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Abstract

Exosome-based treatments are gaining traction as a viable approach to
addressing the various issues faced by an ischemic stroke. These
extracellular vesicles, mainly produced by mesenchymal stem cells,
exhibit many properties with substantial therapeutic potential. Exosomes
are particularly appealing for stroke therapy because of their low
immunogenicity, effective cargo transport, and ability to cross the
blood—brain barrier. Their diverse effects include neuroprotection,
angiogenesis stimulation, inflammatory response modulation, and cell
death pathway attenuation, synergistically promoting neuronal survival,
tissue regeneration, and functional recovery. Exosomes also show
potential as diagnostic indicators for early stroke identification and
customized treatment options. Despite these promising qualities, current
exosome-based therapeutics have some limitations. The heterogeneity
of exosome release among cell types, difficulty in standardization and
isolation techniques, and complications linked to dosage and targeted
administration necessitates extensive investigation. It is critical to
thoroughly understand exosomal processes and their complicated
interactions within the cellular milieu. To improve the practicality and
efficacy of exosome-based medicines, research efforts must focus on
improving production processes, developing robust evaluation criteria,
and developing large-scale isolation techniques. Altogether, exosomes’
multifunctional properties offer a new route for transforming stroke
treatment and significantly improving patient outcomes.
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Highlights

e Mesenchymal stem cells (MSCs), with their unique abilities, present a
prospective treatment option for ischemic stroke, overcoming the obstacle
of the blood-brain barrier using MSC-Exosomes derived from stem cells.

* Exosomes, tiny extracellular vesicles, show promising outcomes in
mitigating the complex pathophysiological pathways linked to ischemic
stroke.

* MSC-Exosomes offer therapeutic benefits, modifying pathways, promot-
ing angiogenesis, neurogenesis, neuroprotection, and triggering antiox-
idative and anti-inflammatory responses, while also providing diagnostic
capabilities.
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* The cumulative effects of MSC-Exosomes contribute to enhanced tissue
repair, neuronal survival, and functional recovery post-ischemic stroke.

1 | INTRODUCTION

Stroke is the second leading cause of death world-
wide, with an approximate mortality rate of 5.5
million, and 50% of survivors experience chronic
disabilities. Ischemic stroke accounts for 87% of all
stroke patients.” Therefore, developing a novel
treatment strategy for ischemic stroke is crucial.
Currently, the only treatments for a severe acute
ischemic stroke are rapid recanalization (thrombect-
omy) and thrombolytic therapy (injection of tissue
plasminogen activator).

Stem cell-based therapy has surfaced as a promis-
ing method for treating ischemic stroke due to stem
cells’ unique regenerative properties. Studies indicate
that stem cells can differentiate into numerous cell
lineages, including neurons, astrocytes, and endothe-
lial cells.>™ Stem cells have multiple effects when
transplanted into an ischemic brain, including the
promotion of neurogenesis, angiogenesis, and the
modulation of the immune system.>” Collectively,
these mechanisms contribute to tissue repair and
functional recovery. Improved neurological outcomes
and decreased infarct size have been observed in
preclinical models following stem cell transplantation.®
Additionally, clinical trials have demonstrated the safety
and viability of stem cell therapy in stroke patients,
although additional large-scale clinical trials are neces-
sary to establish its efficacy and optimize treatment.’
Furthermore, stem cell-based therapy faces obstacles
such as ethical considerations with embryonic stem
cells, tumorigenic potential of pluripotent stem cells,
optimization of cell delivery methods, standardization
of protocols, and immune response against allogeneic
stem cells. In this context, the utilization of exosome
therapy derived from stem cells emerges as a compel-
ling alternative. This approach offers targeted delivery,
holding the potential to overcome existing barriers by
transporting bioactive molecules such as proteins
and microBRNAs (miRNAs). Through this method,
therapeutic effects can be mediated without the
necessity for direct transplantation, thereby fostering
tissue repair.”1°

Exosomes, small extracellular vesicles secreted
by various cell types, have attracted increasing
interest as potential therapeutic agents in the
treatment of ischemic stroke. In animal models,
exosome treatment has been shown to improve
neurological outcomes by promoting neuronal sur-
vival, reducing inflammation and apoptosis, enhan-
cing angiogenesis, and facilitating tissue repair and
limiting secondary brain damage.'"'? In addition,
exosomes have been demonstrated to stimulate
angiogenesis and improve synaptic plasticity, there-
by facilitating the restoration of neural circuits.'
Exosome-based therapy for ischemic stroke is still in
the early phases of research. However, encouraging
preclinical data have fueled optimism about their

potential as a novel and noninvasive treatment for
stroke patients. The present review focuses on the
impact of exosomes derived from MSCs in the
context of ischemic stroke.

