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While single-cell RNA sequencing has advanced our understanding of

cell fate, identifying molecular hallmarks of potency—a cell’s ability to
differentiate into other cell types—remains a challenge. Here we introduce
CytoTRACE 2, aninterpretable deep learning framework for predicting
absolute developmental potential from single-cell RNA sequencing data.
Across diverse platforms and tissues, CytoTRACE 2 outperformed previous
methods in predicting developmental hierarchies, enabling detailed
mapping of single-cell differentiation landscapes and expanding insights

into cell potency.

All cells, fromthe fertilized egg toits mature progeny, are hierarchically
organized in multicellular life. Each cell has distinct potency, or ability
to differentiate into specialized cell types, ranging from totipotent
(capable of generating an entire organism) and pluripotent (capable of
generating all adult cells) to multipotent, oligopotent, unipotent and
differentiated cells, each with increasingly restricted developmental
potential® (Fig. 1a). While lineage tracing, functional transplantation
assays and single-cell genomics have expanded our understanding of
cell potency?, there remains aneed for interpretable methods that can
learn developmental programs, predict potency states and generate
insights applicable to regenerative and cancer biology.

We previously introduced CytoTRACE 1 (ref. 3), a computational
method for predicting cellular maturity from single-cell RNA sequenc-
ing (scRNA-seq) data, based on the number of genes expressed per
cell. However, like other trajectory inference methods*®, CytoTRACE
1provides predictions that are dataset-specific, making it difficult to
unify results across datasets and contextualize them within the broader
framework of cellular potency.

To overcome these challenges, we developed CytoTRACE 2, an
interpretable deep learning framework for determining single-cell
potency categories and absolute developmental potential from
scRNA-seq data. Unlike most deep learning methods’, CytoTRACE 2
learns multivariate gene expression programs that are readily inter-
pretable and enable accurate predictions of developmental potential.
Moreover, it suppresses batch and platform-specific variation through
multiple mechanisms, including competing representations of gene
expression and training set diversity (Methods). Our approach uncov-
ers cross-tissue correlates of cell potency and highlights the value of
interpretable deep learning for characterizing single-cell develop-
mental statesin healthand disease (https://cytotrace2.stanford.edu).

Todevelop CytoTRACE 2, we curated an extensive atlas of human
and mouse scRNA-seq datasets with experimentally validated potency
levels, spanning 33 datasets, nine platforms, 406,058 cells and
125 standardized cell phenotypes (Fig. 1b and Supplementary
Table1). Phenotypes were grouped into six broad potency categories—
totipotent, pluripotent, multipotent, oligopotent, unipotent and
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differentiated—and further subdivided into 24 granular levels based
onexpected developmental order from lineage tracing and functional
assays (Fig. 1b and Supplementary Tables 2 and 3). A training set of
93 cell phenotypes from 16 tissues and 13 studies was used to develop
the model, with the remaining data reserved for performance
evaluation (Fig. 1b and Supplementary Table 1).

CytoTRACE 2 decodes developmental potential using a novel,
explainable deep learning architecture called a gene set binary
network (GSBN). Inspired by binarized neural networks'®, GSBNs
assign binary weights (0 or 1) to genes, identifying highly discrimi-
native gene sets that define each potency category (Fig. 1c and
Extended Data Fig. 1a). Multiple gene sets can be learned for each
potency group, and the informative genes driving model predictions
can be easily extracted—an advantage over conventional deep learn-
ing architectures. As such, CytoTRACE 2 provides two key outputs
for each single-cell transcriptome: (1) the potency category with
maximum likelihood and (2) a continuous ‘potency score’ gener-
ated by integrating GSBN predictions across potency categories
and calibrating the range from 1 (totipotent) to O (differentiated)
(Fig.1c, Extended DataFig.1a and Supplementary Tables 2-4). Based on
the assumption that transcriptionally similar cells occupy related
differentiation states, CytoTRACE 2 also leverages Markov diffusion
combined with a nearest neighbor approach to smooth individual
potency scores (Extended Data Fig. 1b,c).

Having compiled a compendium of ground truth datasets, we
evaluated the performance of CytoTRACE 2 by assessing both the
accuracy of potency predictions and the ordering of known develop-
mental trajectories. We used two definitions of development order-
ing: ‘absolute order’, which compares predictions to known potency
levels across datasets, and ‘relative order’, which ranks cells within
each dataset from least to most differentiated (Extended Data Fig. 1d
and Supplementary Tables 2-4). The agreement between known and
predicted developmental orderings was quantified using weighted
Kendall correlation to ensure balanced evaluation and minimize bias
(Supplementary Table 5).

We started by evaluating model hyperparameters through
cross-validation and observed minimal performance variation across
a wide range of values (Extended Data Fig. 1e,f and Supplementary
Table 6). Based on this, we selected stable hyperparameters and
retrained the model. On the training data, we demonstrated that
CytoTRACE 2 achieves high accuracy in distinguishing absolute
potency for broad potency labels (Fig. 1d).

To validate our approach, we next extended our analysis to
unseen data, comprising 14 held-out datasets spanning nine tissue
systems, seven platforms and 93,535 evaluable cells. Performance on
broad and granular potency labels was consistently high in testing
(Fig. 1d,e) and robust to differences in species, tissues, platforms or
phenotypesthat were absent during training (Extended Data Fig.2a-c
and Supplementary Table 7). To rigorously assess generalizability,
we retrained CytoTRACE 2 on different subsets of the potency atlas,
including random train-test splits and scenarios where distinct

developmental systems, termed ‘clades’, were held out from training.
In all cases, results were well correlated with ground truth (Fig. 1f,
Extended DataFig. 2d,e and Supplementary Tables 8 and 9), implying
that potency-related biology is conserved across datasets. We also
found that CytoTRACE 2isresistant to moderate annotation errors and
performsreliably under practical datalimitations (Extended DataFig.3
and Supplementary Note).

Akey advantage of CytoTRACE 2iis its ability to predict absolute
developmental potential on a continuous scale from1(totipotent) to O
(differentiated), which enables cross-dataset comparisons and avoids
imposing a developmental order where none exists. For example,
unlike its predecessor, CytoTRACE 2 corroborated a pluripotency
program in cranial neural crest cell precursors™ and correctly dis-
tinguished datasets with and without immature cells'>* (Fig. 1g and
Extended Data Fig. 4). It also outperformed other methods*** in
ordering mouse single-cell transcriptomes fromssix datasets** > across
62 developmental time points (Extended Data Fig. 5a-c) and accurately
captured the progressive decline in potency across 258 evaluable
phenotypes during mouse development (Extended Data Fig. 5d,e)—
withoutrequiring dataintegration or batch correction. CytoTRACE 2
potency predictions also aligned with known leukemic stem cell
signatures in acute myeloid leukemia (Extended Data Fig. 6a)* and
identified known multilineage potential in oligodendroglioma?,
highlighting its applicability to cancer (Extended Data Fig. 6b and
Supplementary Table 10).

Next, we benchmarked CytoTRACE 2 against multiple strategies
for cell potency classification and developmental hierarchy infer-
ence (Supplementary Table 11). CytoTRACE 2 outperformed eight
state-of-the-art machine learning methods* > for cell potency clas-
sificationin33 datasets, achieving a higher median multiclass F1score
and lower mean absolute error (Extended Data Fig. 7). Moreover, it
surpassed eight developmental hierarchy inference methods for
cross-dataset (absolute) and intra-dataset (relative) performance®* 2,
demonstrating over 60% higher correlation, on average, for recon-
structing relative orderings in 57 developmental systems, including
data from Tabula Sapiens® (Fig. 1h,i and Supplementary Tables 12
and13). Similar results were observed when comparing CytoTRACE 2
against nearly 19k annotated gene sets**° (Fig. liand Supplementary
Table13) and scVelo®, ageneralized RNA velocity model for predicting
future cell states (Extended Data Fig. 8 and Supplementary Table 14).

Previous genomic studies of stemness largely focused on pluri-
potency, with limited insight into other potency states. Given the
inherent interpretability of our GSBN design, we next explored the
molecular programs driving potency predictions (Fig.2a). Across our
potency atlas, GSBN modules produced a cohesive gradient of differen-
tiation states (Fig. 2b and Extended Data Fig. 9a,b). The top-ranking
genes showed conserved signatures across species, platforms and
developmental clades, identifying both positive and negative cor-
relates of cell potency (Fig. 2c and Supplementary Tables 15and 16).

Given these results, we hypothesized that CytoTRACE 2 might
enrich for key potency-specific factors. Indeed, the core transcription

Fig.1|Development and benchmarking of CytoTRACE 2. a, Overview of cell
potency across six developmental categories. b, Summary of the 33-dataset
single-cell potency atlas. ¢, Schematic of the CytoTRACE 2 model. Toti.,
totipotent; Pluri., pluripotent; Multi., multipotent; Oligo., oligopotent; Uni.,
unipotent; Diff., differentiated. d, CytoTRACE 2 performance across six broad
potency categoriesin training and held-out test sets, with mean potency scores
shown for each standardized phenotype-dataset pair (circles). e, CytoTRACE 2
performance across 17 evaluable granular potency levels in held-out test data.
Points denote mean potency score per phenotype; large circles indicate the
median across these points for each granular potency level. Thick black lines
(xaxis) separate broad potency categories. A linear regression line with 95%
confidence band is shown. f, Same as e, but using a leave-clade-out strategy,
where each of 19 developmentally distinct clades (b) was held out during

training. For d-f, concordance with ground truth was assessed using weighted
Kendall correlation (7) applied to single cells, with significance assessed by
two-sided z-test. Box plots show medians, quartilesand 1.5 x interquartile range
(IQR). g, Uniform Manifold Approximation and Projection (UMAP) of three
held-out datasets showing ground truth (top), CytoTRACE 2 (middle)

and CytoTRACE1 (bottom). h, Violin plots comparing nine methods for
reconstructing 57 developmental systems. Pvalues were calculated by two-sided
Wilcoxon tests against CytoTRACE 2; **P < 0.01; ****P < 0.0001. i, Performance
comparison with eight previous methods and 18,706 gene sets in the test

set (left) and Tabula Sapiens (right) using weighted 7 to assess absolute

(six broad potency levels) and relative order (median correlation across
individual trajectories). aand c were created using BioRender.com.
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Fig. 2| Model interpretability and cross-tissue signatures of cell potency.

