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Improved reconstruction of single-cell 
developmental potential with CytoTRACE 2
 

Minji Kang    1,2,3,14, Gunsagar S. Gulati    4,14, Erin L. Brown    1,2,14, Zhen Qi    1,14, 
Susanna Avagyan2, Jose Juan Almagro Armenteros1,5, Rachel Gleyzer1,2, 
Wubing Zhang1,2, Chloé B. Steen6,7,8, Jeremy Philip D’Silva    1,2, 
Janella Schwab    1,2,9, Michael F. Clarke    1,10, Aadel A. Chaudhuri    11,12 & 
Aaron M. Newman    1,2,10,13 

While single-cell RNA sequencing has advanced our understanding of 
cell fate, identifying molecular hallmarks of potency—a cell’s ability to 
differentiate into other cell types—remains a challenge. Here we introduce 
CytoTRACE 2, an interpretable deep learning framework for predicting 
absolute developmental potential from single-cell RNA sequencing data. 
Across diverse platforms and tissues, CytoTRACE 2 outperformed previous 
methods in predicting developmental hierarchies, enabling detailed 
mapping of single-cell differentiation landscapes and expanding insights 
into cell potency.

All cells, from the fertilized egg to its mature progeny, are hierarchically 
organized in multicellular life. Each cell has distinct potency, or ability 
to differentiate into specialized cell types, ranging from totipotent 
(capable of generating an entire organism) and pluripotent (capable of 
generating all adult cells) to multipotent, oligopotent, unipotent and 
differentiated cells, each with increasingly restricted developmental 
potential1 (Fig. 1a). While lineage tracing, functional transplantation 
assays and single-cell genomics have expanded our understanding of 
cell potency2, there remains a need for interpretable methods that can 
learn developmental programs, predict potency states and generate 
insights applicable to regenerative and cancer biology.

We previously introduced CytoTRACE 1 (ref. 3), a computational 
method for predicting cellular maturity from single-cell RNA sequenc-
ing (scRNA-seq) data, based on the number of genes expressed per 
cell. However, like other trajectory inference methods4–8, CytoTRACE 
1 provides predictions that are dataset-specific, making it difficult to 
unify results across datasets and contextualize them within the broader 
framework of cellular potency.

To overcome these challenges, we developed CytoTRACE 2, an 
interpretable deep learning framework for determining single-cell 
potency categories and absolute developmental potential from 
scRNA-seq data. Unlike most deep learning methods9, CytoTRACE 2 
learns multivariate gene expression programs that are readily inter-
pretable and enable accurate predictions of developmental potential. 
Moreover, it suppresses batch and platform-specific variation through 
multiple mechanisms, including competing representations of gene 
expression and training set diversity (Methods). Our approach uncov-
ers cross-tissue correlates of cell potency and highlights the value of 
interpretable deep learning for characterizing single-cell develop-
mental states in health and disease (https://cytotrace2.stanford.edu).

To develop CytoTRACE 2, we curated an extensive atlas of human  
and mouse scRNA-seq datasets with experimentally validated potency 
levels, spanning 33 datasets, nine platforms, 406,058 cells and  
125 standardized cell phenotypes (Fig. 1b and Supplementary  
Table 1). Phenotypes were grouped into six broad potency categories— 
totipotent, pluripotent, multipotent, oligopotent, unipotent and 
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developmental systems, termed ‘clades’, were held out from training. 
In all cases, results were well correlated with ground truth (Fig. 1f, 
Extended Data Fig. 2d,e and Supplementary Tables 8 and 9), implying 
that potency-related biology is conserved across datasets. We also 
found that CytoTRACE 2 is resistant to moderate annotation errors and 
performs reliably under practical data limitations (Extended Data Fig. 3 
and Supplementary Note).

A key advantage of CytoTRACE 2 is its ability to predict absolute 
developmental potential on a continuous scale from 1 (totipotent) to 0 
(differentiated), which enables cross-dataset comparisons and avoids 
imposing a developmental order where none exists. For example,  
unlike its predecessor, CytoTRACE 2 corroborated a pluripotency 
program in cranial neural crest cell precursors11 and correctly dis-
tinguished datasets with and without immature cells12,13 (Fig. 1g and 
Extended Data Fig. 4). It also outperformed other methods3,14–20 in 
ordering mouse single-cell transcriptomes from six datasets2,21–25 across 
62 developmental time points (Extended Data Fig. 5a–c) and accurately 
captured the progressive decline in potency across 258 evaluable 
phenotypes during mouse development (Extended Data Fig. 5d,e)—
without requiring data integration or batch correction. CytoTRACE 2  
potency predictions also aligned with known leukemic stem cell 
signatures in acute myeloid leukemia (Extended Data Fig. 6a)26 and 
identified known multilineage potential in oligodendroglioma27, 
highlighting its applicability to cancer (Extended Data Fig. 6b and 
Supplementary Table 10).

Next, we benchmarked CytoTRACE 2 against multiple strategies 
for cell potency classification and developmental hierarchy infer-
ence (Supplementary Table 11). CytoTRACE 2 outperformed eight 
state-of-the-art machine learning methods28–32 for cell potency clas-
sification in 33 datasets, achieving a higher median multiclass F1 score 
and lower mean absolute error (Extended Data Fig. 7). Moreover, it 
surpassed eight developmental hierarchy inference methods for 
cross-dataset (absolute) and intra-dataset (relative) performance3,14–20, 
demonstrating over 60% higher correlation, on average, for recon-
structing relative orderings in 57 developmental systems, including 
data from Tabula Sapiens33 (Fig. 1h,i and Supplementary Tables 12  
and 13). Similar results were observed when comparing CytoTRACE 2  
against nearly 19k annotated gene sets34–36 (Fig. 1i and Supplementary  
Table 13) and scVelo5, a generalized RNA velocity model for predicting 
future cell states (Extended Data Fig. 8 and Supplementary Table 14).

Previous genomic studies of stemness largely focused on pluri
potency, with limited insight into other potency states. Given the  
inherent interpretability of our GSBN design, we next explored the 
molecular programs driving potency predictions (Fig. 2a). Across our 
potency atlas, GSBN modules produced a cohesive gradient of differen
tiation states (Fig. 2b and Extended Data Fig. 9a,b). The top-ranking 
genes showed conserved signatures across species, platforms and 
developmental clades, identifying both positive and negative cor-
relates of cell potency (Fig. 2c and Supplementary Tables 15 and 16).

Given these results, we hypothesized that CytoTRACE 2 might 
enrich for key potency-specific factors. Indeed, the core transcription 

differentiated—and further subdivided into 24 granular levels based 
on expected developmental order from lineage tracing and functional 
assays (Fig. 1b and Supplementary Tables 2 and 3). A training set of  
93 cell phenotypes from 16 tissues and 13 studies was used to develop 
the model, with the remaining data reserved for performance  
evaluation (Fig. 1b and Supplementary Table 1).

CytoTRACE 2 decodes developmental potential using a novel, 
explainable deep learning architecture called a gene set binary 
network (GSBN). Inspired by binarized neural networks10, GSBNs 
assign binary weights (0 or 1) to genes, identifying highly discrimi-
native gene sets that define each potency category (Fig. 1c and 
Extended Data Fig. 1a). Multiple gene sets can be learned for each 
potency group, and the informative genes driving model predictions 
can be easily extracted—an advantage over conventional deep learn-
ing architectures. As such, CytoTRACE 2 provides two key outputs  
for each single-cell transcriptome: (1) the potency category with  
maximum likelihood and (2) a continuous ‘potency score’ gener-
ated by integrating GSBN predictions across potency categories 
and calibrating the range from 1 (totipotent) to 0 (differentiated) 
(Fig. 1c, Extended Data Fig. 1a and Supplementary Tables 2–4). Based on  
the assumption that transcriptionally similar cells occupy related 
differentiation states, CytoTRACE 2 also leverages Markov diffusion 
combined with a nearest neighbor approach to smooth individual 
potency scores (Extended Data Fig. 1b,c).

Having compiled a compendium of ground truth datasets, we 
evaluated the performance of CytoTRACE 2 by assessing both the 
accuracy of potency predictions and the ordering of known develop-
mental trajectories. We used two definitions of development order-
ing: ‘absolute order’, which compares predictions to known potency 
levels across datasets, and ‘relative order’, which ranks cells within 
each dataset from least to most differentiated (Extended Data Fig. 1d 
and Supplementary Tables 2–4). The agreement between known and 
predicted developmental orderings was quantified using weighted 
Kendall correlation to ensure balanced evaluation and minimize bias 
(Supplementary Table 5).

We started by evaluating model hyperparameters through 
cross-validation and observed minimal performance variation across  
a wide range of values (Extended Data Fig. 1e,f and Supplementary  
Table 6). Based on this, we selected stable hyperparameters and 
retrained the model. On the training data, we demonstrated that 
CytoTRACE 2 achieves high accuracy in distinguishing absolute 
potency for broad potency labels (Fig. 1d).

To validate our approach, we next extended our analysis to 
unseen data, comprising 14 held-out datasets spanning nine tissue 
systems, seven platforms and 93,535 evaluable cells. Performance on 
broad and granular potency labels was consistently high in testing 
(Fig. 1d,e) and robust to differences in species, tissues, platforms or 
phenotypes that were absent during training (Extended Data Fig. 2a–c 
and Supplementary Table 7). To rigorously assess generalizability, 
we retrained CytoTRACE 2 on different subsets of the potency atlas, 
including random train–test splits and scenarios where distinct 

Fig. 1 | Development and benchmarking of CytoTRACE 2. a, Overview of cell 
potency across six developmental categories. b, Summary of the 33-dataset 
single-cell potency atlas. c, Schematic of the CytoTRACE 2 model. Toti., 
totipotent; Pluri., pluripotent; Multi., multipotent; Oligo., oligopotent; Uni., 
unipotent; Diff., differentiated. d, CytoTRACE 2 performance across six broad 
potency categories in training and held-out test sets, with mean potency scores 
shown for each standardized phenotype–dataset pair (circles). e, CytoTRACE 2 
performance across 17 evaluable granular potency levels in held-out test data. 
Points denote mean potency score per phenotype; large circles indicate the 
median across these points for each granular potency level. Thick black lines 
(x axis) separate broad potency categories. A linear regression line with 95% 
confidence band is shown. f, Same as e, but using a leave-clade-out strategy, 
where each of 19 developmentally distinct clades (b) was held out during 

training. For d–f, concordance with ground truth was assessed using weighted 
Kendall correlation (τ) applied to single cells, with significance assessed by  
two-sided z-test. Box plots show medians, quartiles and 1.5 × interquartile range 
(IQR). g, Uniform Manifold Approximation and Projection (UMAP) of three  
held-out datasets showing ground truth (top), CytoTRACE 2 (middle) 
and CytoTRACE 1 (bottom). h, Violin plots comparing nine methods for 
reconstructing 57 developmental systems. P values were calculated by two-sided 
Wilcoxon tests against CytoTRACE 2; **P < 0.01; ****P < 0.0001. i, Performance 
comparison with eight previous methods and 18,706 gene sets in the test  
set (left) and Tabula Sapiens (right) using weighted τ to assess absolute  
(six broad potency levels) and relative order (median correlation across 
individual trajectories). a and c were created using BioRender.com.
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factors Pou5f1 and Nanog37 ranked within the top 0.2% of pluripotency 
genes (Supplementary Table 15). To further explore this hypothesis, 
we analyzed data from a large-scale CRISPR screen, in which ~7,000 
genes in multipotent mouse hematopoietic stem cells were individually 
knocked out and assessed for developmental consequences in vivo38 
(Fig. 2d). Among the 5,757 genes overlapping CytoTRACE 2 features, 
the top 100 positive multipotency markers were enriched for genes  
whose knockout promotes differentiation, whereas the top 100 nega-
tive markers were enriched for genes whose knockout inhibits dif-
ferentiation (Q = 0.04; Fig. 2e and Extended Data Fig. 9c). This trend 
was consistent across different numbers of top markers and highly 
specific for multipotency, underscoring the fidelity of learned potency 
representations (Extended Data Fig. 9d).

To more deeply analyze multipotency in mouse and human tissues 
and explore the potential of CytoTRACE 2 for biomarker discovery, we 
next applied pathway enrichment analysis to genes ranked by feature 
importance. Remarkably, cholesterol metabolism emerged as a leading 
multipotency-associated pathway (Fig. 2f, Extended Data Fig. 9e and 
Supplementary Table 17). Within this pathway, three genes related to 
unsaturated fatty acid (UFA) synthesis (Fads1, Fads2 and Scd2) were 
among the top-ranking markers (Fig. 2g). These genes were consistently 
enriched in multipotent cells across 125 phenotypes in our potency 
atlas (Fig. 2h; train–test area under the curve (AUC) values of 0.87 and 
0.92, respectively).

To experimentally confirm these findings, we performed quantita-
tive PCR on mouse hematopoietic cells sorted into multipotent, oligo-
potent, and differentiated subsets (Fig. 2i and Extended Data Fig. 10a,b) 
and multiplexed in situ mRNA imaging on mouse intestinal epithelium 
co-stained with multipotency markers, Lgr539 and Fgfbp140 (Fig. 2j and 
Extended Data Fig. 10c–e). In both approaches, Fads1, Fads2 and Scd2 
showed reproducible and preferential expression in multipotent cells 
(Fig. 2i,j and Extended Data Fig. 10). While fatty acid metabolism has 
been linked to stem cell biology41, no study has specifically attrib-
uted lipid metabolism genes to distinct potency levels. Therefore, 
CytoTRACE 2 provides a framework to uncover molecular relationships 
and facilitate new hypotheses and discoveries.

In summary, CytoTRACE 2 is an interpretable deep learning 
framework that predicts cell potency and continuous differentia-
tion states from scRNA-seq data. Unlike previous methods, it links 
stemness and pseudotime to absolute developmental potential, offer-
ing cross-dataset compatibility and transparency into the molecular 
profiles driving its predictions. Nonetheless, this study has several limi-
tations. Like all supervised machine learning approaches, CytoTRACE 
2 depends on the quality and breadth of its training data, although 
robust results were observed across diverse training–test splits, and 
moderate labeling variation was well tolerated. Performance may 
decline when analyzing cells with very low RNA content or number 
of expressed genes (Extended Data Fig. 3). While some phenotypes 
were misclassified in held-out data, absolute errors remained low and 
outcompeted existing methods. Finally, although the current model is 

trained on human and mouse data, ortholog mapping may expand its 
applicability to other species. Given its demonstrated advantages, we 
anticipate that CytoTRACE 2 will have immediate utility for improving 
our understanding of cell potency, with implications for the identifi-
cation of novel biomarkers and therapeutic targets in diseases where 
altered developmental hierarchies play a role.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-025-02857-2.

References
1.	 Zakrzewski, W., Dobrzyński, M., Szymonowicz, M. & Rybak, Z. 

Stem cells: past, present, and future. Stem Cell Res. Ther. 10, 68 
(2019).

2.	 Qiu, C. et al. A single-cell time-lapse of mouse prenatal 
development from gastrula to birth. Nature 626, 1084–1093 
(2024).

3.	 Gulati, G. S. et al. Single-cell transcriptional diversity is a hallmark 
of developmental potential. Science 367, 405–411 (2020).

4.	 La Manno, G. et al. RNA velocity of single cells. Nature 560, 
494–498 (2018).

5.	 Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. 
Generalizing RNA velocity to transient cell states through 
dynamical modeling. Nat. Biotechnol. 38, 1408–1414 (2020).

6.	 Qiu, X. et al. Reversed graph embedding resolves complex 
single-cell trajectories. Nat. Methods 14, 979–982 (2017).

7.	 Lange, M. et al. CellRank for directed single-cell fate mapping. 
Nat. Methods 19, 159–170 (2022).

8.	 Weiler, P., Lange, M., Klein, M., Pe’er, D. & Theis, F. CellRank 2: 
unified fate mapping in multiview single-cell data. Nat. Methods 
21, 1196–1205 (2024).

9.	 Rudin, C. Stop explaining black box machine learning models  
for high stakes decisions and use interpretable models instead. 
Nat. Mach. Intell. 1, 206–215 (2019).

