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SUMMARY

As organisms age, somatic stem cells progressively lose their ability to sustain tissue homeostasis and sup-
port regeneration. Although stem cells are relatively shielded from some cellular aging mechanisms
compared with their differentiated progeny, they remain vulnerable to both intrinsic and extrinsic stressors.
In this review, we delineate five cardinal features that characterize aged stem cells and examine how these
alterations underlie functional decline across well-studied stem cell compartments. These hallmarks not only
provide insight into the aging process but also serve as promising targets for therapeutic strategies aimed at

rejuvenating stem cell function and extending tissue health span.

INTRODUCTION

Somatic stem cells, often referred to as adult stem cells, engage
in the maintenance of tissues through homeostatic turnover and
in the repair of tissues through regenerative responses. As such,
these stem cell populations must have evolved mechanisms to
sustain themselves over the scaled lifespans of organisms
whose tissues they maintain,’ and yet, as organisms of different
lifespans age, the decline of these stem cell functions is apparent
in terms of impaired tissue homeostasis and regeneration in
response to injury or disease.’™

In this review, we describe key functional hallmarks of stem
cells that change with age (Figure 1). We have focused on func-
tional aspects as opposed to molecular characteristics or pro-
posed drivers for several reasons. First, the key drivers of cellular
aging, such as genomic instability, altered proteostasis, mito-
chondrial dysfunction, and epigenetic changes,® affect all cells.
As such, stem cell aging is not unique in terms of molecular
and functional drivers. Second, the molecular features of aged
stem cells differ from tissue to tissue, with some themes
emerging but tremendous variability among stem cell popula-
tions. Most importantly, we wanted to focus on functional hall-
marks that are either unique to stem cell physiology or at least
are key defining features related to the role that stem cells play
in tissue homeostasis and repair. These functional hallmarks
manifest at the single-cell level, at the population level, or both.
Notably, the hallmarks of stem cell aging are at the intersection
of the hallmarks of stem cells and those of aging,®” highlighting
features at that interface.

Although there are many types of stem cells throughout the
body, and even multiple subtypes within individual tissues and
organs, we will focus on the populations that have received the
most scrutiny in terms of their age-related functional changes.
Those populations include hematopoietic stem cells (HSCs),
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neural stem cells (NSCs), muscle stem cells (MuSCs), intestinal
stem cells (ISCs), and a variety of stem cells in the skin, including
epidermal stem cells (EpSCs), melanocyte stem cells (McSCs),
and hair follicle stem cells (HFSCs). We will also focus primarily
on stem cell aging in mammalian systems since they account
for most of the studies in this area.

Before we expand upon each hallmark individually, there are
several considerations worth raising that relate to many stem
cell populations. First, we note that somatic stem cells are
responsible for both homeostatic maintenance and regeneration
of awide variety of tissues. However, these two functions may be
quite distinct. Stem cell proliferation associated with tissue ho-
meostasis is generally continuous and occurs in absence of
any trigger from cellular injury. By contrast, tissue repair and
regeneration in response to damage (e.g., in the setting of
trauma, ischemia, and other injuries) typically elicit an acute,
transient, and potentially massive regenerative response. In
those settings, stem cell-mediated repair occurs in a more com-
plex microenvironment that includes inflammation and cellular
debris associated with tissue necrosis. Thus, age-related
changes in stem cell functions may differentially impact the ho-
meostatic versus regenerative/repair aspects of stem cell ac-
tivity.

Aspects of the hallmarks of aging stem cells may be cell
intrinsic, may arise from cell-extrinsic influences, or a combina-
tion of the two. Intrinsic changes would reflect molecular alter-
ations acquired by the stem cell as a result of the passage of
time. These would include somatic mutations that are essentially
irreversible and might affect stem cell function. Epigenetic
changes that perdure over time would also be an example of
an intrinsic change. Extrinsic influences would relate to the
changes in the stem cell niches and the systemic environment.
For example, aging is accompanied by a general increase in
inflammation. This aged inflammatory environment affects the
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Figure 1. Hallmarks of stem cell aging

We review five hallmarks whose changes are fundamental to the functional
decline of aged stem cells in terms of their ability to maintain tissue homeo-
stasis or engage in tissue regeneration.

output or behavior of stem cells. Likewise, the accumulation of
senescent cells in the stem cell niche may negatively impact
stem cell function via paracrine factors. In principle, these effects
could be largely reversible if the environment were modified,
for example by reducing inflammation or eliminating senes-
cent cells.

With these premises, considerations, and caveats, we turn to
the descriptions of the hallmarks of stem cell aging. For each
hallmark, we provide representative examples of how they
change with age in one or more stem cell compartments rather
than provide an exhaustive list for all stem cell compartments.
The hallmarks that we have selected to highlight reflect funda-
mental characteristics of stem cell function (Figure 1): (1) depth
of quiescence, (2) self-renewal propensity, (3) fate of progeny,
(4) resilience, and (5) population heterogeneity. These functions
play key roles in the typical stem cell lineage progression from
quiescence to differentiation (Figure 2).

HALLMARKS OF STEM CELL AGING

As we embark on a description of the hallmarks of stem cell ag-
ing, one recurring theme is that aging may result in either an in-
crease (in a kind of “gain-of-function” mode) or a decrease (in
a kind of “loss-of-function” mode), each of which results in an
impairment of stem cell functionality. These examples only high-
light the balance of inputs that are required for effective stem-
cell-mediated tissue homeostasis and repair. Another recurrent
theme is the extent to which any single hallmark highlighted is
characteristic of individual stem cells (e.g., depth of quiescence)
or is instead a characteristic of the population (e.g., heterogene-
ity). The latter emphasizes the complex interactions between
heterogeneous populations of stem cells as well as between
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stem cells and their environment to produce complex differenti-
ated tissues.

One obvious change that occurs in many stem cell populations
with age affects the number of stem cells in the tissue as quan-
tified by in situ analyses, such as by immunostaining, or by
ex vivo analyses, such as by flow cytometry or single-cell-based
“omics” approaches. As cell number is not a functional readout,
we have not listed changes in numbers as a key hallmark of stem
cell aging. Rather, we have focused on functions, such as self-
renewal or mechanisms of resilience, whose change with age
can result in either a loss of stem cells or an increase in the
stem cell pool size.