a, Schematic for characterizing CytoTRACE 2 gene sets and feature importance.
b, UMAP of gene set expression levels in training-test sets, aggregated ina
0.5x0.5grid, colored by CytoTRACE 2 (top) or ground truth potency (bottom).
¢, Expression of top 500 positive (pos.) and negative (neg.) markers per potency
category, shown across 237 pseudo-bulks aggregated by phenotype, species
and platform from training-test sets. d, Overview of a CRISPR knockout (KO)
screen assessing in vivo differentiation effects in hematopoietic stem cells
(HSCs)*. e, Enrichment of top CytoTRACE 2 multipotency markers among genes
whose knockout promotes or inhibits HSC differentiation (fromd), using GSEA.
f, GSEA of 537 pathways in genes ranked by multipotency scores, highlighting
‘cholesterol metabolism’. g, Top: overview of UFA pathways, inspired by ref. 42.
Bottom: top UFA biosynthesis genes (Fadsl, Fads2 and Scd2) ranked by GSEA and
CytoTRACE 2 multipotency scores). h, Single-sample GSEA of UFA genes across

237 pseudo-bulk samples, colored by tissue type as in . ****P < 0.0001 (one-sided
permutation testing). Box plots show medians, quartiles and 1.5 x IQR. i, qPCR of
UFA genes in FACS-purified mouse hematopoietic subsets (n = 3), normalized to
HSC/MPP; Actb as internal control. MPP, multipotent progenitor; CMP, common
myeloid progenitor; CLP, common lymphoid progenitor. Violin plots show
median and range. j, In situ mRNA imaging of mouse jejunum (top) shows spatial
expression of multipotent (LgrS and Fgfbp1), proliferation (Mki67), and UFA
(Fadsl, Fads2 and Scd2) marker genes in crypts and villi. Higher magnification
views (bottom) highlight boxed regions. Cell boundaries were visualized with
E-cadherinimmunostaining; asterisks mark representative Lgr5" crypt base
columnar (CBC) cells. TA, transit-amplifying. Scale bars, 50 pm (top), 10 pum
(bottom). Images are representative of three mice.Imagesina,d, g, i,jwere
created using BioRender.com. NES, normalized enrichment score.

factors PouSf1 and Nanog® ranked within the top 0.2% of pluripotency
genes (Supplementary Table 15). To further explore this hypothesis,
we analyzed data from a large-scale CRISPR screen, in which ~7,000
genesinmultipotent mouse hematopoietic stem cellswereindividually
knocked out and assessed for developmental consequences in vivo®
(Fig. 2d). Among the 5,757 genes overlapping CytoTRACE 2 features,
the top 100 positive multipotency markers were enriched for genes
whose knockout promotes differentiation, whereas the top 100 nega-
tive markers were enriched for genes whose knockout inhibits dif-
ferentiation (Q = 0.04; Fig. 2e and Extended Data Fig. 9c). This trend
was consistent across different numbers of top markers and highly
specific for multipotency, underscoring the fidelity of learned potency
representations (Extended Data Fig. 9d).

Tomore deeply analyze multipotency in mouse and humantissues
and explore the potential of CytoTRACE 2 for biomarker discovery, we
next applied pathway enrichment analysis to genes ranked by feature
importance. Remarkably, cholesterol metabolismemerged as aleading
multipotency-associated pathway (Fig. 2f, Extended Data Fig. 9e and
Supplementary Table 17). Within this pathway, three genes related to
unsaturated fatty acid (UFA) synthesis (Fadsi, Fads2 and Scd2) were
among thetop-ranking markers (Fig. 2g). These genes were consistently
enriched in multipotent cells across 125 phenotypes in our potency
atlas (Fig. 2h; train-test area under the curve (AUC) values of 0.87 and
0.92, respectively).

To experimentally confirm these findings, we performed quantita-
tive PCR on mouse hematopoietic cells sorted into multipotent, oligo-
potent, and differentiated subsets (Fig. 2i and Extended DataFig.10a,b)
and multiplexed in situmRNA imaging on mouse intestinal epithelium
co-stained with multipotency markers, Lgr5*® and Fgfbp1*° (Fig. 2j and
Extended DataFig.10c-e).Inbothapproaches, Fads1, Fads2 and Scd2
showed reproducible and preferential expressionin multipotent cells
(Fig. 2i,j and Extended Data Fig. 10). While fatty acid metabolism has
been linked to stem cell biology*, no study has specifically attrib-
uted lipid metabolism genes to distinct potency levels. Therefore,
CytoTRACE2 provides aframework to uncover molecular relationships
and facilitate new hypotheses and discoveries.

In summary, CytoTRACE 2 is an interpretable deep learning
framework that predicts cell potency and continuous differentia-
tion states from scRNA-seq data. Unlike previous methods, it links
stemness and pseudotime to absolute developmental potential, offer-
ing cross-dataset compatibility and transparency into the molecular
profiles drivingits predictions. Nonetheless, this study has several limi-
tations. Like all supervised machinelearning approaches, CytoTRACE
2 depends on the quality and breadth of its training data, although
robust results were observed across diverse training-test splits, and
moderate labeling variation was well tolerated. Performance may
decline when analyzing cells with very low RNA content or number
of expressed genes (Extended Data Fig. 3). While some phenotypes
were misclassified in held-out data, absolute errors remained low and
outcompeted existing methods. Finally, although the current modelis

trained on humanand mouse data, ortholog mapping may expand its
applicability to other species. Given its demonstrated advantages, we
anticipate that CytoTRACE 2 will have immediate utility forimproving
our understanding of cell potency, with implications for the identifi-
cation of novel biomarkers and therapeutic targets in diseases where
altered developmental hierarchies play arole.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
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Methods

Ethical compliance

All animal procedures were performed in compliance with ethical
regulations and conducted according to a protocol approved by the
Stanford University Administrative Panel for Laboratory Animal Care
committee (protocol no.10868).

Single-cell potency atlas

Developmental potency reflects a cell’s capacity to differentiate into
various cell types, with six widely recognized categories in stem cell
biology: totipotency, pluripotency, multipotency, oligopotency,
unipotency, and differentiated (Fig. 1a,b and Supplementary Note).
Thesebroad classifications are based on decades of research, including
lineage tracing, transplantation and colony-formation experiments
across multiple tissues and species. Each category represents a pro-
gressively restricted ability to generate downstream cell types, from
totipotent cells capable of forming all embryonic and extra-embryonic
lineages to unipotent cells restricted to producing a single mature cell
type; however, as developmental potential exists on a continuum, we
also devised a more granular classification system, as described in
Supplementary Note and Supplementary Tables 2 and 3.

Of note, classically defined potency levels are not directly anno-
tated in publicly available scRNA-seq datasets. Therefore, to train,
validate and benchmark CytoTRACE 2, we downloaded and curated
33 human and mouse scRNA-seq datasets from peer-reviewed
studies with experimentally confirmed developmental states and
assignable potency levels (Supplementary Table 1). As part of this
selection process, we applied the following inclusion and exclusion
criteria to enhance experimental rigor:

 Only functionally validated developmental states supported
by lineage tracing or transplantation assays were considered
for analysis. Datasets with transient cell changes, such as from
metabolic activation or suppression, cell cycle transitions or
environmental perturbations were excluded, as these do not
represent durable developmental processes.
« Datasets with irreconcilable technical batches resulting in major
imbalances in the number of cells per phenotype were excluded.
« Single-nucleus RNA sequencing datasets were excluded, as
they do not capture cytoplasmic RNA and include immature
transcripts.

Among datasets satisfying these conditions, author-supplied
cell type annotations were mapped to one of six broad potency
categories (totipotent, pluripotent, multipotent, oligopotent, uni-
potent and differentiated) or not evaluable using established defini-
tions (‘Potency annotation scheme’, Supplementary Note). These
potency categories were further subdivided into 24 granular catego-
ries, ranging from 1 (least differentiated) to 24 (most differentiated)
(Supplementary Tables 2 and 3). Cellular phenotypes were hierarchi-
cally grouped into these categories based on potency, developmental
timing and sequence, and self-renewal capacity.

Where possible, we also examined single-cell developmental
states in a dataset-specific manner and without regard to potency
categories, as previously described®. Such ‘relative’ orderings, most
of which were obtained from Gulati et al.?, ranged from 1 (least differ-
entiated) to N (most differentiated) in a given dataset, and exceeded
the number of resolvable potency categories in some datasets
(Supplementary Table 4), permitting a more granular assessment

Our comprehensive potency atlas catalogs experimentally
confirmed cell states and their corresponding potency levels, pro-
viding a structured reference for model training and validation.
Supplementary Table 3 includes key details such as the broad and
granular potency levels, standardized and original cell phenotypes,
species, dataset source, cohort type (for example, training, validation

and test), developmental maturity, lineage contributions and sup-
porting evidence. This format allows for consistent annotation and
comparison across datasets. For full details of potency annotations and
associated rationale, see ‘Potency annotation scheme’ (Supplementary
Note) and Supplementary Tables 2-4.

Training and test datasets. Using the abovementioned criteria, we
assembled a 33-dataset potency atlas (Fig. 1b), from which we selected
atraining cohort consisting of seven human and 12 mouse scRNA-seq
datasets from13 studies (Supplementary Table 1). We ensured that all
six broad potency categories were represented in both species along
with adiverse array of biological (for example, tissue types) and tech-
nical characteristics (for example, sequencing platforms). As part of
this effort, and to align with precedent in the field, we incorporated
all human and mouse scRNA-seq datasets (n=13) with annotatable
potency categories analyzed by Gulati et al.’. To broadly cover tissue
types, we also included cell phenotypes from the Tabula Muris
scRNA-seq atlas* for which potency categories could be determined
(15 tissue types and 43 phenotypes). The resulting training cohort
encompasses 312,523 cells, 16 tissue types, 93 phenotypes and six
scRNA-seq platforms (Fig. 1b).