10.	 Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R. & Bengio, Y. 
Binarized neural networks. In Advances in Neural Information 
Processing Systems 29 (eds Lee, D. et al) (Curran Associates, 
2016).

11.	 Zalc, A. et al. Reactivation of the pluripotency program precedes 
formation of the cranial neural crest. Science 371, eabb4776 
(2021).

12.	 Stuart, T. et al. Comprehensive integration of single-cell data. Cell 
177, 1888–1902.e1821 (2019).

13.	 Zheng, X. et al. Massively parallel in vivo Perturb-seq reveals 
cell-type-specific transcriptional networks in cortical 
development. Cell 187, 3236–3248 e3221 (2024).

Fig. 2 | Model interpretability and cross-tissue signatures of cell potency.  
a, Schematic for characterizing CytoTRACE 2 gene sets and feature importance. 
b, UMAP of gene set expression levels in training–test sets, aggregated in a 
0.5 × 0.5 grid, colored by CytoTRACE 2 (top) or ground truth potency (bottom). 
c, Expression of top 500 positive (pos.) and negative (neg.) markers per potency 
category, shown across 237 pseudo-bulks aggregated by phenotype, species 
and platform from training–test sets. d, Overview of a CRISPR knockout (KO) 
screen assessing in vivo differentiation effects in hematopoietic stem cells 
(HSCs)38. e, Enrichment of top CytoTRACE 2 multipotency markers among genes 
whose knockout promotes or inhibits HSC differentiation (from d), using GSEA. 
f, GSEA of 537 pathways in genes ranked by multipotency scores, highlighting 
‘cholesterol metabolism’. g, Top: overview of UFA pathways, inspired by ref. 42. 
Bottom: top UFA biosynthesis genes (Fads1, Fads2 and Scd2) ranked by GSEA and 
CytoTRACE 2 multipotency scores). h, Single-sample GSEA of UFA genes across 

237 pseudo-bulk samples, colored by tissue type as in c. ****P < 0.0001 (one-sided 
permutation testing). Box plots show medians, quartiles and 1.5 × IQR. i, qPCR of 
UFA genes in FACS-purified mouse hematopoietic subsets (n = 3), normalized to 
HSC/MPP; Actb as internal control. MPP, multipotent progenitor; CMP, common 
myeloid progenitor; CLP, common lymphoid progenitor. Violin plots show 
median and range. j, In situ mRNA imaging of mouse jejunum (top) shows spatial 
expression of multipotent (Lgr5 and Fgfbp1), proliferation (Mki67), and UFA 
(Fads1, Fads2 and Scd2) marker genes in crypts and villi. Higher magnification 
views (bottom) highlight boxed regions. Cell boundaries were visualized with 
E-cadherin immunostaining; asterisks mark representative Lgr5+ crypt base 
columnar (CBC) cells. TA, transit-amplifying. Scale bars, 50 μm (top), 10 μm 
(bottom). Images are representative of three mice. Images in a, d, g, i, j were 
created using BioRender.com. NES, normalized enrichment score.

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-025-02857-2
http://www.biorender.com/


Nature Methods

Brief Communication https://doi.org/10.1038/s41592-025-02857-2

14.	 Teschendorff, A. E., Maity, A. K., Hu, X., Weiyan, C. & Lechner, M.  
Ultra-fast scalable estimation of single-cell differentiation 
potency from scRNA-seq data. Bioinformatics 37, 1528–1534 
(2020).

15.	 Teschendorff, A. E. & Enver, T. Single-cell entropy for accurate 
estimation of differentiation potency from a cell’s transcriptome. 
Nat. Commun. 8, 15599 (2017).

16.	 Herman, J. S., Sagar & Grün, D. FateID infers cell fate bias in 
multipotent progenitors from single-cell RNA-seq data. Nat. 
Methods 15, 379–386 (2018).

17.	 Guo, M., Bao, E. L., Wagner, M., Whitsett, J. A. & Xu, Y. SLICE: 
determining cell differentiation and lineage based on single cell 
entropy. Nucleic Acids Res. 45, e54 (2017).

18.	 Malta, T. M. et al. Machine learning identifies stemness features 
associated with oncogenic dedifferentiation. Cell 173, 338–354.
e315 (2018).

19.	 Li, Q. scTour: a deep learning architecture for robust inference 
and accurate prediction of cellular dynamics. Genome Biol. 24, 
149 (2023).

20.	 Zhang, F. et al. FitDevo: accurate inference of single-cell 
developmental potential using sample-specific gene weight. 
Brief. Bioinform. 23, bbac293 (2022).

21.	 Cheng, S. et al. Single-cell RNA-seq reveals cellular heterogeneity 
of pluripotency transition and x chromosome dynamics during 
early mouse development. Cell Rep. 26, 2593–2607.e2593 (2019).

22.	 Deng, Q., Ramsköld, D., Reinius, B. & Sandberg, R. Single-cell 
RNA-seq reveals dynamic, random monoallelic gene expression 
in mammalian cells. Science 343, 193–196 (2014).

23.	 Mohammed, H. et al. Single-cell landscape of transcriptional 
heterogeneity and cell fate decisions during mouse early 
gastrulation. Cell Rep. 20, 1215–1228 (2017).

24.	 Pijuan-Sala, B. et al. A single-cell molecular map of mouse 
gastrulation and early organogenesis. Nature 566, 490–495 
(2019).

25.	 Qiu, C. et al. Systematic reconstruction of cellular trajectories 
across mouse embryogenesis. Nat. Genet. 54, 328–341 (2022).

26.	 Zeng, A. G. X. et al. A cellular hierarchy framework for 
understanding heterogeneity and predicting drug response in 
acute myeloid leukemia. Nat. Med. 28, 1212–1223 (2022).

27.	 Tirosh, I. et al. Single-cell RNA-seq supports a developmental 
hierarchy in human oligodendroglioma. Nature 539, 309–313 
(2016).

28.	 Abdelaal, T. et al. A comparison of automatic cell identification 
methods for single-cell RNA sequencing data. Genome Biol. 20, 
194 (2019).

29.	 Cao, X. et al. A systematic evaluation of supervised machine 
learning algorithms for cell phenotype classification using 
single-cell RNA sequencing data. Front. Genet. 13, 836798  
(2022).

30.	 Alquicira-Hernandez, J., Sathe, A., Ji, H. P., Nguyen, Q. &  
Powell, J. E. scPred: accurate supervised method for cell-type 
classification from single-cell RNA-seq data. Genome Biol. 20, 
264 (2019).

31.	 Tan, Y. & Cahan, P. SingleCellNet: a computational tool to classify 
single cell RNA-seq data across platforms and across species. 
Cell Syst. 9, 207–213 e202 (2019).

32.	 Kiselev, V. Y., Yiu, A. & Hemberg, M. scmap: projection of 
single-cell RNA-seq data across data sets. Nat. Methods 15, 
359–362 (2018).

33.	 Consortium, T. T. S. et al. The Tabula Sapiens: a multiple-organ, 
single-cell transcriptomic atlas of humans. Science 376, 
eabl4896 (2022).

34.	 Gerstein, M. B. et al. Architecture of the human regulatory 
network derived from ENCODE data. Nature 489, 91–100 (2012).

35.	 Lachmann, A. et al. ChEA: transcription factor regulation 
inferred from integrating genome-wide ChIP-X experiments. 
Bioinformatics 26, 2438–2444 (2010).

36.	 Liberzon, A. et al. The Molecular Signatures Database hallmark 
gene set collection. Cell Syst. 1, 417–425 (2015).

37.	 Loh, Y. H. et al. The Oct4 and Nanog transcription network 
regulates pluripotency in mouse embryonic stem cells. Nat. 
Genet. 38, 431–440 (2006).

38.	 Haney, M. S. et al. Large-scale in vivo CRISPR screens identify 
SAGA complex members as a key regulators of HSC lineage 
commitment and aging. Preprint at bioRxiv https://doi.
org/10.1101/2022.07.22.501030 (2022).

39.	 Barker, N. et al. Identification of stem cells in small intestine and 
colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

40.	 Capdevila, C. et al. Time-resolved fate mapping identifies the 
intestinal upper crypt zone as an origin of Lgr5+ crypt base 
columnar cells. Cell 187, 3039–3055 e3014 (2024).

41.	 Kang, J. X., Wan, J. B. & He, C. Concise review: regulation of stem 
cell proliferation and differentiation by essential fatty acids and 
their metabolites. Stem Cells 32, 1092–1098 (2014).

42.	 Jin, H.-R. et al. Lipid metabolic reprogramming in tumor 
microenvironment: from mechanisms to therapeutics. J. Hematol. 
Oncol. 16, 103 (2023).

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2025

http://www.nature.com/naturemethods
https://doi.org/10.1101/2022.07.22.501030
https://doi.org/10.1101/2022.07.22.501030
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Nature Methods

Brief Communication https://doi.org/10.1038/s41592-025-02857-2

Methods
Ethical compliance
All animal procedures were performed in compliance with ethical 
regulations and conducted according to a protocol approved by the 
Stanford University Administrative Panel for Laboratory Animal Care 
committee (protocol no. 10868).

Single-cell potency atlas
Developmental potency reflects a cell’s capacity to differentiate into 
various cell types, with six widely recognized categories in stem cell 
biology: totipotency, pluripotency, multipotency, oligopotency, 
unipotency, and differentiated (Fig. 1a,b and Supplementary Note). 
These broad classifications are based on decades of research, including 
lineage tracing, transplantation and colony-formation experiments 
across multiple tissues and species. Each category represents a pro-
gressively restricted ability to generate downstream cell types, from 
totipotent cells capable of forming all embryonic and extra-embryonic 
lineages to unipotent cells restricted to producing a single mature cell 
type; however, as developmental potential exists on a continuum, we 
also devised a more granular classification system, as described in  
Supplementary Note and Supplementary Tables 2 and 3.

Of note, classically defined potency levels are not directly anno-
tated in publicly available scRNA-seq datasets. Therefore, to train, 
validate and benchmark CytoTRACE 2, we downloaded and curated 
33 human and mouse scRNA-seq datasets from peer-reviewed  
studies with experimentally confirmed developmental states and 
assignable potency levels (Supplementary Table 1). As part of this 
selection process, we applied the following inclusion and exclusion 
criteria to enhance experimental rigor:

•	 Only functionally validated developmental states supported 
by lineage tracing or transplantation assays were considered 
for analysis. Datasets with transient cell changes, such as from 
metabolic activation or suppression, cell cycle transitions or 
environmental perturbations were excluded, as these do not 
represent durable developmental processes.

•	 Datasets with irreconcilable technical batches resulting in major 
imbalances in the number of cells per phenotype were excluded.

•	 Single-nucleus RNA sequencing datasets were excluded, as 
they do not capture cytoplasmic RNA and include immature 
transcripts.

Among datasets satisfying these conditions, author-supplied 
cell type annotations were mapped to one of six broad potency 
categories (totipotent, pluripotent, multipotent, oligopotent, uni-
potent and differentiated) or not evaluable using established defini-
tions (‘Potency annotation scheme’, Supplementary Note). These 
potency categories were further subdivided into 24 granular catego-
ries, ranging from 1 (least differentiated) to 24 (most differentiated) 
(Supplementary Tables 2 and 3). Cellular phenotypes were hierarchi-
cally grouped into these categories based on potency, developmental 
timing and sequence, and self-renewal capacity.

Where possible, we also examined single-cell developmental 
states in a dataset-specific manner and without regard to potency 
categories, as previously described3. Such ‘relative’ orderings, most 
of which were obtained from Gulati et al.3, ranged from 1 (least differ-
entiated) to N (most differentiated) in a given dataset, and exceeded 
the number of resolvable potency categories in some datasets 
(Supplementary Table 4), permitting a more granular assessment

Our comprehensive potency atlas catalogs experimentally 
confirmed cell states and their corresponding potency levels, pro-
viding a structured reference for model training and validation. 
Supplementary Table 3 includes key details such as the broad and 
granular potency levels, standardized and original cell phenotypes, 
species, dataset source, cohort type (for example, training, validation 

and test), developmental maturity, lineage contributions and sup-
porting evidence. This format allows for consistent annotation and 
comparison across datasets. For full details of potency annotations and 
associated rationale, see ‘Potency annotation scheme’ (Supplementary 
Note) and Supplementary Tables 2–4.

Training and test datasets. Using the abovementioned criteria, we 
assembled a 33-dataset potency atlas (Fig. 1b), from which we selected 
a training cohort consisting of seven human and 12 mouse scRNA-seq 
datasets from 13 studies (Supplementary Table 1). We ensured that all 
six broad potency categories were represented in both species along 
with a diverse array of biological (for example, tissue types) and tech-
nical characteristics (for example, sequencing platforms). As part of 
this effort, and to align with precedent in the field, we incorporated 
all human and mouse scRNA-seq datasets (n = 13) with annotatable 
potency categories analyzed by Gulati et al.3. To broadly cover tissue  
types, we also included cell phenotypes from the Tabula Muris 
scRNA-seq atlas43 for which potency categories could be determined 
(15 tissue types and 43 phenotypes). The resulting training cohort 
encompasses 312,523 cells, 16 tissue types, 93 phenotypes and six 
scRNA-seq platforms (Fig. 1b).

The remaining datasets served as a held-out test cohort, which 
mirrors the training cohort with respect to species representation in 
each broad potency category (Supplementary Table 1). Consisting of 
three human and 11 mouse scRNA-seq datasets from 14 studies, the  
test cohort spans 93,535 cells, 73 phenotypes, nine tissue types and 
seven scRNA-seq platforms, including two tissue types and 21 pheno
types that were absent from training (Fig. 1b and Supplementary  
Tables 1 and 7).

To augment these data, we annotated potency categories in 
459,320 evaluable cells from Tabula Sapiens, a multi-tissue scRNA-seq 
atlas from postmortem human donor biopsies33 (Supplementary  
Table 1); however, given the confounding influence of postmortem 
intervals on human tissue messenger RNA levels44, we hypothesized 
that Tabula Sapiens might exhibit reduced data quality. To test this, 
we calculated the ratio of mitochondrial reads to total reads (MTR) 
within each single-cell transcriptome as a proxy for overall data quality.  
Indeed, we calculated a mean MTR across all Tabula Sapiens tissue 
types, stratified by platform, of 7.4% (median of medians), which is 
nearly 90% higher than expected for human cell types profiled by 
scRNA-seq data (median of medians of 3.9%; Table S1 of Osorio and 
Cai45) and 78% higher than other human datasets in the training and test 
cohorts, both of which include embryonic tissues with high metabolic 
activity (median of medians of 4.2%). Accordingly, we omitted Tabula 
Sapiens from the primary test cohort and evaluated it as a secondary 
benchmark in Fig. 1h,i. Author-supplied phenotypes in Tabula Sapiens 
with fewer than five cells in a tissue–platform pair were excluded from 
further analysis.

Collectively, these ground truth datasets with newly annotated 
potency levels represent a unique community resource for systematic 
characterization of absolute developmental states and their molecular 
programs in humans and mice. Depending on platform, all scRNA-seq 
expression matrices were normalized to transcripts per million (TPM) 
or counts per million (CPM) as appropriate. Full details of each dataset, 
including dataset name, accession number, PMID, species, platform, 
tissue type, number of cells, number of phenotype, and number of 
potency levels, are available in Supplementary Table 1. These data 
can also be interactively explored at https://cytotrace2.stanford.edu.

Additional annotation considerations. For cells with identical pheno-
types but different author-supplied labels, we unified the annotations 
(Supplementary Table 3). For example, ‘HSC-MPPs’ from ‘HSC develop-
ment (Smart-seq2)’ and ‘Hematopoietic stem cell progenitor (HSCP)’ 
from ‘HSPCs (C1)’ were annotated as ‘Hematopoietic stem and early pro-
genitor’. To balance the representation of cells from distinct lineages 

http://www.nature.com/naturemethods
https://cytotrace2.stanford.edu


Nature Methods

Brief Communication https://doi.org/10.1038/s41592-025-02857-2

within a given broad potency category, we also re-annotated related 
cell subsets sharing a common parental phenotype. For example, ‘CD4+ 
helper T cells’ from ‘peripheral blood (10x)’ and ‘CD8+ memory T cells’ 
from ‘BM-MNC (CITE-seq)’ were labeled as ‘T cell’. This was crucial when 
training CytoTRACE 2 as the probability of sampling individual cells 
was weighted based on phenotype. In this way, each major phenotype 
contributed equally during model training regardless of the number of 
evaluable cells, mitigating the chance of overweighting and overfitting 
(see ‘Training and hyperparameter tuning’ below). The standardized 
phenotype assignments along with the original annotations are sum-
marized in Supplementary Table 3.

