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The gut microbiota of centenarians plays a vital role in promoting healthy longevity. We performed a
cross-sectional study of 224 people from Jiaoling, China, which is globally recognised for the longevity
of its residents. Compared with younger people, centenarians showed significantly increased alpha-
diversity, enrichment of the beneficial bacteria Lactobacillus, Akkermansia, and Christensenella, and

increased redox capacity in the gut microbiota. Serum metabolomics of centenarians showed
significant enrichment of antioxidant metabolites, including L-ascorbic acid 2-sulphate and lipoic
acid. Finally, we isolated and screened a strain of Lactobacillus plantarum 124 (LP124) with a good
antioxidant effect on the gut microbiota of centenarians. Animal experiments further verified that
mesaconic acid from LP124 regulates the gut microbiota, is anti-inflammatory, relieves oxidative
stress, maintains the intestinal barrier, and is the best-known anti-aging molecule. LP124 derived from
the gut microbiota of centenarians and its metabolite mesaconic acid, have a significant positive effect

on health and longevity.

Aging of the global population is becoming a serious problem. Evidence
exists that human gut microbiota plays a key role in human health and
chronic diseases'”. Therefore, the gut microbiota is an important factor in
promoting human health®. Evidence from an increasing number of studies
suggests that gut microbiota disorders are key factors that lead to aging and
chronic disease’”, and that the steady state of the gut microbiota is a healthy
aging regulator”". Therefore, the reconstruction of gut microbiota homo-
eostasis may be an important target for improving health and longevity.

Centenarians provide a good natural model for studying longevity and
aging. The composition of microbiota in centenarians plays an important
role in healthy aging. Multiple cross-sectional studies have shown that as
people age, their microbiota shows diverse changes compared with younger
controls, with fewer beneficial microbes and more opportunistic disease-
causing microbes'>'*. However, the core microbiota composition is reduced
in centenarians and health-related bacteria (including Lactobacillus) are
enriched". In addition, locus cohort studies of people of different age groups
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and population locations have shown that novel bile acid biosynthesis
pathways are abundant in the microbiota of centenarians and that the gut
microbiota of centenarians has an exogenous material degradation
function'®". Longevity-related gut microbiota (such as Christensenellaceae,
Porphyromonadaceae and Rikenellaceae) and functions (such as xenobiotic
degradation) play important roles in healthy longevity'*>. Although these
studies established an association between gut microbiota and longevity,
theylacked further responses to these findings. Key beneficial or detrimental
strains were not isolated, identified, preserved, and screened. Furthermore,
the anti-aging function of key strains was not verified in vitro and in vivo.
Finally, the key substance for the anti-aging effect of key strains was not
determined and verified. Therefore, more detailed comparisons, larger
sample sizes, longer trajectories, and further strain isolation screening and
validation are needed to determine the function of the microbiome in
centenarians and anti-aging measures to clarify the relationship between gut
microbiota and health and longevity.

Previously, we observed that the gut microbiota of long-lived indivi-
duals contained a high abundance of health-related Lactobacillus’. In this
regard, we targeted the isolation of Lactobacillus in the gut microbiota of a
long-lived township population and screened and verified Lactobacillus
plantarum 124 (LP124) with good anti-aging function through in vitro
screening and in vivo verification methods. Metabolomics analysis showed
that the serum levels of mesoconic acid (MA), lysine (Lys), and butyrate
(But) in mice administered with LP124 were significantly higher than those
in the model group. To explore the potential anti-aging role of LP124, we
studied the anti-inflammatory and anti-aging effects of MA, Lys, and But on
the aging process.

We performed a cross-sectional study involving 224 participants that
included centenarians and other age groups (20-110 years). We examined
the gut microbiota structure and function of all participants using meta-
genome analysis and characterised the serum differential metabolites of all
participants using metabolome analysis. Based on our previous results, we
further verified the anti-inflammatory and anti-aging effects of mesaconic
acid, lysine, and butyrate on the metabolites of Lactobacillus plantarum 124
(LP124), a longevity-related strain, through animal experiments. This study
aimed to explore that gut microbiota, especially gut probiotics and their
metabolites, have a positive effect on health and longevity in long-lived
people.

Results

Composition and functional characteristics of gut microbiota in
long-lived people of different ages

According to age, the population in the long-lived areas was divided into
middle-aged (Y40: 21-40 years and Y60: 41-60 years), older adults (Y80:
61-80 years and Y100: 81-99 years), and centenarian (Y120: 100-110 years)
groups. The top 35 relative abundance of the gut microbiota at the genus
level were shown in Fig. 1A. Principal component analysis (PCA) identified
two of the most variable classes across all populations, Bacteroides and
Parabacteroides, which are major contributors to the human gut type
(Fig. 1B). A constructed taxonomic phylogenetic tree showed that the
genera level species abundance of the Y40, Y60, Y80, and Y100 groups
differed significantly from that of the Y120 group (P < 0.05). Summarising
the species selected by comparing Y40 vs. Y120, Y60 vs. Y120, Y80 vs. Y120,
and Y100 vs. Y120 groups identified 281 distinct species (Fig. 1C). Diversity
characteristics of the gut microbiota in long-lived people of different ages
were examined. According to Chaol index values, the gut microbiota
diversity of the centenarian group (Y120) was significantly higher than that
of the middle-aged groups (Y40 and Y60) (Fig. 2A-D). Principal co-
ordinates analysis (PCoA) showed that the gut microbiota of the cen-
tenarian group (Y120) was different from the middle-aged (Y40, Y60) and
the older adult (Y80, Y100) groups (Fig. 2E-H). A volcano map of the
different bacteria was drawn according to the P-values of the DESeq2
analysis results. The beneficial bacteria Akkermansia, Lactobacillus, and
Christensenella in the gut microbiota of the centenarian group (Y120) were
significantly more prevalent than those in the middle-aged (Y40, Y60) and