2 | EXOSOMES

Exosomes are small extracellular vesicles with a size
range of 30-150 nm and a density between 1.13 and
1.19g/mL that play a crucial role in intercellular
communication by transferring bioactive molecules
such as proteins, lipids, and nucleic acids between
cells.’ Exosomes contain a wide variety of complex
nucleic acids, including DNA, messenger RNA
(mRNA), and numerous noncoding RNA species, in
addition to a vast array of proteins, lipids, and miRNAs.
Similarly, there are several forms of extracellular
vesicles, which are mentioned in Table 1. These
exosomes may also serve as biomarkers for the
diagnosis and prognosis of stroke.?°

The production of exosomes begins with a double
invagination of the plasma membrane, which results
in the formation of intracellular multivesicular bodies
(MVBs) containing intraluminal vesicles (ILVs).?
During the initial invagination phase, cell-surface
and soluble proteins from the extracellular environ-
ment are internalized, forming early-sorting endo-
somes (ESEs), which may coalesce with previously
formed ESEs. The trans-Golgi network and endoplas-
mic reticulum influence the composition and formation
of ESEs.?? Later, ESEs transform into late-sorting
endosomes or MVBs, distinguished by the inward
swelling of the endosomal limiting membrane and the
plasma membrane, resulting in the formation of
multiple ILVs within MVBs. ILVs eventually develop
into exosomes. MVBs can be degraded by fusing
with lysosomes or autophagosomes, or they can
connect with the plasma membrane to release ILVs
and exosomes.?®

Exosomes are a subset of extracellular vesicles
formed as ILVs within MVBs via the endocytic pathway.
Exosomes are distinguished by their distinctive lipid
bilayer membrane, which contains specific lipid com-
positions, including sphingomyelin, cholesterol, and
ceramides.?* In addition, they express tetraspanins,
including cluster of differentiation (CD9, CD63, and
CD81), MVB-related endosomal sorting complexes
required for transport proteins (Alix, TSG101), and
heat shock proteins (HSPs) (HSP60, HSP70, HSPAS5,
CCT2, and HSPs) (HSP60, HSP70, HSPAS5, and
HSP80) that can be used as exosomal markers.?®

Exosomes can mediate a range of cellular activities
by cargo transfer, including gene expression regula-
tion, cell proliferation, apoptosis, differentiation, and
immune system modulation.?® Exosomes are efficient
transporters of biologically active molecules due to their
stability and ability to secure their cargo from
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Types of extracellular vesicles: A comprehensive overview.

Type

TABLE 1

References

Composition

Biogenesis

Size

No.

(18]

Heat shock proteins, actin, tubulin, MHC molecules,

50-100 nm Multivesicular body exocytosis

Exosomes

tetraspannins (CD63, CD81, CD82, CD9),

miRNA, mRNA

[16]

Actin, tubulin, 1 integrin, VAMP3, miRNA

Plasma membrane budding

100-1000 nm

Microvesicles

[16]

Annexin V, C3b, thrombospondin, any cellular components

Plasma membrane budding in apoptosis

100-5000 nm

Apoptotic bodies

3.

[17]

Retroviral proteins such as Gag, cytoskeletal proteins,

Direct plasma membrane budding

90-100 nm

Retrovirus-like particles

plasma membrane components

(18]

B1 integrins, selectins, CD40, MMP, lineage markers, erzin

Blabbing of plasma membrane towards outside

100-500 nm

Ectosomes

[19]

Lipid membrane, proteins, nucleic acids, tetraspanins

Plasma membrane cleavage and direct budding are

30-150 nm

Nanovesicle

facilitated through calcium influx and cortical

cytoskeleton remodeling

Abbreviations: CD, cluster of differentiation; MHC, major histocompatibility complex; miRNA, microRNA; MMP, matrix metalloproteinase; mRNA, messenger RNA; VAMP, vesicle-associated membrane protein.
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extracellular degradation. Their small size and lipid
membrane allow them to cross biological barriers,
including the blood—brain barrier (BBB),?’ facilitating
their access to diverse body fluids, including blood,
cerebrospinal fluid, urine, and saliva, thereby making
them potential biomarkers for a variety of diseases.
Due to their nonimmunogenic nature, exosomes
derived from adult stem cells can be utilized for
therapeutic applications, thereby avoiding ethical con-
cerns associated with immune rejection and embryonic
stem cell use.

3 | MSCS AS THERAPEUTIC
CHOICE FOR ISCHEMIC STROKE

MSCs have emerged as a promising therapy for
treating ischemic stroke due to their ability to prolifer-
ate, differentiate, and modulate the immune system.?®
MSCs, derived from bone marrow, adipose tissue, and
the placenta, share essential traits such as cell
migratory patterns and immunomodulatory propert-
ies.? Because of their ease of separation from various
sources, they provide a readily available cell source for
therapeutic purposes. The ability of MSCs to develop
into neurons, astrocytes, and endothelial cells facili-
tates tissue repair and regeneration in the post-stroke
brain.®® MSCs also release trophic factors and cyto-
kines that improve neuroprotection, reduce inflamma-
tion, and stimulate angiogenesis, all of which contribute
to their therapeutic actions in ischemic stroke.®' MSCs
have minimal immunogenicity and immunomodulatory
characteristics, allowing them to avoid immune
responses and promote tissue regeneration without
generating unfavorable effects. MSCs are good candi-
dates for cell-based therapeutics due to their unique
combination of features. MSCs have been proven in
animal models of ischemic stroke to migrate to injured
brain locations, supporting tissue repair, angiogenesis,
and neurogenesis. These regenerative and anti-
inflammatory characteristics aid in stroke patients’
neurological function and recovery. Clinical trials
evaluating the safety and efficacy of MSC therapy in
stroke have yielded promising results, paving the path
for novel cell-based therapeutics for this debilitating
condition.®?

Given the above qualities, MSCs are naturally the
ideal choice for cellular therapy in treating ischemic
stroke. MSCs execute an essential role in the produc-
tion of exosomes.** MSCs find widespread application
in stroke cell therapy, primarily owing to their abundant
source, ease of cultivation, controlled proliferation, and
notable survival rate in the brain posttransplantation.

