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ABSTRACT
Background: Rheumatic diseases are chronic immune‐mediated disorders affecting multiple organ systems and significantly

impairing patients' quality of life. Current treatments primarily provide symptomatic relief without offering a cure. Mesen-

chymal stem cells (MSCs) have emerged as a promising therapeutic option due to their ability to differentiate into various cell

types and their immunomodulatory, anti‐inflammatory, and regenerative properties. This review aims to summarize the clinical

progress of MSC therapy in rheumatic diseases, highlight key findings from preclinical and clinical studies, and discuss

challenges and future directions.

Methodology: A comprehensive review of preclinical and clinical studies on MSC therapy in rheumatic diseases, including

systemic lupus erythematosus, rheumatoid arthritis, ankylosing spondylitis, osteoarthritis, osteoporosis, Sjögren's syndrome,

Crohn's disease, fibromyalgia, systemic sclerosis, dermatomyositis, and polymyositis, was conducted. Emerging strategies to

enhance MSC efficacy and overcome current limitations were also analyzed.

Results and Discussion: Evidence from preclinical and clinical studies suggests that MSC therapy can reduce inflammation,

modulate immune responses, and promote tissue repair in various rheumatic diseases. Clinical trials have demonstrated

potential benefits, including symptom relief and disease progression delay. However, challenges such as variability in treatment

response, optimal cell source and dosing, long‐term safety concerns, and regulatory hurdles remain significant barriers to

clinical translation. Standardized protocols and further research are required to optimize MSC application.

Conclusion: MSC therapy holds promise for managing rheumatic diseases, offering potential disease‐modifying effects beyond

conventional treatments. However, large‐scale, well‐controlled clinical trials are essential to establish efficacy, safety, and long‐
term therapeutic potential. Addressing current limitations through optimized treatment protocols and regulatory frameworks

will be key to its successful integration into clinical practice.
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1 | Introduction

Stem cells are a group of undifferentiated cells that are distin-
guished by their capacity to divide indefinitely (self‐renewal),
often originate from one particular cell (clonal), and can
develop into a wide variety of distinct cell kinds and sorts of
tissues (potent). There are many different sources of stem cells,
each of which has a unique potency. Pluripotent cells are em-
bryonic stem cells (ESCs), which come from the blastocyte, the
innermost layer of cells in an embryo. In contrast, induced
pluripotent stem cells (iPSCs) come from somatic cells that have
been reprogrammed. Pluripotent stem cells (PSCs) have the
ability to develop into tissue derived from any of the three layers
of germ cells, which are endoderm, mesoderm, and ectoderm.
Multipotent stem cells develop into tissues that originate from
only one germ layer. One example of this is the formation of
mesenchymal stem cells (MSCs), which are responsible for the
formation of bone, adipose, and cartilage structures [1].

Based on their ability to differentiate into other cell types, stem
cells are classified as either pluripotent, multipotent, omnipo-
tent, totipotent, oligopotent, or unipotent [2]. Depending on
where they originated from, stem cells may be classified as
embryonic, adult, fetal, or iPSCs [3, 4]. Generally, ESCs and
iPSCs have pluripotent properties, but adult stem cells (ASCs)

either have unipotent or oligopotent properties [1]. Multipotent
cells that can reproduce and replace damaged or dead cells in
the body are called MSCs. Additionally, MSCs produce im-
munomodulatory molecules, resulting in the development of an
environment that is highly conducive to tissue regeneration.
They are found in a variety of tissues and organs, including
bone marrow (BM), adipose tissue, skin, fallopian tube,
umbilical cord (UC), liver, and lungs (Figure 1). According to
growing evidence, MSCs provide a promising option for cell
therapy and rebuilding of human tissues owing to their self‐
renewal capacity, differentiation multipotency, paracrine
potentials, long‐term ex vivo proliferation, as well as im-
munomodulatory effects [5]. Additionally, MSCs can aid in the
development and differentiation of additional stem cells. They
have the ability to release bioactive molecules, which are crucial
for tissue regeneration [6–8]. These characteristics lead
to advancements in the treatment of a variety of illnesses,
including those that affect the bones, neurons, lungs, liver,
heart, kidney, etc [6].

Rheumatic diseases are an umbrella word that refers to arthritis
in addition to other conditions that affect joints, tendons,
muscles, ligaments, bones, and muscles [9]. Rheumatic diseases
are a collection of immune‐mediated and inflammation‐related
disorders with a wide variety of clinical presentations that may

FIGURE 1 | Different types of stem cells. Totipotent, Pluripotent, and Multipotent stem cells. Totipotent stem cells are produced after fertil-

ization and zygote development. They can differentiate into almost any kind of body cell or tissue, including the placenta. Pluripotent stem cells are

embryonic stem cells with the ability to proliferate, self‐renew, and develop into cells of the early primary germ cell layers, namely mesoderm,

endoderm, and ectoderm. Multipotent stem cells develop into tissues that originate from only one germ layer. For example, neuron cells and skin

cells originate from ectoderm, blood cells and muscle cells originate from mesoderm, and lung cells, and pancreatic cells originate from endoderm.
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affect every system in the body, not just the musculoskeletal
one. It is thought that genetic susceptibility, environmental
factors, immune system problems, abnormal cell death,
reactive oxygen species, and excess autoantibodies all play a
part in the development of these disorders [10, 11]. Rheu-
matoid arthritis (RA), systemic lupus erythematosus (SLE),
and systemic sclerosis (SSc) are examples of rheumatic
illnesses, which are inflammatory syndromes caused by
immune system dysregulation [12]. These conditions can
affect multiple organs and tissues in the body, leading to
chronic pain, joint stiffness, fatigue, irreversible disability,
and organ damage. They are often characterized by the
presence of autoantibodies and can have a significant impact
on a person's quality of life [10, 12, 13].

The need to reestablish immunologic self‐tolerance to achieve
long‐lasting remissions or stimulate tissue regeneration has
been the driving force behind the development of cellular
treatments. In recent years, therapies centered around MSCs
have shown promise in the management of rheumatic diseases
[13]. The contribution of stem cells to modern medicine is of
paramount importance, both for their broad use in basic
research and for the opportunities they give us to develop new
therapeutic strategies in clinical practice [14]. Their character-
istics make them valuable in a wide range of applications in
biological and medical sciences [15]. In this article, we highlight
recent developments and state‐of‐the‐art information about the
clinical and therapeutic applications of MSCs in a variety of
rheumatic illnesses.

