and reliability of sleep assessment.

Our findings revealed that although sleep behaviors were similar between the two groups, patients 
demonstrated differential associations between sleep efficiency and oral bacteria, with higher sleep efficiency 
associated with depletion of certain oral bacteria, a relationship not observed in caregivers. This finding suggests 
that the presence of CRC in patients may specifically modulate the relationship between sleep efficiency and oral 
bacteria. While caution is warranted due to the small sample size and cross-sectional design, this study provides 
valuable insights and may inform future research exploring the impact of sleep and other lifestyle behaviors on 
gut health in patient-caregiver dyads of colorectal cancer.

Data availability
FastQ microbiome sequence files are in the National Center for Biotechnology Information, Sequence Reads 
Archives data repository: Submission ID: SRP482831 and BioProject ID: PRJNA1063177 (​h​t​t​p​s​:​​​/​​/​w​w​​w​.​n​c​b​​i​.​
n​​l​m​.​n​​​i​h​.​​g​o​​v​/​​​s​r​a​​/​?​​t​e​r​​m​=​P​R​J​N​​A​1​0​6​3​1​7​7). All other data is available upon request, and we expect to make that 
data available for sharing with the scientific community once we have met our primary aims and outcomes. To 
protect subject privacy, access to the clinical data will be controlled by the Principal Investigator of the protocol 
(YK) and can be released upon request following the completion of a Data Sharing Agreement (DSA). The DSA 
will include instructions to: (1) use the data only for research purposes; (2) not identify any individual partici-
pant; (3) keep the data secured at all times; and (4) destroy or return the data after analyses have been completed.
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