4 | ADVANTAGES OF MSC-
EXOSOMES (MSC-EXOS)
OVER MSCS

There are advantages and disadvantages to using
MSCs and MSC-Exos to treat ischemic stroke, as
shown in Table 2. However, MSC-Exos are gaining
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(Continued)

TABLE 2

Exosomes isolation
methodology

Stem cell/

References

Disadvantage

Advantage

Animal models/human

Isolation of MSCs

exosome/origin

[44]

Pericyte migration control by

extracellular vesicles is
unknown.

SCl in male SD rats, 200-250 g

Exosome-depleted FBS

Bone marrow

media

Pericytes only started migrating

6 h after OGD exposure.

BMSC-EV's effect cannot be

determined in such a short time.

(45]

EV quality depends on
producer cell type and

physiological status.

TBI in male C57BL/6J mice,
7-8 weeks old

Chromatography

Bone marrow

Isolation procedures are hard to

scale up

Efficacy testing is hard to

design.

Abbreviations: BDNF, brain-derived neurotrophic factor; BMSC, bone marrow-derived MSC; BMSC-EV, BMSC extracellular vesicle; DG, dentate gyrus; FBS, fetal bovine serum; GDNF, glial cell line-derived neurotrophic factor; hUC-MSCs,

human umbilical cord-MSC; MCAO, middle cerebral artery occlusion; MSC, mesenchymal stem cell; SCI, spinal cord injury; SD, Sprague—Dawley; SVZ, subventricular zone; TBI, traumatic brain injury.
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attraction as a therapy for ischemic stroke due to the
more straightforward, cheaper, and quicker production
of MSC-Exos compared with MSCs.*® Exosomes are
approximately one-millionth the size of MSCs, which are
simpler to produce and store.>®* MSC-Exos have less
stringent storage requirements and retain their activity
even when stored at -80°C for protracted periods.
Therapies based on MSCs face obstacles such as cell
survival, regenerative capacity, immune rejection, and
tumorigenic differentiation. The use of exosomes as a
cell-free therapy can circumvent these issues. Exo-
somes contain a negligible quantity of membrane-bound
proteins, resulting in a low probability of immunological
rejection following allogeneic injection. The exosomes
facilitate effective cell-to-cell communication by transport-
ing active substances to recipient cells. Their membrane
contains proteins with a high affinity for target cell
membranes or extracellular matrix ligands, enabling
targeted delivery to particular organs or microenviron-
ments. In addition, the exosomal membrane can be
altered to allow specific substances to reach their
intended cells and tissues.*”

MSC-Exos is beneficial in the treatment of ischemic
stroke. For instance, in an experiment conducted by
Doeppner et al., mice intravenously injected with
exosomes following an ischemic stroke exhibited
long-term neuroprotection associated with enhanced
angioneurogenesis, whereas, in contrast to MSCs, they
failed to decrease neuroinflammation.*® In comparison,
intra-arterial delivery of MSC-Exos overcomes this
limitation and attenuates neuroinflammation.*®

In addition, studies have shown that curcumin
encapsulated in exosomes has improved stability, solu-
bility, blood concentration, and anti-inflammatory ef-
fects.>® Moon et al. reported that rats in the exosomes
group had substantially lower mortality rates and faster
recoveries than those in the bone-marrow-derived MSCs
(BMSCs) and other study groups.®’ Using MSC-
extracellular vesicles (MSC-EVs) instead of MSCs to
treat preterm infants with hypoxic-ischemic brain injury
can help avoid the risks associated with systemic delivery
of living cells.>® Based on the aforementioned evidence
and facts, it is a reasonable deduction to assert that MSC-
Exos therapy is more effective in treating ischemic stroke
compared to MSCs.

5 | EXOSOMES IN ISCHEMIC
STROKE THERAPY: HARNESSING
THERAPEUTIC POTENTIAL

Following a stroke, brain cells produce and release
exosomes that can cross the BBB and reach cerebro-
spinal fluid or peripheral blood. Exosomes can cross
the BBB when administered systemically or directly into
the brain and convey their cargo to the affected areas.
As a cell-based therapy for ischemic stroke, MSC-Exos
hold great promise due to their favorable properties,
which include minimal immunogenicity, tumorigenicity,
efficient cargo transport, stability, and paracrine
effects.®®> MSC-Exos offer a compelling treatment
option for ischemic stroke (see Table 3). They can
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ADVANCING STROKE RECOVERY WITH MSCs DERIVED EXOSOMES

NEUROPROTECTION

promote brain plasticity, allowing internalization by cell
bodies and axons to stimulate axonal growth.®°

Exosomes derived from BM-MSCs promote
angiogenesis’® by inducing cerebral endothelial cell
proliferation.”® By inhibiting the caspase-8 apoptotic
pathway,’* these exosomes also prevent oligoden-
drocyte mortality. In addition, adipose-derived stem
cell exosomes enriched with miRNA-181b-5p pro-
mote angiogenesis by inhibiting transient receptor
potential melastatin 7 poststroke.®® In addition,
exosomes containing miR-30D-5p, reducing inflam-
mation and ameliorating neurological impairment in
rodents with ischemic stroke.”® In addition, Valadi
et al. demonstrated that intravenous MSC-Exo
administration in a rat model of transient middle
cerebral artery occlusion (MCAQO) improved functional
recovery by promoting neurogenesis, neurite remodeling,
and angiogenesis.”® Notably, MSC-Exos treated with
oxygen-glucose deprivation (OGD) or brain extract dem-
onstrated enhanced therapeutic benefits, potentially as a
result of the enrichment of specific functional proteins.”” In
a primate stroke model, intravenous administration of
MSC-Exo improved recovery of fine hand motor func-
tion.”® Mechanistic studies demonstrated that MSC-Exos
inhibits ~ injury-induced  hyperexcitability,  restores
excitatory—inhibitory equilibrium in primates, reduces
neuroinflammation, and directs microglia to perform
restorative functions.” Overall, these findings highlight
MSC-derived exosomes as a versatile therapeutic strat-
egy, influencing various cellular pathways to enhance
stroke recovery and facilitate repair.