Changes in depth of quiescence

Most somatic stem cell populations (e.g., HSCs, NSCs, MuSCs,
and HFSCs) persist in a quiescent state. They rarely divide, only
then giving rise to proliferating progenitors (often called “transit
amplifying” [TA] cells) that sustain tissues during homeostasis
and have the capacity for extensive proliferation during regener-
ation. Quiescence is a state of cell cycle withdrawal, which, un-
like terminal differentiation or senescence, is readily reversible.®
Thus, quiescent stem cells can exit the quiescent state and enter
the cell cycle, while some fraction of their progeny return to
quiescence via self-renewal. The quiescence state, with its lower
and unique metabolic activity (e.g., dependency on fatty acid
oxidation [FAQ]),>~"" allows for the persistence of stem cell pop-
ulations in tissues over the lifespan of an organism, a feature that
is particularly important in long-lived organisms, such as
humans.

There are notable exceptions to the generalization of stem
cell populations persisting in a quiescent state. Both ISCs and
EpSCs persist in a state of continuous proliferation and appear
to be able to generate progeny with negligible decline during ag-
ing."?~'* The mechanisms by which these cells are able to sus-
tain seemingly unlimited proliferative potential without undergo-
ing replicative senescence or substantial decline in proliferative
output remains a mystery.

For many quiescent stem cell populations, alterations in the
depth of the quiescent state with age have been reported. These
states include deeper quiescence in which the kinetics of activa-
tion are slower and more shallow quiescence in which the ki-
netics of activation are accelerated (Figure 3). In muscle, there
is an emergence of a subset of MuSCs that exhibit a deeper
quiescent state with age,’® and this state is associated with
impaired muscle regeneration. This subset was found to have
lower levels of glutathione, and the restoration of glutathione
levels could rescue this aging phenotype.'®> However, there is
also evidence of a population of aged MuSCs that exhibit a shal-
lower state of quiescence, entering the cell cycle readily and
failing to self-renew, thus contributing to the decline in MuSC
numbers with age.'® The loss of quiescence maintenance
among this MuSC subpopulation is due to an increase in FGF2
secreted into the MuSC niche from muscle fibers.'® Inducing a
shallow state of quiescence, termed Gaen, ' by enhancing
mTOR signaling leads to depletion not only of MuSCs, but also
of ISCs and stem cells in the trachea.’® Bulk RNA sequencing
(RNA-seq) analysis of MuSCs exhibiting these different states
of quiescence have revealed distinct transcriptomic signa-
tures.”®"'” Single-cell RNA-seq analysis of MuSCs in different
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Figure 2. Youthful stem cell functionality

Normal functions of stem cells are illustrated, including hallmarks that change with age. “Resilience” is reflected by the absence of cell death during these
processes in young organisms. Heterogeneity is a property of the whole stem cell population and is thus not included in this illustration of the functions starting

with a single stem cell.

experimental states, which have been done extensively,'®?° are

likely to reveal subsets of cells in different depths of quiescence
by their transcriptomic profiles. A continuum of intermediate
states probably exists between quiescence and activation, add-
ing complexity to the changes in the depth of quiescence to stem
cell aging.?"*?

In the brain, quiescent NSCs are found primarily in two specific
regions—the dentate gyrus of the hippocampus and the subven-
tricular zone (SVZ) along the walls of the lateral ventricles. There
is evidence that deeper NSC quiescence is one process that pre-
vents NSC activation and leads to reduced neurogenesis with
age in the SVZ and hippocampus.”®>° This increase in quies-
cence depth is in part a result of signals from the NSC niche,
including the Wnt antagonist sFRP5. Blocking those niche
signals restores aged neurogenesis back toward youthful
levels. The suppression of NSC activation out of the quiescent
state may also be a result of inflammatory signals originating
from T cell infiltration into the aged NSC niche or changes in
metabolism.?®?” Interestingly, sub-populations appear to be
in shallower quiescence (“resting”) and deeper quiescence
(“dormant”), with the former contributing more actively to neuro-
genesis in the young brain but the latter accounting for persist-
ing, albeit lower, levels of neurogenesis at older ages.?*?%*°
Cells in deeper quiescence exhibit gene expression changes in
several pathways associated with aging, including changes in
inflammation, metabolism, proteostasis, and DNA repair.25 In
the hippocampus, deepening quiescence of the dormant NSCs
with age correlates with the decreased expression of ASCL1, a
gene required for the activation of a pool of NSCs.*° Moreover,
chronic in vivo imaging shows that aging reduces the clonal
output of each individual NSCs, by increasing quiescence.®’ In
the SVZ, lineage tracing also revealed increased quiescence of
a pool of NSCs.**

For HSCs, the niche is the bone marrow stroma, with several
specialized cell types that support stem or progenitor cells,
particularly endothelial cells and perivascular leptin-receptor-
positive cells.>” These niche cells produce stem cell factor and
the chemokine CXCL12, which are important for the mainte-
nance of HSCs.**** Among the many changes that occur in
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the HSC population with age is a reduced growth factor respon-
siveness.® This altered responsiveness manifests not only as a
reduced proliferative response, but also as a delay in reactivation
after the exit of quiescence and subsequent first division, consis-
tent with the idea of a deeper quiescent state. These changes
were found to be correlated with a preferential reduction in Akt
signaling in aged HSCs.*® More broadly, changes in the cellular
composition of the niche with age may affect the function and
activity of HSCs. For example, increases in adipocytes in the ag-
ing bone marrow can increase inflammation, which is known to
negatively affect HSCs. Similarly, age-related changes that
affect the proportion of megakaryocytes could influence HSCs
through secretion of different factors.

Changes of self-renewal propensity

Changes in the propensity of stem cells to undergo self-renewal
(Figure 4) reflect a special example of an alteration of the fate of
stem cell progeny. Typically, the self-renewal process is a result
of the asymmetric division of a stem or progenitor cell.***” Self-
renewal ensures the preservation of the stem cell pool rather
than generation of specialized tissue. Therefore, abnormalities
of self-renewal may account for increases or decreases in
stem cell numbers as organisms age.