The remaining datasets served as a held-out test cohort, which
mirrors the training cohort with respect to species representation in
each broad potency category (Supplementary Table 1). Consisting of
three human and 11 mouse scRNA-seq datasets from 14 studies, the
test cohort spans 93,535 cells, 73 phenotypes, nine tissue types and
seven scRNA-seq platforms, including two tissue types and 21 pheno-
types that were absent from training (Fig. 1b and Supplementary
Tables1and?7).

To augment these data, we annotated potency categories in
459,320 evaluable cells from Tabula Sapiens, a multi-tissue sSCRNA-seq
atlas from postmortem human donor biopsies® (Supplementary
Table 1); however, given the confounding influence of postmortem
intervals on human tissue messenger RNA levels**, we hypothesized
that Tabula Sapiens might exhibit reduced data quality. To test this,
we calculated the ratio of mitochondrial reads to total reads (MTR)
within each single-cell transcriptome as a proxy for overall data quality.
Indeed, we calculated a mean MTR across all Tabula Sapiens tissue
types, stratified by platform, of 7.4% (median of medians), which is
nearly 90% higher than expected for human cell types profiled by
scRNA-seq data (median of medians of 3.9%; Table S1 of Osorio and
Cai*’) and 78% higher than other human datasets in the training and test
cohorts, both of whichinclude embryonictissues with high metabolic
activity (median of medians of 4.2%). Accordingly, we omitted Tabula
Sapiens from the primary test cohort and evaluated it as a secondary
benchmarkinFig.1h,i. Author-supplied phenotypesin Tabula Sapiens
with fewer thanfive cellsin atissue-platform pair were excluded from
further analysis.

Collectively, these ground truth datasets with newly annotated
potency levels represent aunique community resource for systematic
characterization of absolute developmental states and their molecular
programsin humans and mice. Depending on platform, all scRNA-seq
expression matrices were normalized to transcripts per million (TPM)
or counts per million (CPM) as appropriate. Full details of each dataset,
including dataset name, accession number, PMID, species, platform,
tissue type, number of cells, number of phenotype, and number of
potency levels, are available in Supplementary Table 1. These data
canalsobeinteractively explored at https://cytotrace2.stanford.edu.

Additional annotation considerations. For cells with identical pheno-
types but differentauthor-supplied labels, we unified the annotations
(Supplementary Table 3). For example, ‘HSC-MPPs’ from ‘HSC develop-
ment (Smart-seq2)’ and ‘Hematopoietic stem cell progenitor (HSCP)’
from ‘HSPCs (C1)’ were annotated as ‘Hematopoietic stemand early pro-
genitor’. To balance the representation of cells from distinct lineages
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within a given broad potency category, we also re-annotated related
cell subsets sharing acommon parental phenotype. For example, ‘CD4*
helper T cells’ from ‘peripheral blood (10x)’ and ‘CD8* memory T cells’
from ‘BM-MNC (CITE-seq)’ were labeled as ‘T cell’. This was crucial when
training CytoTRACE 2 as the probability of sampling individual cells
was weighted based on phenotype. In this way, each major phenotype
contributed equally during model training regardless of the number of
evaluable cells, mitigating the chance of overweighting and overfitting
(see ‘Training and hyperparameter tuning’ below). The standardized
phenotype assignments along with the original annotations are sum-
marized in Supplementary Table 3.

The CytoTRACE 2 framework

Existing RNA-based surrogates of cellular differentiation status have
notable limitations for imputing absolute differentiation states and
potency categories from scRNA-seq data. For example, the original
CytoTRACE, termed CytoTRACE 1in this work, employs gene counts
as an unbiased strategy for identifying immature cells®. Despite the
utility of this approach, gene counts are subject to dataset-specific
biases, making them suboptimal for potency assessment. Measures
based on transcriptional entropy and RNA velocity also suffer from
dataset-specific biases, a nonspecific relationship to absolute differ-
entiation status, or the requirement for continuous developmental
processes within a narrowly defined time window*>'* ¢,

Supervised machine learning models offer a potentially robust
alternative to the abovementioned strategies whenadequate training
data are available; however, machine learning methods also face key
challenges when applied to scRNA-seq data, including sparsity, high
dimensionality and data heterogeneity encompassing both biological
andtechnical variation. While deep learning is a promising subtype of
machine learning, often achieving remarkable performance gains over
other machine learning methods (especially in the presence of high
complexity, noise and uncertainty) most existing architectures lack
inherentinterpretability, limiting their broad applicability.

To address these challenges, we designed a novel deep learning
framework that can handle the complexities of single-cell potency
assessment while achieving direct biological interpretability. Unlike
recent methods*®* that decompose single-cell expression data into
a combination of previously known and simultaneously learned new
gene programs, our approach, termed a GSBN, is anchored to known
phenotypic states but not known gene sets. As such, GSBNs have the
flexibility to discover new gene programs for known phenotypic states,
such as potency categories, from scRNA-seq data. As part of their
design, GSBNs are highly robust and fully interpretable, meaning they
can be directly interrogated to extract meaningful markers for each
phenotypic class of interest across datasets, platforms and tissues.

Technical description. CytoTRACE 2 consists of five high-level com-
ponents, schematically depicted in Fig. 1c and Extended Data Fig. 1a
and described in detail below.

 Preprocessing: ortholog mapping and expression normalization.

» GSBNs: identification of interpretable potency-associated gene
sets for each potency category.

« Enrichment assessment: evaluation of gene set activation levels
insingle cells.

« Integration of scores: integration of gene set activation levels,
both within and across gene set binary networks.

» Postprocessing: leveraging transcriptional covariance and
uncertainty in model predictions to smooth single-cell potency
scores and produce the final output.

Core model architecture. Among these five components, GSBNs,
enrichment assessment and integration of scores constitute the
CytoTRACE 2 core model, a neural network architecture consisting

ofashared inputlayer; a set of G GSBN modules, where G denotes the
number of potency categories; and a shared output layer (Extended
Data Fig. 1a). Within the core model, each GSBN module is trained to
discriminate a single potency category and contains (1) a binary neu-
ral network (BNN) component, which encodes potency-associated
gene sets and (2) downstream functions to calculate and integrate
genesetenrichment scores (Fig. 1c and Extended DataFig. 1a). Notably,
because weightsin BNNs are constrained to binary rather than continu-
ousvalues, BNNs also allow for more efficient computation and provide
animplicit form of model regularization®®.

Preprocessing. Let input scRNA-seq dataset Xbean / x C gene expres-
sion matrix over / genes and C cells. The following preprocessing
steps prepare the input dataset for training or prediction.

First, gene symbolsinXare mapped and filtered using dictionary
D, acollection of gene symbols that harmonizes allHGNC (human) and
MGI (mouse) identifiers supported by CytoTRACE 2 (‘Dictionary of
input genes’ below). Following this step, the resulting expression
matrix, denoted X', consists of n = 14,271 genes and C cells. As part
of this process, any genes in X’ not present in X through mapping
aresettozero.Inthe secondstep, X'is converted into dual representa-
tions: for the first, it is normalized to CPM/TPM and log,-adjusted,
yielding an N x C matrix L; for the second, it is mapped to rank space,
yieldingan N x C matrix R, with the genes of each single-cell transcrip-
tome X/ assigned relativeinteger rank such thatrank1correspondsto
the gene with highest expression. While the log, CPM/TPM representa-
tion maintains detailed transcriptomic information, the alternative
encoding provided by rank space helps circumvent batch effects,
mitigate the influence of extreme values and outliers, and reduce the
risk of model overfitting. In tandem, these two representations provide
aninherent regularization to model inputs. R and L are subsequently
passed to the CytoTRACE 2 core model where they jointly constitute
the modelinputlayer.

Gene set binary networks. Inputs Rand Lare passed to each of G GSBN
modules within the CytoTRACE 2 core model. These modules begin
by thresholding R (Extended Data Fig. 1a) to learnable maximum rank
7eN, yielding N x C matrix T:

Ti,k = min (Ri,ks T)

This rank trimming (see also ‘Model initialization and updates’)
enables calculation of the rank-based enrichment score, described in
‘Enrichment assessment’ below. Input L remains the same.

Next, within each GSBN module, M gene setsare learnedinbinary
N x M matrix W8, where MeNis prespecified and all entries W?J €1{0,1}.
WB constitutes the gene set selection layer of the CytoTRACE 2 core
model; it has a continuous equivalent W used for model initialization
and backpropagation (see also ‘Training and hyperparameter tuning’).
Ateachforwarditeration for modeltraining, W undergoes binarization:

W8 = binarize (W, 0)

where binarize denotes the following utility function:
1, M,*)j >a

binarize (M, a),; =
0, M;;<a
Enrichment assessment. To quantify the enrichment of each gene
set in the module (each column of WB), CytoTRACE 2 leverages two
complementary measures: rank-based enrichment score (Score;)
and expression-based enrichment score (Score,). Score, aggregates
overall expression activity of a given gene setj in rank space whereas
Score,compares the average expression of genesinj versus background
levels. By integrating both scores, each providing a different axis of
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information, CytoTRACE 2 canlearn more complex expression patterns
while also achieving additional regularization through enrichment
score competition. The two scores are defined as follows.

Scorey calculates the commonly used nonparametric UCell
score* for each gene set, or column of W8, For each cell 1 < k < Cand
modulegeneset1<;j<M,

$+ D23 T, We

j\oj - Lk W.