The CytoTRACE 2 framework
Existing RNA-based surrogates of cellular differentiation status have 
notable limitations for imputing absolute differentiation states and 
potency categories from scRNA-seq data. For example, the original 
CytoTRACE, termed CytoTRACE 1 in this work, employs gene counts 
as an unbiased strategy for identifying immature cells3. Despite the 
utility of this approach, gene counts are subject to dataset-specific 
biases, making them suboptimal for potency assessment. Measures 
based on transcriptional entropy and RNA velocity also suffer from 
dataset-specific biases, a nonspecific relationship to absolute differ-
entiation status, or the requirement for continuous developmental 
processes within a narrowly defined time window4,5,14–16.

Supervised machine learning models offer a potentially robust 
alternative to the abovementioned strategies when adequate training 
data are available; however, machine learning methods also face key 
challenges when applied to scRNA-seq data, including sparsity, high 
dimensionality and data heterogeneity encompassing both biological 
and technical variation. While deep learning is a promising subtype of 
machine learning, often achieving remarkable performance gains over 
other machine learning methods (especially in the presence of high 
complexity, noise and uncertainty) most existing architectures lack 
inherent interpretability, limiting their broad applicability.

To address these challenges, we designed a novel deep learning 
framework that can handle the complexities of single-cell potency 
assessment while achieving direct biological interpretability. Unlike 
recent methods46,47 that decompose single-cell expression data into 
a combination of previously known and simultaneously learned new 
gene programs, our approach, termed a GSBN, is anchored to known 
phenotypic states but not known gene sets. As such, GSBNs have the 
flexibility to discover new gene programs for known phenotypic states, 
such as potency categories, from scRNA-seq data. As part of their 
design, GSBNs are highly robust and fully interpretable, meaning they 
can be directly interrogated to extract meaningful markers for each 
phenotypic class of interest across datasets, platforms and tissues.

Technical description. CytoTRACE 2 consists of five high-level com-
ponents, schematically depicted in Fig. 1c and Extended Data Fig. 1a 
and described in detail below.

•	 Preprocessing: ortholog mapping and expression normalization.
•	 GSBNs: identification of interpretable potency-associated gene 

sets for each potency category.
•	 Enrichment assessment: evaluation of gene set activation levels 

in single cells.
•	 Integration of scores: integration of gene set activation levels, 

both within and across gene set binary networks.
•	 Postprocessing: leveraging transcriptional covariance and 

uncertainty in model predictions to smooth single-cell potency 
scores and produce the final output.

Core model architecture. Among these five components, GSBNs, 
enrichment assessment and integration of scores constitute the 
CytoTRACE 2 core model, a neural network architecture consisting 

of a shared input layer; a set of G GSBN modules, where G denotes the 
number of potency categories; and a shared output layer (Extended  
Data Fig. 1a). Within the core model, each GSBN module is trained to 
discriminate a single potency category and contains (1) a binary neu-
ral network (BNN) component, which encodes potency-associated  
gene sets and (2) downstream functions to calculate and integrate 
gene set enrichment scores (Fig. 1c and Extended Data Fig. 1a). Notably, 
because weights in BNNs are constrained to binary rather than continu-
ous values, BNNs also allow for more efficient computation and provide 
an implicit form of model regularization48.

Preprocessing. Let input scRNA-seq dataset X be an I × C  gene expres-
sion matrix over I genes and C cells. The following preprocessing  
steps prepare the input dataset for training or prediction.

First, gene symbols in X are mapped and filtered using dictionary 
𝔻𝔻, a collection of gene symbols that harmonizes all HGNC (human) and 
MGI (mouse) identifiers supported by CytoTRACE 2 (‘Dictionary of 
input genes’ below). Following this step, the resulting expression 
matrix, denoted X′, consists of n = 14, 271  genes and C cells. As part  
of this process, any genes in X′ not present in X through mapping  
are set to zero. In the second step, X′ is converted into dual representa-
tions: for the first, it is normalized to CPM/TPM and log2-adjusted, 
yielding an N × C  matrix L; for the second, it is mapped to rank space, 
yielding an N × C  matrix R, with the genes of each single-cell transcrip-
tome X′

c assigned relative integer rank such that rank 1 corresponds to 
the gene with highest expression. While the log2 CPM/TPM representa-
tion maintains detailed transcriptomic information, the alternative 
encoding provided by rank space helps circumvent batch effects, 
mitigate the influence of extreme values and outliers, and reduce the 
risk of model overfitting. In tandem, these two representations provide 
an inherent regularization to model inputs. R and L are subsequently 
passed to the CytoTRACE 2 core model where they jointly constitute 
the model input layer.

Gene set binary networks. Inputs R and L are passed to each of G GSBN 
modules within the CytoTRACE 2 core model. These modules begin  
by thresholding R (Extended Data Fig. 1a) to learnable maximum rank 
τ∈ℕ, yielding N × C  matrix T:

Ti,k = min (Ri,k, τ)

This rank trimming (see also ‘Model initialization and updates’) 
enables calculation of the rank-based enrichment score, described in 
‘Enrichment assessment’ below. Input L remains the same.

Next, within each GSBN module, M  gene sets are learned in binary 
N ×M  matrix WB, where M∈ℕ is prespecified and all entries WB

i,j ∈ {0, 1}. 
WB constitutes the gene set selection layer of the CytoTRACE 2 core 
model; it has a continuous equivalent W used for model initialization 
and backpropagation (see also ‘Training and hyperparameter tuning’). 
At each forward iteration for model training, W undergoes binarization:

WB = binarize (W,0)

where binarize denotes the following utility function:

binarize (M,a)i, j = {
1, Mi, j > a

0, Mi, j ≤ a

Enrichment assessment. To quantify the enrichment of each gene  
set in the module (each column of WB), CytoTRACE 2 leverages two 
complementary measures: rank-based enrichment score (ScoreU )  
and expression-based enrichment score (ScoreA). ScoreU  aggregates 
overall expression activity of a given gene set j in rank space whereas 
ScoreA compares the average expression of genes in j versus background 
levels. By integrating both scores, each providing a different axis of 
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information, CytoTRACE 2 can learn more complex expression patterns 
while also achieving additional regularization through enrichment 
score competition. The two scores are defined as follows.

ScoreU  calculates the commonly used nonparametric UCell  
score49 for each gene set, or column of WB. For each cell 1 ≤ k ≤ C  and 
module gene set 1 ≤ j ≤ M,

ScoreU(T,WB)k, j = 1 + [
⇀
Sj(

⇀
Sj + 1) − 2∑

N
i=1Ti,kWB

i, j

2τ⇀Sj
] ,

where 
⇀S denotes the vector of length M  containing the number of  

genes per gene set assigned nonzero weight in the binary weighting  
matrix:

⇀Sj =
N
∑
i=1

WB
i, j 1 ≤ j ≤ M

ScoreA implements a scoring system based on Seurat’s AddModuleScore 
(AMS), computing the average expression of genes within a gene set 
subtracted by the aggregated expression of control, or background, 
feature sets50. To select background features, AMS groups genes into 
nbins bins according to their average expression within a dataset. Then, 
for each gene, a ‘background’ set of nsample genes from the same average 
expression bin is sampled, ensuring that each gene is compared to 
other genes with similar average expression. Here, for computational 
efficiency and to avoid introducing a dependency on dataset composi-
tion, we use our entire curated training cohort (see ‘Single-cell potency 
atlas’) as the ‘dataset’ in which to rank genes by average expression. We 
then compute a constant set of background genes to use for each gene. 
We encode the mapping of genes to their background genes in the 
binary N × N  matrix G, where each row represents a gene as used in a 
gene set, and the jth entry of row i is 1 if gene j is used as background for 
gene i, and 0 otherwise.

In detail, we construct G as follows. First, we compute the average 
log2 CPM/TPM expression per gene across all cells from the training 
cohort. We then rank the results and uniformly partition genes  
into nbins = 24 bins of size sbin according to rank, following the Seurat 
default50. Next, for each gene (each row of G), we randomly select 
without replacement a set of background genes, where the number of 
background genes follows a Gaussian distribution with mean μ = nsample 
and variance

σ2 = nsample (
sbin − nsample

sbin
)

where nsample = 100. This approach provides an additional regularizing 
effect compared to constant selection of a uniform number of back-
ground genes per gene. Note that left-multiplying a gene set matrix  
WB by G maps the genes in the gene sets (columns) of WB to their  
corresponding background genes.

Then, given G, for each cell 1 ≤ k ≤ C and module gene set 1 ≤ j ≤ M,

ScoreA (L,W
B)

k, j
=
(LWB)

k, j

∑N
i=1W

B
i, j

−
(LGWB)

k, j

∑N
i=1(GW

B)
i, j

,

where the first term simply computes the average expression of 
selected gene set genes in each cell of input gene expression matrix L, 
and the second term calculates the aggregated average expression of 
background genes within the same cells.

The two resulting enrichment score matrices are subsequently 
concatenated into a single C × 2M  matrix K:

K = [ScoreU (T,W
B) ScoreA (L,W

B)]

To transfer these enrichment scores into comparable spaces, 
CytoTRACE 2 standardizes each score across cells, yielding C × 2M  
matrix Knorm . This standardization, implemented via torch.
nn.BatchNorm1d from PyTorch v.2.0.0 with affine = False, tracks  
the mean and variance of each score during training. Once trained,  
the model applies these learned values, rather than dataset-specific 
values, for standardization at inference.

Integration of scores. To convert the gene set enrichment scores to a 
single score per cell per GSBN module, the normalized scores Knorm are 
passed through a feedforward layer, termed the ‘enrichment layer’ in 
the CytoTRACE 2 core model, containing the associated length 2M   
gene set enrichment score weight vector 

⇀V  and yielding length C  
potency category score vector ⇀q. As part of this process, dropout is 
applied to reduce overfitting during model training, with a predeter-
mined fraction of the normalized scores set at random to zero.  
From the weights in each 

⇀V, concatenated across potency categories 
into matrix V, the directionality and importance of each gene set can 
be interpreted (see ‘Interpretability’ below).

The model then integrates across the potency category scores 
produced by each GSBN module, concatenating the potency category 
score vectors into C × G potency score matrix Q. This procedure repre
sents the shared output layer of the CytoTRACE 2 core model.

To convert the logit entries of Q  to likelihoods, the model applies 
a softmax activation function, yielding C × G matrix P representing the 
likelihood of each cell belonging to each of the six potency categories. 
The model then predicts cellular potency by assigning the potency 
category with highest likelihood for each cell, yielding length C  
vector ŷ:

ŷk = argmax{p}Gp=1
(Pk,∗)

The ŷ vector represents one of the key outputs of the CytoTRACE 
2 core model; however, the model also computes an absolute develop-
mental potential from this set of likelihoods, termed the raw potency 
score 

⇀RPS. For this aspect, we introduce length G  ordered vector ⇀t   
to be multiplied by the potency category likelihood matrix:

⇀RPS = P⇀t

⇀t = [0.0,0.2,0.4,0.6,0.8, 1.0] ,

where 
⇀RPS is the length C  raw potency score vector. As the potency 

categories are ordered based on their absolute developmental poten-
tial, the resulting raw potency score will be closer to one for higher 
potency categories, such as totipotent, and closer to zero for lower 
potency categories, such as differentiated. As 

⇀RPS directly incorporates 
model uncertainty, it is passed to ‘Postprocessing’ below to define a 
more granular developmental ordering.

Postprocessing. As the fully trained CytoTRACE 2 model predicts 
potency for each cell individually, CytoTRACE 2 further processes the 
output (raw potency score 

⇀RPS and predicted potency categories ŷ) to 
incorporate the neighborhood structure of transcriptionally similar 
cells. We reasoned that doing so could further improve performance 
given our previous experience combining gene counts with transcrip-
tional covariance in CytoTRACE 1 (ref. 3). To this end, we devised and 
validated a three-step procedure using the training cohort, as described 
below. Notably, this procedure improves correlations with relative 
developmental orderings (see ‘Metrics’ below) over 

⇀RPS or ŷ alone 
without sacrificing the potency classification performance achieved 
by ŷ (Extended Data Fig. 1b).

In the first step, CytoTRACE 2 applies Markov diffusion to smooth 
⇀RPS using the same implementation as CytoTRACE 1 (ref. 3). In brief, 

the log2-adjusted CPM/TPM gene expression input L is used to create 
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a Markov matrix from the transcriptional similarity between cells over 
the top 1,000 genes with highest dispersion3. This similarity matrix is 
then used to smooth 

⇀RPS with diffusion parameter α = 0.9 as previously 
described3, yielding smoothed potency score 

⇀SPS. Using the same 
sampling procedure described in our previous work3, the running  
time of this step can be significantly reduced without loss of perfor-
mance (Extended Data Fig. 1c). In this study, sampling was restricted 
to datasets with >10,000 cells (Supplementary Table 1).

To reconcile 
⇀SPS with predicted potency categories ŷ, in the sec-

ond step CytoTRACE 2 performs a binning procedure to maintain ŷ  
while preserving relative potency ordering within each category.  
To do so, CytoTRACE 2 first separates cells by their predicted potency 
category and assigns each cell 1 ≤ w ≤ C  a rank ℛ (k, ŷw)  relative to  
all cells sharing predicted potency category ŷw. For this transformation, 
within each potency category 1 ≤ p ≤ G, the cell with lowest potency 
score receives rank 1 while the cell with highest potency score receives 
maximum rank rmax (p). Cells are then arranged uniformly by rank per 
potency category within equal length partitions of the unit interval, 
yielding binned smooth potency score 

⇀SPSB. Thus, the binned smooth 
potency score for differentiated cells extends from 0 to 1/6, unipotent 
from 1/6 to 2/6, and so on, with relative ordering within each bin match-
ing that of the original smoothed potency score.

In the third step, to further smooth 
⇀SPSB  while minimizing the 

impact on ŷ  and allowing for the preservation of rare cell states 
(Extended Data Fig. 3f), CytoTRACE 2 applies a variation of k-nearest 
neighbor (k-NN) smoothing to datasets with >100 cells. Here, we intro-
duce an efficient heuristic approach for adaptive neighborhood 
smoothing guided by two key assumptions: (1) cells with more similar 
gene expression profiles are more likely to share a potency phenotype; 
and (2) prediction errors for cells with the same ground truth potency 
exhibit a random distribution around a central mean. To balance these 
two considerations and identify an appropriate neighborhood size, 
we select k adaptively for each cell according to the following process. 
First, given log2-adjusted CPM/TPM gene expression profiles for the 
selected cell, we standardize expression per cell to zero mean and unit 
variance, then perform dimension reduction of standardized gene 
expression profiles over all cells to the top 30 principal components 
(PCs). Using the top 30 PCs, we then compute pairwise Euclidean dis-
tances for all cells, rescaling the resulting distances to unit maximum 
per cell of interest. Next, we define the neighborhood around each 
center cell w through an iterative procedure, allowing a maximum 
neighborhood size of 30 cells. We start with the nearest cell to w, 
denoted c1, and calculate the average potency score prediction for w 
and c1, mapping the result to one of six broad potency categories, 
yielding P1. We repeat this calculation for the next two nearest cells to 
w (c2 and c3), yielding P2, and compare P1 and P2. If identical, we assume 
that we have sufficiently captured the neighborhood, setting k = 3 (for 
the three non-self-neighbors) and exiting the process. If not identical, 
we repeat the procedure increasing the group size by one, in other 
words, comparing the nearest two cells to w  (yielding three total  
cells) with the next nearest three cells (c3, c4 and c5). We repeat this 
process until the resulting potency categories are the same between 
two groups, in which case we select k  to encompass all cells considered 
between the two groups, or until we exhaust our candidate nearest 
neighbor cells (reach a group size of 15). If concordance between  
nearest and next nearest groups is not found, we keep our initial  
selection of k  = 3.