With age, HSCs exhibit an increased propensity to self-renew
at the expense of differentiation,*®*° resulting in a gradual in-
crease in the size of the long-term HSC pool. At the same time,
there is a gradual decrease in the functional regeneration capac-
ity of stem cells on a per stem cell basis, measured by compet-
itive bone marrow transplantation assays.® The net effect is an
overall maintenance of stem cell activity across the pool. Impor-
tantly, some of the functional activity lost with age can be re-
gained when stem cells are placed in a young environment by
transplantation; however, much of the decline in activity appears
difficult to be reversed by the milieu alone.*’ This apparent in-
crease in stem cell numbers may be driven by somatic mutations
(e.g., in Dnmt3a or Tet2 that increase self-renewal and impair dif-
ferentiation).*” Likewise, environmental changes can promote
the expansion of some stem cell subtypes over others. The over-
all outcome may appear similar in terms of increased stem cell
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Figure 3. Alterations in stem cell quiescence with age

Increases and decreases in the depth of quiescence, resulting in longer and shorter times required for activation, respectively, have been reported in aged stem
cells. Stem cell activation from deep quiescent states has been associated with reduced production of differentiated progeny. Stem cell activation from shallow
quiescence has been associated with an overproduction of TA cells and reduced survival.

numbers, but the mechanisms (several of which are possible
with aging) may have different implications. For example, stem
cell expansion due to mutations that cause clonal hematopoiesis
(CH) is accompanied by a higher risk of malignancy development
and other aging-associated diseases.*’

Adult neurogenesis is maintained by symmetric self-renewal
and differentiation.** With age, NSCs exhibit an increased pro-
pensity for asymmetric division in the SVZ.** Aging is also
accompanied by a decrease in neural progenitor proliferation.*°
NSC self-renewal potential declines with age, and contributes to
the reduction of NSCs in the aged brain.*® This is due, among
many other changes, to a gradual decline in the expression of
the transcriptional regulator Hmga2 which, in young mice, pro-
motes NSC self-renewal by reducing the expression of the tumor
suppressors, p16"™42 and p19*7.%° Indeed, age-dependent in-
crease in p16™“ expression reduces NSC progenitor prolif-
eration.*’

It should be noted that different tissues use different mecha-
nisms to maintain or renew their quiescent stem cell populations,
and the impact of aging on these processes has not been well
studied. For example, in the intestine in addition to the continu-
ously proliferating ISCs, there is another population of stem cells,
the so-called “+4 cells,”*® that are quiescent and serve as a
reserve population under conditions of increased regenerative

demand. To date, no comparable quiescent population has
been identified in the epidermis. Nevertheless, this model of a
tissue having a population of rapidly proliferating progenitors,
which themselves possess potential for both self-renewal and
differentiation, as well as a population of dormant reserve cells,
may be a common mechanism. The intestine also seems to
have a parallel mechanism to replenish differentiated cells. Tuft
cells are differentiated cells in the epithelium capable of giving
rise to stem-like cells.*® There are other examples of more differ-
entiated epithelial cells that can revert back to a more stem-like
state,®” suggesting that various tissues may have evolved mech-
anisms for replacing quiescent stem cells or maintaining tissue
repair even without replenishing the stem cell pool. A report
about the dynamics of McSCs in the skin suggests dormant
stem cells self-renew by first giving rise to a proliferative popula-
tion of TA cells, which, while generating more differentiated me-
lanocyte progeny, also give rise to rare cells that will return to
dormancy and migrate to the stem cell niche.”’ How these
various processes are altered during organismal aging has not
been studied in detail.

Altered cell fate
One of the most-studied features of aging stem cell populations
is the impairment of tissue homeostasis or repair because of
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Figure 4. Alterations in stem cell self-renewal with age

Increases and decreases of self-renewal propensity have been described for aged stem cells. An increased self-renewal propensity comes at the cost of reduced
output of differentiated progeny. By contrast, a decreased propensity to self-renew leads to the gradual depletion of the stem cell pool.

altered differentiation trajectories of stem cell progeny. These
age-related changes can manifest as skewed differentiation or
aberrant gain of an alternative differentiation potential. In either
case, the resulting progeny represent populations that differ in
old tissues compared with young. A change in self-renewal po-
tential was already discussed previously. In some cases, we
have highlighted cell-extrinsic changes in the stem cell niche or
systemic environment that contribute to the changes in progeny
cell fate in aged animals. However, it is likely that all cases of
altered fates of stem cell progeny are due to a combination of
cell-intrinsic changes and external factors.
Skewing of differentiation fates
In multipotent stem cells, progeny typically differentiate along a
normal distribution, but this distribution can change with age
(Figure 5A). One common age-associated change in the popula-
tion of stem cell progeny occurs in the hematopoietic system,
although this is not strictly a change in cell fate of individual cells.
HSCs are now known to represent a pool of cells with slightly
different propensities. With age, myeloid cell production in-
creases, whereas lymphoid production decreases, thus contrib-
uting to a variety of hematologic disorders.*®°27>°

In the adult hippocampus, where NSCs give rise to neurons
and other cells, such as astrocytes, the differentiation potential
becomes skewed with age. Through a series of asymmetric
cell divisions, neural progenitors exhibit a decline in the genera-
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tion of new neurons and a conversion into astrocytes, which
represent a terminal state of differentiation.® Thus, the age-
related decline in neurogenesis is accompanied by an increase
in the formation of new astrocytes.®” In aged ISCs, there is a
skewing of differentiation toward more secretory cells (goblet
and Paneth cells).’® This altered differentiation trajectory is asso-
ciated with a loss of Wnt signaling in ISCs, and restoration of Wnt
signaling can rescue this aging phenotype in the intestine.*®
Abnormal cell fates

In addition to the skewing of normal fates of multipotent adult
stem cells, aging may also be associated with aberrant cell fates
as stem cells exit quiescence and proliferate (Figure 5B). Below,
we highlight two specific categories—when stem cells adopt
aberrant lineages and when they undergo malignant transforma-
tion. We end this section with a discussion of how senescence in
the stem cell niche or even in distant tissues may negatively
impact stem cell function.