older adult (Y100) groups (Fig. 2I-L). The findings indicate that these
beneficial bacteria play important roles in health and longevity.

To explore the role of the beneficial bacteria Akkermansia, Lactoba-
cillus, and Christensenella in health and longevity, we screened 281 distinct
species with an abundance >107>. Spearman correlation analysis was per-
formed for the Y40, Y60, Y80, Y100, and Y120 groups. The Akkermansia,
Lactobacillus, and Christensenella genera correlated with absolute correla-
tion coefficient values >0.4 were presented at network and heat maps
(Fig. 3). Akkermansia strongly correlated with Acholeplasma, Brevibacillus,
Caloramator, and other genera in the Y120 group (Fig. 3A-F). Christense-
nella was strongly correlated with Massilimaliae, Provencibacterium, and
Ruminiclostridium, in the Y40, Y60, Y80, Y100, and Y120 groups
(Fig. 3A-E, G). Lactobacillus strongly correlated with Acholeplasma, Crii-
bacterium, Desulfotomaculum, Lachnobacterium, and other genera in the
Y120 group (Fig. 3A-E, H). Analysis of metabolic pathways revealed
changes in gene abundance (Fig. 4). In the functional genes pathway with
the largest difference in abundance, the abundance of related genes in the
Y100 and Y120 groups was significantly higher than that in the Y40, Y60,
and Y80 groups. The microbiota of centenarians showed a significantly
increased redox capacity for methyltransferases, dehydrogenases, and
oxidoreductases.

Serum metabolomics characteristics of longevity population at
different ages

We further characterised the serum metabolomics of the different age
groups in the long-lived townships. Compared with the middle-aged (Y40,
Y60) and older adult (Y80, Y100) groups, the relative expression levels of the
L-ascorbic acid 2-sulphate, (R)-lipoic acid, L-arginine, lipoamide, fumaric
acid, citraconic acid, glutamine, ascorbic acid, and taurolithocholic acid
3-sulphate metabolites were higher in the centenarian group (Y120) under
the negative mode (Supplementary Fig. 1). The relative expression levels of
the indole-3-butyric acid, glycochenodeoxycholic acid, methionine sulf-
oxide, dehydrocholic acid, glycocholic acid, arachidonoyl amide, and 5-
hydroxyindole-3-acetic acid metabolites were higher in the Y120 group in
the positive mode (Supplementary Fig. 2). The findings indicate that these
metabolites play important roles in health and longevity.

The analysis of differential serum metabolite characteristics between
the middle-aged (Y40, Y60), older adult (Y80, Y100), and centenarian
(Y120) groups is shown in Fig. 5. Glutamine, taurolithocholic acid 3-sul-
phate, glycochenodeoxycholic acid, fumaric acid, indole-3-butyric acid, DI-
indole-3-lactic acid, and ascorbic acid was significantly upregulated in the
centenarian group (Y120) compared to the other groups. Assessment of the
characteristics of the serum metabolomic Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment pathways in the different age groups
revealed significant differences between the middle-aged (Y40 and Y60),
older adult (Y80 and Y100), and centenarian (Y120) groups (Supplemen-
tary Fig. 3). Significantly different KEGG enrichment pathways included
ascorbate and aldarate metabolism, bile secretion, citric acid (TCA) cycle,
ferroptosis, glutathione metabolism, hypoxia-inducible factor-1 (HIF-1)
signalling pathway, vitamin digestion and absorption, and others.

Correlation analysis of gut microbiota and serum metabolome in
longevity population at different ages