Once k  is determined, we update our prediction for w according 
to the distance-weighted mean of neighborhood potencies to obtain 
the final potency score prediction:

where N(w) denotes the set of all cells within the selected neighborhood 
of center cell w, including w  itself, and dc  denotes the Euclidean  
distance of cell c to cell w. Categorical potency predictions are updated 
based on the defined intervals above, yielding ŷ∗.

We found empirically that combining these three approaches  
yielded superior performance on the training cohort (Extended  
Data Fig. 1b).

Training and hyperparameter tuning
Loss function. For model training, we defined a loss function combin-
ing cross-entropy loss with an additional term penalizing gene set size 
based on the binary weighting matrix WB

p originating from each GSBN 
module, 1 ≤ p ≤ G. More precisely, we define the loss function as the 
sum of gene set size penalty loss JS and a prediction loss per cell JP:

J = JS (WB
1 ,⋯ ,WB

G) +∑
w

JP (ŷw, yw)

In detail, given potency category predictions ŷw and ground truth 
potency categories yw for cell w (see ‘Single-cell potency atlas’ above), 
we defined prediction loss JP  as:

JP (ŷw, yw) =
⇀
vw × CE (ŷw, yw)

where ⇀vw  denotes the loss weight assigned to cell w, and CE (ŷw, yw)  
denotes the cross-entropy loss for cell w. Loss weights for all cells  
are contained in the length C  weighting vector ⇀v, which has unit  
sum and is constructed hierarchically to assign equal weight (1) to all 
broad potency categories, (2) to all phenotypes within each broad 
potency category, and (3) to all datasets contributing to each  
phenotype.

We defined gene set size penalty loss JS as:

JS (WB
1 ,⋯,WB

G) = aλ
G
∑
p=1

|||
1
N (W

B
p)

T
(WB

p)⊙I|||F
,a =

√12
√M

where |•|F  denotes the Frobenius norm, ⊙ denotes the Hadamard  
(or element-wise) product, I denotes the M ×M  identity matrix,  
λ denotes the gene set size penalty weight, and a serves as a scaling 
factor to make JS invariant to the number of gene sets included in WB

p, 
with factor √12 selected to anchor the gene set size penalty weight to 
the center of the range of hidden sizes tested (see ‘Hyperparameter 
optimization’). This loss component serves to minimize the number 
of genes in each gene set while regularizing the training of the model.

Model regularization. To promote model generalizability, we intro-
duced two explicit regularization aspects. We included a dropout layer 
to avoid model overfitting to specific enrichment scores (“Integration 
of scores”). A dropout layer51 randomly drops (sets to zero) units in a 
hidden layer of a neural network. This layer was applied to the normal-
ized scores Knorm during training only. Additionally, a penalty term  
was added to the loss function to constrain the number of genes in  
each gene set of WB (“Loss function”).

Model initialization and updates. Model weights were initialized 
according to PyTorch v.2.0.0 default except for the binary weight-
ing matrices, which were initialized at random with values sampled 
from the Gaussian distribution with mean of –0.1 and s.d. of 0.055 to 
produce a sparse initial binarization with approximately 500 genes 
selected per gene set.

Model training was performed with mini-batch learning using a 
batch size of 1,024. To balance batches and ensure equal representation 
for the model learning process, each batch was constructed via uniform 
sampling across datasets and phenotypes (Supplementary Tables  
1 and 3) as implemented by torch.utils.data.WeightedRandomSampler 
in PyTorch.
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Following initialization, forward propagation proceeded for each 
iteration as described in ‘Core model architecture’, with parameters 
updated according to their definition. For numeric stability, the cutoff 
rank τ (‘Gene set binary networks’) for trimming input rank space 
expression matrix R  was not learned directly but rather computed  
as a function of learnable parameter τm∈ℝ, which was initialized  
uniformly at random from 0 ≤ τm ≤ 1 per module and suitably scaled. 
As gene set enrichment score calculation (‘Enrichment assessment’) 
requires a gene set pool larger than the gene set itself for comparison, 
τ was computed from τm in such a way as to ensure that the ranks of at 
least ten more genes beyond the maximum gene set size of the module 
were preserved following trimming to T. Thus, at each iteration, the 
updated τm was scaled and constrained as follows:

τ = 10 +max1≤ j≤M
⇀Sj + 1,000 ×max (0, τm)

Model predictions were assessed at each iteration against ground 
truth, with the loss function and its gradient computed and used to 
backpropagate updates to network weights using PyTorch’s NAdam 
optimizer with custom learning rate lr = 0.001 (see ‘Hyperparameter 
optimization’ below) and otherwise default parameters. Given the role 
of inertia in successfully training binary neural networks52,53, we 
employed cross-epoch gradient accumulation to dampen binary 
weight flipping and achieve a stabilizing effect. This approach addition-
ally facilitates broader hyperparameter space exploration while 
validation-based early stopping (see ‘Model evaluation and stopping’) 
ensures that the most performant model encountered during  
training is retained. Backpropagation for the binary neural network 
component of each GSBN module was implemented with Straight- 
Through Estimator and hardtanh activation function as previously  
described48.

Model evaluation and stopping. We evaluated model validation per-
formance via weighted accuracy, defined as the mean F1 score across 
evaluable potency categories. To do this, we first calculated the F1 
score for each phenotype (standardized as in Supplementary Table 3) 
and dataset pair using metrics.precision_recall_fscore_support from 
sklearn v.1.0.2. We then averaged the resulting scores across datasets 
per phenotype, across phenotypes within each broad potency cate
gory, and across broad potency categories, yielding the final weighted 
accuracy. For the standard CytoTRACE 2 model, each validation set con-
sisted of a single dataset; however, for the leave-clade-out model (see 
‘Generalizability to unseen cell-type clades’), validation sets included 
all cells covering a clade, regardless of dataset. All models were trained 
for 100 epochs with the best model weights by the highest score on the 
validation set after a minimum of 15 initial training epochs preserved 
and returned for the final model.

Hyperparameter optimization. To evaluate the hyperparameter space 
of CytoTRACE 2, we performed a hyperparameter sweep over the  
training cohort using wandb (v.0.16.4) (https://wandb.ai). We explored  
the learning rate lr over {0.01,0.005,0.001,0.0005,0.0001}, number M  
of gene sets per broad potency category over {1, 2,4,8, 12, 16, 24, 32,48},  
gene set size penalty weight λ over {0.5,0.1,0.05,0.01,0.005,0.001},  
dropout rate ρ over {0,0.25,0.5}, and enrichment considering whether 
to use AMS enrichment, UCell enrichment, or the combination of both 
as described in ‘Enrichment assessment’ above. For every iteration of 
leave-one-dataset-out nested cross-validation, we trained models 
across 500 different combinations of these hyperparameters sampled 
based on the random hyperparameter search. To minimize overfitting 
to training data, we used a nested cross-validation framework. While 
one dataset was held out from training and evaluated as a validation 
set, another dataset was also held out from training but used to deter-
mine the early stopping point as described in ‘Model evaluation and 
stopping’. We scored each hyperparameter combination by weighted 

accuracy over model validation sets (Supplementary Table 3; see 
‘Model evaluation and stopping’).

We observed that variation in hyperparameter values had minimal 
impact on performance, underscoring overall model robustness 
(Extended Data Fig. 1e, left and Supplementary Table 6). Final hyper-
parameter selection was carried out by a manual curation process 
identifying values yielding consistently (albeit modestly) higher 
weighted accuracy. In selecting the number of gene sets M  per potency 
category, we found that model performance increased with M   
before plateauing (Extended Data Fig. 1e, right); as such, we selected 
M  slightly larger than the number corresponding to the elbow of  
this curve. The final hyperparameters used were M = 24 gene sets per 
potency; ρ = 0.5 dropout probability; λ = 0.01  gene set size penalty 
weight; and lr = 0.001 learning rate.

Next, we evaluated the enrichment metrics. Among all models, we 
limited to 84 models with hyperparameter values in ranges of plateau 
(M ≥ 2 gene sets per potency; ρ = 0.5 dropout probability, λ ≤ 0.01, 
lr ≤ 0.001). AMS enrichment and both AMS and UCell enrichment 
achieved superior performance compared to UCell enrichment  
alone (Extended Data Fig. 1f and Supplementary Table 6). Given the 
potential to enhance generalizability, we therefore selected the com-
bination of AMS and UCell enrichment metrics for the final model.

Model ensembling. Models were trained via leave-one-dataset-out 
cross-validation for each of the training datasets, with final CytoTRACE 
2 predictions in non-training data obtained as the result of integrating 
predictions across the 19 resulting models followed by an additional 
postprocessing step. As described in ‘Integration of scores’ above, each 
model m yields a C × G potency category likelihood matrix Pm. Models 
were integrated by entry-wise averaging of potency category likelihood 
matrices to yield a single potency category likelihood matrix Pensemble 
from which potency category predictions and raw potency scores were 
computed as described above, before passing them to ‘Postprocessing’.

Dictionary of input genes
To create dictionary 𝔻𝔻 (‘Preprocessing’ above), all human gene symbols 
were mapped to their closest mouse orthologs, as determined by gene 
sequence similarity, using the GRCh38.p13 and GRCm39 annotation 
files available from Ensembl v.109, respectively. In cases where a single 
mouse gene g  was identified as the best hit for multiple human genes, 
the human gene with maximum sequence similarity to g  was selected 
and the remaining human gene(s) excluded from further consideration. 
Unique human gene symbols without orthologs by the above process 
were also included for completeness. To define a common subset, only 
genes present in at least 80% of datasets from an initial development 
cohort, a subset of the final training cohort, were retained. Combining 
these steps, 𝔻𝔻 was assembled with 14,271 unique gene symbols, includ-
ing 13,750 orthologous pairs and 521 genes without orthologs in 
Ensembl via the mapping step above. When mapping human datasets 
to 𝔻𝔻, gene symbol aliases are resolved using linked aliases available 
from https://biomart.genenames.org. When mapping to mouse  
datasets, alias gene symbols are resolved using data available from  
https://www.informatics.jax.org/mgihome/nomen/.

Interpretability
The GSBN architecture of CytoTRACE 2 enables direct interrogation 
of the binary weight matrices, consisting of gene sets associated with 
each potency category (Fig. 1c and Extended Data Fig. 1a). By exam-
ining the orientation of the output layer weights for each gene set, 
we found that gene sets with positive weights (polarity) were highly 
enriched in a given potency category, whereas those with negative 
weights (polarity) were preferentially depleted (Fig. 2c). Addition-
ally, we reasoned that genes repeatedly selected for a given potency  
category were more likely to be important for effective classification. 
As such, we designed a metric to quantify feature importance, assigning 
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importance scores to genes according to the frequency at which they 
were selected in positively versus negatively weighted gene sets. Here, 
we incorporate gene selection frequency across all 19 training models 
computed by leave-one-out cross-validation (LOOCV) over the training 
cohort datasets.

More formally, we define N × G feature importance score matrix 
F (Supplementary Table 15) containing the feature importance score 
of each gene 1 ≤ i ≤ N  for each potency category 1 ≤ p ≤ G  based on  
the gene set compositions and enrichment weights across models.  
Two enrichment weights correspond with each gene set, one per  
enrichment score type (see ‘Enrichment assessment’). Given gene set 
enrichment weight matrix Vl  of model l, we calculate the polarity 
Polarity (Vl, j,p)  of gene set j  defined within model l  for potency cate
gory module p as the sign of the average of these two weights. Then,  
relying on model binary weighting matrices to encode gene set com-
position, we construct feature importance score matrix F entry-wise as

Fi,p =
19
∑
l=1

M
∑
j=1

WB
p,l[i, j] × Polarity (Vl, j,p) ,

where WB
p,l [i, j] denotes the [i, j]th entry of the binary weighting  

matrix from module p of model l.

Performance assessment
Metrics. Two key metrics, illustrated in Extended Data Fig. 1d, were  
used to quantify reconstruction of known developmental orderings: 
absolute order and relative order. Absolute order quantifies cross- 
dataset performance, whereby predicted orderings from all cells with 
annotated potency levels are analyzed together, regardless of dataset, 
tissue type or platform (Supplementary Tables 2 and 3). Relative order 
quantifies performance within a given dataset and tissue type, akin to 
conventional pseudotime and ranges from 1 (least differentiated) to N  
(most differentiated) in each dataset (Supplementary Table 4). For both 
metrics, we applied weighted Kendall correlation (τ) (wdm package 
v.0.2.4 in R) to assess concordance between known and predicted devel-
opmental orderings, with weighting schemes provided in Supplementary  
Table 5. Similar to our previous work3, ground truth phenotypes corres
ponding to less mature cells were coded with lower ranks (starting at 1); 
therefore, higher predictions of developmental order were ranked such 
that higher values received lower ranks and vice versa.

For categorical predictions (CytoTRACE 2 and potency classifica-
tion benchmarking outputs only), we evaluated potency classification 
performance as well. Binary correctness of predicted versus ground 
truth broad potency categories was assessed via mean multiclass F1 
score, implemented with function f1_score from sklearn.metrics with 
average = none (Extended Data Figs. 1c top, 2d second from right, 
3b–e left bottom, 7a left and 7b x axis). To account for the magnitude 
of deviations from ground truth potency, we also considered mean  
absolute error (MAE), assigning each broad potency class an integer 
label corresponding to the class ordering, with labels ranging from  
1 (differentiated) to 6 (totipotent), and computing the absolute value 
of the difference between predicted and ground truth categories 
(Extended Data Figs. 2d far right, 3b–e right bottom, 7a right and 7b 
y axis). For both metrics, scores were computed per ground truth 
potency category then aggregated by mean across potencies.

Generalizability to unseen cell-type clades. To test the generaliz-
ability of CytoTRACE 2 to unseen developmental systems, we trained 
a version with a leave-clade-out framework (Fig. 1f), grouping pheno-
types into 18 mutually exclusive developmental clades as detailed in 
Fig. 1b and Supplementary Table 9. Of note, to ensure representation 
of some totipotent and pluripotent phenotypes for all training sets, 
we partitioned embryonic phenotypes into two clades by alternating 
granular potency level annotation, corresponding to distinct time 
points during development and resulting in 19 total clades for this 

analysis (Supplementary Table 2). The final clades cleanly separate, 
for example, immune cells, neural cells, endothelial cells, connective 
tissue cells and bone cells, among others. Stem and progenitor cells 
that produce a given clade were included in the same partition as that 
clade (for example, pancreatic multipotent progenitors were included  
with pancreatic epithelial cells). Epithelial cells were separated by  
tissue to avoid conflating tissue-specific developmental hierarchies.  
For each clade, we trained an ensemble of two models over the remain-
ing 18 clades, selecting at random 17 clades for training and one clade 
as a held-out validation set to be used for early stopping (see ‘Model 
evaluation and stopping’) for each model. We then applied the result-
ing ensemble to the unseen test clade, assessing performance across 
all held-out clades in Fig. 1f.

Randomization of training and test sets. To assess the robust-
ness of the model to variation in the composition of the training 
cohort, we repeated the CytoTRACE 2 training process as described 
in ‘The CytoTRACE 2 framework’ across a series of three rando
mized splits covering all 33 datasets in the single-cell potency atlas 
(Supplementary Table 8). We partitioned the datasets at random into 
three folds, each containing 11 datasets. To ensure minimum adequate 
representation within each category, we confirmed that each fold 
contained at least one phenotype per broad potency category. Tabula 
Muris, which was divided into two sub-datasets according to platform 
for the original CytoTRACE 2 training cohort due to its size and diver-
sity, was again divided, with one of its sub-datasets assigned to another  
fold at random. For each split, two folds were combined to form  
the training cohort and the remaining one left as a test set for evalu-
ation (2:1 training–test split; Supplementary Table 8). Performance 
per test set of these three randomized splits, along with the original 
CytoTRACE 2 test set, was assessed by absolute order, relative order, 
mean multiclass F1 score and MAE (see ‘Metrics’), showing strong 
consistency across folds (Extended Data Fig. 2d). Performance for the 
three randomized splits was additionally assessed across all held-out 
datasets jointly in Extended Data Fig. 2e.