Aberrant lineages. In muscle, aging leads to an increased pro-
pensity of MuSCs to adopt a fibrogenic lineage, losing their
myogenic potential and contributing to age-related fibrosis.*®
The increased stiffness of aged extracellular matrix drives
MuSC fibrogenic conversion.®® This propensity is reversible as
heterochronic parabiosis can restore the myogenic potential of
an aged MuSC population back toward levels seen in young an-
imals.®® MuSCs also have a tendency to activate an adipogenic
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Figure 5. Age-related changes in the fates of stem cell progeny

With age, alterations in stem cell differentiation can impact the health of the tissues to which the stem cells give rise.

(A) “Skewed differentiation” illustrates a shift in the balance of normally differentiated progeny in favor of one lineage and at the expense of others.
(B) “Aberrant differentiation” shows the production of novel, non-functional differentiated progeny at the expense of normal cells.

(C) “Malignant differentiation” refers to the potential for stem cells and progenitors to undergo malignant transformation as cells of origin for cancers.

programs with age,®' although this does not seem to contribute
to intramuscular fat accumulation as seen in aged muscle.

In the bone marrow niche for HSCs, mesenchymal stromal
cells (MSCs) support hematopoiesis.®” With age, these MSCs
increasingly give rise to adipocytes,®® contributing to the
increased fatty marrow that is observed in aged individuals. In

addition, aged MSCs also progressively produce cells that adopt
senescent phenotypes.® These aberrant fates are associated
with widespread changes in the MSC epigenome.®®

In aging mice and the non-human primate, the gray
mouse lemur, the decrease in neurogenesis from NSCs in the
SVZ is accompanied by an increase in the generation of
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oligodendrocyte precursors, a fate that is rarely observed in
young animals.®® In both species, this change in cell fate propen-
sity is accompanied by an increase in myelin content in the
corpus callosum. Aged HSCs also produce higher numbers of
aberrant megakaryocytes that arise in parallel to the normal pro-
duction of platelets.®* These abnormal platelets can lead to
increased thrombosis in vivo.

Malignant transformation. Cancer is largely a disease of aging.
How stem cells contribute to cancer with age is an ongoing area
of interest. Broadly, cancer requires the acquisition of genetic
and/or epigenetic changes within a long-lived cell that eventually
leads to transformation. Stem and progenitor cells are generally
the longest-lived cells that still retain the capacity to divide. For
this reason, they are thought to be a reservoir for the emergence
of cancer (Figure 5C). Consistent with the notion of the stem cell
being a key component is the correlation between common ma-
lignancies and tissues with high stem cell turnover.®”

Importantly, many mutations in genes that drive clonal expan-
sion (and loss of heterogeneity, discussed below) also contribute
to the development of malignancies over time. For example, mu-
tations in DNMT3A are the most frequent driver of CH, and these
mutations are also considered to be a major driver of several he-
matologic malignancies.®® Mutations in DNMT3A can arise in
HSCs decades earlier than development of malignancies. The
mutation is thought to drive an expansion of the HSC pool,®®"°
providing a larger target population for secondary hits to act
on, as well as altering the cells epigenetically and metabolically
to enhance the likelihood of transformation. Still, secondary
and tertiary mutations, such as in NPM1 and FLT3, are required
for the development of acute myeloid leukemia.””

Similarly, mutations in TP53, found in non-malignant progeni-
tor expansions in many tissues, often contribute to cancer devel-
opment. Cells bearing the TP53 mutation are found circulating in
blood cell progeny years before the malignancies develop.”
Environmental exposures favor the survival and expansion of
TP53-mutant clones over WT clones, ultimately leading to fulmi-
nant growth with cells carrying numerous additional genetic le-
sions thought to contribute to transformation. Similarly, stem
cells bearing TET2 or DNMT3A mutations are more resilient to
inflammation, such that in an inflammatory environment (found
in aging or other pathologic states), those variant cells are
more able to expand and outcompete WT counterparts.”®

While less well studied outside the hematopoietic system,
these principles likely hold in other tissues. For example, normal
human endometrial tissue consists of multiple glands generated
via stem cells. The stem cells slowly accumulate mutations (~29/
year), which then contribute to the glands.”* Many of the genes
which accumulate mutations are thought to have the potential
to contribute to malignancy development. However, despite
accruing on the order of 1,500 mutations by the fifth decade of
life, with many glands having known cancer-driver mutations in
genes such as KRAS or PIK3CA, endometrial cancer is relatively
rare, and the malignancies have around five times the number of
mutations. Additional processes are likely necessary to drive
malignancy, the seeds of which originate in the stem cells that
regenerate the endometrial glands. Similarly, in mouse models,
malignant astrocytomas can originate from neuronal stem
cells,” and different CNS progenitors may lead to distinct glio-
blastoma subtypes.”®
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Importantly, the aging environment clearly promotes malig-
nancies, but the mechanisms are still unclear. Experimental
models with enforced oncogene expression in stem cells give
rise to tumors infrequently when introduced into young progen-
itors, but at high rates when transplanted into old progenitors,
or in young progenitors with an old cellular milieu. This finding in-
dicates an interaction of intrinsic and extrinsic environments in
transformation.”” Similarly, when cancer-associated mutations
are induced sequentially, the arising malignancy can be more
aggressive if there is more time between the first and second
mutation,”® demonstrating a time-dependent, or environment-
associated, effect on the type of malignancy.

In sum, cancer arising from stem cells is influenced by multiple

factors, including the time needed to accumulate deleterious
mutations. However, even when those mutations are present,
additional factors, both genetic and environmental, are needed
for transformation. This is a rich and relatively under-explored
area that could lead to therapeutic approaches that reduce the
risk of cancer.
Senescence. One of the challenges when reviewing literature
on senescence is terminology. The term “senescence” is now
commonly used to describe aging phenotypes, as opposed to
the original meaning (which we will refer to as “replicative senes-
cence”), which described the phenotype of irreversible cell cycle
withdrawal”® and the adoption of specific biochemical profiles.®°
This conflation is exemplified by the increasing use of the
term “senescence” to refer to aging phenotypes of post-mitotic
cells.?"®2 The absence of definitive markers of replicative senes-
cent cells exacerbates this problem. A particular challenge is the
characterization of rare stem cells or their progeny, but there is
little evidence in any tissue that quiescent stem cells adopt se-
nescent phenotypes without first entering the cell cycle. Further-
more, the ability to rejuvenate aged stem cell populations lends
further support to the negligible amount of replicative senes-
cence among aged stem cell populations.’