2 | Stem Cells in Regenerative Medicine

Numerous investigations over the past few years have shown
that cellular treatment has advanced significantly in both
in vitro and in vivo studies. Stem cells are vital for physio-
logical regeneration since they can regenerate themselves
and differentiate into any type of cell. Regarding tissue
regeneration, there are several sources of PSCs, ASCs, iPSCs,
and ESCs [16]. Because of their strong capacity for self‐
renewal and pluripotency, PSCs are a significant option for
managing several disease issues. Yet, utilizing these cells
raises ethical concerns since embryos must be destroyed
because ESCs are extracted from blastocyst‐stage embryos
[17–19]. Preclinical research has demonstrated the capacity
of iPSCs to regenerate tissue, and the first clinical trial to
treat age‐related macular degeneration has been conducted
[20, 21]. However, the risk of tumor development is still a
mystery. Due to these drawbacks, scientists started looking
into ASCs, which are multipotent stem cells present in adult
organs and tissues. According to several studies, stem cell
treatment may regenerate and repair damaged organs and
tissues, including bone regeneration, osteoarthritis (OA),
pulpitis, ischemic heart tissue, wound healing, cutaneous
healing, Type 1 diabetes, and foot ulcers [6, 22–32]. Fur-
thermore, several studies have shown that cultivated ASCs
produce a variety of molecules that promote regeneration and
possess immunoregulatory, anti‐apoptotic, chemoattractant
as well as angiogenic properties [27, 33, 34]. The most pop-
ular ASCs are hematopoietic stem cells (HSCs) and MSCs,
which can be obtained even from diseased individuals.

2.1 | Mesenchymal Stem Cells

MSCs were initially identified as multipotent stem cells by
Friedenstein and colleagues at the end of 1960 [35]. Non‐
hematopoietic MSCs can develop into a variety of lineages, such
as chondrocytes, osteocytes, and adipocytes in the mesoderm,
neuroblasts in the ectoderm, and hepatocytes in the endoderm
[36, 37]. MSCs were formerly believed to be “stromal” cells
rather than stem cells [38]. Several researchers attempted to
change the nomenclature of MSCs to medicinal signaling cells
owing to their role in the release of certain metabolic molecules
at the inflamed, injured, and diseased sites [39, 40]. Later on,
some research investigated that MSCs may produce prosta-
glandin E2 (PGE2), which is crucial for MSCs' ability to self‐
renew, modulate the immune system, and trigger a series of
actions that prove their stemness. As a result, the name “mes-
enchymal stem cells” is warranted [41].

MSCs are mostly located in the BM, and they exhibit multi-
lineage differentiation as well as the capacity for self‐renewal
[18, 42, 43]. They could be extracted from a variety of organs
and tissues, such as BM, adipose tissue, peripheral blood,
Wharton's jelly, dental pulp, amniotic fluid, placenta, and UC
[44–46]. However, according to a recent review, the most
prevalent and commonly utilized adult donor tissues for human
MSCs are BM and the stromal vascular part of adipose tissue
[47]. Depending on the source of separation, MSCs can exhibit a
variety of surface markers and cytokine profiles. The most
prevalent markers that characterize MSC are CD73, CD105, and
CD90, with no expression of CD11b, CD14, CD19, CD34, CD45,
CD79, or HLA‐DR [48–51]. The MSCs possess a variety of
characteristics that make them an ideal source for cell therapy,
including stemness potency, ease of isolation from various
sources, rapid expansion in large quantities for clinical use,
fewer ethical concerns than ESCs, a lower risk of teratoma
formation than iPSCs, and benefits for a wide range of thera-
peutic applications because of their ability to migrate to injured
tissue through chemo‐attraction [52–54]. Additionally, MSCs
have the capacity to produce a range of bioactive substances
such as growth factors, proteins, chemokines, cytokines,
and microRNAs which may indicate appropriate applications
for them [55].

2.2 | Biological Roles of MSCs

In inflammatory cytokine‐rich conditions, such as wounds,
infections, or immunological‐mediated diseases, MSCs have the
capacity to suppress the immune response. These MSC immu-
noregulatory characteristics include inducing the M1 to M2
macrophage transition and inhibiting T cell activation and
proliferation [56–58]. This distinct behavior of MSCs in either
the presence or absence of inflammatory mediators is known as
MSC polarization. Furthermore, after systemic treatment, MSCs
can migrate to damaged regions and later exhibit therapeutic
activity through a number of mechanisms, most notably angi-
ogenesis and immunoregulation [56, 59]. While the immuno-
suppression mechanism of MSC is not fully understood, it
seems that cellular contact, combined with several factors plays
the primary role in this mechanism. Rheumatic diseases char-
acterized by high levels of inflammatory cytokines, such as
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interferon‐gamma (IFN‐γ) and tumor necrosis factor‐alpha
(TNF‐α) which stimulate MSCs to produce various kinds of
cytokines, such as hepatocyte growth factor (HGF) and trans-
forming growth factor‐beta (TGF‐β), soluble factors like PGE2,
indoleamine‐2,3‐dioxygenase (IDO), and nitric oxide (NO). To
maximize their immunomodulatory effects, these mediators
inhibit effector T cells and boost the expression of FOXP3,
GITR, and CTLA4 in regulatory T cells (Tregs) [60–62].

Additionally, cell‐to‐cell contact makes it easier for cytokine‐
primed MSCs to stimulate Tregs. Effective Tregs are stimulated
by the overexpression of inducible co‐stimulator ligands
(ICOSL) [63]. MSCs can also indirectly improve the production
of Treg cells. According to previous in vitro studies, MSCs
activate M2 macrophage and change the phenotype via secret-
ing extracellular vesicles [64]. Additionally, after being stimu-
lated by MSCs, M2 macrophages express C‐C motif chemokine
ligand (CCL‐18) and produce Treg cells [65]. Additionally,
MSCs boost the production of cyclooxygenase 2 (COX2) and
IDO, which causes M2 cells to produce CD 206 and CD163, as
well as interleukin (IL)‐6 and IL‐10 in the microenvironment
[66]. When MSCs are co‐cultured, the upregulation of IL‐10
generated by dendritic cells (DCs) and M2 cells results
in additional immunomodulation through inhibiting effector T
cells [67, 68]. Moreover, IDO secreted by MSCs can inhibit B
cell activation, expansion, and IgG release, which inhibits T
effector cells [69, 70] (Figure 2).

Considering that MSCs can differentiate into various types of
cells, exhibit antifibrotic activity, boost angiogenesis and tissue

regeneration, and support the restoration of tissue function,
they have been used as therapeutic options (Figure 3). One of
MSCs' defining characteristics is their multipotency, which al-
lows them to differentiate in vitro into several types of tissues.
In vitro, chondrogenic differentiation of MSCs is frequently
achieved by cultivating them in the presence of TGF‐β1 or TGF‐
β3, insulin‐like growth factor‐1 (IGF‐1), fibroblast growth factor
2 (FGF‐2), or bone morphogenetic protein 2 (BMP‐2) [71–73].
MSC development into chondroblasts is marked by an increase
in the expression of numerous genes such as collagen Type II,
IX, aggrecan, and chondroblast cell shape. During the chon-
drogenesis process, FGF‐2 stimulates MSCs produced by
TGF‐β1, TGF‐β3, and/or IGF‐1 [74]. Numerous molecular
pathways, including TGF‐βs, hedgehog, Wnt/‐catenin, FGFs,
and BMPs have been shown in studies to control chondrogen-
esis [75]. Additionally, MSCs have the ability to perform
Osteogenesis activity by being stimulated by vitamin D3,
β ‐glycerophosphate, ascorbic acid, and/or BMP‐2, BMP‐4,
BMP‐6, and BMP‐7 [76].