Robustness of CytoTRACE 2
Robustness to annotation error. To evaluate the robustness of 
CytoTRACE 2 to potential noise within potency annotations, we trained 
models across two scenarios of training cohort annotation error, then 
evaluated model performance over the test cohort (see ‘Training and 
test datasets’). To simulate annotation error, we formulated label noise 
as a transition matrix54, encoding the probability of perturbation from 
one potency to another (Extended Data Fig. 3a). Transition matrix 
perturbation probabilities were designed to follow a Gaussian distribu-
tion based on the rank distance between the original potency and 
perturbed potency. In detail, the probability that the potency label of 
cell s transitions from true potency j  to perturbed potency i

P (si|sj) =
1

√2πσ2
exp (− ( j − i)2

2σ2 ) , i, j ∈ {1, 2, 3,4, 5,6}

where potencies i, j  are represented by their rank within the six broad 
potency categories. The s.d. values (σ) were selected to yield a titration 
of 5%, 10%, 20%, 50% and 80% perturbation levels. Rows were normal-
ized to unit sum for a net probability of one. For the first annotation 
error scenario, we considered cell-level annotation error and perturbed 
the potency annotations of individual cells independently (Extended  
Data Fig. 3b). For the second, we considered phenotype-level annota-
tion errors and simultaneously perturbed the potency annotations of 
the entire standardized phenotypes (Extended Data Fig. 3c).

Robustness to variation in gene counts and UMI counts. To deter
mine the influence of variable gene counts and unique molecular  
identifier (UMI) counts on CytoTRACE 2, we performed two experiments  
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in which scRNA-seq expression data from all 14 datasets in the test 
cohort were perturbed by downsampling gene counts (Extended  
Data Fig. 3d) and all seven droplet-based datasets in the test cohort 
(Supplementary Table 1) were perturbed by downsampling UMIs 
(Extended Data Fig. 3e). We assessed the robustness of the model to 
different gene counts by downsampling the expression data of each  
cell to the same number of genes: 2,000, 1,000, 750, 500, 250 and 100. 
We selected the top genes by highest expression and set the expres-
sion of the remaining genes to zero. For any expression level ties at the 
threshold, we selected the genes to include to reach the target gene 
count at random. The downsampling process for UMIs consisted of 
randomly sampling the expression data of each cell based on the tran-
scriptome probability distribution, defined as the fractional expression 
of each gene after scaling the sum of UMIs in each cell to one. Then, 
using the raw count matrices, we downsampled the expression data 
of each cell to the same number of UMIs: 5,000, 3,000, 2,000, 1,000, 
500 or 100 UMIs. Cells with UMIs lower than a given threshold were 
unaltered. We repeated each process for five replicates, then assessed 
performance for standard metrics as described above (see ‘Metrics’) 
relative to the CytoTRACE 2 predictions without perturbation.

Robustness to titration of cell type rarity. Given the inclusion of 
neighborhood-based smoothing in model postprocessing, we per-
formed a titration experiment applying CytoTRACE 2 to test datasets 
with selected phenotypes downsampled to increasingly rare abun-
dance. For 11 phenotypes spanning a range of potencies, we down-
sampled cells of the selected phenotype to predefined abundances of 
50, 20, 10, 8, 5, 2 and 1 cell(s), leaving the remaining cells in the dataset 
unchanged. We repeated this titration process five times for each 
phenotype, observing robust predictions down to five cells per pheno
type (Extended Data Fig. 3f). As such, we recommend that the final 
postprocessing step (adaptive k-NN smoothing) be omitted when 
exceedingly rare cell states (consisting of <5 cells each) are of interest.

Analysis of mouse embryogenesis
For the analyses presented in Extended Data Fig. 5, we downloaded 
and curated six publicly available scRNA-seq datasets spanning each  
embryonic day during mouse prenatal development2,21–25 (Supplementary  
Table 1). One dataset, which covers pre-implantation through  
early implantation (E0.5–E4.5) (Deng et al.22), was obtained from the 
19-dataset training cohort (Supplementary Table 1) and evaluated 
using a CytoTRACE 2 model trained on the remaining 18 datasets to 
avoid overfitting (see ‘Benchmarking developmental potential infer-
ence methods and annotated gene sets’). Four datasets21,23–25 covering 
embryogenesis periods from implantation to organogenesis were 
previously assembled by Qiu et al.25 and are accessible through http://
tome.gs.washington.edu. Finally, a single-nucleus RNA-seq dataset2 
covering organogenesis through birth (E8.75-P0) and generated by 
sci-RNA-seq3 was downloaded from http://mouse.gs.washington.edu. 
As we compared CytoTRACE 2 against multiple methods with highly 
variable time complexity (‘Benchmarking developmental potential 
inference methods and annotated gene sets’), all cells were randomly 
downsampled to 30 cells per author-supplied phenotype per time 
point, resulting in a combined dataset of 183,771 cells. This allowed us 
to balance considerations of performance versus computational effi-
ciency. We ran each method on each dataset individually as described 
in ‘Benchmarking developmental potential inference methods and 
annotated gene sets’. No dataset integration or batch normalization 
procedures were applied. For Organogenesis (E8.5)25 and Organo-
genesis (E8.5–P0)2, which were sequenced using sci-RNA-seq3, we 
used count data after running SCTransform of Seurat (v.4.3.0) with 
default parameters. Due to the large size of the dataset, Organogenesis 
(E8.75–P0)2 was run with ten randomly divided batches for SCENT (SR) 
and SLICE. Primordial germ cells were excluded owing to the wide range 
of potency levels reported in previous literature55.

For the analyses in Extended Data Fig. 5d,e, we leveraged a data- 
driven lineage tree of mouse embryogenesis encoded as a directed 
acyclic graph2. Although the tree was constructed using a heuristic 
approach based on transcriptional covariance across embryonic 
time, it reflects many known parent-daughter relationships2. It thus 
serves as a proxy for developmental potential. We defined ground 
truth as the distance from the root (zygote) to each daughter node 
(Extended Data Fig. 5d, top). Using matching phenotype labels between  
the tree and the data presented in Extended Data Fig. 5a, CytoTRACE 2  
potency scores were averaged by phenotype, balanced first by time 
points within a given embryonic day (if any) and then by embryonic  
day. If the same phenotype was present in more than one dataset,  
we weighted equally by dataset. For each direct path in the tree  
(from root to leaf), the resulting scores were then converted to rank 
space (Extended Data Fig. 5d, center). To reconcile cases where a 
given node i participates in multiple paths, we used the average 
rank for i. CytoTRACE 1 predictions were processed in the same 
manner (Extended Data Fig. 5d, bottom). The resulting ranks were 
correlated with ground truth distances (distance from the root) in 
Extended Data Fig. 5e.

Application to cancer types with known developmental states
Acute myeloid leukemia analysis. For the analysis presented in 
Extended Data Fig. 6a, we downloaded the Galen et al.56 acute myeloid 
leukemia (AML) dataset (Gene Expression Omnibus (GEO) accession 
number GSE116256; PMID 30827681) from the Curated Cancer Cell Atlas 
website on 28 June 2023 (https://www.weizmann.ac.il/sites/3CA/)57. 
We leveraged author-supplied cell type annotations, including clas-
sifications of malignant and non-malignant cells from 3CA57. From 
this dataset, comprising 28 samples with malignant cells, we excluded 
two cell line samples (‘MUTZ3’ and ‘OCI-AML3’). We ran CytoTRACE 2  
with default parameters (‘Benchmarking developmental potential 
inference methods and annotated gene sets’) on all annotated malig-
nant cells from each tumor sample. For quality control, we further 
excluded samples for which each predicted potency label contained 
<10 malignant cells. For each of the resulting tumor samples (n = 19), 
we created a single matrix of malignant cells and non-malignant cells, 
with the latter uniformly downsampled from all patients to 100 cells 
per author-supplied phenotype (‘B_cell’, ‘erythrocyte’, ‘myeloid’, 
‘NK_cell’, ‘plasma’ and ‘T_cell’; non-malignant cells labeled as ‘undif-
ferentiated’ were excluded from additional analysis). We then calcu-
lated the log2 fold changes (LFCs) of each potency category versus 
all other phenotypes by tumor sample and averaged by potency  
category across tumor samples. Finally, we normalized the logFC  
values of each gene to mean zero and unit variance across potency  
categories and plotted the enrichment of AML cell-type-specific gene 
signatures26 (‘LSPC-Primed-Top100’, ‘LSPC-Quiescent’, ‘GMP-like- 
Top100’ and ‘Mono-like-Top100’; https://github.com/andygxzeng/
AMLHierarchies), each expected to be enriched in multipotent, multi-
potent, oligopotent and unipotent/differentiated cells, respectively 
(Extended Data Fig. 6a and Supplementary Table 10).

Oligodendroglioma analysis. For Extended Data Fig. 6b, we applied 
CytoTRACE 2 to scRNA-seq profiles of six oligodendrogliomas27, with 
coordinates for the associated oligodendroglioma 2D lineage hierarchy  
embedding obtained from https://singlecell.broadinstitute.org/single_ 
cell/study/SCP12/oligodendroglioma-intra-tumor-heterogeneity.  
We then assigned malignant oligodendroglioma cells to four trans
criptional states following the protocol described by the authors27  
and visualized the association of CytoTRACE 2 potency predictions  
with the author-supplied stemness score. For the latter, we sepa-
rated cells according to the stemness score by partitioning them into  
successive intervals of 0.25 units. We then displayed CytoTRACE 2  
potency scores as a function of each interval (Extended Data  
Fig. 6b, right).
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Benchmarking cell type prediction methods adapted for 
potency classification
To evaluate CytoTRACE 2 against supervised machine learn-
ing approaches commonly employed in cell type prediction tasks 
(Extended Data Fig. 7a,b), we selected three dedicated single-cell anno-
tation methods with superior performance in a benchmarking study28 
(scPred30, SingleCellNet31 and scmap32) and five general-purpose  
classifiers (below), each trained to predict six broad potency labels 
based on single-cell expression profiles.

All tools were trained and tested over a series of four folds, includ-
ing the original CytoTRACE 2 training–test split (Fig. 1b) along with 
three randomized splits (see ‘Randomization of training and test 
sets’), collectively encompassing all 33 ground truth datasets in the 
single-cell potency atlas described above, with classification perfor-
mance per test cohort assessed by mean multiclass F1 score and MAE 
(Extended Data Fig. 7a and b; see ‘Metrics’). For all methods, expres-
sion data were first mapped into the uniform feature space used by 
CytoTRACE 2 (see ‘Preprocessing’ and ‘Dictionary of input genes’). 
Unless otherwise specified, and for all general-purpose classifiers, 
expression data were then CPM/TPM normalized and log2-transformed 
and subsequently standardized per cell to zero mean and unit variance. 
Other normalization schemes generally yielded worse performance  
and were thus omitted from further consideration (log2-adjusted  
CPM/TPM data, either used alone or with gene-level standardization). 
No explicit dataset integration or batch correction was performed. For 
general-purpose classifiers, versions were trained with and without 
sample weighting (computed as for CytoTRACE 2; see ‘Loss function’) 
for class imbalance mitigation, with the best performing version across 
all folds selected for each. All parameters were set to default values 
unless otherwise specified.

CytoTRACE 2. We applied CytoTRACE 2 with model ensembling and 
postprocessing as described in ‘The CytoTRACE 2 framework’ to pre-
dict cell potency categories. Datasets containing more than 100,000  
cells were processed in batches of 100,000 cells, and diffusion was 
applied in batches of 10,000 cells for datasets exceeding 10,000 cells.

scPred. A dedicated cell type classification method, scPred first per-
forms a dimension reduction, identifying PCs exhibiting significant 
variation across classes, then, as the default option, applies a support 
vector machine approach for classification30. Following the recom-
mended pipeline for scPred (v.1.9.2) as described at https://powell-
genomicslab.github.io/scPred/articles/introduction.html, we first 
normalized and scaled expression data using the NormalizeData() and 
ScaleData() functions in Seurat (v.5.1.0), respectively. We then used 
scPred’s getFeatureSpace() function to identify class-informative PCs, 
trainModel() to train the default support vector machine (SVM) with 
radial kernel model for each potency category (one-versus-rest), and 
scPredict() for classification. A relaxed probability threshold of 0 was 
used to avoid ‘unassigned’ labels.

SingleCellNet. SingleCellNet performs cell type classification using 
a random forest multiclass classification approach31. Here, we trained 
the method over unnormalized expression data via the scn_train 
function of pySingleCellNet (v.0.1.1) with nTopGenes = 200, nTop-
GenePairs = 200, nRand = 100, nTrees = 1,000, stratify = False, and 
propOther= 0.4, following the tutorial provided at https://pysingle-
cellnet.readthedocs.io/en/latest/notebooks/train_classifier.html. 
The scn_classify() function with nrand = 0 was used for classification.

scmap. scmap uses a clustering approach to project cells onto a refer-
ence dataset for cell type classification32. Following the recommended 
pipeline for scmap (v.1.26.0) provided at https://bioconductor.org/
packages/devel/bioc/vignettes/scmap/inst/doc/scmap.html, we 
log2-transformed expression data, then used selectFeatures() to select 

informative genes and indexCell() to create a scmapCell index for the 
training dataset. For classification, we used scmapCell() to project the 
index onto the test dataset and scmapCell2Cluster() to obtain label 
assignments. A relaxed probability threshold of 0 was set to assign 
labels to as many cells as possible regardless of assignment confidence.

Logistic regression. We trained a logistic regression model to perform 
cell potency classification using the SGDClassifier from scikit-learn 
(v.1.4.2) with loss = ‘log_loss’, default L2 regularization, and sample 
weights provided for class balancing. This function internally employs 
a one-versus-rest (OVR) strategy, training a separate binary classifier 
for each potency category and selecting the potency category with 
highest confidence at evaluation.

XGBoost. We trained and applied the XGBClassifier function from the 
XGBoost library (v.2.1.1) with default parameters and without sample 
weights. Like logistic regression, this method uses the OVR approach.

Linear SVM. We implemented a linear SVM model using Scikit-learn’s 
SGDClassifier with loss = ‘hinge’ for linear support vector classification 
with OVR. Sample weights were provided during training.

Radial SVM. We implemented an additional SVM version using  
SVC from scikit-learn (v.1.4.2) with the default radial basis function 
kernel and γ = ‘auto’. The default decision function, which employs an 
inference of OVR from one-versus-one fits internally, was used. Sample 
weights were not provided during training.

Multinomial logistic regression. Using LogisticRegression from 
scikit-learn (v.1.4.2) with multi_class = ‘multinomial’, we fit a single 
logistic regression model for all potency categories simultaneously 
using cross-entropy loss and the ‘sag’ solver. A maximum number of 
iterations (max_iter = 500) and tolerance (tol = 1 × 10−3) were set to 
ensure convergence. Sample weights were not provided during training.

Benchmarking developmental potential inference methods 
and annotated gene sets
To rigorously assess performance on our compendium of 33 curated 
scRNA-seq datasets, we compared CytoTRACE 2 with eight published 
methods for predicting developmental potential from scRNA-seq data 
as well as nearly 19,000 previously annotated gene sets (Fig. 1h,i and 
Supplementary Tables 11–13). Unless otherwise stated, all evaluated 
methods and gene sets were applied to scRNA-seq datasets individually, 
without batch correction or integration across datasets, with expres-
sion data normalized per author recommendations and with default 
parameters. All expression data were subset to the cells with known 
potency. Each tissue and platform pair of Tabula Sapiens33 and Tabula 
Muris43 datasets were run separately.

Several methods rely on human gene symbols, as noted below. For 
all such instances, we mapped mouse dataset gene symbols to their 
closest human orthologs, as determined by gene sequence similarity, 
using the GRCm39 and GRCh38.p13 annotation files available from 
Ensembl, respectively. In cases where a single human gene g  was identi-
fied as the best hit for multiple mouse genes, the mouse gene with 
maximum sequence similarity to g  was selected.