We selected the top five differentially bacteria at the genus level and com-
pared the top ten differentially expressed metabolites to analyse the corre-
lation between the gut microbiota and metabolites. In the Y40 vs. Y120
analysis in the negative mode (Supplementary Fig. 4A), Syntrophobotulus
was significantly and positively correlated with glutamine levels. In the Y40
vs. Y120 analysis in the positive mode (Supplementary Fig. 4B), Alistipes and
Desulfuromonas were significantly positively correlated with N3,N4-
dimethyl-L-arginine. Marispirochaeta and Syntrophobotulus were sig-
nificantly positively correlated with glycochenodeoxycholic acid. In the Y60
vs. Y120 analysis in the negative mode (Supplementary Fig. 4C), Methylo-
microbium was significantly positively correlated with gluconic acid. In the
Y60 vs. Y120 analysis in the positive mode (Supplementary Fig. 4D),
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Fig. 1 | Distribution characteristics of gut microbiota in long-lived people at
different ages. A Relative abundance heat map of the top 35 species at the genus
level. B PCA map of the relative abundance level of the top 35 bacteria. PC, principal
component. C Taxonomic phylogenetic tree for the difference analysis between the
Y40, Y60, Y80, Y100, and Y120 groups. A total of 257 species from 24 phyla were
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selected based on 281 species, with an average relative abundance >107°. The outer
ring colour indicates that the species in each group had a significant increase
(orange) or decrease (green) compared with the Y120 group. The inner ring shows
the mean relative abundance of each species in all samples.
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Fig. 2 | Diversity characteristics of gut microbiota in long-lived people at different ages. A-D a-diversity analysis of Y40, Y60, Y80, Y100 and Y120 groups. E-H PCoA of
the Y40, Y60, Y80, Y100, and Y120 groups. I-L Volcanic map of the Y40, Y60, Y80, Y100, and Y120 groups.

Methanopyrus was significantly positively correlated with coenzyme Q2. In
the Y80 vs. Y120 analysis in the negative mode (Supplementary Fig. 4E),
Bordetella, Dechloromonas, Eikenella, Holospora, and Leminorella were all
associated with 3-indoxyl sulphate, whereas D-(-) -ribose, D-arabinose,
gluconic acid, and glutamine were negatively correlated. In the Y80 vs. Y120
analysis in the positive mode (Supplementary Fig. 4F), Bordetella,
Dechloromonas, Eikenella, Holospora, and Leminorella were negatively
correlated with glycodeoxycholic acid, N3, N4-dimethyl-L-arginine, and

proline-hydroxyproline. In the Y100 vs. Y120 analysis in the negative mode
(Supplementary Fig. 4G), Cyclobacterium was significantly positively cor-
related with 1-methyladenosine, Slackia negatively correlated with glyox-
ylate levels, and Xanthomonas was positively correlated with D-arabinose
and taurolithocholic acid 3-sulphate. Finally, in the Y100 vs. Y120 analysis
in the positive mode (Supplementary Fig. 4H), Salegentibacter was sig-
nificantly and positively correlated with indole-3-butyric acid, and Xan-
thomonas positively correlated with glycochenodeoxycholic acid content.
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Fig. 3 | Interaction characteristics of Akkermansia, Lactobacillus, and Chris-
tensenella in the gut microbiota of long-lived people at different ages. A-E
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K00750 GYG1, GYG2, glycogenin [EC:2.4.1.186]
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K19967 dta, D-threonine aldolase [EC:4.1.2.42
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Fig. 4 | Changes of longevity-related bacterial genes in the KEGG pathway
module and KO gene. Four stages (Y40, Y60, Y80, and Y100) showed significantly
increased or decreased bacterial genes abundance compared with the centenarian

group (Y120). Significant changes (increase or decrease) are shown as follows: +++,
increased P < 0.005; ++, increased P < 0.01; +, increased P < 0.05; ———, reduced
P <0.005; ——, decreased P < 0.01; and —, decreased P < 0.05.

Effects of metabolites of L. plantarum 124 (LP124) in aging mice
Previously, we targeted the isolation of Lactobacillus in the gut microbiota of
a long-lived township population and screened and verified Lactobacillus
plantarum 124 (LP124) with good anti-aging function through in vitro
screening and in vivo verification methods. Metabolomics analysis showed
that the serum levels of mesoconic acid (MA), lysine (Lys), and butyrate
(But) in mice administered with LP124 were significantly higher than those
in the model group’. To explore the potential anti-aging role of LP124, we
studied the anti-inflammatory effects of MA, Lys, and But on the aging
process in mice.

In terms of inflammatory factors (Fig. 6A), LP124, MA, Lys and But
significantly decreased the levels of pro-inflammatory factors and sig-
nificantly increased the levels of the anti-inflammatory factor. MA sig-
nificantly reduced the levels of pro-inflammatory factors interleukin (IL)-
1B, 1L-6, IL-5, and tumour necrosis factor-alpha (TNF-a) in colon, liver, and
kidney tissues, and significantly increased the levels of the anti-
inflammatory factor IL-10 in these tissues. MA significantly decreased the
levels of NOD-like receptor protein 3 (NLRP3), apoptosis-associated
microprotein (ASC), and cysteine proteinase-1 (Casp-1) in colon, liver, and
kidney tissues. In terms of oxidative stress (Fig. 6B), LP124, MA, and But
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differential metabolite characteristics between the older adult group (Y80) and the
centenarian group (Y120). S-X Correlation graph for the analysis of differential
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Fig. 6 | Effects of LP124, MA, Lys, and But in
aging mice. Effects of LP124, MA, Lys, and But
mesoconic acid, lysine, and butyrate on inflamma-
tory factors (A), oxidative stress (B), intestinal bar-
rier (C), haematoxylin and eosin (HE) staining,
periodic acid-Schiff (PAS) staining, and immuno- i
histochemistry of Mucin 2 (MUC2) in colonic tissue i
(D) in rapidly aging mice. §
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significantly increased the levels of glutathione peroxidase (GSH-Px),
superoxide dismutase (SOD), total antioxidant (T-AOC), and catalase
(CAT), and significantly reduced the levels of reactive oxygen species (ROS),
malondialdehyde (MDA), carbonyl protein, nuclear factor kappa B (NF-
kB), P38 protein, and P65 protein in colon, liver and kidney tissues. In terms