MSCs have anti‐fibrotic action as one of their main character-
istics. These cells can develop both in vivo and in vitro into a
variety of cell lineages, like hepatocytes [77]. Numerous trophic
factors included in MSCs encourage progenitor cells and matrix
remodeling to aid in the repair of damaged cells. MSCs can
reduce myofibroblasts and stop fibrotic activity in damaged
tissues [78]. Additionally, these cells produce pro‐angiogenic
substances including vascular endothelial growth factor
(VEGF), IGF‐1, and anti‐inflammatory substances that aid in
the restoration of tissue function. For example, in an animal

FIGURE 2 | Immunomodulatory effects of MSCs. MSCs exert immunomodulatory properties via direct contact with immune cells, as well as

secretory molecules generated by MSCs' paracrine mechanism. MSCs mainly have immunosuppressive effects, although positively regulate and

activate Th2 differentiation, Treg cell production, and M2 macrophage differentiation.
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model of heart illness, MSCs can promote neovascularization of
ischemic myocardium via VEGF [79]. Additionally, IGF‐1 has a
positive impact on the proliferation and survival of cardio-
myocytes [80].

3 | Stem Cell Therapy in the Treatment of
Different Rheumatic Diseases

3.1 | MSCs in SLE

SLE is a persistent immune‐mediated illness that is defined by
the emergence of various self‐antibodies, particularly anti-
nuclear antibodies, and the involvement of many body systems.
In the etiology of SLE, it has been demonstrated that both
genetic predisposition and environmental variables, including
medicines, UV radiation, infection, and anxiety, play important
roles [81]. The condition affects people of all racial and ethnic
backgrounds, although it is more prevalent among black pop-
ulations and females [82]. Antigen‐antibody complexes are
formed during an episode of SLE and then migrate across
multiple organs and tissues, including the basement membrane
of the skin, the kidneys, and numerous other parts of the
body [83]. Stimulation of B‐lymphocytes, generation of self‐
antibodies, and development of immune system complexes
are all part of the process of SLE, whatever the reasons that
cause it [84].

The manifestations of SLE might vary from person to person
but might involve things like general exhaustion, rashes on the
skin, a high body temperature, and joint discomfort or swelling.
In some individuals, the onset of SLE manifestations, known as

flares, may occur at irregular intervals, sometimes years apart,
and then disappear during periods known as remissions. It's
possible, nevertheless, that some people with SLE will have
more severe flares. Sun sensitivity, mouth ulcers, arthritis, lung
issues, cardiovascular issues, renal issues, convulsions, mental
disorders, and abnormalities in blood cells and the immune
system are other potential manifestations [85–87].

There is currently no one‐size‐fits‐all therapy or cure for SLE.
Many patients have unwanted side effects from modern thera-
pies such as antimalarial, immunosuppressant, and gluco-
corticoid medications. Even with the availability of treatment
options, many people with lupus continue to have inadequate
responses to these drugs [88]. Due to the possible clinical
benefits for SLE, cellular treatments, and more especially MSCs,
are disciplines of significant attention [13]. Steroid medications,
a drug called azathioprine, and methotrexate are some of the
immune‐suppressing drugs now used to treat SLE, while new
therapeutics like rituximab monoclonal antibodies and im-
munomodulators like abatacept are among the numerous bio-
logical products currently undergoing clinical trials [89].

Recent years have seen a rise in interest in MSC treatment for
immune‐mediated illnesses, including SLE. This treatment may
reduce the signs and symptoms of refractory SLE by encoura-
ging the proliferation of Th‐2 and Treg cells and repressing the
activity of B‐lymphocytes, Th‐1, and Th‐17. However, some SLE
patients have also claimed that MSC treatment is unsuccessful.
This may be because of MSC‐ or patient‐related parameters.
Thus, more investigation is needed to support the medical ap-
plications of MSCs [90]. It has been established that malfunc-
tions in MSCs play a role in the onset of SLE [91].

FIGURE 3 | Biological roles of mesenchymal stem cells (MSCs). MSCs have been employed in recent research as therapeutic candidates as they

possess immunomodulatory effects, can differentiate into different cell types, have antifibrotic activity enhance tissue regeneration and cell pro-

liferation, promote angiogenesis, and help in the restoration of tissue function.
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Multiple investigations have shown that MSCs inhibit lym-
phocytic B cell development and expansion, hence reducing
SLE incidence. Human gingival‐derived MSCs ameliorated
proteinuria and histological grades of nephritis in a mouse
model of lupus‐related nephritis by suppressing B cell function
through the CD39/CD73 axis in vitro and in vivo [92]. By in-
hibiting the PD‐1/PD‐ligand system, MSCs may prevent lym-
phocytic B cells from developing into plasma cell populations
[93]. Human BM‐MSC injections reduced glomerulonephritis,
self‐reactive antibody production, proteinuria, and mortality in
NZM/W F1 mice. The growth of follicular Th cells was hindered
from accomplishing this [94]. By preventing plasmacytoid DCs
from maturing and producing IFN‐α, MSCs may lower SLE
severity. Human BM‐MSCs reduce inflammation of the renal
system in mice with nephropathy induced by the Adriamycin
antibiotic [95]. When given to a mouse lupus model, MSCs
suppressed excessive inflammation and promoted the growth of
B‐regulatory cells that produce IL‐10 [96]. MSC derived from
the human UC injection decreased blood levels of Th17 and
boosted levels of Treg cells in individuals with SLE [97].

The transplantation of allogeneic MSCs has been proven to be
beneficial in a number of preliminary Phase 1 and Phase 2
studies; however, more research into the effects of this treat-
ment on SLE over the long term is necessary [98]. It has also
been shown that combining MSC transplantation with immu-
nosuppressive treatment results in a considerable improvement
in the patient's clinical condition. Additionally, its effectiveness
primarily depends on the dosage, and regular administration
may both slow the course of the illness and lower the likelihood
of repeated episodes. However, to determine the optimum
dosage and numerous infusion times, it will be necessary to
conduct tests on a large scale [99].

3.2 | MSCs in RA

RA is a kind of autoimmune illness that may last a person's
whole life. It is characterized by inflammation in the synovial
tissue of the joints as well as deterioration of the articular car-
tilage [99, 100]. Patients with RA have a higher chance of
developing atherosclerosis, which may result in cardiovascular
difficulties, which pose a significant danger to human health
and life [101].