6 | NEURONAL PLASTICITY
INDUCED BY MSC-EXOS

Within the ischemic brain, MSC-Exos are internalized
by neurons, oligodendrocytes, and microglia.®® For
instance, in cultured primary cortical neurons, MSC-
Exos exhibits internalization by both neuronal cell
bodies and axons, resulting in heightened axonal
extension.®® Notably, the content of exosomal miRs
emerges as a key mediator of neural plasticity, as
evidenced by the suppression of the argonaute 2
protein—an essential component of the miR machinery
in MSC-Exos—which prevented their effects on axonal
outgrowth.®8° Moreover, engineered MSC-Exos over-
expressing the miR-17-92 cluster demonstrated an
enhanced capacity to stimulate the phosphatase and
tensin homolog/mammalian target of the rapamycin
signaling pathway, leading to increased axonal devel-
opment in recipient neurons.. Consequently, MSC-
Exos possess the capability to deliver their miR cargo
directly to recipient neurons, thereby influencing
neuronal remodeling poststroke. Furthermore, a nota-
ble augmentation in therapeutic effects was observed
in stroke-prone rats when exosomes produced by
MSCs overexpressing the miR-133b gene were em-
ployed.®! Intriguingly, the heightened neuronal plastic-
ity induced by miR-133b MSC-Exos was attributed to
the accelerated secondary release of exosomes by
astrocytes, promoting neurite growth.®’

7 | ASTROCYTE-MEDIATED
BRAIN PLASTICITY

Astrocytic EVs potentially play a role in fostering brain
plasticity post-stroke. In vitro studies suggest that the
secondary release of EVs from astrocytes may contribute
to some of the neurodegenerative effects observed with
MSC-EVs.2' A study reported that exosomes derived
from astrocytes can suppress autophagy, diminish the
production of tumor necrosis factor-o. (TNF-a), interleukin-
6 (IL-6), and interleukin-1p (IL-1p), and mitigate neuronal
damage.®? Another study identified lipocalin 2 as the
target of miR-138-5p-enriched exosomes, enhancing
neurological recovery in ischemic stroke mice by promot-
ing astrocyte growth and reducing inflammation.” The
transfer of miR-133b to both neurons and astrocytes via
MSC-derived exosomes resulted in the downregulation of
connective tissue growth factor, leading to the subse-
quent release of exosomes from astrocytes that facilitated
neurite outgrowth.>¢83

8 | MICROGLIA-MEDIATED BRAIN
PLASTICITY

In aged Macaca mulatta, MSC-Exos not only mitigated
neuroinflammation but also shifted the role of microglia
towards a reparative function.®* The intranasal delivery
of MSC exosomes before ischemia, possibly involving
the Toll-like receptor 4/CD14/NF-«B signaling pathway,
demonstrated a capacity to minimize neuronal mortality
and suppress microglia-mediated neuroinflammation.®®
Adipose-derived MSC (ADMSC)-Exosomes enriched
with miR-30d-5p, by promoting M2 microglia polariza-
tion, offering enhanced protection against brain dam-
age compared with control and miR-30d-5p knockdown
groups. Mechanistic investigations unveiled that miR-
30d-5p targeted autophagy-related genes, specifically
beclin-1 and autophagy-related gene 5, resulting in a
reduction in autophagy-mediated M1 microglia polar-
ization.”> Systemically administered M2 microglial
exosomes exhibited a reduction in infarct size, con-
tributed to neurological function restoration, and sup-
pressed neuron apoptosis, potentially through the
transfer of miR-124 and modulation of ubiquitin-
specific protease 14 in neurons.®®