By contrast, the increased burden of senescent and inflamma-
tory cells in the aging stem cell niche contributes to the overall
inflammatory milieu.’®® Senescence and inflammation are inex-
tricably linked when considering the biology of the aging stem
cell niche.®® Single-cell RNA-seq analysis of aged NSCs,
MuSCs, and HSCs and their respective niches highlighted the
prominent inflammation associated with age-related stem cell
dysfunction.®* In muscle, senescent cells in the niche impair
aged MuSC function.® In NSCs, the increased inflammation is
linked to interferon and CXCL10 signaling.?**° In the hippocam-
pus, neuroblasts exhibit markers of the senescence-associated
phenotype in the aging brain.®® Aged skeletal stem cells not only
respond to inflammatory signals with loss of function but also
themselves contribute to the inflammatory milieu of the aged
bone marrow.®”

Altered resilience (survivability)

Cellular resilience describes the ability of a cell to deal with
different forms of stress by inducing compensatory responses
to maintain homeostasis. In the context of stem cell aging, we
will focus primarily on the age-related loss of resilience that in-
creases the likelihood of cell death in response to physiological
or pathological stresses. Although not unique to stem cells, we
include this among the hallmarks of stem cell aging because a
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Figure 6. Changes in stem cell heterogeneity with age

The stem cell pool in most tissues is relatively homogeneous early in life, although there are discernable genetic distinctions and behaviors. Over time, the pool
becomes more heterogeneous as cells acquire somatic mutations and experience different exposures to exogenous or endogenous stressors. They develop
differences in epigenetic regulation, exhibit differences in mitochondrial function, and are influenced by all the hallmarks of aging. Ultimately, many stem cell pools
then exhibit declining heterogeneity, as some stem cells are lost through attrition, and others survive or expand through positive selection. As the aging envi-
ronment changes (e.g., systemic inflammation), some stem cells are more suited to that environment and expand, further reducing the heterogeneity of the pool.
Mutations that cause cancer can be acquired at any time. The impact of these mutations on transformation can take decades to be observed, and additional
alterations are usually required for transformation. A theoretical stem cell population corresponding to the hematopoietic system is illustrated, but the same

process is acting in many other tissues.

decrease of resilience may contribute to the decline of a stem
cell population over time, independently of changes in the other
hallmarks. It may also account for an age-related decline in the
outcome of key assays of stem cell function, such as transplan-
tation. While the success of a stem cell transplantation experi-
ment depends on features such as proliferative potential and
self-renewal potential, the stem cells first need to survive the
transplantation process. In that sense, resilience may be the pri-
mary characteristic that determines the success of stem cell
transplantations.

In an early study of stem cell aging, age-related morphological
changes in the mouse intestine were associated with a marked
increase in stem cell apoptosis in response to low doses of irra-
diation.®® This loss of resilience was associated with a decreased
regenerative potential of aged ISCs, a defect that could be
reversed by restoring Wnt signaling in aged ISCs back to youth-
ful levels.®®

In MuSCs, an age-related loss of resilience after reactivation
from quiescence leads to a form of cell death known as mitotic
catastrophe, in which cells die during mitosis.®?°° This type of
cell death is typically caused by unrepaired DNA lesions that
interfere with the replicative machinery. With age, MuSCs exhibit
a marked increase in mitotic catastrophe during a regenerative
response, leading to a reduction of differentiated progeny and
an even greater reduction of self-renewed MuSCs.*® Conse-
quently, the tissue responds less effectively to injuries because
of a decline of the stem cell pool. The increase in mitotic catas-
trophe with age is caused by a decline in MuSC-mediated Notch
signaling in the regenerative niche in a p53-dependent manner.®®

In the hippocampus, in vivo imaging uncovered selective
death of NSC progeny during aging in homeostatic condi-
tions,®" and it is likely that NSC death is further increased in
response to injury in old brains. NSCs induce the activating
transcription factor 4 (ATF4) pathway to promote survival asso-
ciated with stresses of aging.”’ ATF4 is essential for maintain-

ing the glutathione pool to protect NSCs from mitochondrial
dysfunction.

Differences in resilience among variant HSC clones could ac-
count for some of the loss of heterogeneity in the hematopoietic
system. Acquisition of mutations in protein phosphatase Mn2*/
Mg?*-dependent 1D (PPM1D) and Snf2 related CREBBP acti-
vator protein (SRCAP) enhance the resistance of HSCs to envi-
ronmental insults.?>°* They show lower rates of apoptosis than
other HSCs, which ultimately leads to their relative expansion
in the HSC pool.

Interestingly, stem cell aging may also be associated with a
gain of resilience. In mice, the age-related decline in hematopoi-
esis is due to the accumulation of dysfunctional HSCs that
outcompete less resilient, functional HSCs.%* This accumulation
of dysfunctional HSCs, in turn, is driven by metabolic reprogram-
ming. Through the increase of succinate dehydrogenase assem-
bly factor 1 (SDHAF1) over time, HSCs become less dependent
on glycolysis for ATP production and more resistant to oxidative
stress.”*