Scorey (T, WB), , =1+ S Liz BT |
' 21S;

where S denotes the vector of length M containing the number of
genes per gene set assigned nonzero weight in the binary weighting
matrix:

Score,implementsascoring systembased on Seurat’s AddModuleScore
(AMS), computing the average expression of genes within a gene set
subtracted by the aggregated expression of control, or background,
feature sets*™. To select background features, AMS groups genes into
npins bins according to their average expression withinadataset. Then,
foreach gene, a‘background’ set of ng,mpc genes fromthe same average
expression bin is sampled, ensuring that each gene is compared to
other geneswith similar average expression. Here, for computational
efficiency and to avoid introducing adependency on dataset composi-
tion, we use our entire curated training cohort (see ‘Single-cell potency
atlas’) asthe ‘dataset’inwhich torank genes by average expression. We
then compute a constant set of background genes to use for each gene.
We encode the mapping of genes to their background genes in the
binary N x N matrix G, where each row represents a gene as used in a
geneset,and thejthentry of rowiislif genejis used asbackground for
genei,and O otherwise.

Indetail, we construct G as follows. First, we compute the average
log, CPM/TPM expression per gene across all cells from the training
cohort. We then rank the results and uniformly partition genes
into ny,;,s = 24 bins of size s;, according to rank, following the Seurat
default®. Next, for each gene (each row of G), we randomly select
without replacement aset of background genes, where the number of
background genes follows a Gaussian distribution withmean g = ngmpie
and variance

5 Sbin — Msample
0° = Ngample s
bin

where ngmpe = 100. Thisapproach provides an additional regularizing
effect compared to constant selection of a uniform number of back-
ground genes per gene. Note that left-multiplying a gene set matrix
WEB by G maps the genes in the gene sets (columns) of WE to their
corresponding background genes.

Then, given G, foreachcell1 < k < Candmodulegeneset1 < <M,

(tw?)

(Low®)
Score, (L, WB> kJ ke

“ Z?LIWEJ Z?Iﬂ(GWB),*,j
where the first term simply computes the average expression of
selected gene set genesineachcell of input gene expression matrix L,
and the second term calculates the aggregated average expression of
background genes within the same cells.

The two resulting enrichment score matrices are subsequently
concatenated into asingle C x 2M matrix K:

K= [Scoreu (T, WB) Score, (L, WB)]

To transfer these enrichment scores into comparable spaces,
CytoTRACE 2 standardizes each score across cells, yielding C x 2M
matrix K™, This standardization, implemented via torch.
nn.BatchNormld from PyTorch v.2.0.0 with affine = False, tracks
the mean and variance of each score during training. Once trained,
the model applies these learned values, rather than dataset-specific
values, for standardization at inference.

Integration of scores. To convert the gene set enrichment scoresto a
single score per cell per GSBN module, the normalized scores K™ ™are
passed through a feedforward layer, termed the ‘enrichment layer’ in
the CytoTRACE 2 core model, containing the associated length 2m
gene set enrichment score weight vector V and yielding length ¢
potency category score vector g. As part of this process, dropout is
applied to reduce overfitting during model training, with a predeter-
mined fraction of the normalized scores set at random to zero.
From the weights in each V, concatenated across potency categories
into matrix V, the directionality and importance of each gene set can
beinterpreted (see ‘Interpretability’ below).

The model then integrates across the potency category scores
produced by each GSBN module, concatenating the potency category
score vectorsinto C x G potency score matrix Q. This procedure repre-
sents the shared output layer of the CytoTRACE 2 core model.

To convert thelogit entries of Q to likelihoods, the model applies
asoftmaxactivation function, yielding C x G matrix Prepresenting the
likelihood of each cell belonging to each of the six potency categories.
The model then predicts cellular potency by assigning the potency
category with highest likelihood for each cell, yielding length C
vector y:

Y = argmax, ¢ (P

The yvectorrepresents one of the key outputs of the CytoTRACE
2 core model; however, the model also computes an absolute develop-
mental potential from this set of likelihoods, termed the raw potency
score RPS. For this aspect, we introduce length G ordered vector ¢
to be multiplied by the potency category likelihood matrix:

RPS = Pt
t=1[0.0,0.2,0.4,0.6,0.8,1.0],

where RPS is the length C raw potency score vector. As the potency
categories are ordered based on their absolute developmental poten-
tial, the resulting raw potency score will be closer to one for higher
potency categories, such as totipotent, and closer to zero for lower
potency categories, such as differentiated. As RPSdirectly incorporates
model uncertainty, it is passed to ‘Postprocessing’ below to define a
more granular developmental ordering.

Postprocessing. As the fully trained CytoTRACE 2 model predicts
potency for each cellindividually, CytoTRACE 2 further processes the
output (raw potency score RPS and predicted potency categories ) to
incorporate the neighborhood structure of transcriptionally similar
cells. We reasoned that doing so could further improve performance
given our previous experience combining gene counts with transcrip-
tional covariance in CytoTRACE 1 (ref. 3). To this end, we devised and
validated a three-step procedure using the training cohort, as described
below. Notably, this procedure improves correlations with relative
developmental orderings (see ‘Metrics’ below) over RPS or y alone
without sacrificing the potency classification performance achieved
by y (Extended Data Fig. 1b).

Inthefirststep, CytoTRACE 2 applies Markov diffusion to smooth
RPS using the same implementation as CytoTRACE 1 (ref. 3). In brief,
the log,-adjusted CPM/TPM gene expression input L is used to create
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aMarkov matrix from the transcriptional similarity between cells over
the top 1,000 genes with highest dispersion®. This similarity matrix is
thenused to smooth RPSwith diffusion parameter o = 0.9 as previously
described?, yielding smoothed potency score SPS. Using the same
sampling procedure described in our previous work?, the running
time of this step can be significantly reduced without loss of perfor-
mance (Extended Data Fig. 1c). In this study, sampling was restricted
to datasets with >10,000 cells (Supplementary Table1).

To reconcile SPS with predicted potency categories J, in the sec-
ond step CytoTRACE 2 performs a binning procedure to maintain
while preserving relative potency ordering within each category.
Todoso, CytoTRACE 2 first separates cells by their predicted potency
category and assigns each cell 1 <w < C arank % (k.y,) relative to
all cellssharing predicted potency category y,,. For this transformation,
within each potency category 1 < p < G, the cell with lowest potency
scorereceives rank1while the cell with highest potency score receives
maximum rank ry,,, (p). Cells are then arranged uniformly by rank per
potency category within equal length partitions of the unit interval,
yielding binned smooth potency score SPS2. Thus, the binned smooth
potency score for differentiated cells extends from 0 to1/6, unipotent
from1/6t02/6,and so on, withrelative ordering within each bin match-
ing that of the original smoothed potency score.

In the third step, to further smooth SPS8 while minimizing the
impact on y and allowing for the preservation of rare cell states
(Extended Data Fig. 3f), CytoTRACE 2 applies a variation of k-nearest
neighbor (k-NN) smoothing to datasets with >100 cells. Here, we intro-
duce an efficient heuristic approach for adaptive neighborhood
smoothing guided by two key assumptions: (1) cells with more similar
gene expression profiles are more likely to share a potency phenotype;
and (2) predictionerrors for cells with the same ground truth potency
exhibitarandom distribution around a central mean. To balance these
two considerations and identify an appropriate neighborhood size,
weselect kadaptively for each cell according to the following process.
First, given log,-adjusted CPM/TPM gene expression profiles for the
selected cell, we standardize expression per cell to zero mean and unit
variance, then perform dimension reduction of standardized gene
expression profiles over all cells to the top 30 principal components
(PCs). Using the top 30 PCs, we then compute pairwise Euclidean dis-
tances for all cells, rescaling the resulting distances to unit maximum
per cell of interest. Next, we define the neighborhood around each
center cell w through an iterative procedure, allowing a maximum
neighborhood size of 30 cells. We start with the nearest cell to w,
denoted ¢;, and calculate the average potency score prediction for w
and ¢;, mapping the result to one of six broad potency categories,
yielding P,. We repeat this calculation for the next two nearest cells to
w (c,and ¢3), yielding P,,and compare P, and P,. Ifidentical, we assume
that we have sufficiently captured the neighborhood, setting k = 3 (for
the three non-self-neighbors) and exiting the process. If not identical,
we repeat the procedure increasing the group size by one, in other
words, comparing the nearest two cells to w (yielding three total
cells) with the next nearest three cells (c;, ¢, and c5). We repeat this
process until the resulting potency categories are the same between
two groups, in which case we select k toencompassall cells considered
between the two groups, or until we exhaust our candidate nearest
neighbor cells (reach a group size of 15). If concordance between
nearest and next nearest groups is not found, we keep our initial
selection of k =3.

Once k is determined, we update our prediction for w according
to the distance-weighted mean of neighborhood potencies to obtain
the final potency score prediction:

' 2
Y SPS.(1-d)
ceN(w)

Y (a-d)

ceN(w)

cytotrace2,, =

where N(w)denotes the set of all cells within the selected neighborhood
of center cell w, including w itself, and d. denotes the Euclidean
distance of cell cto cell w. Categorical potency predictions are updated
based on the defined intervals above, yielding 3.

We found empirically that combining these three approaches
yielded superior performance on the training cohort (Extended
DataFig.1b).