As several methods have slower running times, to promote an 
equitable comparison while achieving computational feasibility, larger 
datasets were first downsampled. The Tabula Muris43 dataset was down-
sampled to 30 cells per phenotype, separated by tissue and platform 
pair, and the ‘Immune cell atlas (10x)’, ‘Human breast 1 (10x)’, ‘Human 
breast 2 (10x)’, and Tabula Sapiens33 datasets were downsampled to 
100 cells per phenotype (Supplementary Table 1). Cell types in Tabula 
Sapiens33 with fewer than five cells were removed after the prediction of 
each method to overcome the reduced data quality of Tabula Sapiens33 
(‘Training and test datasets’).
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CytoTRACE 2. We applied CytoTRACE 2 with model ensembling and 
postprocessing as described in ‘The CytoTRACE 2 framework’ to pre-
dict cell potency categories and scores. Datasets containing more 
than 100,000 cells were processed in batches of 100,000 cells, and 
diffusion was applied in batches of 10,000 cells for datasets exceed-
ing 10,000 cells. To evaluate the 19 scRNA-seq datasets included in the 
CytoTRACE 2 training cohort, we trained a separate model for each 
over the remaining 18 datasets. All other datasets were evaluated with 
the primary version of CytoTRACE 2 trained over all training datasets.

CytoTRACE 1. CytoTRACE 1, the predecessor of CytoTRACE 2, intro-
duced transcriptional diversity quantified through gene counts as 
a correlate of developmental potential and exploited this concept 
to predict relative cellular potency from scRNA-seq3. CytoTRACE 1 
(v.0.3.3) was applied with default parameters.

SCENT (SR). SCENT estimates relative cellular potency from scRNA-seq 
and a reference protein–protein interaction (PPI) network using 
single-cell signaling entropy (SR), a measure of the diversity of mole
cular pathway activity in a cell15. SCENT (v.1.0.3) was executed with the 
‘net13Jun12’ human PPI network provided with the package and other-
wise default parameters. For mouse datasets, genes were first mapped to 
human orthologs as described above. All gene symbols were converted 
to Entrez ID using org.Hs.eg.db (v.3.15.0) in R. Gene expression matrices 
were normalized per documentation recommendation (https://github. 
com/aet21/SCENT/blob/master/vignettes/SCENT.Rmd).

SCENT (CCAT). CCAT, implemented within the SCENT package, 
was developed as a highly efficient alternative to the original SCENT 
method, SCENT (SR)14. CCAT was applied with the same package,  
PPI network, and preprocessing steps described above (‘SCENT 
(SR)’) with expression datasets prepared as per documentation  
recommendations.

FitDevo. Similar to SCENT (CCAT), FitDevo infers cellular potency 
from the correlation between gene expression and a measure of  
gene weights20. FitDevo (v.1.2.0) was applied following tutorial instruc-
tions with binary gene weight matrix downloaded from the same  
source (https://github.com/jumphone/FitDevo/#demo-1–infer- 
developmental-potential-dp-using-expression-matrix-of-scrna- 
seq-data).

SLICE. SLICE relies on transcriptomic entropy for cellular potency pre-
diction and lineage reconstruction, estimating entropy over functional 
groups of genes computed from Gene Ontology annotations17. SLICE 
(v.0.99.0) was applied according to demo details from the method’s 
GitHub page (https://github.com/xu-lab/SLICE/blob/master/demo/ 
FB.R).

StemID. StemID infers cellular differentiation trajectories from scRNA- 
seq data with a clustering-based algorithm analyzing links between  
clusters16. StemID, implemented in RaceID (v.0.1.4), was run according  
to documentation vignette instructions (https://cran.r-project.org/
web/packages/RaceID/vignettes/RaceID.html). For each dataset, an 
SCseq object was initialized from each input gene expression matrix 
using filterData() with mintotal = 10. Ltree() and compentropy() were 
then applied consecutively to obtain the StemID score for cell potency.

scTour. scTour implements a deep learning architecture combining a 
variational autoencoder with a neural ordinary differential equation to 
reconstruct the developmental trajectory of an input scRNA-seq data-
set, oriented according to gene counts19. scTour (v.1.0.0) was trained 
and applied to each dataset individually per ‘Model training’ docu-
mentation vignette instructions at https://sctour.readthedocs.io/ 
en/latest/notebook/scTour_inference_PostInference_adjustment.html. 

When the raw count matrix was available for the dataset, the nega-
tive binomial conditioned likelihood loss function was used. Other
wise, the CPM/TPM expression matrix was log2-transformed, and the  
mean squared error loss function was used instead. Cell potency 
scores were obtained from the developmental pseudotime predictions 
extracted from the model training output with get_time().

mRNAsi. mRNAsi utilizes a one-class logistic regression framework to 
construct a cellular stemness index applicable to cell potency estima-
tion from bulk and scRNA-seq data18. mRNAsi was trained as described 
previously3. All input gene expression matrices were CPM/TPM normal-
ized and log2-transformed.

Gene sets. The predictive capacity of 18,706 annotated gene sets 
(17,810 gene sets from MSigDB36 and 896 gene sets of transcription 
factor binding sites from ENCODE/ChEA34,35) was assessed via GSEA. For 
each gene set, the AddModuleScore() function with default parameters 
from Seurat (v.4.3.0) was applied to each expression matrix normalized 
via Seurat’s NormalizeData() function.

Comparison to scVelo
As scVelo5 relies on splicing kinetics, necessitating the processing of 
raw sequencing data, we limited our analyses to nine ground truth 
datasets from the test cohort that were generated by platforms with 
built-in support by velocyto and for which raw sequencing data are 
publicly available (Supplementary Tables 1 and 14). Raw FASTQ files for 
seven of these datasets, namely ‘BM-MNC (CITE-seq)’, ‘Retinal neurons 
(10x)’, ‘Pancreas (10x)’, ‘Peripheral glia (Smart-seq2)’, ‘Skeletal stem cell 
(C1)’ and ‘HSCs and MPPs (inDrop)’, were obtained from the Sequence 
Read Archive (SRA) from NCBI, with study IDs SRP188993, SRP168426, 
SRP200419, SRP109011, SRP239468 and SRP094420, respectively. For 
‘Peripheral glia (Smart-seq2)’, we analyzed sample IDs prefixed with 
‘E12.5’. Notably, raw FASTQ files were only available for 227 of 473 cells 
in the ‘Skeletal stem cell (C1)’ dataset. For the remaining two datasets, 
‘Mouse neurogenesis (10x)’ and ‘Mouse mature neural cell types (10x)’, 
data were obtained as BAM files from SRA study ID SRP476153.

FASTQ files were downloaded using sra-tools v.3.1.1 and processed 
with cutadapt v.4.9 for adaptor trimming of Smart-seq2/C1 reads. For 
preprocessing of inDrop samples, dropest v.0.8.6 was used (according to 
recommended workflow at https://velocyto.org/velocyto.py/tutorial/ 
cli.html#run-dropest-run-on-dropseq-indrops-and-other-techniques). 
Reads were mapped and sorted BAM files were generated with STAR 
(v.2.7.11b) and Cell Ranger (v.8.0.1) using GRCm39 and GRCh38.p13 
reference genomes for mouse and human datasets, respectively. Loom 
files containing spliced, unspliced and spanning reads were then gen-
erated from the BAM files along with corresponding Gene Transfer 
Format files using the velocyto.py v.0.17.17 Python command line tool.

Following quantification of spliced/unspliced counts, the scVelo 
v.0.3.1 Python velocity estimation workflow was run as described in the 
tutorial at https://scvelo.readthedocs.io/en/stable/. For all datasets, 
both a generalized dynamical model (as detailed at https://scvelo. 
readthedocs.io/en/stable/DynamicalModeling.html) and a differential 
kinetics adjusted model with grouping by the CytoTRACE 2 standard-
ized phenotypes (as detailed at https://scvelo.readthedocs.io/en/ 
stable/DifferentialKinetics.html) were employed. With the excep-
tion of random_state in scvelo.pp.neighbors(), which was set to 0 to 
ensure reproducible results, all other parameters were set to those 
in the respective vignettes, including min_shared_counts in scvelo.
pp.filter_and_normalize(), which was set to 20 for dynamical models 
and 30 for differential kinetics models. Following velocity estimation, 
cell-internal latent time was inferred using scvelo.tl.latent_time(). The 
resulting outputs were then evaluated via absolute and relative order 
(see ‘Performance assessment’ above) and CytoTRACE 2 outputs were 
assessed over the same cells for comparison (Extended Data Fig. 8 and 
Supplementary Table 14).
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Analysis of potency-associated molecular programs
Visualization and specificity of potency programs learned by 
CytoTRACE 2. For the analyses presented in Fig. 2b and Extended  
Data Fig. 9a, we ran CytoTRACE 2 on each of the training and test data-
sets, then extracted positive potency score matrix Qpos from each of 
the 19 models per dataset. Qpos is derived from the final layer of each 
GSBN module; obtained similarly to the potency score matrix Q  in 
‘Integration of scores’ above, but by multiplying Knorm by only positive 
weights from the enrichment layer; and has a dimensionality of C   
input cells by 114 when combined across the 19 models and six potency 
category modules. We concatenated Qpos matrices from the 19 models 
across all 33 datasets (C  = 124,231 cells; downsampled as described in 
‘Benchmarking developmental potential inference methods and anno-
tated gene sets’ above) to produce Qpos

all , standardized across all cells in 
the training and test sets separately. We fitted principal-component 
analysis (PCA) from scikit-learn (v.1.1.1) to the training set component 
of the resulting matrix, retaining the first three PCs, then applied the 
resulting projection to the training and test set components individu-
ally. Next, we repeated this process fitting Uniform Manifold Approxi-
mation and Projection (UMAP) from umap-learn (v.0.4.6) to the PCA 
projection of the training component, then applying the resulting 
UMAP projection to the PCA projection of the training and test com-
ponents individually. To adjust for differences in cell density that con-
found visualization, we averaged CytoTRACE 2 potency scores within 
each window of 0.5 UMAP units squared across the two components 
of UMAP space. The same procedure was applied to visualize the 
ground truth potency of each cell (Fig. 2b, bottom).

Top potency-associated genes learned by CytoTRACE 2. For the 
analysis presented in Fig. 2c, we examined the expression of the top 
500 potency-associated markers learned by CytoTRACE 2 (matrix F in 
‘Interpretability’) in training and test sets from the single-cell potency 
atlas. We first filtered and mapped gene symbols in every dataset to 
CytoTRACE 2 input features (n = 14,271), then CPM/TPM normalized 
as appropriate and log2-adjusted the data. Keeping training and test 
data separate, the expression matrices from each dataset were 
mean-aggregated into pseudo-bulk expression profiles by phenotype. 
We then further averaged shared phenotypes across datasets profiled 
by the same general platform (droplet/UMI or plate-seq/non-UMI) and 
finally, by species identifier (human or mouse). This resulted in a 
14,271 × 237 matrix, with 14,271 genes (rows) and 237 phenotype, spe-
cies and platform combinations across training and test sets (columns). 
Using this matrix, we calculated the mean expression of the top  
500 positive/negative genes per potency category (matrix F in ‘Inter-
pretability’; Supplementary Table 15), then unit variance normalized 
the resulting expression signatures across pseudo-bulk samples  
separately for training and test sets (Fig. 2c). See also Supplementary  
Table 16.

Validation of CytoTRACE 2 by large-scale functional genomics. 
To assess the biological relevance of CytoTRACE 2 model features, we 
analyzed large-scale in vivo CRISPR screening data of mouse hemato
poiesis38 (Fig. 2d). These data encompass ~7,000 genes along with 
CasTLE –log10 P values, representing the effect of knockout (KO) on 
HSC differentiation. Although these effects were separately measured 
for lymphoid (n = 6,783 genes) and myeloid (n = 6,732 genes) lineages, 
directed –log10 P values were well correlated between them (r = 0.78). 
Therefore, to create a single ordered list of KO effects, we combined 
directed –log10 P values for genes with effect score data in both line-
ages, keeping the most significant directed –log10 P value for each gene 
(positive or negative). Contributions from each lineage were nearly per-
fectly balanced, with higher positive scores and higher negative scores 
implying that KO of a gene promotes or inhibits HSC differentiation, 
respectively. We then intersected the resulting vector with those within 
the CytoTRACE 2 model space, resulting in n = 5,757 genes. We applied 

fgsea (v.1.25.1) to the rank-ordered list to jointly evaluate the enrich-
ment of the top 100 positive and negative multipotency markers from 
the CytoTRACE 2 feature matrix (Fig. 2e and Supplementary Table 15). 
P values were computed using the adaptive multilevel Monte Carlo 
method and Q values represent false discovery rates calculated using 
the Benjamini–Hochberg procedure.

To assess robustness across the number of top multipotency  
markers selected, we repeated the above process checking 50, 100, 200 
and 500 markers (Extended Data Fig. 9c and Supplementary Table 15). 
We also compared the median –log10 Q value of gene set enrichment over 
the four gene set sizes against the same process repeated for CytoTRACE 
2 markers for all other potency categories (Extended Data Fig. 9d and 
Supplementary Table 15).

Functional annotation analysis. To interpret potency-associated 
genes learned by CytoTRACE 2, we applied fgsea (v.1.25.1) to each 
rank-ordered gene list in F with minSize = 15 and otherwise default 
parameters. F is an N × G  matrix consisting of model importance  
scores for all N  evaluable genes (14,271) in each of G = 6  potency  
categories learned on the training cohort (‘Interpretability’ above; 
Supplementary Table 15). Mouse and human MSigDb signatures from 
MH/H: hallmark gene sets, M2/C2: curated gene sets, including CGP 
and CP:WIKIPATHWAYS, CP:REACTOME and CP:KEGG_MEDICUS; and 
M5/C5: ontology gene sets were downloaded from https://www.
gsea-msigdb.org/gsea/msigdb/. We ran fgsea on mouse and human 
gene sets separately, and human gene sets were limited to those with 
no counterpart in mouse gene sets. When running human gene sets, 
genes in F were first mapped to human orthologs by dictionary 𝔻𝔻  
(‘Dictionary of input genes’). Gene sets with an adjusted P value < 0.05 
in at least one potency category are provided in Supplementary Table 17. 
We selected a subset of representative molecular signatures for  
display in Extended Data Fig. 9e, highlighting both canonical and 
poorly understood potency-related biology.

Analysis of multipotency-associated programs. All WikiPathways 
gene sets from canonical pathways (CP) in M2/C2 with positive normal-
ized enrichment scores in multipotency (see ‘Functional annotation 
analysis’ above) are presented in Fig. 2f. Next, we assessed the gene set 
comprising the UFA factors Fads1, Fads2 and Scd2 (Fig. 2g) for specific-
ity and conservation across tissues.

For this purpose, we analyzed pseudo-bulk-expression profiles 
of each phenotyp–dataset pair in our 33-dataset potency atlas using 
single-sample GSEA (ssGSEA) from the GSVA package in R (v.1.46.0)58 
to mitigate technical variation. Once ssGSEA scores were obtained for  
the UFA factors, we then averaged them into the same 237 pheno-
type, species, and platform combinations described in ‘Top potency- 
associated genes learned by CytoTRACE 2’. Keeping training and test 
cohorts separate, we further averaged ssGSEA scores by developmental 
system (here, denoted ‘tissue’), using the phenotype-to-clade mapping 
scheme provided in Supplementary Table 9. Mean-aggregated ssGSEA 
scores across 237 phenotype, species and platform combinations in 
training and test sets are displayed in Fig. 2h.

Statistical assessment of the specificity of UFA genes to multi
potency was performed via permutation testing. First, we took the 
median value of the ssGSEA scores in each ground truth potency  
category. Next, we calculated the pairwise difference Δi between the 
median ssGSEA scores of multipotent and each other potency category 
i. We then calculated two test statistics: min (Δi) and mean (Δi). To simu-
late a null distribution, we permuted the phenotype-level ssGSEA 
scores, recomputed the median ssGSEA score for each ground truth 
potency category and calculated both statistics. We repeated this 
process 10,000 times. To determine an empirical P value, we tallied the 
proportion of times both statistics were as high (or higher) than the 
test statistics from the original data. We did this for the multipotent 
category separately across the training and test cohorts (Fig. 2h).
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AUCs of UFA genes (main text) were calculated for training  
and test sets separately using the ssGSEA scores described above,  
but after averaging the scores by tissue type to address imbalances. 
AUCs were first calculated in a pairwise manner between multipotency 
and each other potency category, then averaged.