of the intestinal barrier (Fig. 6C), LP124, MA, and Lys significantly increased
the levels of zonula occludens protein 1 (ZO-1), tight junction protein
(occludin), and claudin-1 in colon tissue. LP124, MA, and But significantly
decreased the serum levels of d-lactic acid (D-LA), diamine oxidase (DAO),
and endotoxin (ET). Hematoxylin and eosin staining revealed intact
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intestinal mucosa in the LP124, MA, Lys, and But groups; the epithelial cells
were arranged neatly; no exfoliated, necrotic, or inflammatory cell infiltra-
tion was observed; there were more scattered goblet cells between columnar
cells; and no obvious abnormalities were observed in the structure of the
muscle and serosal layers. Periodic acid-Schiff (PAS) staining was positive
(PAS++) for the LP124, MA, and Lys groups. Immunohistochemistry was
moderately positive for mucin 2 (MUC2++) (Fig. 6D).

The relative expression levels of mRNAs of the GSH-Px, SOD, thior-
edoxin reductase (TrxR), nuclear factor erythroid 2-related factor 2 (Nf2),
Kelch-like ECH-associated protein 1 (Keapl), B-cell leukaemia/lymphoma
2 protein (Bcl2), Bcl-2 associated X-protein (Bax), NF-kB, NOD-, LRR- and
pyrin domain-containing protein 3 (NLRP3), and Caspase-1 genes in colon
tissues are shown in Supplementary Fig. 5A. LP124, MA, and Lys sig-
nificantly increased the relative expression levels of GSH-Px, SOD, TrxR,
and Nrf2 mRNA, and significantly reduced the relative expression levels of
Bax and NLRP3 mRNA in colon tissues. LP124 and MA significantly
reduced the relative mRNA expression levels of Keap 1, NF-«B, and Caspase-
1 genes in colon tissue. MA significantly increased the relative expression of
Bcl2 mRNA in colon tissue. Finally, LP124 and MA significantly increased
the level of nicotinamide adenine dinucleotide (NAD+) in the colon, liver,
and kidney tissues (Supplementary Fig. 5B).

Regulation of MA, Lys, and But on the gut microbiota of

aging mice

The a-diversity of mice gut microbiota was analysed. The results are pro-
vided in Supplementary Data 1. In terms of the abundance index, the
observed species, Chaol, and Abundance Based Coverage Estimator (ACE)
indices of the mouse gut microbiota were significantly increased by LP124,
MA, Lys, and But group. In terms of the diversity index, LP124, MA, Lys,
and But group significantly increased the Shannon index of the gut
microbiota in mice. LP124, MA, Lys, and But group simultaneously
increased the abundance of Parabacteroides, Rikenellaceae RC9 gut group,
and Bacteroides, and simultaneously decreased the abundance of harmful
bacteria Helicobacter pylori, Escherichia-Shigella, and Staphylococcus in the
intestinal tract of mice. LP124 group increased the abundance of the ben-
eficial bacteria Akkermansia, Ruminococcus, Desulfovibrio, Oscillibacter,
Alistipes, and Colidextribacter in the intestines of mice. MA group increased
the abundance of Ligilactobacillus, Erysipelatoclostridium, Dubosiella,
Parasutterella, and Haemophilus in the intestinal tracts of the mice
(Fig. 7A-F). Phylogenetic trees of the top 100 gut microbiota in mice at the
genus level are shown in Supplementary Fig. 5C.

As shown in the histogram of the linear discriminant analysis (LDA)
value distribution of the linear discriminant analysis effect size (LEfSe)
analysis results of different species between NC, MOD, LP124, MA, Lys and
But groups (Fig. 7G). NC group mainly contained the beneficial bacteria
Odoribacter, Alistipes, and Alloprevotella. MOD group mainly harboured
the harmful bacterium Helicobacter. LP124 group mainly contains the
beneficial bacterium Akkermansia, and MA group mainly contains the
butyricogenic bacteria Dubosiella. Lys group mainly contains Bifido-
bacterium; But group mainly contains Bacteroides acidifaciens and Bacter-
oides sartorii (Fig. 7G). In the statistical analysis, species with significant
differences between groups at each classification level were identified using a
t-test (p < 0.05). LP124, MA, Lys, and But group were significantly different
from MOD group (Fig. 7H-K). The MA group contained Bacteroides,
Dubosiella, Parabacteroides, and others (Fig. 71).