Training and hyperparameter tuning
Loss function. For model training, we defined aloss function combin-
ing cross-entropy loss with an additional term penalizing gene set size
based on the binary weighting matrix W5 originating from each GSBN
module, 1 < p < G. More precisely, we define the loss function as the
sum of gene set size penalty loss /sand a prediction loss per cell Jp:
J=Js(WE, -\ WE)+ > Jp (3, ),)

w

Indetail, given potency category predictions y,and ground truth

potency categories y,, for cell w (see ‘Single-cell potency atlas’ above),
we defined predictionloss J, as:

jP (j’upyw) = i)w X CE(j’w’yw)

where v, denotes the loss weight assigned to cell w, and CE(3,,.y,,)
denotes the cross-entropy loss for cell w. Loss weights for all cells
are contained in the length C weighting vector o, which has unit
sum and is constructed hierarchically to assign equal weight (1) to all
broad potency categories, (2) to all phenotypes within each broad
potency category, and (3) to all datasets contributing to each
phenotype.
We defined gene set size penalty loss Jsas:

G 1 T \/ﬁ
Jo (W W) = ad 3 |5 (WE) (W) o] a2

where || denotes the Frobenius norm, © denotes the Hadamard
(or element-wise) product, I denotes the M x M identity matrix,
A denotes the gene set size penalty weight, and a serves as a scaling
factor to make Jsinvariant to the number of gene sets included in W&,
with factor /12 selected to anchor the gene set size penalty weight to
the center of the range of hidden sizes tested (see ‘Hyperparameter
optimization’). This loss component serves to minimize the number
of genesin each gene set while regularizing the training of the model.

Model regularization. To promote model generalizability, we intro-
duced two explicit regularization aspects. Weincluded a dropout layer
to avoid model overfitting to specific enrichment scores (“Integration
of scores”). A dropout layer® randomly drops (sets to zero) unitsina
hidden layer of a neural network. This layer was applied to the normal-
ized scores K"™ during training only. Additionally, a penalty term
was added to the loss function to constrain the number of genes in
each gene set of W8 (“Loss function”).

Model initialization and updates. Model weights were initialized
according to PyTorch v.2.0.0 default except for the binary weight-
ing matrices, which were initialized at random with values sampled
from the Gaussian distribution with mean of -0.1 and s.d. of 0.055 to
produce a sparse initial binarization with approximately 500 genes
selected per gene set.

Model training was performed with mini-batch learning using a
batchsize of1,024. To balance batches and ensure equal representation
forthe modellearning process, each batch was constructed via uniform
sampling across datasets and phenotypes (Supplementary Tables
land3)asimplemented by torch.utils.data.WeightedRandomSampler
inPyTorch.
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Following initialization, forward propagation proceeded for each
iteration as described in ‘Core model architecture’, with parameters
updated according to their definition. For numeric stability, the cutoff
rank 7 (‘Gene set binary networks’) for trimming input rank space
expression matrix R was not learned directly but rather computed
as a function of learnable parameter 7,,eR, which was initialized
uniformly at random from 0 < 7, < 1per module and suitably scaled.
As gene set enrichment score calculation (‘Enrichment assessment’)
requiresageneset pool larger than the gene setitself for comparison,
twas computed from z,,,in such a way as to ensure that the ranks of at
least ten more genes beyond the maximum gene set size of the module
were preserved following trimming to T. Thus, at each iteration, the
updated 7,, was scaled and constrained as follows:

7 =10 + maxy¢;<yS; + 1,000 x max (0, T,,)

Model predictions were assessed at each iteration against ground
truth, with the loss function and its gradient computed and used to
backpropagate updates to network weights using PyTorch’s NAdam
optimizer with custom learning rate Ir = 0.001 (see ‘Hyperparameter
optimization’ below) and otherwise default parameters. Given the role
of inertia in successfully training binary neural networks****, we
employed cross-epoch gradient accumulation to dampen binary
weight flipping and achieve a stabilizing effect. This approach addition-
ally facilitates broader hyperparameter space exploration while
validation-based early stopping (see ‘Model evaluation and stopping’)
ensures that the most performant model encountered during
training is retained. Backpropagation for the binary neural network
component of each GSBN module was implemented with Straight-
Through Estimator and hardtanh activation function as previously
described*®.

Model evaluation and stopping. We evaluated model validation per-
formance viaweighted accuracy, defined as the mean F1score across
evaluable potency categories. To do this, we first calculated the F1
score for each phenotype (standardized asin Supplementary Table 3)
and dataset pair using metrics.precision_recall_fscore_support from
sklearnv.1.0.2. We then averaged the resulting scores across datasets
per phenotype, across phenotypes within each broad potency cate-
gory, and across broad potency categories, yielding the final weighted
accuracy. For the standard CytoTRACE 2 model, eachvalidation set con-
sisted of a single dataset; however, for the leave-clade-out model (see
‘Generalizability to unseen cell-type clades’), validation sets included
allcells coveringaclade, regardless of dataset. Allmodels were trained
for100 epochs with the best model weights by the highest score on the
validation set after aminimum of 15 initial training epochs preserved
and returned for the final model.

Hyperparameter optimization. To evaluate the hyperparameter space
of CytoTRACE 2, we performed a hyperparameter sweep over the
training cohort using wandb (v.0.16.4) (https://wandb.ai). We explored
the learning rate Ir over {0.01,0.005, 0.001, 0.0005, 0.0001}, number M
of gene sets per broad potency category over {1,2,4,8,12,16,24,32,48},
gene set size penalty weight 1 over {0.5,0.1,0.05,0.01,0.005,0.001},
dropoutrate pover {0,0.25,0.5}, and enrichment considering whether
touse AMS enrichment, UCell enrichment, or the combination of both
as described in ‘Enrichment assessment’ above. For every iteration of
leave-one-dataset-out nested cross-validation, we trained models
across 500 different combinations of these hyperparameters sampled
based onthe random hyperparameter search. To minimize overfitting
to training data, we used a nested cross-validation framework. While
one dataset was held out from training and evaluated as a validation
set, another dataset was also held out from training but used to deter-
mine the early stopping point as described in ‘Model evaluation and
stopping’. We scored each hyperparameter combination by weighted

accuracy over model validation sets (Supplementary Table 3; see
‘Model evaluation and stopping’).

We observed that variationin hyperparameter values had minimal
impact on performance, underscoring overall model robustness
(Extended Data Fig. 1e, left and Supplementary Table 6). Final hyper-
parameter selection was carried out by a manual curation process
identifying values yielding consistently (albeit modestly) higher
weighted accuracy. Inselecting the number of gene sets M per potency
category, we found that model performance increased with m
before plateauing (Extended Data Fig. 1e, right); as such, we selected
M slightly larger than the number corresponding to the elbow of
this curve. The final hyperparameters used were M = 24 gene sets per
potency; p = 0.5 dropout probability; 1 = 0.01 gene set size penalty
weight; and Ir = 0.001 learning rate.

Next, we evaluated the enrichment metrics. Among all models, we
limited to 84 models with hyperparameter valuesin ranges of plateau
(M > 2 gene sets per potency; p = 0.5 dropout probability, A < 0.01,
Ir < 0.001). AMS enrichment and both AMS and UCell enrichment
achieved superior performance compared to UCell enrichment
alone (Extended Data Fig. 1f and Supplementary Table 6). Given the
potential to enhance generalizability, we therefore selected the com-
bination of AMS and UCell enrichment metrics for the final model.

Model ensembling. Models were trained via leave-one-dataset-out
cross-validation for each of the training datasets, with final CytoTRACE
2 predictionsinnon-training data obtained as the result of integrating
predictions across the 19 resulting models followed by an additional
postprocessing step. As describedin ‘Integration of scores’ above, each
model myieldsa C x G potency category likelihood matrix P™. Models
wereintegrated by entry-wise averaging of potency category likelihood
matrices to yield a single potency category likelihood matrix persemble
from which potency category predictions and raw potency scores were
computed as described above, before passing themto ‘Postprocessing’.

Dictionary of input genes

To create dictionary D (‘Preprocessing’ above), all human gene symbols
were mapped to their closest mouse orthologs, as determined by gene
sequence similarity, using the GRCh38.p13 and GRCm39 annotation
files available from Ensembl v.109, respectively. In cases where asingle
mouse gene g wasidentified as the best hit for multiple human genes,
the human gene with maximum sequence similarity to g was selected
and theremaining humangene(s) excluded fromfurther consideration.
Unique human gene symbols without orthologs by the above process
werealsoincluded for completeness. To defineacommon subset, only
genes present in at least 80% of datasets from an initial development
cohort,asubset of the final training cohort, were retained. Combining
these steps, D was assembled with 14,271 unique gene symbols, includ-
ing 13,750 orthologous pairs and 521 genes without orthologs in
Ensembl via the mapping step above. When mapping human datasets
to D, gene symbol aliases are resolved using linked aliases available
from https://biomart.genenames.org. When mapping to mouse
datasets, alias gene symbols are resolved using data available from
https://www.informatics.jax.org/mgihome/nomen/.

Interpretability

The GSBN architecture of CytoTRACE 2 enables direct interrogation
of the binary weight matrices, consisting of gene sets associated with
each potency category (Fig. 1c and Extended Data Fig. 1a). By exam-
ining the orientation of the output layer weights for each gene set,
we found that gene sets with positive weights (polarity) were highly
enriched in a given potency category, whereas those with negative
weights (polarity) were preferentially depleted (Fig. 2¢). Addition-
ally, we reasoned that genes repeatedly selected for a given potency
category were more likely to be important for effective classification.
Assuch, we designed a metric to quantify feature importance, assigning
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importance scores to genes according to the frequency at which they
wereselected in positively versus negatively weighted gene sets. Here,
weincorporate gene selection frequency across all 19 training models
computed by leave-one-out cross-validation (LOOCV) over the training
cohort datasets.

More formally, we define N x G feature importance score matrix
F (Supplementary Table 15) containing the feature importance score
of eachgene 1< i< N for each potency category 1 < p < G based on
the gene set compositions and enrichment weights across models.
Two enrichment weights correspond with each gene set, one per
enrichment score type (see ‘Enrichment assessment’). Given gene set
enrichment weight matrix V! of model I, we calculate the polarity
Polarity (V',, p) of gene set j defined within model ! for potency cate-
gory module p as the sign of the average of these two weights. Then,
relying on model binary weighting matrices to encode gene set com-
position, we construct feature importance score matrix F entry-wise as

19 M

Fip= ; Zl Wg)l[i,j] x Polarity (V.j,p),
o=

where W;, [i,j] denotes the [ijlth entry of the binary weighting
matrix from module p of model .