The primary goal of the current RA treatment choices is to
achieve a clinically minimum disease activity score, and these
alternatives include medications, physical therapy, surgical
procedures, and other non‐pharmacological treatments [102].
Anti‐inflammatory medications, corticosteroids, and synthetic
disease‐modifying anti‐rheumatic medicines such as metho-
trexate, sulfasalazine, hydroxychloroquine, and leflunomide are
the standard therapies for RA. Biological disease‐modifying
antirheumatic medicines are another kind of therapy. RA suf-
ferers now have access to a greater variety of treatment options
than in years past because of ongoing research and develop-
ment efforts [103]. Typical treatments for illness provide only
temporary alleviation from symptoms. Multiple strategies are
used regularly as treatment for RA; unfortunately, neither of
them can entirely alleviate the ailment. Therefore, RA treat-
ment has to take a different approach. Because of this,

researchers across the globe are trying to find new ways to
manage RA and other inflammatory diseases at the cell
level [104].

RA is a kind of immune disorder that is triggered not just by
lymphocytic T‐ and B‐cells but also by certain inflammatory
mediators, proteases, and additional factors that play a role in
its origin [40]. Since MSCs are known to use cell types such as
DCs, T‐ and B‐lymphocytic cells, and NK cells to regulate the
release of cytokines [105], using them for the treatment of RA is
seen as an intriguing possibility because these cells can mediate
the pathological process of this autoimmune disorder [104].
Tissue injury healing is only one of the many functions asso-
ciated with MSCs, including regulation of the surrounding area,
activation of internal precursors via interactions between cells,
and the discharge of different substances. Tissue reconstruction
and rebuilding are aided by the many cytokines and growth
factors that MSCs may create [106, 107]. Because of these fea-
tures, MSCs are a promising treatment agent for RA [99]. In a
previous study, to alleviate the symptoms of nine patients with
severe RA, autologous BM‐MSCs were employed [108].

There have been close to 100 studies released on the subject of
the development and verification of preliminary research
models for the disease of RA. These models reveal promising
patterns for the clinical use of MSC‐based therapies. Studies
based on MSCs have shown, in a substantial number of pre-
liminary models, that they can slow down the course of RA.
Therefore, individuals who fail to respond effectively to the
drug‐based therapies that are considered the standard level of
treatment may benefit from MSC‐based therapies [109].

3.3 | MSCs in Ankylosing Spondylitis (AS)

AS is a persistent, chronic form of inflammatory arthritis. AS
typically affects the spinal joints, sacroiliac joints, and the soft
tissues around them, such as tendons and ligaments. Inflam-
matory mechanisms linked to AS cause bone erosion, new bone
growth, and ankylosis in the spine, which causes terrible pain,
decreased spinal movement, and stiffness [110]. Numerous
clinical signs and symptoms are expressed by AS; however, the
most prevalent ones are persistent back pain and worsening
spinal stiffness. Additionally, AS is linked to several kinds of
joint problems, including finger, attachment point, peripheral
joint, sacroiliac, and spinal joint. The advancement of the illness
causes serious consequences including reduced spinal mobility,
aberrant posture, hip discomfort, finger inflammation (sausage
finger), attachment point inflammation, and peripheral arthri-
tis, which severely disrupts the patient's regular life [111, 112].
Inflammatory bowel disease (IBD) [113], acute anterior uveitis
[114], and psoriasis [115] are the most prevalent extra‐articular
symptoms of AS. According to studies, AS also raises the risk of
cardiovascular illness, pulmonary problems, as well as vertebral
fractures via systemic inflammation, and reduced spinal
mobility [116, 117].

At present, there are only a few effective therapies for AS,
which are grouped into three categories: pharmacological
[118–122], surgical [121, 122], and physical therapy and exercise
[123]. Unfortunately, the existing treatment for AS is unable to

6 of 21 Immunity, Inflammation and Disease, 2025



stop the disease's progression or correct the structural damage
to the spines or other joints [124–127]. Substantial im-
munomodulatory molecules generated by MSCs, such as PGE2,
TGF‐β, and HLA‐G5, inhibit the immune system by preventing
DC activation and promoting the development of Treg cells.
The proliferation and activation of effector T cells, including
T‐helper 1 (Th1), T‐helper 17 (Th17), and cytotoxic T lympho-
cytes (CTL), that play a role in the pathogenesis of AS, are also
inhibited by MSCs. Additionally, MSCs' production of IDO and
PGE2 triggers the transition of macrophages from the pro‐
inflammatory (M1) to the anti‐inflammatory (M2) phenotype
[128–131]. Consequently, MSC therapy might be used to en-
hance the management of AS.

While this is going on, several clinical and preclinical trials
have been carried out to study the use of stem cells in AS
patients and positive outcomes have been shown regarding
the safety as well as the effectiveness of MSCs [132, 133].
Wang et al. [133] studied the safety and activity of allogeneic
BM‐MSC intravenous infusion and showed that MSCs are
safe and possess a promising therapeutic effect on active AS
patients who do not respond to conventional pharmaco-
logical drugs. Li et al. [132] conducted an analogous trial and
found that after receiving UC‐MSC infusion, all patients
showed pain alleviation and reduction in scores indicating
the severity and activity of AS. However, the common limi-
tation in these trials is the reduced number of patients. On
the other hand, several preclinical trials have been conducted
on animal models and cell lines to evaluate the effectiveness
and possible mechanisms and pathways of MSC the in cor-
rection of disease conditions of AS [134–144].

3.4 | MSCs in OA

As the most prevalent type of arthritis, OA goes by a few other
names: degenerative joint disease, or “wear and tear” arthritis.
Hands, hips, and knees are the most common sites of this
condition. Pain, stiffness, and edema are the results, making it
the greatest cause of disability among the elderly. As a result,
some individuals become disabled and are unable to do their
normal daily activities or hold down a job [145]. Damage to
articular cartilage, synovial membrane inflammation, and
skeletal remodeling are all hallmarks of this condition [146].

Around 10%–15% of the human population is affected by OA
[147]. There are several risk conditions, among them age,
gender, history of trauma, overweight, and heredity. OA has not
only displayed its greatest global prevalence [148] but has also
caused many industrialized nations to endure huge financial
losses since it is a disabling condition [149, 150]. At present,
there is no perfect special medicine utilized for the therapeutic
management of OA [151]. In the initial phases of OA, treatment
often consists of alleviating pain, lifestyle moderation, and
shedding pounds. A high tibial osteotomy is a surgical proce-
dure that may benefit patients with mild OA of the knee [152].
For severe OA, replacement of a damaged joint is a common
treatment option [153]. The present treatment for OA is mostly
focused on reducing the severity of symptoms rather than
stopping the disease progression, and long‐term cures have yet
to be found [154].

Producing a functional substitute for natural cartilage is the
primary objective and greatest difficulty of cartilage tissue
repair [155, 156]. Cell therapy and rejuvenation treatments,
especially those based on stem cell technology, may 1 day be all
that's required to combat OA and help with joint repair
[154, 156]. BM transplantation and MSCs derived from adipose
tissue have emerged as the most popular treatment options and
regenerative methods for OA [157]. When considering the
treatment of degenerative joint problems, MSCs seem to provide
some significant advantages over chondrocytes (Cartilage cells).
They are easier to culture, proliferate at a faster rate, and have
the potential to specialize in all of the tissues found inside the
joint. In addition, it would seem that the paracrine activity is
especially helpful in alleviating the symptoms of disease.
MSCs, with their anti‐inflammatory and immunomodulatory
properties, play an essential function in the process of directing
the reconstructive reaction of damaged tissues of the
joint [153, 158, 159].