9 | EXOSOME-MEDIATED
ANTIOXIDATIVE EFFECTS OF
MSC IN ISCHEMIC STROKE

The role of oxidative stress in the development of
poststroke pathophysiology has been well established.®”
This oxidative stress environment poses challenges for the
survival and colonization of transplanted neural stem cells.
Treatment of senescent CD4" T cells with exosomes
derived from human placenta-derived mesenchymal stem
cells resulted in notable reductions in oxidative stress-
induced damage, including reactive oxygen species (ROS)
and 8-Hydroxy-2’-deoxyguanosine, as well as diminished
numbers of cells expressing Senescence-Associated
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B-galactosidase. Moreover, expression of aging-related
proteins such as p53 and y-H2A histone family member X,
along with senescence-associated secretory phenotype
components like IL-6 and Osteopontin, were significantly
decreased.®® Exosomes released by AAMSCs carry miR-
25, which effectively suppresses the autophagic response.
This mechanism promotes cell survival both in vitro under
hypoxic conditions and in vivo during cerebral ischemia,
thus facilitating recovery of post-stroke neurological
function. Co-culturing with exosomes containing circular
RNA Akap7 (exo-circAkap7) demonstrated a decrease in
cellular injury induced by OGD-reoxygenation (OGD-R).
This effect was attributed to the absorption of miR-155-
5p, which in turn promoted ATG72-mediated autophagy
while reducing NRF2-mediated oxidative stress.>* Exo-
somes act as mediators of intercellular communication in
the brain, influencing various cell types such as neurons,
microglia, oligodendrocytes, astrocytes, endothelial cells,
and pericytes. Their cargo plays a pivotal role in
regulating diverse brain functions, including responses
to oxidative stress, maintenance of BBB integrity, and
synaptic activity.®? Through improvements in neurological
functioning, reduction of pathological and structural
damage to neurons, attenuation of oxidative stress,
mitigation of neuronal apoptosis, and enhancement of
normal neuron count, Exosomes derived from BMSCs
(BMSCs-Exo) exhibit a protective effect against hypoxic-
ischemic brain injury.®® Exosomes derived from stem
cells, post-stem cell implantation, have been shown to
enhance post-stroke recovery in mice subjected to
MCAO/reperfusion (MCAO/R)."

10 | ANTI-INFLAMMATORY
EFFECTS OF MSC EXOSOMES IN
ISCHEMIC STROKE

Inflammation serves a crucial role in the pathogenesis
of brain damage resulting from cerebral ischemia, a key
pathogenetic pathway. MSCs-Exos have the potential
to reduce the severity of acute ischemic or
ischemia—reperfusion injury by modulating the inflam-
matory responses. For instance, when hMSC-Exos is
given to mice with a brain injury, the inflammation in the
brain goes down in a dose-dependent way.** This
helps rats with traumatic brain injuries recover their
abilities and reduces inflammation-induced neuronal
degeneration, microgliosis, and reactive astrogliosis.?
On similar counts, when MSC-IL-1-Exos is added to
astrocytes, the amount of inflammatory factors (p-P65
and P-65) and antioxidant factors (Nrf2, Keap1, and
HO-1) goes down.®® Further, exosomes derived from
BMMSCs have been shown to decrease inflammatory
factors, promote neuronal survival, and ameliorate
degenerative changes and neurological function in
rodents with MCAO.%* Furthermore, MSC-Exos pro-
tects against ischemic stroke by directing immune cells
to take on a protective character.®® Additionally, MSC-
Exos also enhances neurogenesis to treat ischemic
stroke. Three hours after an ischemic stroke, rats
treated with ADMSC-Exos exhibited enhanced neuro-
logical function, decreased lesion volume, increased

angiogenesis, and anti-inflammatory and immunomo-
dulatory effects.”® MSC-EVs can augment the secre-
tion of TGF-p and IL-10 by CD11c" dendritic cells,
thereby inhibiting lymphocyte proliferation.®® The AMP-
activated protein kinase and JAK2/STAT3/NF-«kB sig-
naling pathways may also be regulated by MSC-Exos
to protect rodents with MCAOQ injury.®” Therefore MSC-
Exos can be utilized in neuroprotection,
neurogenesis, immunomodulation, and angiogenesis
(Figure 1).

Further, MSC-Exos also regulates pro-inflammatory
factor secretion that reduces inflammation in ischemic
stroke. Changes in inflammatory mediators such as
cytokines and chemokines, as well as immune cell
participation have been observed in the ischemic area
following ischemia episodes. For instance, pro-
inflammatory factors such as TNF-q, IL-1B, and IL-6 are
upregulated following ischemia.®® MSC-Exos containing
factors such as IncRNA ZFAS1, IncRNA H19, miR21-3p,
miR-146a-5p, miR-138-5p, and miR182-5p have been
found to inhibit the release of TNF-a, IL-15, and IL-6,
resulting in reduced immunosuppression.®®°1%° Addi-
tionally, exosomes derived from BM-MSCs enriched in
miR-138-5p or miR-1906 have been demonstrated to
reduce inflammatory responses and suppress pro-
inflammatory signaling cascades, thereby enhancing
stroke recovery.'®’ MSC-Exos can also inhibit the pro-
inflammatory mediators IFN-y, iNOS, and [L-8."%
Furthermore, in the context of brain damage, some
MSC-Exos upregulate anti-inflammatory factors such as
TGF-p, IL-4, and IL-10, whereas downregulate pro-
inflammatory factors.”® Furthermore, MSC-Exos have
been demonstrated to influence the levels of pro-
inflammatory cytokines such as TNF-o, IL-15, and IL-6,
as well as anti-inflammatory molecules such as IL-4 and
IL-10, contributing to the reduction of inflammation in the
infarcted brain.”

11 | INFLAMMATORY ROLE
OF T-CELL INFILTRATION IN
POSTSTROKE

T-cell recruitment and infiltration through the BBB
after stroke play an important role in inflammation.
Following the onset of ischemic stroke, innate immune
cells are first activated, followed by T lymphocytes,
which then infiltrate into brain tissue via BBB. Within
24 h of the stroke, T cells begin to invade the ischemic
brain tissue, and 4 weeks later, they are still
present.'®® T lymphocytes have been found to
infiltrate ischemic brain tissue, according to numerous
investigations. Depending on their functional propert-
ies, various T-cell subsets will affect ischemic brain
tissue in different ways. It has been demonstrated that
an excessive infiltration of inflammatory T cells might
aggravate the inflammatory response and encourage
tissue damage in the brain.’® However, T cells may
have immunosuppressive effects in the later stages of
stroke that encourage the healing of damaged nerves,
which may help to improve the prognosis for stroke.'%®
T cells may also be advantageous in regulating
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FIGURE 1