Performance assessment

Metrics. Two key metrics, illustrated in Extended Data Fig. 1d, were
used to quantify reconstruction of known developmental orderings:
absolute order and relative order. Absolute order quantifies cross-
dataset performance, whereby predicted orderings from all cells with
annotated potency levels are analyzed together, regardless of dataset,
tissue type or platform (Supplementary Tables 2 and 3). Relative order
quantifies performance within a given dataset and tissue type, akin to
conventional pseudotime and ranges from 1 (least differentiated) to N
(mostdifferentiated) in each dataset (Supplementary Table4). Forboth
metrics, we applied weighted Kendall correlation () (wdm package
v.0.2.4inR) to assess concordance betweenknown and predicted devel-
opmental orderings, with weighting schemes providedinSupplementary
Table5.Similar to our previous work®, ground truth phenotypes corres-
ponding toless mature cells were coded with lower ranks (starting at1);
therefore, higher predictions of developmental order were ranked such
that higher values received lower ranks and vice versa.

For categorical predictions (CytoTRACE 2 and potency classifica-
tionbenchmarking outputs only), we evaluated potency classification
performance as well. Binary correctness of predicted versus ground
truth broad potency categories was assessed via mean multiclass F1
score, implemented with function f1_score from sklearn.metrics with
average = none (Extended Data Figs. 1c top, 2d second from right,
3b-eleft bottom, 7a left and 7b x axis). To account for the magnitude
of deviations from ground truth potency, we also considered mean
absolute error (MAE), assigning each broad potency class an integer
label corresponding to the class ordering, with labels ranging from
1(differentiated) to 6 (totipotent), and computing the absolute value
of the difference between predicted and ground truth categories
(Extended Data Figs. 2d far right, 3b-e right bottom, 7aright and 7b
y axis). For both metrics, scores were computed per ground truth
potency category then aggregated by mean across potencies.

Generalizability to unseen cell-type clades. To test the generaliz-
ability of CytoTRACE 2 to unseen developmental systems, we trained
aversion with aleave-clade-out framework (Fig. 1f), grouping pheno-
types into 18 mutually exclusive developmental clades as detailed in
Fig. 1b and Supplementary Table 9. Of note, to ensure representation
of some totipotent and pluripotent phenotypes for all training sets,
we partitioned embryonic phenotypes into two clades by alternating
granular potency level annotation, corresponding to distinct time
points during development and resulting in 19 total clades for this

analysis (Supplementary Table 2). The final clades cleanly separate,
for example, immune cells, neural cells, endothelial cells, connective
tissue cells and bone cells, among others. Stem and progenitor cells
that produceagiven clade were included in the same partition as that
clade (for example, pancreatic multipotent progenitors were included
with pancreatic epithelial cells). Epithelial cells were separated by
tissue to avoid conflating tissue-specific developmental hierarchies.
Foreach clade, we trained an ensemble of two models over the remain-
ing 18 clades, selecting at random 17 clades for training and one clade
as a held-out validation set to be used for early stopping (see ‘Model
evaluation and stopping’) for each model. We then applied the result-
ing ensemble to the unseen test clade, assessing performance across
allheld-out cladesin Fig. 1f.

Randomization of training and test sets. To assess the robust-
ness of the model to variation in the composition of the training
cohort, we repeated the CytoTRACE 2 training process as described
in ‘The CytoTRACE 2 framework’ across a series of three rando-
mized splits covering all 33 datasets in the single-cell potency atlas
(Supplementary Table 8). We partitioned the datasets at randominto
three folds, each containing 11 datasets. To ensure minimum adequate
representation within each category, we confirmed that each fold
contained at least one phenotype per broad potency category. Tabula
Muris, whichwas divided into two sub-datasets according to platform
for the original CytoTRACE 2 training cohort due toits size and diver-
sity, was again divided, with one of its sub-datasets assigned to another
fold at random. For each split, two folds were combined to form
the training cohort and the remaining one left as a test set for evalu-
ation (2:1 training-test split; Supplementary Table 8). Performance
per test set of these three randomized splits, along with the original
CytoTRACE 2 test set, was assessed by absolute order, relative order,
mean multiclass F1 score and MAE (see ‘Metrics’), showing strong
consistency across folds (Extended DataFig. 2d). Performance for the
three randomized splits was additionally assessed across all held-out
datasetsjointly in Extended Data Fig. 2e.

Robustness of CytoTRACE 2

Robustness to annotation error. To evaluate the robustness of
CytoTRACE 2 to potential noise within potency annotations, we trained
models across two scenarios of training cohort annotationerror, then
evaluated model performance over the test cohort (see ‘Training and
test datasets’). To simulate annotation error, we formulated label noise
asatransition matrix*, encoding the probability of perturbation from
one potency to another (Extended Data Fig. 3a). Transition matrix
perturbation probabilities were designed to follow a Gaussian distribu-
tion based on the rank distance between the original potency and
perturbed potency. In detail, the probability that the potency label of
cell s transitions from true potency j to perturbed potency i

1 G-’
P(s;j|s) = exp|—
(sil5) 2n0? p( 20

),i,j €1{1,2,3,4,5,6}

where potencies i,j are represented by their rank within the six broad
potency categories. Thes.d. values (o) were selected to yield atitration
0f5%,10%,20%, 50% and 80% perturbation levels. Rows were normal-
ized to unit sum for a net probability of one. For the first annotation
error scenario, we considered cell-level annotation error and perturbed
the potency annotations of individual cellsindependently (Extended
DataFig.3b). For the second, we considered phenotype-level annota-
tion errors and simultaneously perturbed the potency annotations of
the entire standardized phenotypes (Extended DataFig. 3c).

Robustness to variation in gene counts and UMI counts. To deter-
mine the influence of variable gene counts and unique molecular
identifier (UMI) countson CytoTRACE 2, we performed two experiments
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in which scRNA-seq expression data from all 14 datasets in the test
cohort were perturbed by downsampling gene counts (Extended
Data Fig. 3d) and all seven droplet-based datasets in the test cohort
(Supplementary Table 1) were perturbed by downsampling UMlIs
(Extended Data Fig. 3e). We assessed the robustness of the model to
different gene counts by downsampling the expression data of each
cellto the same number of genes: 2,000,1,000, 750,500, 250 and 100.
We selected the top genes by highest expression and set the expres-
sion of theremaining genesto zero. For any expression level ties at the
threshold, we selected the genes to include to reach the target gene
count at random. The downsampling process for UMIs consisted of
randomly sampling the expression data of each cell based on the tran-
scriptome probability distribution, defined as the fractional expression
of each gene after scaling the sum of UMIs in each cell to one. Then,
using the raw count matrices, we downsampled the expression data
of each cell to the same number of UMIs: 5,000, 3,000, 2,000, 1,000,
500 or 100 UMIs. Cells with UMIs lower than a given threshold were
unaltered. We repeated each process for five replicates, then assessed
performance for standard metrics as described above (see ‘Metrics’)
relative to the CytoTRACE 2 predictions without perturbation.

Robustness to titration of cell type rarity. Given the inclusion of
neighborhood-based smoothing in model postprocessing, we per-
formed a titration experiment applying CytoTRACE 2 to test datasets
with selected phenotypes downsampled to increasingly rare abun-
dance. For 11 phenotypes spanning a range of potencies, we down-
sampled cells of the selected phenotype to predefined abundances of
50,20,10,8,5,2and1cell(s), leaving the remaining cells in the dataset
unchanged. We repeated this titration process five times for each
phenotype, observing robust predictions down to five cells per pheno-
type (Extended Data Fig. 3f). As such, we recommend that the final
postprocessing step (adaptive k-NN smoothing) be omitted when
exceedingly rare cell states (consisting of <5 cells each) are of interest.

Analysis of mouse embryogenesis

For the analyses presented in Extended Data Fig. 5, we downloaded
and curated six publicly available scRNA-seq datasets spanning each
embryonicdayduringmouseprenatal development*?* (Supplementary
Table 1). One dataset, which covers pre-implantation through
early implantation (EQ.5-E4.5) (Deng et al.””), was obtained from the
19-dataset training cohort (Supplementary Table 1) and evaluated
using a CytoTRACE 2 model trained on the remaining 18 datasets to
avoid overfitting (see ‘Benchmarking developmental potential infer-
ence methods and annotated gene sets’). Four datasets™** > covering
embryogenesis periods from implantation to organogenesis were
previously assembled by Qiu et al.”> and are accessible through http://
tome.gs.washington.edu. Finally, a single-nucleus RNA-seq dataset?
covering organogenesis through birth (E8.75-P0O) and generated by
sci-RNA-seq3 was downloaded from http://mouse.gs.washington.edu.
As we compared CytoTRACE 2 against multiple methods with highly
variable time complexity (‘Benchmarking developmental potential
inference methods and annotated gene sets’), all cells were randomly
downsampled to 30 cells per author-supplied phenotype per time
point, resultinginacombined dataset of 183,771 cells. This allowed us
to balance considerations of performance versus computational effi-
ciency. Weran eachmethod on each dataset individually as described
in ‘Benchmarking developmental potential inference methods and
annotated gene sets’. No dataset integration or batch normalization
procedures were applied. For Organogenesis (E8.5)* and Organo-
genesis (E8.5-P0)?, which were sequenced using sci-RNA-seq3, we
used count data after running SCTransform of Seurat (v.4.3.0) with
default parameters. Dueto the large size of the dataset, Organogenesis
(E8.75-P0)*was runwith ten randomly divided batches for SCENT (SR)
and SLICE. Primordial germ cells were excluded owing to the wide range
of potency levels reported in previous literature™.