Because of their potential to differentiate into chondrocytes,
their capability to prevent chondrocyte suicide, and their
potential to slow the degenerative condition as a whole, MSCs
have shown promise as a treatment for OA [160]. In addition to
suppressing T cell proliferation and blocking the respiratory
burst in neutrophilic cells, these cells also produce cytokines
and chemokines, which have an effect on the defense system's
activity. Environmental factors disrupt the balance between
MSCs' inflammatory and anti‐inflammatory properties [159].
Paracrine stimulation of the local surroundings is the primary
way in which MSCs affect the regeneration procedure for OA
joints. It has been discovered that MSCs stimulate cell renewal
by secreting paracrine signals [153].

Multiple clinical studies have shown the potential therapeutic
usefulness of MSCs for treating immunological and
inflammation‐related illnesses [161, 162]. BM‐MSCs produce
compounds with immunoregulatory and anti‐inflammatory
properties [163]. Tissue injury triggers the recruitment and
activation of regional tissue precursor cells, which have a
greater capacity to influence the body's defenses. Therefore,
because of their unique immunological characteristics and
functions, MSCs effectively suppress immuno‐inflammatory
reactions and promote tissue renewal [164]. An increase in the
cells of the immune system in the synovium, specifically
monocytic cells, macrophages, and eventually lymphocytic
T‐cells, is a hallmark of OA. The appearance of lymphocytic B
cells, DCs, mast cells, NK cells, and granulocytic cells is also
seen in OA synovia [165]. Hypo‐immunogenic MSCs were
thought to shield essential tissues from the effects of immune
responses launched against invaders. Recent research, never-
theless, has shown that MSCs may be immune evasive. Allo-
geneic transplantation of MSCs could fail to have a promising
future if MSCs are just “immune evasive” instead of “hypo‐
immunogenic,” since the body's immune defense could ulti-
mately recognize these cells as alien and attack them. There has
to be further investigation into this matter, however [166]. The
absence of a negative immunological reaction after delivery of
allogenic MSCs remains a major benefit [167].

The difficulty of cartilage restoration is evident from the fact
that no one has yet succeeded in restoring a physically and

7 of 21



mechanically functional cartilage surface [168]. The use of
mesenchymal cells in therapy is not risk‐free. Scar tissue
development, immunological responses in the context
of an allogeneic transplant, the cartilage's hyaline substance
being replaced by bone, and the proliferation of cells that
don't interact well together are all potential adverse effects
[159, 169, 170].

3.5 | MSCs in Osteoporosis (OP)

In OP, bone mass and microstructure deteriorate, making bones
more prone to breaking and fracture than in healthy people [171].
Symptoms of OP do not appear until the disease has progressed
for years, making it difficult to identify until the disease has
severely limited a person's everyday life due to fractures. In-
dividuals with osteoporotic fractures often end up bedridden and
in a critical condition. Fractures are very dangerous since they
may cause serious injuries and even death [172].

OP is now managed with a combination of pharmaceuticals and
therapeutic exercise. However, finding new effective strategies
to combat OP is urgently required due to the complexity of its
cause and therapy, as well as the enormous bad effects of cur-
rent drugs. OP patients have had reason for hope thanks to
advances in MSC therapy in recent years [173].

Adjuvant therapies and pharmaceutical medication are now
used for both the avoidance and management of OP. Suppres-
sion of osteoclasts (reduction in bone degradation) and en-
couragement of osteoblasts (increase in bone creation) are the
two primary mechanisms by which medicines exert their ben-
eficial effects on patients. The anti‐sclerostin monoclonal anti-
body romosozumab has a bidirectional mechanism of
regulation, decreasing bone loss while increasing the creation of
bones. Medications like denosumab and bisphosphonates may
prevent bone breakdown, while teriparatide and abaloparatide
can speed up the bone‐building process [174]. Calcium and
vitamin D supplementation, as a non‐pharmaceutical therapy,
has been prescribed for people with a higher likelihood of OP
due to low vitamin D and calcium consumption and the onset
of the menopause period [172, 175, 176].

A unique class of RNA molecules known as circular RNAs
(circRNAs) have been shown to play important roles in a wide
range of biological and pathological processes, including those that
are directly relevant to bone health and disease [177]. Unexpect-
edly, circRNAs are also believed to play a role in OP control,
including the disease's development and therapeutic approaches.
Recent research has shown that circ_0005564 actively contributes
to OP by raising mRNA concentrations of osteogenic differentia-
tion biomarkers such as Runt‐related transcription factor
2(RUNX2), osteopontin, and osteocalcin [178].

There is a constant balance between bone production prompted
by osteoblasts and bone resorption facilitated by osteoclasts, a
process known as bone remodeling [179]. There are several
variables, including growth regulators, hormones, cytokines,
electrokinetic stimulation, and more, that influence and regu-
late the process of bone remodeling. MSCs, as the progenitor
cells of osteoblasts, are crucial to the process of bone

rejuvenation [180, 181]. Cell‐based regeneration treatments can
potentially be effective in the treatment of OP by controlling
bone loss, reducing fracture susceptibility, and increasing
diminished mineral content. Boosting stem cell functions
(including their growth and transformation into bone‐forming
cells) and increasing precursor stem cell numbers achieve these
goals [172, 182, 183]. Stem cells, particularly MSCs, have the
potential to induce the regeneration of bone tissue by secreting
physiologically active molecules. These substances include IGF‐
1, TGF‐β, VEGF, angiogenin, HGF, and IL‐6. MSCs are espe-
cially important for this process [184–186].

Exosomes, which are tiny vesicles released by cells, offer advan-
tageous properties such as significant permeability, minimal toxic
effects, and efficient targeting. As a result, exosome treatment has
emerged as a promising area of investigation for OP. When it
comes to treating OP and bone fractures, bone reconstruction is a
key modality. New bones with improved vascularization, biologi-
cal mechanics, and histology may be prompted by exosomes
released by MSCs [187]. Exosomes generated by MSCs are efficient
variables whose effects on preventing the loss of bones and
increasing skeleton‐building mechanisms (during the phases of
bone formation, formation of osteoclast, and angiogenesis) have
been shown in vitro and in vivo [188, 189].

MSC‐derived extracellular vehicles, also known as MSC‐EVs,
provide an approach for cell‐free MSC treatment. In contrast to
their mother cells, MSC‐derived EVs have a greater medicinal
value while also posing a reduced risk of developing cancer. In
vitro studies have shown that MSC‐EVs stimulate the process of
osteogenesis and inhibit osteoclastogenesis, while in vivo
studies have shown that they postpone the progression of OP.
Recent years have seen significant advances made in the
development of cell‐free stem cell treatments using MSC‐EVs. If
successful, this line of investigation may 1 day become a viable
treatment option for OP [190].