Experimental validation of UFA genes in multipotency
Mice. C57BL/6 mice were purchased from The Jackson Laboratory 
and housed in the Stanford Animal Facility. For all analyses shown in 
Fig. 2i,j and Extended Data Fig. 10, 8–12-week-old mice were used, with 
equal numbers of males and females. Mice were maintained in-house 
under aseptic sterile conditions and supplied with autoclaved food 
and water. The animals were housed under a 12-h light–dark cycle at 
room temperatures between 20–26 °C, with humidity levels ranging 
from 30–70%.

Flow cytometry. For the analyses presented in Fig. 2i and Extended  
Data Fig. 10a,b, mouse HSCs and multipotent progenitors (MPPs) 
(cKit+Lin−Sca1+, termed ‘KLS’), common myeloid progenitors (CMPs) 
(cKit+Lin−Sca1lo/−CD34med/hiCD16/32lo/−) and common lymphoid progeni-
tors (CLPs) (cKitloLin− Sca1loCD135+ CD127+) were isolated as described 
previously59 (Extended Data Fig. 10a). In brief, hips, femurs, tibia and 
humeri were collected from C57BL/6 mice. Bones were cleaned, 
cut and flushed with a syringe filled with ice-cold FACS buffer (2% 
fetal bovine serum in Hanks’ balanced salt solution buffer). Cells in 
FACS buffer were filtered through a 40-μm filter, pelleted and then 
incubated in ammonium–chloride–potassium (ACK) lysis buffer for 
5 min on ice. Cells were then spun down and resuspended in 400 µl 
FACS buffer per mouse. Lineage depletion beads (Miltenyi Biotec 
130-110-470) were added to the cells (50 µl per mouse) and incubated 
for 10 min at 4 °C. After incubation, the cells were loaded onto an LS 
magnetic separation column (Miltenyi Biotec 130-042-401), which 
was subsequently washed with 3 × 3 ml of FACS buffer. Before and 
after washing, pass-through cells were collected, spun down and 
resuspended in FACS buffer. For the isolation of KLS and CMP cells, 
the following antibodies were used: anti-mouse lineage cocktail- 
A700 (BioLegend 133313, 5 µl per mouse), anti-CD117 (cKit)-BV395 
(Thermo Fisher Scientific 363-1171-80, 1:100 dilution), anti-Sca1-BV605 
(BioLegend 108133, 1:100 dilution), anti-CD34-eFluor 450 (Thermo 
Fisher Scientific 48-0341-80, 1:40 dilution) and anti-CD16/32-BV711 
(BD Biosciences 740659, 1:100 dilution). Following the addition  
of the anti-CD34 antibody, cells were incubated on ice for 45 min  
before adding the remaining antibodies. The cells were then incubated 
with the remaining antibodies for an additional 20 min on ice, fol-
lowed by washing and FACS analysis. For the isolation of CLP cells, the  
following antibodies were used: anti-mouse lineage cocktail-A700 
(BioLegend 133313, 5 µl per mouse), anti-CD117 (cKit)-BV395 (Thermo 
Fisher Scientific 363-1171-80, 1:100 dilution), anti-Sca1-BV605  
(BioLegend 108133, 1:100 dilution), anti-CD135-BV421 (BioLegend 
135313, 1:100 dilution) and anti-CD127 (IL-7Rα)-BV711 (BioLegend 
135035, 1:100 dilution). The cells were incubated with the antibodies 
for 20 min followed by washing and FACS analysis. Flow cytometry was 
performed with a 100 µM nozzle on a BD FACSAria II using FACSDiva 
software (v.9.7).

Blood samples were collected from the same mice for the isolation 
of CD8a+ T cells (CD3+ CD8a+) and B (CD19+) cells. Peripheral blood 
mononuclear cell (PBMC) isolation was performed using a SepMate-15 
tube (STEMCELL Technologies 85415) according to the manufacturer’s 
instructions. Enriched PBMCs were resuspended in FACS buffer and 
incubated with either T cell antibodies (anti-CD3-BV711, BioLegend 
100241, 1:100; anti-CD8a-BV605, BioLegend 100743, 1:100 dilution) 
or B cell antibodies (anti-CD19-BV605, BioLegend 115539, 1:100 dilu-
tion) on ice for 20 min. The cells were then washed with FACS buffer 
and analyzed on a BD FACSAria II using FACSDiva software (v.9.7). Flow 
cytometry data were analyzed with FlowJo (v.10.9.0).

RNA isolation and real-time PCR. For the analyses presented in 
Fig. 2i and Extended Data Fig. 10b, 20,000 sorted cells from each  
bone marrow and blood population noted in ‘Flow cytometry’ were 
lysed in RNA lysis buffer (RLT) and subjected to RNA extraction  
using the RNeasy Plus Micro kit (QIAGEN, 74034). RNA was then reverse  
transcribed into cDNA with SuperScript III First Strand Synthesis  
kit (Thermo Fisher Scientific, 11752-050) according to the manu-
facturer’s instructions. Real-time quantitative PCR was conducted  
on the QuantStudio 7 PRO Real-Time PCR System utilizing Power  
SYBR Green PCR Master Mix (Thermo Fisher Scientific, 4368706). 
Actb was used as an internal control. The following qPCR primers  
were used (5’ → 3’). Actb: Forward GATCATTGCTCCTCCTGAGC, 
Reverse ACTCCTGCTTGCTGATCCAC; Hoxb5: Forward CGATCCAC 
AAATCAAGCCC, Reverse TGCCACTGCCATAATTTAGC; Fgd5: Forward  
CTGGTTTTACTCCTGGTGAC, Reverse AGCTGATACTTCCTGTCT 
GG; Procr: Forward GGACTCGGTATGAACTGCA, Reverse CAGTGAT 
GTGTAAGAGCGAC; Cd34: Forward ACTATAAGCTTCCTCTCCTGG,  
Reverse ACACCCAATCCTCTCATCTC; Cd8a: Forward GAGAACATTC 
CTTAGCACCC, Reverse GCAGTTTTGACAGTCAGCG; Cd19: Forward 
AGGAAAAGGAAGCGAATGAC, Reverse GCCAGAGGTAGATGTAGGAAG; 
Fads1: Forward TGGTTTGGGAGGCATTTG, Reverse GCCATCCGTTTTG 
TCAAGAG; Fads2: Forward CAGGAGTGTAGAGGGAAGAG, Reverse 
CTCAGAATGACATAGCGTGG; Scd2: Forward ACTCTGCCTGGGATA 
CATG, Reverse CCCACCCCAAAACACAAAA.

In situ hybridization and immunofluorescence. Intestinal tissues 
analyzed in Fig. 2j and Extended Data Fig. 10c–e were collected from 
C57BL/6 mice, cleaned with cold PBS and fixed in 10% neutral buffered 
formalin at 4 °C overnight. Then, 7-μm optimal cutting temperature 
compound frozen sections were prepared for the RNAscope HiPlex12 
Reagents Kit v.2 assay (Advanced Cell Diagnostics, 324409), which 
was performed according to the manufacturer’s instructions with the 
following probes: Mm-Lgr5-T1 (Advanced Cell Diagnostics, 312171-T1), 
Mm-Mki67-T2 (Advanced Cell Diagnostics, 416771-T2), Mm-Fads1-T3 
(Advanced Cell Diagnostics, 801641-T3), Mm-Fads2-T4 (Advanced Cell 
Diagnostics, 568621-T4), Mm-Fgfbp1-T5 (Advanced Cell Diagnostics, 
508831-T5) and Mm-Scd2-T7 (Advanced Cell Diagnostics, 486111-T7). 
Protease Plus (Advanced Cell Diagnostics, 322331) was used for  
tissue pre-treatment. Following the last round of in situ hybridization 
imaging, fluorophores were cleaved using fresh 10% cleaving solution 
v.2. The intestinal tissues were then subjected to immunofluores-
cence staining. In brief, tissues were washed with PBS, permeabilized  
with 0.1% Triton X-100 in PBS and then blocked with 5% bovine  
serum albumin (BSA) in PBS for 30 min at room temperature. The  
tissues were then incubated with anti-E-Cadherin-Alexa Fluor 488  
antibody (BD Biosciences 560061, 1:50 dilution) diluted in stain-
ing buffer (5% BSA in PBS with 0.1% Triton X-100) for 1 h at room 
temperature, followed by washing and imaging. All fluorescence 
images were acquired on a Zeiss LSM 980 confocal microscope. To 
quantify colocalization, cells along the crypts–villi axis were first 
categorized into different cell zones, as described in the caption of 
Extended Data Fig. 10e. Mean fluorescence intensities were then  
determined using ImageJ (v.1.53t).

Statistics and reproducibility
Relationships between two ordered variables were assessed by cor-
relation tests or linear regression. Unless otherwise stated, statistical 
significance for Kendall correlations was determined by a two-sided 
z-test. Two-group comparisons were assessed using unpaired or 
paired tests, as appropriate. Results with P < 0.05 were considered 
significant. No statistical method was used to predetermine sam-
ple size. Data analyses were performed using Python (v.3.9.0) and R 
(v.4.2.0+). Software packages and versions specific to each analysis 
are detailed in the Methods. For routine plotting and data manipula-
tion, we also used the R packages ggplot2 (v.3.4.3), Matrix (v.1.6.1) 
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and dplyr (v.1.1.3), as well as the Python packages pandas (v.2.2.3) 
and numpy (v.1.26.3).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All datasets comprising the single-cell potency atlas assembled in 
this work (Supplementary Table 1) are publicly available from GEO, 
ArrayExpress or the SRA with the following accession codes: GSE52583 
(‘AT2/AT1 lineage (C1)’), GSE109774 (‘Bone marrow (10x)’, ‘Bone mar-
row (Smart-seq2)’ and ‘Tabula Muris (Smart-seq2/10x)’), GSE60783 
(‘Dendritic cells (C1)’), GSE97391 (‘Direct in vitro neuron (inDrop)’ 
and ‘Standard in vitro neuron (inDrop)’), GSE70245 (‘HSPCs (C1)’), 
GSE113197 (‘Human breast 1 (10x)’ and ‘Human breast 1 (C1)’), GSE161529 
(‘Human breast 2 (10x)’), GSE36552, (‘Human embryo (Tang et al.)  
(ref. 60)’) GSE92332 (‘Intestine (Drop-seq)’ and ‘Intestine (Smart-seq2)’), 
GSE85066 (‘Mesoderm (C1)’), GSE45719 (‘Mouse embryo 1 (Tang et al.), 
(ref. 60)’), SRP073767 (‘Peripheral blood (10x)’), GSE128639 (‘BM-MNC 
(CITE-seq)’), GSE100866 (‘Cord blood (CITE-seq)’), E-MTAB-9067  
(‘HSC development (Smart-seq2)’), GSE90742 (‘HSCs and MPPs 
(inDrop)’), E-MTAB-11536 (‘Immune cell atlas (10x)’), GSE76408 
(‘Lgr5-CreER intestine (CEL-seq)’), E-MTAB-3321 (‘Mouse embryo 2 
(Smart-seq2)’), GSE59892 (‘Mouse embryo 3 (Smart-seq)’), GSE162044 
(‘Neural crest (Smart-seq2)’), GSE132188 (‘Pancreas (10x)’), GSE99933 
(‘Peripheral glia (Smart-seq2)’), GSE122466 (‘Retinal neurons (10x)’),  
GSE64447 (‘Skeletal stem cell (C1)’) and GSE201333 (‘Tabula Sapiens  
(Smart-seq2/10x)’).
Raw FASTQ or BAM files analyzed in this work are available from the 
SRA with the following accessions: SRP188993 (‘BM-MNC (CITE-seq)’), 
SRP168426 (‘Retinal neurons (10x)’), SRP200419 (‘Pancreas (10x)’), 
SRP109011 (‘Peripheral glia (Smart-seq2)’), SRP239468 (‘Skeletal stem 
cell (C1)’), SRP094420 (‘HSCs and MPPs (inDrop)’) and SRP476153 
(‘Mouse neurogenesis (10x)’ and ‘Mouse mature neural cell types (10x)’).
Five expression datasets covering mouse embryogenesis periods from 
implantation to organogenesis are accessible from GEO or ArrayExpress 
with the following accessions: GSE100597 (‘Implantation (E3.5–E6.5)’), 
GSE109071 (‘Implantation (E5.5–E6.5)’), E-MTAB-6967 (‘Gastrulation 
(E6.5–E8.5)’), GSE186069 (‘Organogenesis (E8.5)’), and GSE228590 
(‘Organogenesis (E8.75–P0)’).
The publicly available oligodendroglioma and AML expression data 
analyzed in this work are available with GEO accession numbers 
GSE70630 and GSE116256, respectively.
Reference genomes and annotation files for GRCm39 (mouse) and 
GRCh38.p13 (human) were obtained from Ensembl release 109 (February  
2023) via the archive at https://feb2023.archive.ensembl.org.

Code availability
R and Python packages for running CytoTRACE 2 with the pre-trained 
model are freely available for non-profit academic use at https://github.
com/digitalcytometry/cytotrace2. Both packages implement optional 
parallel processing for efficient execution and provide built-in plotting 
functions (UMAPs and box plots). Documentation, vignettes and input 
examples are provided. The Python version of the package is also avail-
able via PyPI at https://pypi.org/project/cytotrace2-py/. An interactive 
RShiny web application is available, allowing users to:

• �Run CytoTRACE 2 on user-provided datasets via an intuitive, 
interactive interface

• �Browse CytoTRACE 2 results for 33 datasets with ground truth 
potency annotations

• �Explore potency-associated genes learned by CytoTRACE 2 and inves-
tigate potency enrichment of user-defined genes and gene sets across 
the single-cell potency atlas

• �Download the single-cell potency atlas
• �Access tutorials, vignettes and FAQs, along with additional Python 

code and vignettes for training the CytoTRACE 2 model and for creat-
ing custom GSBN architectures.