For the analyses in Extended Data Fig. 5d,e, we leveraged a data-
driven lineage tree of mouse embryogenesis encoded as a directed
acyclic graph’. Although the tree was constructed using a heuristic
approach based on transcriptional covariance across embryonic
time, it reflects many known parent-daughter relationships?. It thus
serves as a proxy for developmental potential. We defined ground
truth as the distance from the root (zygote) to each daughter node
(Extended DataFig. 5d, top). Using matching phenotype labels between
thetreeandthe data presented in Extended DataFig. 5a, CytoTRACE 2
potency scores were averaged by phenotype, balanced first by time
points within a given embryonic day (if any) and then by embryonic
day. If the same phenotype was present in more than one dataset,
we weighted equally by dataset. For each direct path in the tree
(from root to leaf), the resulting scores were then converted to rank
space (Extended Data Fig. 5d, center). To reconcile cases where a
given node i participates in multiple paths, we used the average
rank for i. CytoTRACE 1 predictions were processed in the same
manner (Extended Data Fig. 5d, bottom). The resulting ranks were
correlated with ground truth distances (distance from the root) in
Extended Data Fig. Se.

Application to cancer types with known developmental states
Acute myeloid leukemia analysis. For the analysis presented in
Extended DataFig. 6a, we downloaded the Galen et al.>® acute myeloid
leukemia (AML) dataset (Gene Expression Omnibus (GEO) accession
number GSE116256; PMID 30827681) from the Curated Cancer Cell Atlas
website on 28 June 2023 (https://www.weizmann.ac.il/sites/3CA/)*".
We leveraged author-supplied cell type annotations, including clas-
sifications of malignant and non-malignant cells from 3CA¥. From
this dataset, comprising 28 samples with malignant cells, we excluded
two cell line samples (‘MUTZ3’ and ‘OCI-AML3’). We ran CytoTRACE 2
with default parameters (‘Benchmarking developmental potential
inference methods and annotated gene sets’) on all annotated malig-
nant cells from each tumor sample. For quality control, we further
excluded samples for which each predicted potency label contained
<10 malignant cells. For each of the resulting tumor samples (n=19),
we created asingle matrix of malignant cells and non-malignant cells,
with the latter uniformly downsampled from all patients to 100 cells
per author-supplied phenotype (‘B_cell’, ‘erythrocyte’, ‘myeloid’,
‘NK_cell’, ‘plasma’ and ‘T_cell’; non-malignant cells labeled as ‘undif-
ferentiated’ were excluded from additional analysis). We then calcu-
lated the log, fold changes (LFCs) of each potency category versus
all other phenotypes by tumor sample and averaged by potency
category across tumor samples. Finally, we normalized the logFC
values of each gene to mean zero and unit variance across potency
categories and plotted the enrichment of AML cell-type-specific gene
signatures® (‘LSPC-Primed-Top100’, ‘LSPC-Quiescent’, ‘GMP-like-
Topl00’ and ‘Mono-like-Top100’; https://github.com/andygxzeng/
AMLHierarchies), each expected to be enriched in multipotent, multi-
potent, oligopotent and unipotent/differentiated cells, respectively
(Extended DataFig. 6a and Supplementary Table 10).

Oligodendroglioma analysis. For Extended Data Fig. 6b, we applied
CytoTRACE 2 to scRNA-seq profiles of six oligodendrogliomas”, with
coordinates for the associated oligodendroglioma 2D lineage hierarchy
embedding obtained from https://singlecell.broadinstitute.org/single_
cell/study/SCP12/oligodendroglioma-intra-tumor-heterogeneity.
We then assigned malignant oligodendroglioma cells to four trans-
criptional states following the protocol described by the authors”
and visualized the association of CytoTRACE 2 potency predictions
with the author-supplied stemness score. For the latter, we sepa-
rated cells according to the stemness score by partitioning theminto
successive intervals of 0.25 units. We then displayed CytoTRACE 2
potency scores as a function of each interval (Extended Data
Fig. 6b, right).
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Benchmarking cell type prediction methods adapted for
potency classification

To evaluate CytoTRACE 2 against supervised machine learn-
ing approaches commonly employed in cell type prediction tasks
(Extended DataFig.7a,b), we selected three dedicated single-cell anno-
tation methods with superior performance in abenchmarking study*
(scPred’, SingleCellNet* and scmap?) and five general-purpose
classifiers (below), each trained to predict six broad potency labels
based on single-cell expression profiles.

Alltools were trained and tested over aseries of four folds, includ-
ing the original CytoTRACE 2 training-test split (Fig. 1b) along with
three randomized splits (see ‘Randomization of training and test
sets’), collectively encompassing all 33 ground truth datasets in the
single-cell potency atlas described above, with classification perfor-
mance per test cohort assessed by mean multiclass F1 score and MAE
(Extended Data Fig. 7a and b; see ‘Metrics’). For all methods, expres-
sion data were first mapped into the uniform feature space used by
CytoTRACE 2 (see ‘Preprocessing’ and ‘Dictionary of input genes’).
Unless otherwise specified, and for all general-purpose classifiers,
expression datawere then CPM/TPM normalized and log,-transformed
and subsequently standardized per cell to zero mean and unit variance.
Other normalization schemes generally yielded worse performance
and were thus omitted from further consideration (log,-adjusted
CPM/TPMdata, either used alone or with gene-level standardization).
No explicit datasetintegration or batch correction was performed. For
general-purpose classifiers, versions were trained with and without
sample weighting (computed as for CytoTRACE 2; see ‘Loss function’)
for classimbalance mitigation, with the best performing versionacross
all folds selected for each. All parameters were set to default values
unless otherwise specified.

CytoTRACE 2. We applied CytoTRACE 2 with model ensembling and
postprocessing as described in ‘The CytoTRACE 2 framework’ to pre-
dict cell potency categories. Datasets containing more than100,000
cells were processed in batches of 100,000 cells, and diffusion was
appliedinbatches 0of 10,000 cells for datasets exceeding 10,000 cells.

scPred. A dedicated cell type classification method, scPred first per-
forms a dimension reduction, identifying PCs exhibiting significant
variation across classes, then, as the default option, applies asupport
vector machine approach for classification®. Following the recom-
mended pipeline for scPred (v.1.9.2) as described at https://powell-
genomicslab.github.io/scPred/articles/introduction.html, we first
normalized and scaled expression data using the NormalizeData() and
ScaleData() functions in Seurat (v.5.1.0), respectively. We then used
scPred’s getFeatureSpace() functiontoidentify class-informative PCs,
trainModel() to train the default support vector machine (SVM) with
radial kernel model for each potency category (one-versus-rest), and
scPredict() for classification. A relaxed probability threshold of 0 was
used to avoid ‘unassigned’ labels.

SingleCellNet. SingleCellNet performs cell type classification using
arandom forest multiclass classification approach®. Here, we trained
the method over unnormalized expression data via the scn_train
function of pySingleCellNet (v.0.1.1) with nTopGenes =200, nTop-
GenePairs =200, nRand =100, nTrees =1,000, stratify = False, and
propOther= 0.4, following the tutorial provided at https://pysingle-
cellnet.readthedocs.io/en/latest/notebooks/train_classifier.html.
The scn_classify() function with nrand = O was used for classification.

scmap. scmap uses aclustering approach to project cells onto arefer-
ence dataset for cell type classification®. Following the recommended
pipeline for scmap (v.1.26.0) provided at https://bioconductor.org/
packages/devel/bioc/vignettes/scmap/inst/doc/scmap.html, we
log,-transformed expression data, then used selectFeatures() to select

informative genes and indexCell() to create ascmapCell index for the
training dataset. For classification, we used scmapCell() to project the
index onto the test dataset and scmapCell2Cluster() to obtain label
assignments. A relaxed probability threshold of O was set to assign
labels to as many cells as possible regardless of assignment confidence.

Logistic regression. We trained a logistic regression model to perform
cell potency classification using the SGDClassifier from scikit-learn
(v.1.4.2) with loss = ‘log_loss’, default L2 regularization, and sample
weights provided for class balancing. This functioninternally employs
aone-versus-rest (OVR) strategy, training a separate binary classifier
for each potency category and selecting the potency category with
highest confidence at evaluation.

XGBoost. We trained and applied the XGBClassifier function from the
XGBoost library (v.2.1.1) with default parameters and without sample
weights. Like logistic regression, this method uses the OVR approach.

Linear SVM. Weimplemented alinear SVM model using Scikit-learn’s
SGDClassifier with loss = ‘hinge’ for linear support vector classification
with OVR. Sample weights were provided during training.

Radial SVM. We implemented an additional SVM version using
SVC from scikit-learn (v.1.4.2) with the default radial basis function
kernel andy = ‘auto’. The default decision function, which employs an
inference of OVR from one-versus-onefits internally, was used. Sample
weights were not provided during training.

Multinomial logistic regression. Using LogisticRegression from
scikit-learn (v.1.4.2) with multi_class = ‘multinomial’, we fit a single
logistic regression model for all potency categories simultaneously
using cross-entropy loss and the ‘sag’ solver. A maximum number of
iterations (max_iter = 500) and tolerance (tol =1 x 107%) were set to
ensure convergence. Sample weights were not provided during training.

Benchmarking developmental potential inference methods
and annotated gene sets

To rigorously assess performance on our compendium of 33 curated
scRNA-seq datasets, we compared CytoTRACE 2 with eight published
methods for predicting developmental potential from scRNA-seq data
as well as nearly 19,000 previously annotated gene sets (Fig. 1h,i and
Supplementary Tables 11-13). Unless otherwise stated, all evaluated
methods and gene sets were applied to scRNA-seq datasets individually,
without batch correction or integration across datasets, with expres-
sion data normalized per author recommendations and with default
parameters. All expression data were subset to the cells with known
potency. Each tissue and platform pair of Tabula Sapiens® and Tabula
Muris*® datasets were run separately.

Several methods rely on human gene symbols, as noted below. For
all such instances, we mapped mouse dataset gene symbols to their
closest humanorthologs, as determined by gene sequence similarity,
using the GRCm39 and GRCh38.p13 annotation files available from
Ensembl, respectively. In cases where asingle human gene g was identi-
fied as the best hit for multiple mouse genes, the mouse gene with
maximum sequence similarity to g was selected.