Effects of MA, Lys, and But on serum metabolome of aging mice
Next, we analysed the LP124 metabolites in the serum metabolome of aging
mice. In the LP124 vs. MOD comparison group, 248 positive mode meta-
bolites were significantly different, of which 164 were upregulated and 84
were downregulated. A total of 123 negative mode metabolites exist with
significant differences, of which 75 were upregulated and 48 were
downregulated (Supplementary Fig. 6, Supplementary Data 2). The
comparison revealed significantly upregulated metabolites, including taur-
ochenodeoxycholic acid (sodium salt), taurocholic  acid,

tauroursodeoxycholic acid, and 3-hydroxybutyric acid (Supplementary
Fig. 6A-F). A bubble diagram of KEGG enriched pathways for the LP124 vs.
MOD comparison is shown in Supplementary Fig. 6G, H, and Supple-
mentary Data 3 and 4. The results of the KEGG regulatory network analysis
are provided in Supplementary Data 5 and 6. In the MA vs. MOD com-
parison, 260 positive mode metabolites were significantly different, among
which 155 were upregulated and 105 were downregulated. A total of 131
negative mode metabolites were observed with significant differences, of
which 61 were upregulated, and 70 were downregulated (Fig. 8, Supple-
mentary Data 7). The MA vs. MOD comparison revealed significantly
upregulated metabolites, including taurochenodeoxycholic acid (sodium
salt), 3-hydroxybutyric acid, tauroursodeoxycholic acid, 7-ketolithocholic
acid, and deoxycholic acid (Fig. 8A-F). A bubble diagram of KEGG
enrichment data for MA vs. MOD is shown in Fig. 8G, H, and Supple-
mentary Data 8 and 9. The KEGG regulatory network data for the MA vs.
MOD comparison are provided in Supplementary Data 10 and 11.

In the Lys vs. MOD comparison group, 250 positive mode metabolites
were significantly different, of which 152 were upregulated and 98 were
downregulated. A total of 124 negative mode metabolites were observed
with significant differences, of which 68 were upregulated and 56 were
downregulated (Supplementary Fig. 7, Supplementary Data 12). A bubble
diagram of KEGG enrichment data for Lys vs. MOD is shown in Supple-
mentary Fig. 7G, H, and Supplementary Data 13 and 14. The KEGG reg-
ulatory network data for the Lys vs. MOD comparison are provided in
Supplementary Data 15 and 16. In the But vs. MOD comparison group, 210
positive mode metabolites were significantly different, of which 128 were
upregulated and 82 were downregulated. A total of 108 negative mode
metabolites were observed with significant differences, of which 51 were
upregulated, and 57 were downregulated (Supplementary Fig. 8, Supple-
mentary Data 17). A bubble diagram of KEGG enrichment data for the But
vs. MOD is shown in Supplementary Fig. 8G, H, and Supplementary Data
18 and 19. The KEGG regulatory network data for the But vs. MOD
comparison are provided in Supplementary Data 20 and 21.

Analysis of the correlation among gut microbiota, metabolites,
and physiological indicators of aging mice

We selected the top five differentially abundant bacteria at the genus level
and compared the findings with the top ten differential metabolites to
analyse the correlation between the gut microbiota and metabolites. The
results of LP124, MA, Lys, and But vs. MOD are shown in Supplementary
Fig. 9A-H, Supplementary Data 22-25. We selected the top 35 differentially
prevalent bacteria genera and indicators, such as inflammatory factors,
oxidative stress, and intestinal barrier, and analysed the correlation between
the gut microbiota and physiological indicators (Supplementary Fig. 9I).
Beneficial bacteria, including Odoribacter, Alloprevotella, Parasutterella,
Rikenellaceae RC9 gut group, Dubosiella, Alistipes, Bifidobacterium, and
Haemophilus, were significantly negatively correlated with pro-
inflammatory factors IL-1p, IL-6, TNF-a, and NLRP3 inflammasome;
pro-oxidation indices MDA, carbonyl, NF-kB, ROS, and ET; and intestinal
barrier indices ZO-1, Claudin-1, DLA, and DAO. Positive correlations were
evident for the anti-inflammatory factor IL-10 and the antioxidant factors
SOD, T-AOC, and CAT. These bacteria have active anti-inflammatory
roles. By contrast, Lachnoclostridium was significantly positively correlated
with pro-inflammatory factors, inflammasomes, and pro-oxidation and
intestinal barrier indices. This genus was negatively correlated with anti-
inflammatory and antioxidant factors.

Discussion

The current cross-sectional analysis of a long-lived population cohort
in Jiaoling, China, which is globally recognised for its long-lived
residents, combined with metagenomics, metabolomics, and in vivo
animal validation clarifies the gut microbiota characteristics and
metabolic network of centenarians and verifies the key substance of
anti-aging of the LP124 probiotic derived from centenarians (Fig. 9).
Our results strongly suggest that the diversity of the gut microbiota in
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Fig. 7 | Regulatory effects of LP124, MA, Lys, and But on the gut microbiota of
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among the mouse gut microbiota under the NC, MOD, LP124, MA, Lys, and But
conditions. T-test analysis of different species among mouse gut microbiota groups
under LP124 (H), MA (I), Lys, (J), and But (K) conditions.

centenarians is significantly higher than that in young and middle-
aged individuals, accompanied by the enrichment of beneficial sym-
biotic bacteria. These observations are similar to those of previous
reports, which showed that, based on a variety of approaches, such as

metabolomic capacity and gut microbiome diversity, centenarians have
a gut microbiome associated with younger people, and their gut
microbiome may be more similar to that of younger people™?”.
Because the gut microbiome plays a key role in host health and
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disease™, we speculate that this unique gut microbiome profile and
beneficial symbionts and their metabolites may contribute to longevity.