The transplantation of MSCs has the potential to restore an
appropriate equilibrium between bone creation and loss, enhance
osteoblast development, and inhibit osteoclast activity. The use of
mesenchymal stromal cells (MSCs) in the management of OP has
shown promise in clinical trials, with data suggesting that trans-
plantation of these cells may improve the differentiation of oste-
ogenic cells, boost the density of bone minerals, and arrest the
progression of OP [1, 191]. In the meantime, modern methods
such as modifying genes, targeted alteration, and co‐
transplantation offer potential ways to increase the clinical impact
and effectiveness of MSCs. Additionally, there are now clinical
investigations being conducted for treating OP using MSC treat-
ment. These trials will help cover what is lacking in medical
research. Even though MSCs have shown promise as a treatment
for OP, there are still pressing concerns about their safety, the
effectiveness of transplants, and the need for the production
method to be standardized [191].

3.6 | MSCs in Sjogren's Syndrome (SS)

SS, also known as Sicca syndrome, is a kind of persistent
immune‐mediated inflammation that occurs primarily in
females. This condition influences the exocrine glands, leading
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to symptoms including dryness in the mouth (hyposialia or
asialia) and dryness of the eye (xerophthalmia). Dental decay,
periodontal illness, and fungus diseases are more likely to occur
in those with SS‐induced hyposialia [192]. Other non‐glandular
organs, including the layer of skin, may also be damaged, and
the person's overall level of living gets worse as a result. SS may
be diagnosed on its own or as a subsequent symptom of
other autoimmune‐related conditions, including RA and SSc
[193, 194]. It may be worsened by a variety of systematic
consequences (such as lung disease, renal damage, and
lymphoma) [195].

Disease‐modifying anti‐rheumatic medications like glucocorti-
coids are the gold standard for treating SS, but newer biother-
apeutic techniques are making use of antibody therapy and
blocking receptors that mediate inflammation to get better
results. Targeting signaling and molecular mechanisms associ-
ated with lymphocytic B‐cells and Th17 have gained widespread
popularity as a potential treatment for SS due to their promi-
nent involvement in the disease's etiology. Improving outcomes
and standards of living for SS sufferers is possible via the
application of immunological blockers in the treatment of
negative consequences. For instance, B lymphocyte‐activating
factor (BAFF) receptor antagonists safeguard against lymphoma
of B‐cells in addition to preventing inflammatory lesions;
nonetheless, such treatment approaches are uncommon
[195–198].

SS is a syndrome where lymphocytes infiltrate the exocrine
glands [199]. Based on research findings, it seems that BM‐
MSCs in SS sufferers have impaired immunological activity,
which may explain why SS develops in these individuals [200].
Higher expansion, immune system regulation, and the ability to
differentiate in multiple directions are hallmarks of MSCs,
which allow them to promote the regeneration of tissues while
also suppressing the development of certain immune cell types,
the release of pro‐inflammatory mediators, and the generation
of antibodies. This has led to the development of an innovative
approach for the treatment of SS, which is the application of
MSCs [99].

Some studies demonstrated that MSCs were able to exert their
curative benefits because of their immunomodulatory propert-
ies. Among these properties were the upregulation of Treg cells
and the expansion of Th2, as well as the downregulation of
Th17 and inflammatory reactions in follicular Th cells. Also,
MSCs have been found in a number of studies to be effective in
preventing the expansion of CD4+ T‐lymphocytes in non‐obese
mice suffering from diabetes [201]. Another study reported that
the use of UC‐derived MSCs has been shown to considerably
boost the rate of salivary production, relieve manifestations of
disease, and reduce inflammatory conditions. As a result,
autologous MSC transplantation is anticipated to be employed
as an innovative therapy option that is both highly successful
and completely risk‐free [99].

Labial gland mesenchymal stem cells (LGMSCs) have recently
been found and have shown higher efficiency [202]. In a mouse
model of spontaneous SS, when the salivary glands were treated
with exosomes made from LGMSCs (LGMSC‐Exos), they star-
ted working again. Co‐culturing LGMSC‐Exos with a patient's

peripheral blood mononuclear cells (PBMNCs) in vitro has
shown promise for treating SS. CD38 +CD27 + CD20‐CD19+
plasma cell percentages within PBMNCS were drastically low-
ered. Additional studies revealed that microRNA‐125b, which
was generated from LGMSC‐Exo, affected the plasma cell
population of the SS by specifically attaching to its targeted
genes [203].

3.7 | MSCs in Crohn's Disease (CD)

CD is a chronic, idiopathic IBD marked by intermittent lesions,
patches alternate with healthy rejoin, and transmural inflam-
mation that might influence the whole gastrointestinal system
from the mouth to the anus [204, 205]. Common symptoms
include severe abdominal pain, diarrhea, nausea, vomiting,
weight loss, and occasionally chills or fever. The disease's
characteristic pattern is one of remissions and flares. sadly, CD
has no cure, and the majority of patients need at least one
surgical excision [206]. Like other inflammatory and immune
diseases, available therapy includes anti‐inflammatory, immu-
nosuppressant, immunomodulators, monoclonal antibodies as
well as biological therapy [207]. Medical treatment aims to
achieve steroid‐free clinical and endoscopic remission to avoid
complications and surgery [204].

Previous and current clinical trials employing MSCs for the
treatment of CD have shown that this innovative therapy has
the potential to induce and maintain full and long‐term
remission of symptoms when standard medications have
failed [208]. The exact mechanism of MSC in the case of CD is
not fully understood, however, it has been believed that MSC
could stimulate and accelerate the healing process of compli-
cated fistula and produce immunomodulatory effects through
interaction with immune cells, cytokines production and reg-
ulation of pro/anti‐inflammatory cytokines [209–212]. After
reviewing published studies, we found that the available clinical
and preclinical studies are conducted for the management of
fistulizing disease or active luminal disease [213–216]. Several
clinical trials in different phases demonstrated the promising
effect of MSCs in the healing of fistulizing CD [210, 217–226].
Most of these studies demonstrated the local effect [210,
218–222, 226] and others showed the effect of IV injection [217].
Additionally, Vieujean et al. [227] proved that MSC injection
in CD stricture provides promising benefits and produces a
partial and complete resolution of stricture. Moreover, they
conducted another study [228] and demonstrated the same
beneficial effect of MSC in non‐passable stricture. However,
some occlusions were detected during the follow‐up, and they
concluded that the result of CD stricture may be improved by
combining the benefits of MSCs with the known effects of en-
doscopic balloon dilatation.