Ischemic stroke-induced damage triggers inflammation, apoptosis, ischemia, demyelination, and abnormal electrical activity. The

administration of MSC-Exos to the ischemic brain facilitates restoration by enhancing neurogenesis, angiogenesis, neuroprotection, and the

modulation of immune cell responses. MSC, mesenchymal stem cell.

inflammation, increasing poststroke repair, and en-
couraging clearance of wounded tissue debris
throughout the chronic phases of stroke recovery, in
addition to the detrimental effects in the acute period
post-stroke.'%®

Extracellular vesicles generated by MSC-Exos have
an active role in immunomodulation, resulting in a
change in the microglial phenotype targeted at lowering
stress in the context of ischemic stroke. Following
OGD, treatment with MSC-EV enhances BV-2 cell
survival and miR-27a-5p levels. In both in vitro and in
vivo models of ischemic injury, decreased miR-21a-5p
levels in MSC-Exos reduce the effects on microglial
polarization and STAT3 phosphorylation.’®”  Zhao
et al.>®® showed that BM-MSCs’ exosomes have
anti-inflammatory properties by showing that they
change the miR-223-3p-mediated CysLT2R-ERK1/2
signaling pathway, which affects microglia M1 polariza-
tion. Further, it has been reported that exosomes
derived from BMSCs inhibit inflammation-related sig-
naling pathways, promote microglial polarization from
M1 to M2, and reduce endothelial cell injury and stroke-
related neurological impairment.'®® AD-MSCs promote
the polarization of M2 macrophages by activating the
transcription factors Stat6 and MafB via exosomes.'%®
Exosomes derived from AD-MSCs have been found to

promote microglial polarization from M1 to M2 in
response to pro-inflammatory microenvironment sig-
nals,’’® indicating their function in activating pro-
inflammatory microenvironment signals. HU-MSC-
derived exosomes can reach the site of ischemic injury
and internalize by cells both in vivo and in vitro.
Treatment with HUMSC-exosomes reduces OGD-
induced microglial inflammation in vitro. After transient
cerebral ischemia in vivo, therapy with HUMSC-
exosomes results in decreased infarct volume im-
proved behavioral impairments, and decreased micro-
glial activation.®®

In primary hippocampal astrocytes stimulated with
lipopolysaccharide, MSC-Exos has been shown to
decrease the expression of markers associated with
astrocyte activation, pro-inflammatory phenotype (C3),
and cell proliferation (Ki67). These effects included less
reactive astrogliosis and less NF-«xB activation. In vivo
and in vitro administration of MSC-Exos reversed
inflammatory phenotypes, such as NF-«B activation
and translocation, and hippocampal astrocyte oxida-
tion, by upregulating and translocating Nrf2.'"" In
conclusion, there could potentially be additional stroke
therapies that utilize the modification of immune
responses to mitigate inflammation through the utiliza-
tion of MSC-Exos.
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MSC-Exos in cell death pathway

MSC-derived exosomes exhibit promise in modulating
cell death pathways and promoting cell survival.
Experimental evidence indicates their capability to
inhibit apoptosis, leading to a reduction in cell
mortality. MSC-Exos have demonstrated the ability
to diminish proapoptotic proteins while increasing
antiapoptotic factors, thereby enhancing cell survival
in ischemic conditions and neurodegenerative dis-
eases. Moreover, MSC-Exos protected ischemia/
reperfusion (I/R) damage in mice by inhibiting micro-
glial apoptosis, potentially through exosomal miR-26a-
5p-mediated inhibition of CDK675."' Mahmoudi
et al."'® illustrated that MSC-Exos enhances phago-
cytosis and minimizes neutrophil apoptosis.
AD-MSC-derived exosomes prevent apoptosis and
inflammation by activating MAT2B and downregulat-
ing miR-27-3p in hypoxia or reoxygenation-exposed
cells.®®

Additionally, exosomes also impact autophagy, a
vital physiological process influencing cell fate and
survival. The proposed methods have been found to
enhance autophagy in injured cells, facilitating the
removal of toxic aggregates and damaged organ-
elles, thereby promoting cell survival and tissue
repair.''* Along the preceding lines, excessive
autophagy may also lead to cell death, however,
MSC-derived exosomes can prevent autophagy-
induced cell death. Adipose-derived MSC exo-
somes, transmitting miR-25, show promise in reduc-
ing autophagy and enhancing cell survival under
hypoxia and cerebral ischemia, facilitating neuro-
logical function recovery after stroke.'’® Pigment
epithelium-derived factor (PEDF)-modified ADSC-
derived exosomes protect against in vivo cerebral I/
R injury by increasing autophagy and preventing
apoptosis.®*

12 | IMPACT OF MSC-EXOS ON
PYROPTOSIS

MSC-Exos exhibits the ability to inhibit the expression of
the NLRP3 inflammasome and pyroptosis-associated
proteins on neuronal surfaces. Through the modulation
of microglial polarization and the suppression of NLRP3
inflammasome-mediated inflammation, BMSC-Exos
effectively reduces cerebral I/R injury.’*® In a rat model
of MCAO, Sarmah et al.''” observed a parallel reduction
in NLRP-1 and NLRP-3 inflammasomes, along with
associated components such as IL-1p, caspase-1, and
ASC, following intra-arterial MSC injections. The inter-
play between astrocyte and microglial polarization and
the initiation of the post-stroke inflammatory cascade,
linked to NLRP3 apoptotic bodies, is mitigated by
BMSC-Exos, contributing to the dampening of the
inflammatory response after stroke."  Furthermore,
human mesenchymal stem cell-derived exosomes,
through the miR-138-5p/Sirt1 axis of IncRNA KLF3-
AS1, demonstrate a reduction in cardiomyocyte pyr-
optosis and myocardial infarction.''®