One of the main findings of this study is the significantly greater gut
microbial diversity in centenarians compared to young and middle-aged
adults. Consistent with these findings, a follow-up study on centenarians
reported a consistently increased evenness of the gut microbiota™. In
addition, consistent with observations in previous studies on older or
younger adults, long-lived people with higher microbiome diversity tend to
have fewer microbiome changes during aging, suggesting that greater
diversity or species uniformity in centenarians compared to other older
adults may protect the gut microbiota from instability””*’. The current

findings show that, compared to young and middle-aged people, the gut
microbiota of long-lived people was enriched with beneficial symbiotic
bacteria, such as Lactobacillus and Akkermannia. Thus, preservation of
beneficial symbiotic Lactobacillus may be a key feature associated with
longevity. Several studies have reported that bacterial diversity decreases
with age, and the colonisation of opportunistic pathogens (such as Enter-
obacteriaceae) increases. However, our study of the characteristics of the gut
microbiota in centenarians during aging showed an increase in bacterial
diversity and an increase in the abundance of the beneficial bacteria in the
genus Lactobacillus. Several cross-sectional studies have shown that the
composition of microbiota in centenarians plays an important role in
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healthy aging. For example, Biagi et al. reported that in the centenarian
group, the core microbiota composition was reduced and health-related
bacteria (including Akkermansia, Bifidobacterium, and Christensenella)
were enriched". These findings are consistent with the results of our study.
The enrichment of these beneficial microorganisms likely reflects the anti-
aging pattern of gut microbiota in centenarians. Given that these bacteria
typically secrete short-chain fatty acids and possess anti-inflammatory and
antioxidant properties, their unique pattern of enrichment of beneficial
microbes during aging may be associated with longevity.

Another major finding of this study from the metagenomic analysis
results combined with the isolation, culture and screening in vitro was the
identification of an LP124 strain with a good antioxidant effect. The basis of
its anti-aging effect was explored through metagenomics, metabolomics,
and experiments using rapidly aging mice. Finally, we confirmed that the
MA metabolite of LP124 has potent, anti-inflammatory, and antioxidant
effects. With the rapid development of second- and third-generation high-
throughput sequencing technologies, most studies have been limited to
metagenomic sequencing analysis of the gut microbiota. Most of these
metagenomic sequencing results were not validated by further isolation of
key strains for in vitro and in vivo experiments. For example, the gut
microbiota structure of centenarians and young adults is reportedly highly
similar”, with a higher abundance of potentially beneficial Bacteroides, such
as Akkermansia, in long-lived people”. In addition to a higher abundance of
specific bacteria such as Parabacteroides, most bacteria have anti-
inflammatory effects in their host™. The latter authors hypothesised that a
healthy gut microbiota in centenarians promotes healthy aging. They pos-
ited that an underlying reason is increased chronic low-grade inflammation
in the older adult, which is associated with various chronic diseases™. This is
consistent with the results of this study. Coupled with the beneficial effects of
these bacteria™ and the lower susceptibility of centenarians to chronic
diseases™, these microbes might contribute to the health of centenarians™.
However, these studies did not validate the results obtained through
metagenomic analysis by further designing in vivo and in vitro experiments.
The mechanisms underlying the enrichment of beneficial microorganisms
in centenarians have not yet been fully elucidated.

In the present study, LP124 characterised by a good antioxidant
effect was isolated and screened from the gut microbiota of centenar-
ians. Animal experiments further verified that LP124 exerts anti-
inflammatory effects related to MA, Lys, and But, which are the key

substance for anti-aging. The MA metabolite of LP124 displayed the
best anti-aging effect. MA, itaconic acid, and citriconic acid are isomers.
Itaconic acid is an anti-inflammatory metabolite via activation of Nrf2
through the alkylation of KEAP1%. Citraconic acid inhibits aconitate
decarboxylase 1 (immune responsive gene 1) catalysis, reduces inter-
feron response and oxidative stress, and regulates inflammation and cell
metabolism™. MA is synthesised from itaconic acid and plays an
immunomodulatory role in macrophages”. This is consistent with our
findings that MA had a significant anti-inflammatory effect, alleviated
oxidative stress, and protected the intestinal barrier. In the current
study, MA significantly increased the richness and diversity of the gut
microbiota in aging mice and increased the abundance of butyricogenic
bacteria in the genus Dubosiella. The collective findings indicate that
MA regulates the gut microbiota, relieves inflammation and oxidative
stress, and maintains the intestinal barrier. Our results are consistent
with those of Zhang et al., who used intestinal faecal 16S rDNA
sequencing and targeted metabolomics sequencing technology™. An
important protective effect of the specific gut microbiota Dubosiella and
its butyric acid metabolite in sepsis-associated brain injury has been
discovered. The findings established the important role of gut micro-
biota in sepsis-associated brain injury and provided a basic research
basis for targeted gut microbiota therapy in clinical practice®. The
results of Cai et al,, based on faecal metabolomics of healthy cen-
tenarians from a Chinese longevous region showed that longevity was
closely related to beneficial metabolites such as phospholipids, amino
acids and short-chain fatty acids (SCFAs)”. These provide guidance for
the integration of multiomics techniques to identify aging and anti-
aging biomarkers"*"'.