Changes in population heterogeneity

One stem cell hallmark that changes with age and can only be
assessed with population studies is heterogeneity (Figure 6).
As with other hallmarks included here, heterogeneity can either
increase or decrease with age. Most cellular populations in the
body show increased heterogeneity with age,’® and this increase
in heterogeneity is associated with a wide variety of causes,
including accumulation of mutations in genomic and mitochon-
drial DNA, epigenetic changes, and loss of homeostatic mecha-
nisms in processes such as autophagy, protein quality control,
and RNA processing.' %% Likewise, stem cells exhibit an in-
crease in genetic heterogeneity with age and they accumulate
somatic mutations over time that give each stem cell a unique
genetic fingerprint, which may affect its function.?®~'°" This pro-
cess can lead to increased heterogeneity in all of the functional
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hallmarks described. In general, most stem cell populations
exhibit a gradual increase in heterogeneity in functional assays
during organismal aging. Aged HSCs exhibit a broader range
of functionalities than young HSCs.'% In the hippocampus,
NSCs manifest increases in phenotypic and functional heteroge-
neity with aging, exhibiting marked changes in morphology.'%®
NSCs in the SVZ are heterogeneous, both in terms of cellular
transcriptome and spatial subregions, and this heterogeneity is
linked to different progeny fates.'®" % Single-cell RNA-seq
studies have uncovered changes in NSC heterogeneity at the
transcriptome during aging, '°'%” although it is unclear whether
this leads to functional heterogeneity.

Paradoxically, the acquisition of genomic mutations can ulti-
mately result in a decrease in stem cell population heterogene-
ity.'°® In the human hematopoietic system, this was established
by examining peripheral blood production via deep sequencing
and determining clonal contribution. In young individuals, thou-
sands of stem cells are contributing to blood production at any
given time. However, in aged individuals, there is a dramatic
collapse, such that the majority of blood is being sustained by
only a few clones.'%° The factors that lead to the collapse of het-
erogeneity are not well understood. Likely, a combination of
attrition of some stem cells (caused by somatic mutations or
accumulation of other age-related damage) and enhanced con-
tributions of other stem cells due to the acquisition of somatic
mutations (or possibly epimutations), which confer superior ac-
tivity on these cells, are underlying causes. Some mutations,
such as those affecting the DNMT3A gene, generally enhance
stem cell fitness and result in incremental but steadily increased
contributions to blood production over time,"'® whereas other
mutations confer enhanced stem cell function primarily in an
aged environment.'”® How these mutation lead to “super”
stem cells is not completely understood, and likely varies among
somatic mutations.*® Experimentally, mutations in some epige-
netic regulators, such as DNMT3A and TET2, enhance stem
cell self-renewal, thus leading to a larger pool of HSCs that can
disproportionately contribute to blood production. Many other
genes, including genes in DNA damage response pathways,
are also drivers of CH, and the consequences of these mutations
likewise enhance the competitive advantage of those clones in
ways distinct from epigenetic regulators.9%:9%111.112

CH is not simply a marker of aging; it seems to contribute to
multiple age-associated conditions. Several CH-associated
genes are linked to hematologic disorders. Accordingly, the
risk of developing hematologic malignancies is increased in
the context of CH.®®"'® Importantly, CH is also associated with
an elevated risk for some non-hematologic conditions, particu-
larly cardiovascular disease. This is thought to be due to an
increased inflammatory environment promoted by the large CH
clones,*""® but detailed mechanisms are still unclear. CH
has also been implicated in protection against some Alzheimer’s
pathologies,’'® and there is still more work needed to under-
stand the broader effects on healthy aging.''®

Age-associated clonal evolution that leads to loss of heteroge-
neity is evident in many tissues, for example, in human sun-
exposed skin."'® Among the genes that are commonly mutated
(driving clonal expansions) are those in the Notch signaling cell
pathway, a key driver of malignant transformation of skin cells
in cancers, such as squamous cell carcinoma.'?° Similar clonal
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expansion associated with Notch (and other) mutations was
observed the in epithelium of the esophagus.'®' Mutations in
TP53, a critical tumor suppressor in most mammalian tissues,
are also commonly found in expanded clones in many tissues.
The prevalence of expanded clones with TP53 and other muta-
tions undoubtedly contribute to the increased rate of cancer
with age.

In the intestine, the actively proliferating stem cells continu-
ously compete for space within the stem cell niche in a process
referred to as “neutral drift.'?>'?*” This process can arise from
cell competition driven by somatic mutations, but happens
even in the absences of mutations, and results in a reduction
of clonal heterogeneity with age. ISCs exhibit an age-related
reduction in the expression of genes associated with cell adhe-
sion, thus accelerating neutral drift.'>* Intriguingly, during ho-
meostatic aging, MuSCs maintain clonal diversity, with loss of
that diversity observed only in response to repeated bouts of
muscle injury and regeneration.'%°

The accumulation of somatic mutations in tissues is universal,
as DNA damage is constantly acquired even in post-mitotic tis-
sue, and not all DNA is repaired perfectly; some mutations inev-
itably become fixed.'?® The extent to which accumulation of mu-
tations per se contributes to aging, or just leads to altered stem
cell and tissue function, is an important question for future
studies.

INTERVENTIONS TO REJUVENATE AGED STEM CELLS

Features of stem cell aging provide an interesting contrast to the
aging of other cells in the body, particularly post-mitotic cells.
Whereas most, if not all, of the drivers of tissue aging are likely
to affect stem cells as well, it may be that stem cells are uniquely
resistant or uniquely sensitive to certain intrinsic and extrinsic
stresses. Interventions that may delay or even reverse the impact
of aging on cells and tissues receive considerable interest from
scientific and lay communities alike. It is therefore interesting
to consider how such interventions might target stem cells spe-
cifically. Within a framework of hallmarks of stem cell aging, the
ability to rejuvenate aged stem cells may predict which interven-
tions are likely to offer the greatest benefits for organismal
health. Below, we highlight several interventions that have
been studied in the context of stem cell aging and rejuvenation,
although in most cases it is not possible to discern whether the
beneficial effects arise from direct actions on stem cells or indi-
rectly via the stem cell niches.