3.8 | MSCs in Fibromyalgia (FM)

FM is a chronic neurologic disease that affects 2%–8% of the
global population [229]. It is a complex pathophysiological
condition characterized by chronic and generalized pain
throughout the body. Persistent and severe generalized pain is
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the first symptom which is accompanied by spontaneous pain,
cold allodynia, and thermal hyperalgesia, as well as exhaustion,
sleep disorders, and depression with subsequent reduction in
quality of life [230, 231]. The exact pathophysiology is not clear
until now. Nevertheless, a large number of studies revealed the
implementation of the central nervous system, evidenced by
impairments in inhibitory pain pathways [232]. Furthermore,
peripheral nervous system abnormalities such as pro‐
inflammatory cytokine production and small nerve fiber dys-
function may have a role in disease development [233, 234].
Unfortunately, available treatment is a challenge as it provides
symptomatic management only [235]. Numerous investigations
showed that BM‐MSCs offer therapeutic potential for alleviating
chronic pain [236, 237]. It is thought that MSCs could alter this
disease condition through the reduction of inflammation and
the demyelination process of nerves [238].

A recent and soul study that demonstrated the effect of MSCs
in FM was conducted by Mekhemer et al. [239] They conducted
their study on an experimental rat model. Rats were randomly
divided into three groups; the control group, received 0.5%
acetic acid vehicle, the FM group, received 1mg/kg/day reser-
pine for induction of FM, and the FM‐BMSC group, which
received 2 × 106 BM‐MSCs after induction of FM. All groups of
rats were killed 7 days following the BM‐MSCs injection,
cerebral cortices were harvested for histological and bio-
chemical analysis, along with physical and behavioral evalua-
tions. According to the result of that study, the FM‐BM‐MSC
group experienced an improvement in behavioral and physical
assessment, reduction in pro‐inflammatory cytokines and
inflammatory mediators as well as improvement in the histo-
logical picture, compared to other groups. Moreover, BM‐MSCs
exhibited a neurogenesis activity that participated in the final
beneficial outcomes.

3.9 | MSCs in SSc

SSc is a persistent immune‐mediated illness that is identified by
higher levels of production and accumulation of extracellular
matrices in the skin and the interior of the body. The
undesirable accumulation of collagen in the skin along with
different tissues leads to the malfunction of various organs, and
the outcome is not good for people whose lungs, hearts, or
kidneys are involved in the condition [240]. Scleroderma is
divided into two primary kinds, local scleroderma and SSc,
based on the degree to which the skin is affected [241, 242].
Individuals with SSc have a much higher hospitalization
and death rate than those with local scleroderma because
of the widespread involvement of several systems inside the
body [241].

The symptoms of SSc include fibrosis of internal and external
tissues, inflammatory conditions, and vasculopathy.
Scleroderma‐associated interstitial pulmonary disorder, high
blood pressure in the lungs, and cardiovascular disorders are
the major causes of mortality in people with serious SSc [243].
Scleroderma‐related interstitial pulmonary disease has been
studied and treated with a number of anti‐inflammatory and
anti‐fibrotic therapies. Treatments like these mostly serve to
maintain the current situation or delay the progression of

interstitial lung disease, but they do nothing to enhance pul-
monary function or fibrotic interstitial lung disorder [244].
There is currently no effective or safe therapy for SSc, and
fibrosis cannot be reversed [245].

Allogenic transplantation of HSCs has been a significant
advancement in the treatment of resistant SSc in the last
10 years [246, 247]. Despite this, HSC allogeneic transfer is not
recommended for individuals who have extensive visceral
affection. Immunosuppression, antifibrosis, and proangiogenic
properties of MSCs suggest that they might constitute an
effective new therapy for the management of SSc [248].

MSCs have the ability to develop into bone cells, cells that make
muscles, and endothelium cells. MSCs taken from individuals
with SSc have been found to have unusual functional behaviors
in relation to MSCs taken from normal subjects. These
undesirable functions include impaired endothelial cell differ-
entiation and higher levels of TGF‐β and VEGF, which could
potentially have a significant role in the progression of fibrosis
in SSc [249, 250]. In light of these results, autologous MSC
transplants seem to have considerable potential as a treatment
for SSc [99].

Whatever the cell source, major histocompatibility complex
(MHC) matching, or application method, therapy based on
MSC has been shown to be secure and efficient in several
preliminary research investigations. MSCs have been shown to
reduce inflammation and stop fibrosis in both bleomycin‐ and
Hypochlorous acid (HOCl)‐induced mouse models of SSc.
Using a mouse model of SSc, it was found that MSC‐based
treatment effectively decreased dermal and pulmonary fibrosis
[251–254]. MSCs reduced dermal and pulmonary fibrosis in
mouse HOCl‐induced SSc models by improving the remodeling
of the extracellular matrix, lowering the amount of inflamma-
tory cytokines, strengthening the body's defenses against anti-
oxidants, and lowering the amount of anti‐Scl‐70 self‐antibodies
in the serum of the mouse that was handled [253]. Based on
these encouraging preliminary findings derived from mouse
models of SSc, it seems that therapy with MSC‐base might be
effective for SSc in the clinic [248].

A long‐period retrospective study with 9 years of follow‐up
showed that all of the patients' skin symptoms and serological
indices got better. This showed that MSC transplantation is an
effective and safe way to treat SSc, while the deaths of six pa-
tients were not related to the MSC transplants [255]. Clinical
investigations of MSC‐based treatment for SSc have begun after
extensive in vivo and in vitro preliminary research [248].
Because of the limited number of instances and the variety of
individuals involved, it is not possible to draw conclusive and
trustworthy conclusions on the effectiveness of an MSC trans-
plant for individuals with SSc [256, 257]. Even though research
and clinical studies have shown that MSC‐based treatments are
effective and safe, and this encourages more research and
development of MSC‐based therapies for the treatment of SSc
[257–259].

MSCs, like many other kinds of cells, produce external vesicles
from the endosomal space. These vesicles, which have a layer
of phospholipids surrounding them, are essential for cell
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interactions [260–262]. MSC transplantation has a number of
issues that still need to be handled, such as the invasive tech-
niques used to isolate cells, as well as effectiveness and safety
problems [263, 264]. Since most of the medical benefits of MSCs
have been linked to their paracrine signals, using MSC‐EVs as a
“cell‐free” treatment may be an alternative that is similar to
MSC treatment and may help get around some of the problems
with MSC‐based therapies in the medical setting [265, 266].
MSC‐EVs are believed to provide a number of benefits over the
original MSCs [248]. Among these benefits is the fact that they
are not very immunogenic and have a reduced capacity to
induce initial and acquired immunity in situ after autologous
injection [255, 267, 268]. Due to their diminutive size compared
to the original cells, MSC‐EVs may be transported more effec-
tively to the lung tissue and other target organs [269]. When
compared to their original MSCs, MSC‐EVs have higher levels
of safety and minimal negative consequences [261]. Several
potential risks associated with MSC transplants, such as ossifi-
cation or accumulation of calcium in tissues, may be avoided
with the application of EVs [270].