In conclusion, this study reports the composition and functional
characteristics of gut microbiota in centenarians. Our results characterise a
new metabolite strain with anti-inflammatory and anti-aging properties.
The findings jointly highlight the positive role of the gut microbiota of long-
lived people, especially the key intestinal symbiotic beneficial bacteria and
their metabolites, which play an anti-aging role in health and longevity. The
gut microbiota of centenarians is closely associated with longevity and is
characterised by high species diversity and high levels of beneficial bacteria.
Probiotics derived from the gut microbiota of centenarians, especially
Lactobacillus plantarum 124 and its metabolite mesaconic acid, have a
significant positive effect on health and longevity.

npj Biofilms and Microbiomes| (2025)11:165

12


www.nature.com/npjbiofilms

https://doi.org/10.1038/s41522-025-00812-9

Article

Methods

Ethics approval and study cohort

The overall purpose of this study was to use metagenomic and metabolomic
methods to characterise the composition and function of the gut microbiota
and serum metabolomics in different age groups in a township renowned
for the longevity of its residents. The key strains were isolated, screened
in vitro, and used in the senescence-accelerated mice (SAMR1 and SAMPS)
to further explore the role of the key strains and their metabolites in the gut
microbiota in health and longevity. This study was approved by the Ethics
Committee (Ethics number: 2022(9)) of the First Affiliated Hospital of
Guangdong Pharmaceutical University.

In total, 224 participants were randomly selected. All enroled parti-
cipants signed an informed consent form before physical examination and
biomaterial collection. Faecal samples were freshly collected from each
subject and immediately frozen at —20 °C, transported to the laboratory
on an ice pack, and stored in a —80 °C freezer until metagenomic analysis.
Subsequently, serum samples were subjected to metabolomic analyses.
For age-related group comparison analyses, we divided the participants
from the Jiaoling cohort into middle-aged (Y40 and Y60, Y40: 21-40 years
and Y60: 41-60 years), older adults (Y80 and Y100, Y80: 61-80 years and
Y100: 81-99 years), and centenarian (Y120: 100-110 years) groups.

Metagenomic sequencing analysis

DNA was extracted from faecal samples, as previously described”. In this
study, the Illumina HiSeq sequencing platform was used to obtain 11,619.54
Mbp of raw data. After quality control, an average of 11,604.59 Mbp was
obtained. A mean of 219,259 open reading frames (ORFs) were obtained by
gene prediction using MetaGeneMark software. The non-redundant gene
set was compared with the MicroNR database using BLASTP, and species
annotation was performed using the LCA algorithm. We used DIAMOND
software*** to perform common functional database annotations on non-
redundant gene sets (e-value < 107°). A total of 60.85% ORFs were com-
pared to the KEGG database (Version 2018-01-01, http://www.kegg.jp/
kegg/)**, 59.72% were compared to the eggNOG database (Version 4.5,
http://eggnogdb.embl.de/#/app/home)*’, and 3.09% were compared to the
CAZy database (Version 20150704, http://www.cazy.org/)*.

Analysis of composition characteristics of gut microbiota

The use of DIAMOND  software” (v0.9.9.110, https:/github.com/
bbuchfink/diamond/), Link Unigenes to the NCBI NR database (Version
2018-01-02, https://www.ncbi.nlm.nih.gov/). For the comparison, the result
of each sequence with e-value <e-value*10 was chosen. Since each
sequence may have multiple comparison results, the LCA algorithm
(applied to the systematic classification of MEGAN software’ (https:/en.
wikipedia.org/wiki/Lowest_common_ancestor) to determine the sequence
of species annotation information. The abundance of a species in a sample is
equal to the sum of the annotated gene abundances of the species™ ™.
Starting from the abundance table at each classification level, Krona
analysis™ was performed, showing the general situation of relative abun-
dance and the clustering heat map of abundance. Dimension reduction
analysis was performed using PCA™ (R ade4 package, Version 2.15.3) and
NMDS” (R vegan package, Version 2.15.3).