Systemic factors

Initial studies that modulated systemic factors to enhance aged
stem cell function performed using heterochronic parabiosis and
transfusion of young plasma into aged mice.'?” The initial heter-
ochronic parabiosis studies of stem cell rejuvenation demon-
strated enhanced function of aged MuSCs, improvements in sur-
vival, and cell fate changes.®'?® These studies also suggested a
change in the state of cellular quiescence, with an acceleration of
quiescent MuSC entry into the cell cycle.””'?® A subsequent
study of NSCs revealed increased neurogenesis after transfer-
ring young plasma into old mice.'?° This increase most likely in-
dicates a shallower depth of quiescence given the increased en-
try of NSCs into the cell cycle. Single-cell RNA-seq studies have
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also confirmed the sensitivity of old NSCs to heterochronic para-
biosis.'*° Over the years, many studies have revealed similar ef-
fects of young system factors on other aged stem/progenitor cell
populations, " typically with an enhancement of proliferation or
restoration of differentiation potential as the main readouts.
Recently, single-cell RNA-seq analysis suggested that HSCs
may be responsive to the rejuvenating effects of heterochronic
parabiosis, > although there are conflicting data on this point."**
The single-cell RNA-seq data supported the idea that youthful
systemic factors revert the differentiation potential of aged
HSC to that of younger animals."**

In addition to promoting rejuvenation with youthful systemic
factors, approaches that block systemic pro-aging factors
may be of value. A number of inflammatory cytokines increase
with age that affect stem cell function.*’'?° Recently, inter-
leukin-11 (IL-11) was found at high levels in the serum of
aged mice, and blocking with an antibody ameliorated multiple
aging-associated effects and extended lifespan.’** The extent
to which this has an effect on stem cell function remains to
be determined.

CR/fasting

Among the most-studied dietary interventions with regard to ag-
ing benefits are caloric restriction (CR) and fasting.'*®>'*® CR is
more complex because of the many variables (extent and duration
of restriction, composition of the diet, etc.) that make comparisons
of different studies challenging. HSCs from aged mice on 30% CR
have demonstrated increased quiescence, resilience, and regen-
erative potential and a restoration of youthful differentiation trajec-
tories.'®” The effects of CR on aged MuSCs is less clear, and both
beneficial and detrimental effects have been reported.*®'%° In the
intestine, CR increases ISC numbers by upregulating sirtuin,
SIRT1, and promotes ISC differentiation via 3-hydroxy-3-methyl-
glutaryl-coenzyme A synthetase 2 (HMGCS2)."*"*" In the brain,
the effect of CR on NSCs is variable and may depend on the spe-
cific CR regimen and duration. For example, a 40% reduction in
food intake for 6 months does not enhance proliferation of aged
NSCs in the SVZ but does prevent the age-dependent decline in
neurogenesis,'** possibly by decreasing inflammation. Moreover,
a 40% reduction in food intake for 12 months also prevents the
age-dependent decrease in NSCs and their progenitors in the hip-
pocampus.'“® However, intermittent fasting for 1 month is not
sufficient to counter the age-dependent decline in NSCs in the
hippocampus.'“* CR increases quiescence and the repopulation
potential of aged HSCs and prevents the age-related increase of
HSC numbers, while impairing differentiation along the lymphoid
lineage.**

Fasting is somewhat more straightforward to study because
the main variable is duration. A 24-h fast promotes intestinal
regeneration in aged mice by enhancing the self-renewal poten-
tial of aged ISCs.'*® This beneficial effect is mediated by
inducing a metabolic program of FAO in the ISCs, a process
that is mediated by the rate limiting enzyme in FAO, Cpt1a.'*°
Fasting benefits aged MuSCs as well. The induction of the ke-
tone body p-hydroxy butyrate (BHB) in the serum by fasting en-
hances the resilience of MuSCs in aged mice.'*’ This effect is
due to a direct effect of BHB on MuSCs since ex vivo treatment
leads to increased survival of aged MuSCs in transplantation
studies.”*’ Intermittent fasting restores youthful differentiation
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potential to aged oligodendrocyte progenitors (OPCs).'*® A
regimen that mimics aspects of CR (intermittent fasting/re-
feeding) leads to increased proliferation in the hippocampus,
which may be due to the re-feeding phase.'*°

Exercise

Some of the earliest evidence of the benefits of exercise on the
function of aged stem cells came from studies of neurogenesis.
Voluntary wheel running increases the proliferation and survival
of NSCs in the dentate gyrus.'*° Transfer of plasma from exer-
cised mice to non-exercised mice likewise increases NSC prolif-
eration,®"'5? suggesting that blood-borne factors mediate the
effects of exercise on neurogenesis. Within the hematopoietic
system, exercise increases HSC quiescence and reverses age-
related changes in HSC differentiation potential, with corre-
sponding changes in the transcriptome and epigenome.'*®
With age, MuSCs exhibit a decrease in cyclin D1 expression
and a corresponding slowing of activation out of quiescence.'**
Exercise restores youthful levels of cyclin D1 to aged MuSCs, en-
hances their activation, and promotes aged muscle repair. As
with NSCs, transfer of plasma from exercised, aged mice to
non-exercised aged mice increases cyclin D1 levels and youthful
activation of aged MuSCs."'** In a single-cell RNA-seq study of
young and aged NSCs, MuSCs, and HSCs and their correspond-
ing niches, exercise reverses age-related inflammatory signals in
the niches and restores youthful molecular signatures in the stem
cell compartments.®* Both single-cell-specific aging clocks (ma-
chine learning models that predict age based on single-cell data)
as well as spatial aging clocks (machine learning models that
predict age based on spatial transcriptomic data) confirm the
rejuvenating effect of exercise on the NSC lineage.'*%"°°

Drug and metabolite treatments

A wide variety of drugs has been shown to slow the aging pro-
cess, manifested as an extension of lifespan,*° but few of these
have been shown to exert their beneficial effects via actions on
stem cells.. Among the many age-modifying drugs that have
been studied, the few that have been tested in assays of stem
cell function and tissue regeneration in aged animals include ra-
pamycin and metformin.