3.10 | MSCs in Dermatomyositis (DM) and
Polymyositis (PM)

DM and PM are the critical types of idiopathic inflammatory
myopathies [271]. They are characterized by proximal skeletal
muscle weakness and apparent skin symptoms. Moreover, they
might impact other organs, including the lungs, heart, GIT, and
kidneys [272, 273]. Despite their clinical presentations being
different, they are common in symmetrical and proximal
muscle weakness. Physical therapy, immunosuppression, drug
monitoring for side effects, and complication avoidance are the
cornerstones of DM and PM treatment [274]. Until now, the
etiology is unknown. Since cellular dysfunction related to Th
cells is crucial for the incidence and progression of PM or DM,
several studies have demonstrated that Th cells are implicated
in the pathogenesis of DM/PM [275]. Consequently, MSCs may
offer a novel therapeutic approach to the management of DM
and PM. Numerous research studies have shown that this
strategy produces beneficial outcomes.

According to Wang et al. [276] study, allogeneic BM‐MSC or
UC‐ MSC at a dose of 1 × 106 cells/Kg IV infusion was given to
10 patients with drug‐resistant DM/PM or aggressive systemic
symptoms. Serum creatine kinase (CK) levels improved, and
some patients with interstitial lung disease and skin ulcers also
had improvements. For recurrence, several patients needed an
additional MSC dose. According to the authors, a controlled
prospective study is needed. In another report, at a 3‐month
follow‐up, a 35‐year‐old female experienced dramatically better
strength following a four IV infusion of autologous expanded
adipose‐derived MSC [277]. In long‐term retrospective research
by Liang et al. [255], IV infusion of 1 × 106 cells/Kg body weight
of MSCs led to improvement in symptoms and serological
markers of patients after 9 years of follow‐up. This investigated
the efficacy and safety of MSC in PM and DM, although 11
patients died for causes unrelated to transplantation. In another
study by Lai et al. [275], DM/PM patients received IV infusion
of 3.5–5.2 × 107 UC‐MSCs, transplantation group, and
the degree of improvement was compared with the control

group, treated with glucocorticoids and immunosuppressants
for 6 months. The study's findings revealed that both groups'
CK levels had dramatically lowered, but the transplant group
had better outcomes than the control group at various periods
and had much superior lung function. After the transplant, one
patient died, however, no transplant‐related problems hap-
pened. Furthermore, Lai et al. [275] found that INF‐γ levels
considerably increased at 6 months following MSC infusion,
although IL‐4 levels dramatically reduced at the same time, and
IL‐17 levels similarly declined at 3 and 6 months following cell
infusion. These results suggest that UC‐MSC transplantation in
combination with glucocorticoid and immunosuppressive
medication can promote immunological tolerance and alter
immune network effects in DM/PM patients.

At present, just a few studies looking into PM/DM; therefore,
large‐scale, randomized clinical trials are required to assess
the long‐term efficacy and safety of MSC transplantation
in PM/DM patients, taking into account the dangers of
infections and tumors in addition to the ideal dose for
transplantation.

4 | Obstacles and Challenges With MSCs
Transplantation Therapy

Transplantation of MSCs is an exciting new approach to
treating rheumatic conditions. However, several significant
hurdles must be cleared before they may be routinely used on
patients. One of these obstacles is determining which donors
and tissues would provide the highest‐quality MSCs for use in
treating certain patients. There is a large inter‐donor varia-
bility in MSC quality [278, 279]. Lacking standard operating
procedures for dealing with MSCs [280]. There is a significant
amount of diversity in the quality of the cells, which is the
primary barrier to the standard techniques of MSC [265, 281,
282]. Aggressive isolation techniques and time‐consuming cell
culture methods [283]. Their ability to scale up is restricted
due to MSCs' low rate of proliferation in vitro. MSC treatment
often requires a substantial quantity of cells to exert its cura-
tive benefits [284]. Short‐term survival of externally intro-
duced MSCs in vivo was observed [285–287]. Ineffective
recruitment or adherence to the intended cells following sys-
tematic treatment, as well as decreased transplantation effec-
tiveness [285, 288–291]. Despite the fact that a great number of
preliminary research investigations have shown its safety
[292, 293], The widespread application of MSCs in healthcare
settings must not be moved forward until their definite safety
concerns, such as genetic disorders, unwanted proliferation of
grafted MSCs, and tumor development potential in vivo, are
considerably investigated [263, 294]. Even though MSC‐based
treatment has shown positive outcomes in both preliminary
and clinical investigations, these findings are inconsistent and
even conflicting sometimes [295, 296]. Possibility of develop-
ing microthrombosis as a result of receiving MSC injections.
According to the findings of preliminary research, the vast
majority of MSCs administered intravenously get promptly
stuck in lung parenchymal capillaries having a size smaller
than that of MSCs [297–300]. This phenomenon has the
potential to generate multifocal lung atelectasis and throm-
bosis [264, 297, 301].
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5 | Conclusion and Future Perspectives

Due to their self‐renewal, differentiation multipotency, paracrine
potentials, long‐term ex vivo development, and immunomodulatory
activities, MSCs are a viable cell therapy and tissue repair alterna-
tive. Rheumatic illnesses are immune‐mediated and inflammation‐
related disorders that can affect every system in the body and cause
chronic pain, joint stiffness, fatigue, irreversible disability, and organ
damage, lowering the quality of life. The main drawbacks of con-
ventional treatment for these diseases are that there are few or no
effective treatments, the treatment focuses on relieving symptoms,
and there is no cure. Despite medical advancements, morbidity and
disability remain high. MSCs' regenerative and immunomodulatory
characteristics make them intrigued for treating rheumatic illnesses.

Recent research has demonstrated the promise of MSC‐based
therapies for rheumatic diseases. MSCs are simple to separate
from multiple sources, can develop quickly into large numbers
for therapeutic application, have fewer ethical problems than
ESCs, and have a reduced risk of teratomas than iPSCs. They
move to injured tissue through chemoattraction, making them
beneficial for many therapeutic applications. MSCs showed
promise in treating rheumatic diseases like RA, SLE, SSc, OA,
OP, AS, CD, DM, PM, FM, SS, and others.

MSCs in clinical practice must overcome various obstacles.
These problems include MSC sources, characterization, stan-
dardization, safety, and effectiveness issues; aggressive isolation
techniques and time‐consuming cell culture methods; a low
rate of proliferation in vitro; short‐term survival of MSCs
introduced from the outside in vivo; and ineffective recruitment
or adherence to the intended cells after systematic treatment.
Therefore, MSCs should not be widely used in healthcare until
their safety problems, such as genetic abnormalities, undesired
proliferation of transplanted MSCs, and in vivo tumor forma-
tion potential, are well explored. MSC treatment may help treat
various rheumatic disorders such as Bursitis, Gout, Relapsing
polychondritis, Juvenile idiopathic arthritis, Psoriatic arthritis,
etc. Thus, future studies are needed to explain how to overcome
these obstacles and maximize the benefits of MSC. Finally,
translational research is essential for bench‐to‐bedside transla-
tion and clinical use in the near future.
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