13 | IMPACT OF MSC-EXOS ON
FERROPTOSIS

Exosomal circBBS2 derived from UC-MSCs enhances
SLC7A11 expression by sequestering miR-494, thereby
inhibiting ferroptosis and mitigating ischemic stroke
effects.’’® Moreover, ADSC-derived exosomes exhibit
positive outcomes in a mouse neuroblastoma cell line
N2a model of OGD. The study reveals that miR-760-3p in
ADSC-Exo, through its interaction with CHACT in neurons,
plays a role in preventing ferroptosis.'®® Ferroptosis
occurs during the late stages of cerebral ischemia when
blood containing free iron and ferritin infiltrates the brain
parenchyma through a compromised BBB.'?'

14 | CUPROPTOSIS IN
NEUROLOGICAL DISORDERS

Recent research has revealed that cuproptosis, a
unique and copper-dependent form of controlled cell
death, is triggered by copper's direct binding to
lipoylated tricarboxylic acid cycle components. It
causes iron-sulfur cluster protein loss and lipoylated
protein aggregation, which trigger proteotoxic stress
and cell death.'®® According to experimental data,
neurotoxicity and cerebral copper dyshomeostasis are
also factors in the pathogenesis of Alzheimer's dis-
ease.'?® However, a recent study found that both male
and female rats exposed to chronic copper have
reduced learning and memory, as well as oxidative
stress in the hippocampus.’®* Additionally, high Cu
exposure impairs mice's learning and memory by
causing Cu accumulation in their brain tissue. Cu
excess causes oxidative damage and cell death, which
result in the pathological injury of brain tissue. Through
CREB/BDNF pathways, Cu reduces synaptic plasticity
and activates cuproptosis, which aids in cell death,
according to mechanism studies.'®® The intricate
interplay between MSC-Exos and cuproptosis holds
significant implications, offering new avenues for
understanding and potentially intervening in copper-
induced cell death mechanisms.'2°

15 | EXOSOMES AS DIAGNOSTIC
BIOMARKERS FOR ISCHEMIC
STROKE

Exhibiting unique attributes, exosomes show promise as
potential therapeutic agents for ischemic stroke detec-
tion. These attributes encompass minimal immunoge-
nicity, inherent stability, effective transmission, and the
capability to traverse the BBB. Exosomes are secreted
by all cell types and can be found in biological fluids,
making them useful for liquid biopsies to monitor the
progression of disease.'?” Therefore, exosomes have
the potential to identify various stages of ischemic stroke
and function as potential diagnostic biomarkers. Along
these lines, investigating the presence of differentially
regulated miRNAs in exosomes, particularly those
originating from neural sources, would be of
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considerable interest. miBRNAs, which are among the
most abundant components of exosomes, can be used
for the early detection of ischemic stroke. As per clinical
findings, the expression of serum exosomal miR-9 and
miR-124 was significantly correlated with infarct volume,
serum IL-6 concentration, and National Institutes of
Health Stroke Scale scores.'?® The above two exosomal
miRNAs are crucial for assessing the severity of
ischemic injury and diagnosing ischemic stroke. Notably,
patients with acute ischemic stroke have a significant
increase in miR-223 expression in their serum exo-
somes. Patients who had a bad outcome from their
stroke had a higher level of miR-223 expression in their
exosomes than those who had a good outcome.’?® In
addition, plasma exosomal miRs 422a and 125b-2-3p
may serve as blood-based biomarkers for ischemic
stroke diagnosis and monitoring in patients with acute
and subacute strokes.'®® Further, a combination of
plasma exosomal miR-27-5p and miR-30a-5p has also
been proposed as an outstanding biomarker for ische-
mic stroke diagnosis and phase determination.’’
Patients with an acute ischemic stroke have more
miR-134 in their plasma exosomes than healthy people,
and the size of the infarct is a strong predictor of a worse
prognosis.'®? Likewise, the increased levels of GADD34
in the plasma exosomes of rodents with cerebral
ischemia suggest that exosomal GADD34 may be
useful as a diagnostic biomarker and therapeutic target
in ischemic strokes.'® Along the above lines, stroke
onset significantly elevates E-selectin, P-selectin, and
platelet-derived EVs, with platelet-derived EVs remain-
ing elevated, reflecting protracted platelet activation
during the healing phase, while E-selectin and
P-selectin decreased significantly 3—6 months after
stroke, platelet-derived EVs remained elevated.®* Also,
extracellular vesicles from ASC, an inflammatory protein
of NLRP3 inflammatory cascade, could be used as
possible inflammatory biomarkers for ischemic stroke,
since patients with ischemic stroke have been found to
have higher levels of ASC.'®® In addition, Annexin
V-positive exosomes derived from patients with acute
ischemic stroke had elevated levels of platelets (CD617),
erythrocytes (CD235ab™), leukocytes (CD45%), neural
progenitor cells (CD34* and CD56"), and leukocytes
(CD45™) in their blood samples.'®® In addition, a recent
study comparing 200 nm EV profiles in the mouse brain
under physiological conditions and 24h after acute
MCAO revealed that microglial-derived EVs predomi-
nated at baseline, whereas astrocytic-derived EVs
predominated after ischemia.'®” These findings highlight
the potential of exosomes as diagnostic biomarkers and
also as therapeutic targets for ischemic stroke
management.