This application can be accessed at https://cytotrace2.stanford.edu.
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Extended Data Fig. 1 | CytoTRACE 2 architecture and benchmarking 
metrics. a, Schematic overview of the CytoTRACE 2 core model, focusing on 
architectural details and key operations between the input layer and output 
layer for a single gene set binary network (GSBN) module. Note that six GSBN 
modules, one per broad potency category, are included in the full model, as 
illustrated in Fig. 1c. For additional details, see Methods. b, Serial impact of three 
postprocessing procedures (“Postprocessing” in Methods) on the accuracy 
of predicting (i) relative developmental orderings (n = 33 systems; bottom) 
and (ii) potency classes (F1 score, mean-aggregated across six broad potency 
categories; top) on training datasets (Methods). All results were obtained via 
leave-one-out cross-validation (LOOCV). c, Box plot showing the performance 
of CytoTRACE 2 for the prediction of relative orderings (Supplementary Table 
4) after subsampling cells for the Markov diffusion step of the postprocessing 
procedure (Methods). All training datasets were analyzed using LOOCV 
(Supplementary Table 1). d, Illustration of the difference between absolute and 
relative developmental potential using two hypothetical scRNA-seq datasets, 
one spanning totipotent through pluripotent cells (‘Embryo’) and the other 
encompassing multipotent through differentiated cells (‘Blood’). Hypothetical 
prediction scores are shown for absolute and relative orderings, with the 
latter reset for each dataset (for example, as for CytoTRACE 1, RNA velocity, 
Monocle, and CellRank). ESC, embryonic stem cell; HSC, hematopoietic stem 

cell; CMP, common myeloid progenitor; CLP, common lymphoid progenitor; 
MkE, megakaryocyte-erythroid progenitor; GM, granulocyte progenitor; B-p, 
B cell progenitor; T-p, T cell progenitor; Mk, megakaryocyte; E, erythrocyte; G, 
granulocyte; M, monocyte. e-f, Impact of hyperparameter values on training set 
performance, showing weighted accuracy for single-cell potency classification 
using nested LOOCV (Supplementary Table 6; Methods). e, Left: Each point 
(n = 500) denotes the results from one iteration of the hyperparameter sweep. 
Right: Same as the left but showing weighted accuracy plotted by the number 
of gene sets per GSBN module. f, Weighted accuracy of models trained using 
distinct gene set enrichment procedures (AMS and/or UCell) after selecting 
robust hyperparameter values as described in Methods. Statistical significance 
was determined using a two-sided paired Wilcoxon test in panels b and c and a 
two-sided unpaired Wilcoxon test in panel f. *P < 0.05; **P < 0.01; ***P < 0.001; 
****P < 0.0001; ns, not significant. Note that tissue-specific expression matrices 
from plate- and droplet-based platforms within Tabula Muris43 were analyzed 
individually in panels b and c for clarity, yielding 33 total systems with known 
developmental orderings. In b, c, e, and f, the box center lines, bounds of the box, 
and whiskers denote medians, 1st and 3rd quartiles, and minimum and maximum 
values within 1.5 × IQR (interquartile range) of the box limits, respectively. Panel a 
was created using BioRender.com.
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Extended Data Fig. 2 | Validation and generalizability of CytoTRACE 2. 
a, Performance of CytoTRACE 2 for reconstructing relative developmental 
trajectories (left) and six broad potency categories (right) in 33 ground truth 
scRNA-seq datasets (Fig. 1b), stratified by species and platform. Performance 
was evaluated at the single-cell level using weighted Kendall correlation (τ), as 
described in Supplementary Table 5 and Methods. To promote a fair comparison, 
we evaluated absolute order correlations (right) with and without the inclusion 
of totipotent and pluripotent cells, as the corresponding potency categories 
were not available for human and droplet-only datasets in the test cohort. ns, 
not significant (two-sided unpaired Wilcoxon test). b, Same as panel a (left) but 
showing relative order performance stratified by developmental clade (Fig. 1b).  
ns, not significant (Kruskal-Wallis test). c, Same as Fig. 1d-e but showing 
performance on 21 cell phenotypes that were unseen during model training, 
including cranial neural crest cells, apical progenitors, skeletal stem cells, 

epsilon cells, and photoreceptor cells (Supplementary Table 7). d, Performance 
of CytoTRACE 2 on different training-test configurations, comparing the 
original split (‘Original test set’; Fig. 1b) with three additional splits, the latter 
of which were randomized to balance potency categories between cohorts 
(Supplementary Table 8; Methods). Performance was evaluated with four 
metrics, each calculated at the single-cell level in held-out data: absolute order 
(weighted τ), relative order (median weighted τ across evaluable systems with 
known developmental orderings), multiclass F1 for predicting broad potency 
classes (n = 6), and one minus the mean absolute error (MAE) for predicting 
broad potency classes (n = 6). For details, see Methods. e, Same as Fig. 1e but 
showing held-out data from three random training/test splits in d. In a-e, the 
box center lines (a-d) and circles (c right and e), bounds of the box, and whiskers 
denote medians, 1st and 3rd quartiles, and minimum and maximum values within 
1.5 × IQR (interquartile range) of the box limits, respectively.
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Extended Data Fig. 3 | Robustness of CytoTRACE 2. a-c, Impact of perturbing 
potency labels in the training set. a, Heat maps depicting individual potency 
labels and their transition probabilities at different perturbation levels 
(Methods). b-c, Performance of CytoTRACE 2 models trained on potency labels 
with defined perturbation levels (as illustrated in a and described in Methods) 
applied to individual cells (b) or phenotypes (c) in the training set. Performance 
in held-out test data was evaluated with four metrics: absolute order (weighted 
τ of broad potency levels across datasets), relative order (median weighted 
τ of each dataset analyzed individually), multiclass F1 for predicting broad 
potency classes (n = 6), and the mean absolute error (MAE) for predicting broad 
potency classes (n = 6). For details, see Methods. Absolute order (τ), relative 
order (τ), and F1 score are expressed as a percentage of the results obtained with 
the unperturbed CytoTRACE 2 model. Each point represents the mean across 

five replicates of random perturbation. Error bars represent 95% confidence 
intervals. d, Analysis of robustness to the number of genes per cell using all 
test datasets (n = 14) (Supplementary Table 1) assessed with the same metrics 
as panels b and c. Results for each dataset represent the average across five 
rounds of gene count downsampling and are expressed relative to results with 
no downsampling. e, Same as panel d but shown for UMIs per cell in evaluable 
test datasets (n = 7). f, Impact of the number of cells per phenotype on the 
consistency of CytoTRACE 2 potency scores in test datasets. Eleven phenotypes 
spanning a range of potencies were titrated in defined amounts (x-axis) while 
other cells were left unchanged. CytoTRACE 2 was then applied to predict 
potency scores. Points represent averages from five random samplings (without 
replacement) per phenotype and error bars represent 95% confidence intervals.

http://www.nature.com/naturemethods


Nature Methods

Brief Communication https://doi.org/10.1038/s41592-025-02857-2

Extended Data Fig. 4 | CytoTRACE 2 correctly identifies a transient pluripotent 
cell state during mouse cranial neural crest development. Same as Fig. 1g but 
focusing on mouse cranial neural crest cells profiled by Zalc et al.11. Left inset: Log 
expression levels of core pluripotency factor Pou5f1 in mouse cranial neural crest 

cells (CNCCs). Right inset: Cells predicted as pluripotent by CytoTRACE 2. Cells 
predicted as pluripotent by CytoTRACE 2 showed significantly higher Pou5f1 
expression than others, with P = 2.6 × 10−5 by two-sided Wilcoxon test.
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Extended Data Fig. 5 | Large-scale reconstruction of cell potency during 
mouse embryogenesis. a, Overview of single-cell expression datasets analyzed 
in b-e and corresponding developmental time points profiled (n = 62). Icons 
denoting key stages of mouse embryogenesis were created using BioRender.
com. b, Linearity between the average CytoTRACE 2 potency score per time point 
(weighted equally across author-annotated phenotypes) expressed in rank space 
(y-axis) and the corresponding time points (n = 62; x-axis). Concordance was 
calculated using linear regression (dashed line) and Kendall correlation (τ), with 
the latter weighted by the number of time points per embryonic day. c, Scatter 
plot comparing the performance of CytoTRACE 2 to previous approaches for 
reconstructing the temporal hierarchy of 45 time points spanning organogenesis 
(beginning at E8.061) to birth (y-axis) versus 17 time points preceding 
organogenesis (x-axis). Correlations are weighted by whole day intervals to 

account for imbalances in the number of evaluable time points per day. Point 
sizes represent the average weighted Kendall correlation per approach. d, Top: 
Data-driven lineage tree of mouse embryogenesis, where nodes represent  
cell types (n = 259), edges represent developmental transitions inferred by  
Qiu et al.2, and colors represent the corresponding rank distance from each 
cell type to the root (“Ground truth”). Center and bottom: Same as top, but with 
CytoTRACE 2 and CytoTRACE 1 predictions each averaged by phenotype, then 
rank-ordered along the path to the root. Lower ranks indicate shorter distances. 
Distances were averaged for cell types with multiple direct paths to the root.  
e, Scatter plots showing all distances in d, with concordance between CytoTRACE  
methods (center and bottom panels of d) and lineages inferred by Qiu et al.2  
(top panel of d). The significance of τ in b and e was determined using a two-sided 
Z-test.
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Extended Data Fig. 6 | Tracing developmental lineages in AML and 
oligodendroglioma. a, Box plots showing relative expression levels of cell state 
signatures from patients with acute myeloid leukemia (AML)26 in 13,445 AML 
cells stratified by potency categories identified by CytoTRACE 2. Each point 
denotes a single gene from the corresponding gene set ID indicated above the 
plot (Supplementary Table 10). Genes were internally normalized within each 
tumor sample as the mean log2 fold change (FC) within a given potency category 
versus the remaining cells in the tumor, as described in Methods, then z-score 
normalized (standardized) across potency categories. The four signatures, 
LSPC-Primed, LSPC-Quiescent, GMP-like, and Mono-like, are expected to be 
most highly expressed in multipotent, multipotent, oligopotent, and unipotent/
differentiated cells, respectively (Supplementary Table 10). Statistical 

significance comparing the expected potency level(s) with each other potency 
level was determined by a two-sided Wilcoxon test. ****P < 0.0001. Box center 
lines, bounds of the box, and whiskers denote medians, 1st and 3rd quartiles, 
and minimum and maximum values within 1.5 × IQR (interquartile range) of the 
box limits, respectively. b, Left: Scatter plot of oligodendroglioma cells from six 
tumors organized by previously described stemness and lineage enrichment 
scores27. Right: Stacked bar plot showing how the fractional representation of 
cells with predicted potency categories (CytoTRACE 2) changes as a function 
of author-supplied stemness scores (y-axis). Cells predicted to have the highest 
oligo- and multilineage potential by CytoTRACE 2 correspond to those annotated 
as stem-like by Tirosh et al.27. Potency colors reflect eight evenly spaced bins per 
potency category.
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Extended Data Fig. 7 | Benchmarking against supervised machine learning 
methods. a, Box plots comparing the performance of CytoTRACE 2 against eight 
baseline methods (supervised machine learning models, including leading tools 
for reference-guided annotation of scRNA-seq data) implemented for single-
cell potency classification (Methods). Each method was trained to assign cells 
to six broad potency categories using identical training-test splits. Four-fold 
cross-validation was performed for each method, where each point represents 
performance in one fold of held-out data (the original training-test split [Fig. 1b] 

and three random splits [Supplementary Table 8]). Performance was assessed at 
the single-cell level using multiclass F1 (left) and one minus the mean absolute 
error (MAE; right) for predicting broad potency classes (n = 6). Box center lines, 
bounds of the box, and whiskers denote medians, 1st and 3rd quartiles, and 
minimum and maximum values within 1.5 × IQR (interquartile range) of the box 
limits, respectively. b, Scatter plot comparing median performance scores for all 
methods from panel a.
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Extended Data Fig. 8 | Benchmarking against scVelo. a-b, Representative test 
datasets comparing CytoTRACE 2 and scVelo. a, UMAP representation of mouse 
pancreas development (10x) (Supplementary Table 1). Left: Cells colored by 
ground truth granular potency level (Fig. 1b; Supplementary Table 3). Center: 
Cells colored by CytoTRACE 2 potency scores. Right: Cells colored by scVelo 
latent time (differential kinetics model). b, Same as a but showing human bone 
marrow (CITE-seq) (Supplementary Table 1). c, Left: Bar plot showing mean 
absolute order (weighted τ applied to single cells) performance across six broad 
potency levels (circles) and ten granular order potency levels (triangles) for 
nine test datasets evaluable by CytoTRACE 2 and scVelo (Supplementary Tables 
3 and 14; Methods). Two models are shown for the latter: dynamical latent time 

and differential kinetics latent time. Right: Violin and box plots showing relative 
order performance (weighted τ applied to single cells) on the same test datasets 
(n = 8 evaluable datasets with relative developmental orderings, Supplementary 
Tables 4 and 14). Statistical significance was determined by two-sided paired 
t test. Violin plot bounds denote minimum and maximum values. Box center 
lines, bounds of the box, and whiskers denote medians, 1st and 3rd quartiles, 
and minimum and maximum values within 1.5 × IQR (interquartile range) of 
the box limits, respectively. d, Same as Fig. 1e but shown for the nine evaluable 
test datasets in c. Left: CytoTRACE 2 potency scores. Right: scVelo latent time 
(differential kinetics model). Statistical significance was determined using a  
one-sided Z-test. ns, not significant.
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Extended Data Fig. 9 | Extended analysis of potency programs and genes.  
a, Same as Fig. 2b but separated by cohort, species, cellular system (three general 
categories shown for clarity), and scRNA-seq platform. The embedding in Fig. 2b 
is shown as a reference in the upper left. Colors denote potency scores (same as 
the color bar in Fig. 2b, top) for reference and cohort-stratified embeddings.  
b, Heat map depicting pairwise similarity of gene sets learned by CytoTRACE 2 
across all 19 ensemble models from leave-one-out cross-validation on the 
19-dataset training cohort. Overlap was quantified by Jaccard index and stratified 
into gene sets with positive (left, n = 1,490) and negative weights (right, n = 1,246); 
gene set polarity was determined as described in “Interpretability,” Methods.  
c, Same as Fig. 2e but showing the consistency between CytoTRACE 2 
multipotency markers and hematopoietic stem cell (HSC) knockout (KO) 
phenotypes across a range of top k  markers, whether positive or negatively 
associated with multipotency (k  = 50, 100, 200, and 500). GSEA statistics are 
expressed as directed –log10 Q values. Statistical significance between groups 

was determined using a two-sided unpaired Wilcoxon test. Box center lines, 
bounds of the box, and whiskers denote medians, 1st and 3rd quartiles, and 
minimum and maximum values within 1.5 × IQR (interquartile range) of the box 
limits, respectively. d, Same as c, but showing the median directed –log10 Q value 
across all top k  markers shown in c, stratified by positive and negative markers, 
and extended to all potency categories in the CytoTRACE 2 feature importance 
matrix (Supplementary Table 15). e, Enrichments of selected gene sets from 
MSigDb in the CytoTRACE 2 feature importance matrix (Fig. 2a, right; 
Supplementary Table 15). Bubbles are colored by signed –log10 adjusted p-values 
(adjusted for multiple comparisons) calculated by GSEA, where the sign is 
determined by the direction of association between the genes and the potency 
category. All –log10 adjusted p-values, including those exceeding the color bar 
range, are provided in Supplementary Table 17. Bubble sizes are proportional to 
unsigned –log10 adjusted p-values within the color bar.
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Extended Data Fig. 10 | Validation of multipotency-associated genes.  
a, Representative gating schemes for FACS-purification of mouse hematopoietic 
subsets analyzed in Fig. 2i (HSCs/MPPs, CMPs, and CLPs from bone marrow and 
T/B cells from peripheral blood). KLS, Kit+ Lin− Sca1+ multipotent cell subset 
consisting of HSCs and MPPs (multipotent progenitors); KL, Kit+ Lin− Sca1− subset 
devoid of multipotent cells; CMP, common myeloid progenitor; CLP, common 
lymphoid progenitor. b, Bar plots showing biological replicates and controls for 
quantitative PCR experiments, related to Fig. 2i. Each gene is shown normalized 
to the maximum mean expression across all groups. Top: markers of HSC/MPP 
(Hoxb5, Fgd5, Procr), progenitors (Cd34), and differentiated lineages (Cd8a, 
Cd19). Bottom: unsaturated fatty acid (UFA) synthesis genes identified as markers 
of multipotency by CytoTRACE 2 (Fads1, Fads2, and Scd2). Actb was used as an 
internal control. Error bars reflect s.e.m. (standard error of the mean) across 
three biological replicates. c-d, Same as Fig. 2j but shown for mouse duodenum 

(c) and ileum (d). Scale bars, 50 µm (top) and 10 µm (bottom). e, Quantification 
of mRNA hybridization signal in multipotent and unipotent/differentiated 
zones of mouse jejunum (left, corresponding to images in Fig. 2j), duodenum 
(center, corresponding to confocal images in c), and ileum (right, corresponding 
to images in d). Multipotent zones are divided as previously described40 on the 
basis of cell location from the crypt base, with red and green regions expected 
to be most enriched in Lgr5 and Fgfbp1, respectively. Bars represent the mean 
fluorescence intensity per zone, with error bars denoting s.e.m. (n = 20 paired 
crypts and villi from each intestinal region [ jejunum, duodenum, ileum] pooled 
from two mice, with a total of 10 paired crypts and villi per region per mouse). 
Statistical significance was determined by a two-sided paired t test, with the 
resulting p-values adjusted by the Benjamini-Hochberg method separately 
applied to jejunum, duodenum, and ileum samples (*Q < 0.05; **Q < 0.01, 
***Q < 0.001, ****Q < 0.0001).
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