Animal experiments and determination of biochemical index

The animal experiments were approved by the Institute of Microbiology,
Guangdong Academy of Sciences (approval number: GT-
TACUC202112281). SAMR1 and SAMP8 (SPF grade) mice obtained from
Guangdong Jinzhihe Biotechnology Co., Ltd. (Guangdong, China) were
housed under a 12-h light/dark cycle in gnotobiotic facilities. All mice were
provided with sterile food and water ad libitum. Both the NC (SAMRI, 6
mice) and MOD (SAMP8, 6 mice) groups received 0.2 mL of normal saline
by gavage daily. For the LP124 test group (SAMPS, 6 mice), 0.2 mL of
LP124 suspension containing 1.0+0.05x10° colony forming units
(CFU)/mL was administered’. For the MA test group (SAMPS, 6 mice),
0.2 mL of MA solution (200 mg/kg body weight/day) was administered. For

the Lys test group (SAMPS8, 6 mice), 0.2 mL of Lys solution (200 mg/kg body
weight/day) was administered. For the But test group (SAMPS, 6 mice),
0.2 mL of But solution (200 mg/kg body weight/day) was administered. All
administrations were by gavage daily for 9 weeks. The animals used in this
experiment were anesthetized. The anaesthetic drug was sodium pento-
barbital, which was administered by intraperitoneal injection. The injection
dose was 40-50 mg/kg (2%) intraperitoneally. The principle was that
sodium pentobarbital directly acted on the central nervous system through
the blood circulation, inhibiting the activity of neurons, thereby achieving
the anaesthetic effect. Colon, liver, and kidney tissue homogenates were
prepared for analysis for pro-inflammatory factors IL-1p, IL-6, and TNF-q,
and anti-inflammatory factors IL-10, NLRP3, ASC, and Casp-1 were
measured using ELISA kits (Beijing winter song Boye Biotechnology Co.
Ltd., Beijing, China). The oxidative stress markers GSH-Px, SOD, TrxR, T-
AOC, MDA, CAT, carbonyl protein, NF-kB, and ROS were determined by
detection kits (Nanjing Jiancheng Bio Co., Nanjing, China). Intestinal
barrier factors ET, ZO-1, occludin, claudin-1, D-LA, and DAO were mea-
sured using an ELISA kit and a related detection kit (Beijing Winter Song
Boye Biotechnology Co. Ltd.).

Morphological observations and immunohistochemical analysis
After the animals were euthanized, their colons were isolated. The tissues
were fixed with 10% formalin, embedded in conventional paraffin, sectioned
to a thickness of 4-5 um, and observed using haematoxylin-eosin and PAS
staining. MUC2 in the colon tissue was stained using immunohistochem-
istry. The intestinal morphology was observed and photographed using an
inverted optical microscope.

Expression analysis of genes

Total RNA was extracted from the mouse colon using an RNeasy Mini Kit
(Huangshi Yanke Biotechnology Co., Ltd., Hubei, China) according to the
manufacturer’s instructions. Quantitative RT-PCR was performed using
SYBR Premix Ex Taq (Huangshi Yanke Biotechnology Co., Ltd., Hubei,
China) on the 7500 Fast Real-Time PCR System (Applied Biosystems,
Franklin Lakes, NJ, USA). The calculation of mRNA expression was per-
formed by the 2**“" method using the geometric mean of the housekeeping
genes GSH-Px, SOD, TrxR, Nrf2, Keap 1, Bax, Bcl 2, NF-kB, NLRP3, and
Caspase 1. Gene and primer sequences are listed in Supplementary Data 26.
Comparisons between groups were performed using a one-way analysis of
variance with # = 6 per group. All results are expressed as mean + SD of the
biological replicates.

Mass spectrometry

Serum samples were collected from people in the different age groups
(Supplementary Data 27-29), and the NC, MOD, LP124, MA, Lys, and
But groups (n =6 per group) (Supplementary Data 30, 31). Acetoni-
trile was used to extract metabolites by protein precipitation. Untar-
geted metabolomic profiling was performed wusing liquid
chromatography coupled with a High-Field Qexactive mass spectro-
meter (Thermo Fisher Scientific, Waltham, MA, USA; HILIC/ESI+,
C18/ESI—, 85-1275m/z, 120k resolution). Spectral features (m/z,
retention time) corresponding to the identified and uncharacterized
metabolites were integrated and aligned using apLCMS/xMSanalyzer
software. MetaboAnalyst® was used for statistical analysis, and
Mummichog software™ was used for pathway enrichment analysis and
verified by retention time, m/z, and tandem mass spectrometry using
authenticated standards. Candidate molecules were identified follow-
ing ion dissociation experiments on a Thermo Scientific Fusion mass
spectrometer, and the spectral library was matched to the mzCloud,
mzVault, and MassList libraries using Compound Discoverer 3.0.

Statistical analyses

According to the different data, statistical analyses between groups were
performed using Wilcoxon’s rank sum test, Student’s ¢ test, or one-way
ANOVA. Results are expressed as mean + SD. Statistical analyses and data
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visualisation were performed using the R software (v2.15.3) with the
WGCNA, stats, and ggplot2 software packages.

Data availability

The sequence data for all samples have been deposited in the NCBI
Sequence Read Archive (SRA) under accession code BIOProject:
PRJNA895352. Other data that support the findings of this study are
available within the paper and its Supplementary Information files or from
the corresponding author upon reasonable request.
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