15.1 | Limitations and gaps in existing
exosome therapy

Exosome therapy now available has numerous limita-
tions and research gaps that are impeding its practical
deployment. The differential regulation of exosome
release by distinct cell types is a major concern; for
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example, oligodendrocytes release exosomes under
NaCl regulation, whereas astrocytes secrete them
under high KCI concentrations. Because of inherent
variation in size, cargo, and identifying markers,
standardizing exosomes is difficult, and large-scale
synthesis and isolation are expensive and time-
consuming operations.® The lack of existing criteria
makes determining the therapeutic effects of individ-
ual exosomes challenging, and assessing their cargo
or markers presents significant challenges.'®® Fur-
thermore, unanticipated side effects of exosome
therapy have been identified, such as hypothalamic
stem cell-derived exosomes altering the aging rate of
mice.'®

Before clinical application, the appropriate injection
dose, therapeutic window, and route of distribution for
exosomes must be determined. Exosomes from MSCs,
for example, have dose-dependent effects on func-
tional recovery in infarcted areas.®' Low doses have
been shown to have neuroprotective characteristics,
whereas high concentrations have been shown to have
neurotoxic effects.'*® For instance, a dose-dependent
study found that delivering exosomes at low dosages
(50-100g) was important for enhanced functional
recovery after stroke.'' Exosome-based treatments
for stroke or brain injury have major challenges in
efficiently targeting specific recipient cells inside the
CNS."2 Exosome composition and activity can be
influenced by metabolic processes in both recipient and
donor cells, complicating exosome therapy.'*® Pure
exosome isolation advances are required for clinical
application.’** Overall, further research is needed to
overcome these obstacles and improve the efficacy of
current exosome approaches.

15.2 | Exosomes as delivery vehicle of
therapeutics of interest

Utilizing exosomes as carriers for targeted therapeutic
delivery is an attractive avenue within nanotechnologi-
cal frameworks, offering enhanced solubility and
precision in directing natural substances. Along these
lines, to specifically address neuronal injury within the
ischemic penumbra, a monoclonal antibody GAP43, a
neuron-specific protein, was consistently modified onto
the surface of drug-loaded exosomes.’* In essence,
the anti-inflammatory and neuroprotective agent curcu-
min (cur) was loaded into macrophages (Ex-cur) and
exosomes derived from embryonic stem cells (MESC-
exocur). This innovative approach demonstrated the
capability to reduce inflammation production, down-
regulate excitatory amino acid receptors, minimize
ROS accumulation, alleviate BBB damage in lesions,
and enhance neurovascular recovery.'#®'#” Further-
more, the delivery of nucleic acids and peptides, in
addition to molecular medications, was achieved. For
targeted delivery to the ischemic brain, MSC-exos were
loaded with cholesterol-modified miR-270 and conju-
gated to arginylglycylaspartic acid c(RGDyK) peptides.
Notably, near-infrared fluorescence imaging illustrated
significant improvements in angiogenesis and survival
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in MCAO/R mice.®® Facilitating nose-to-brain transport
of the anti-miRNA oligonucleotide, a receptor for
advanced glycation end-products (RAGE)-binding pep-
tide linked to exosomes (RBP-Exo) was employed.
RBP-Exo not only delivered AMO181a more efficiently
than unmodified exosomes but also mitigated damage
to the ischemic brain by downregulating RAGE.'*®
Moreover, MNVs derived from iron oxide nanoparticle-
harbored MSCs enhanced the magnetic navigation
targeting of the ischemic brain region.'*® Through bio-
orthogonal chemistry, Tian et al. coupled exosomes
with the c(RGDyK) peptide surface for the specific
treatment of ischemic stroke, concentrating on the
lesion region. These modified exosomes, containing
curcumin, demonstrated a notable reduction in cellular
apoptosis and the inflammatory response within the
targeted (lesion) area, showcasing promising thera-
peutic efficacy and targeting precision in the in vivo
results of the cRGD-exosome delivery system.'>°

16 | CONCLUSION

Exosome-based therapy emerges as a promising
paradigm for ischemic stroke treatment, holding trans-
formative potential in the therapeutic landscape.
Originating from diverse sources, with a notable
emphasis on MSCs, exosomes demonstrate effective-
ness in alleviating pathophysiological mechanisms
associated with stroke. Their distinctive features,
including low immunogenicity and efficient cargo
transport across the BBB, contribute to their therapeu-
tic prowess. Demonstrating neuroprotection, angiogen-
esis, anti-inflammatory responses, and the regulation
of cell death pathways, exosomes enhance neuronal
survival, tissue healing, and functional recovery.
Additionally, they show promise as diagnostic biomar-
kers, enabling early detection and tailored therapeutic
interventions for ischemic stroke. Despite these ad-
vancements, practical application faces challenges and
research gaps that warrant further exploration. Delving
into the underlying mechanisms and cellular interac-
tions is essential for translating exosome therapy from
a promising concept to a revolutionary clinical reality,
necessitating interdisciplinary collaborations across
neurology, biotechnology, and clinical research.
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