Rapamycin, an inhibitor of mTOR, restores competitive repo-
pulation activity to aged HSCs,'®” consistent with the increase
in mTOR activity in HSCs with age. While there has been a lot
of interest in the lay media for using rapamycin as a general
anti-aging drug, not all the data are uniformly positive and side
effects can be limiting."*® Metformin, an activator of the AMPK
pathway used in the treatment of type 2 diabetes, restores the
molecular signature and differentiation potential of aged OPCs,
thus enhancing remyelination in aged rats subjected to experi-
mentally induced demyelination in the brain of aged rats."“® Met-
formin also promotes NSC proliferation and self-renewal by
increasing levels of the transcription factor Tap73, a member
of the p53 family.">®

Metformin has also been implicated in impacting CH, an intrin-
sically stem cell-driven aging phenomenon. Examination of sam-
ples from the UK Biobank showed that individuals taking metfor-
min as an anti-diabetic treatment showed lower levels of
DNMT3A-associated CH."® This result was linked to oxidative
phosphorylation, and inhibition of mitochondrial electron
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transport blocked the effects.'®’ Moreover, a mouse model
demonstrated that other drugs that blocked mitochondrial elec-
tron transport, such as MitoQ, '®® could also abrogate the effect
of Dnmt3a-mutations on HSC expansion. The broader implica-
tions for aging are still unknown, but these studies point to an
important role for metformin and mitochondria in HSC aging.

Several studies have shown that treatment of mice with a small
molecule inhibitor of the RhoGTPase Cdc42 results in rejuvena-
tion of different stem cell populations. This inhibitor, Cdc42 activ-
ity-specific inhibitor (CASIN), restores canonical Wnt signaling
and youthful function in HFSCs.'®® Likewise, inhibition of
Cdc42 enhances aged ISC function and restores crypt regener-
ation activity; Cdc42 also enhances HSC transplantation effi-
cacy. %% Pharmacological inhibition of Thrombospondin/
CDA47 signaling or enhancement of prostaglandin signaling
both restore youthful function to aged MuSCs.'%%:1¢”

In addition to drugs, metabolites that may mimic the effects of
either diet or exercise have been tested in studies of improve-
ments of aged stem cells. Nicotinamide riboside (NR), a precur-
sor of NAD which declines with age, '°® restores ISC numbers in
aged mice and reverses the age-related decline in ISC func-
tions.'®® Likewise, NR supplementation increases HSC com-
partments in aged mice and improves survival after HSC trans-
plantation by improving mitochondrial function.'”®'”" Repletion
of NAD with NR leads to variable enhancement of functions of
MuSCs, NSCs, and McSCs."”? The ability of metabolites to
restore youthful function to aged stem cells is likely related to
the key role these molecules play in determining the epigenetic
status of cells as co-factors in epigenetic regulators.’”>"7*

Partial reprogramming

There is much interest in the potential of partial reprogramming
using Yamanaka factors (Oct3/4, Sox2, KIif4, and c-Myc
[OSKM]) to restore youthful properties to aged cells throughout
the body."”® This approach to rejuvenation is based on the notion
that the dedifferentiation potential can be uncoupled from the
rejuvenation potential of OSKM factors.'”® The extent to which
partial reprogramming impacts somatic stem cells, either directly
or indirectly, has not been widely studied. Whole-body partial re-
programming enhances the regeneration of pancreas and mus-
cle,’”” and more regional or cell-specific reprogramming en-
hances the regeneration of muscle and the regrowth of axons in
the visual system after injuries.’”®"'”® However, in the cited
studies there was no direct evidence of reprogramming of stem
cells. Such whole-body reprogramming appeared to have negli-
gible effects on middle-aged neural stem or progenitor cells in
the hippocampus, but did enhance the migration of NSC progeny
in both young and middle-aged mice.'° In the SVZ, whole-body
reprogramming as well as SVZ-targeted reprogramming could
restore neural progenitor cell number and the generation of new
neurons in the olfactory bulb.'®' Transient expression of reprog-
ramming factors in vitro was shown to restore youthful properties
to aged MuSCs from both mice and humans.'®?

CONCLUDING REMARKS

The field of stem cell aging has progressed rapidly and in parallel
with remarkable advances in the broader field of the biology of
aging.. The phenotypic characteristics of impaired regeneration
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of injured tissue in older individuals is now understood at the level
of stem cell function and the environment in which those stem
cells engage in tissue repair. Although this review has focused
on the hallmarks of stem cell aging, age-related changes in the
local and systemic environments and the immune system clearly
play critical roles in all regenerative processes.

One of the challenges in the study of stem cell aging is the
absence of a molecular definition of cellular age. Even as bio-
markers, including various “aging clocks,” are used to assess
the biological age of somatic cells,"**'®? it is unclear how these
record the age of the cell per se. Recent studies have revealed
that stem cells may age at a different rate compared with the tis-
sues in which they reside.'®" As such, it may be necessary to
develop biomarkers of aging that are specific to the stem cell
population under consideration and that may record differences
in cellular age between differentiated cells and stem cells. Such
an approach may be useful when developing aging interventions
targeted toward stem cells that can replenish somatic tissues.

The absence of clear molecular determinants of cellular age
makes it difficult to assess the aging of the cells and their “rejuve-
nation.” As described above, there are many interventions and
treatments that restore youthful properties to aged stem cells,
but the extent to which any of these are true rejuvenations will
depend on the molecular and functional characteristics that define
a young stem cell. So far, a commonly used assessment for stem
cell function across compartments is a stem cell’s ability to prolif-
erate and differentiate, which has been traditionally measured by
incorporation of base analogs, lineage tracing, and marker anal-
ysis. Current challenges and opportunities in this area include
the development of sophisticated in vivo imaging methods to visu-
alize stem cell dynamic directly in a tissue'®*"%° and artificial intel-
ligence approaches. The emergence of artificial intelligence pro-
vides the opportunity to build foundation models for stem cells
and more generalizable aging clocks, including spatial aging
clocks, ®® or clocks based on modalities other than transcriptom-
ics (e.g., proteomics, metabolomics, image-based, etc.). Such
machine learning models, particularly if trained on stem cell func-
tion, should be particularly powerful at identifying rejuvenation ap-
proaches for stem cells across tissues and species.

Finally, as aged stem cells may be functionally enhanced
without conversion back to a youthful molecular state, the mo-
lecular underpinnings of rejuvenation interventions, and the
value of aging clocks in evaluating these interventions will be
essential to understand. It will also be interesting to determine
the durability of rejuvenating interventions, whether they can
permanently enhance stem cell function, and the overall impact
they have on the tissue and organism.
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