As several methods have slower running times, to promote an
equitable comparison while achieving computational feasibility, larger
datasets were first downsampled. The Tabula Muris** dataset was down-
sampled to 30 cells per phenotype, separated by tissue and platform
pair, and the ‘Immune cell atlas (10x)’, ‘Human breast 1 (10x)’, ‘Human
breast 2 (10x)’, and Tabula Sapiens® datasets were downsampled to
100 cells per phenotype (Supplementary Table1). Cell typesin Tabula
Sapiens® with fewer than five cells were removed after the prediction of
eachmethod to overcome the reduced data quality of Tabula Sapiens®
(‘Training and test datasets’).
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CytoTRACE 2. We applied CytoTRACE 2 with model ensembling and
postprocessing as described in “The CytoTRACE 2 framework’ to pre-
dict cell potency categories and scores. Datasets containing more
than 100,000 cells were processed in batches of 100,000 cells, and
diffusion was applied in batches of 10,000 cells for datasets exceed-
ing10,000 cells. To evaluate the 19 scRNA-seq datasetsincluded in the
CytoTRACE 2 training cohort, we trained a separate model for each
over theremaining 18 datasets. All other datasets were evaluated with
the primary version of CytoTRACE 2 trained over all training datasets.

CytoTRACE 1. CytoTRACE 1, the predecessor of CytoTRACE 2, intro-
duced transcriptional diversity quantified through gene counts as
a correlate of developmental potential and exploited this concept
to predict relative cellular potency from scRNA-seq’. CytoTRACE 1
(v.0.3.3) was applied with default parameters.

SCENT (SR). SCENT estimatesrelative cellular potency from scRNA-seq
and a reference protein-protein interaction (PPI) network using
single-cell signaling entropy (SR), a measure of the diversity of mole-
cular pathway activity inacell>. SCENT (v.1.0.3) was executed with the
‘net13Jun12’ human PPl network provided with the package and other-
wise default parameters. For mouse datasets, genes werefirst mappedto
human orthologs as described above. Allgene symbols were converted
toEntrezID using org.Hs.eg.db (v.3.15.0) inR. Gene expression matrices
were normalized per documentation recommendation (https://github.
com/aet21/SCENT/blob/master/vignettes/SCENT.Rmd).

SCENT (CCAT). CCAT, implemented within the SCENT package,
was developed as a highly efficient alternative to the original SCENT
method, SCENT (SR)". CCAT was applied with the same package,
PPI network, and preprocessing steps described above (‘SCENT
(SR)’) with expression datasets prepared as per documentation
recommendations.

FitDevo. Similar to SCENT (CCAT), FitDevo infers cellular potency
from the correlation between gene expression and a measure of
gene weights?. FitDevo (v.1.2.0) was applied following tutorial instruc-
tions with binary gene weight matrix downloaded from the same
source (https://github.com/jumphone/FitDevo/#demo-1-infer-
developmental-potential-dp-using-expression-matrix-of-scrna-
seq-data).

SLICE. SLICE relies on transcriptomic entropy for cellular potency pre-
diction and lineage reconstruction, estimating entropy over functional
groups of genes computed from Gene Ontology annotations". SLICE
(v.0.99.0) was applied according to demo details from the method’s
GitHub page (https://github.com/xu-lab/SLICE/blob/master/demo/
FB.R).

StemID. StemID infers cellular differentiation trajectories from scRNA-
seq data with a clustering-based algorithm analyzing links between
clusters'®. StemlID, implemented inRacelD (v.0.1.4), was runaccording
to documentation vignette instructions (https://cran.r-project.org/
web/packages/RacelD/vignettes/RacelD.html). For each dataset, an
SCseq object was initialized from each input gene expression matrix
using filterData() with mintotal = 10. Ltree() and compentropy() were
thenapplied consecutively to obtain the StemlID score for cell potency.

scTour. scTour implements a deep learning architecture combining a
variational autoencoder withaneural ordinary differential equation to
reconstruct the developmental trajectory of aninput scRNA-seq data-
set, oriented according to gene counts®. scTour (v.1.0.0) was trained
and applied to each dataset individually per ‘Model training” docu-
mentation vignette instructions at https://sctour.readthedocs.io/
en/latest/notebook/scTour_inference_Postinference_adjustment.html.

When the raw count matrix was available for the dataset, the nega-
tive binomial conditioned likelihood loss function was used. Other-
wise, the CPM/TPM expression matrix was log,-transformed, and the
mean squared error loss function was used instead. Cell potency
scores were obtained from the developmental pseudotime predictions
extracted from the model training output with get_time().

mRNAsi. mRNAsi utilizes aone-class logistic regression framework to
constructacellular stemnessindex applicable to cell potency estima-
tion from bulk and scRNA-seq data'®. mRNAsi was trained as described
previously’. Allinput gene expression matrices were CPM/TPM normal-
ized and log,-transformed.

Gene sets. The predictive capacity of 18,706 annotated gene sets
(17,810 gene sets from MSigDB?** and 896 gene sets of transcription
factor binding sites from ENCODE/ChEA***) was assessed via GSEA. For
eachgeneset, the AddModuleScore() function with default parameters
from Seurat (v.4.3.0) was applied to each expression matrix normalized
via Seurat’s NormalizeData() function.

Comparison to scVelo
As scVelo’ relies on splicing kinetics, necessitating the processing of
raw sequencing data, we limited our analyses to nine ground truth
datasets from the test cohort that were generated by platforms with
built-in support by velocyto and for which raw sequencing data are
publicly available (Supplementary Tables1and 14). Raw FASTQ files for
seven of these datasets, namely ‘BM-MNC (CITE-seq)’, ‘Retinal neurons
(10x)’, ‘Pancreas (10x)’, ‘Peripheral glia (Smart-seq2)’, ‘Skeletal stem cell
(C1)’and ‘HSCs and MPPs (inDrop)’, were obtained from the Sequence
Read Archive (SRA) from NCBI, with study IDs SRP188993, SRP168426,
SRP200419,SRP109011, SRP239468 and SRP094420, respectively. For
‘Peripheral glia (Smart-seq2)’, we analyzed sample IDs prefixed with
‘E12.5’.Notably, raw FASTQ files were only available for 227 of 473 cells
inthe ‘Skeletal stem cell (C1)’ dataset. For the remaining two datasets,
‘Mouse neurogenesis (10x)’ and ‘Mouse mature neural cell types (10x)’,
datawere obtained as BAM files from SRA study ID SRP476153.
FASTQfiles were downloaded using sra-tools v.3.1.1and processed
with cutadapt v.4.9 for adaptor trimming of Smart-seq2/Clreads. For
preprocessingofinDrop samples, dropestv.0.8.6 was used (accordingto
recommended workflow at https://velocyto.org/velocyto.py/tutorial/
cli.html#run-dropest-run-on-dropseq-indrops-and-other-techniques).
Reads were mapped and sorted BAM files were generated with STAR
(v.2.7.11b) and Cell Ranger (v.8.0.1) using GRCm39 and GRCh38.p13
reference genomes for mouse and human datasets, respectively. Loom
files containing spliced, unspliced and spanning reads were then gen-
erated from the BAM files along with corresponding Gene Transfer
Format files using the velocyto.py v.0.17.17 Python command line tool.
Following quantification of spliced/unspliced counts, the scVelo
v.0.3.1Pythonvelocity estimation workflow was runas described inthe
tutorial at https://scvelo.readthedocs.io/en/stable/. For all datasets,
both a generalized dynamical model (as detailed at https://scvelo.
readthedocs.io/en/stable/DynamicalModeling.html) and a differential
kinetics adjusted model with grouping by the CytoTRACE 2 standard-
ized phenotypes (as detailed at https://scvelo.readthedocs.io/en/
stable/DifferentialKinetics.html) were employed. With the excep-
tion of random_state in scvelo.pp.neighbors(), which was set to O to
ensure reproducible results, all other parameters were set to those
in the respective vignettes, including min_shared_counts in scvelo.
pp-filter_and_normalize(), which was set to 20 for dynamical models
and 30 for differential kinetics models. Following velocity estimation,
cell-internal latent time was inferred using scvelo.tl.latent_time(). The
resulting outputs were then evaluated via absolute and relative order
(see ‘Performance assessment’above) and CytoTRACE 2 outputs were
assessed over the same cells for comparison (Extended Data Fig. 8 and
Supplementary Table 14).
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Analysis of potency-associated molecular programs
Visualization and specificity of potency programs learned by
CytoTRACE 2. For the analyses presented in Fig. 2b and Extended
DataFig.9a, weran CytoTRACE 2 on each of the training and test data-
sets, then extracted positive potency score matrix Q°°s from each of
the 19 models per dataset. QP is derived from the final layer of each
GSBN module; obtained similarly to the potency score matrix Q in
‘Integration of scores’ above, but by multiplying K" ™by only positive
weights from the enrichment layer; and has a dimensionality of C
input cells by 114 when combined across the 19 models and six potency
category modules. We concatenated QP°s matrices from the 19 models
across all 33 datasets (C =124,231 cells; downsampled as described in
‘Benchmarking developmental potential inference methods and anno-
tated genesets’above) to produce QF,*, standardized acrossall cellsin
the training and test sets separately. We fitted principal-component
analysis (PCA) from scikit-learn (v.1.1.1) to the training set component
of the resulting matrix, retaining the first three PCs, then applied the
resulting projection to the training and test set components individu-
ally. Next, we repeated this process fitting Uniform Manifold Approxi-
mation and Projection (UMAP) from umap-learn (v.0.4.6) to the PCA
projection of the training component, then applying the resulting
UMAP projection to the PCA projection of the training and test com-
ponentsindividually. To adjust for differences in cell density that con-
found visualization, we averaged CytoTRACE 2 potency scores within
each window of 0.5 UMAP units squared across the two components
of UMAP space. The same procedure was applied to visualize the
ground truth potency of each cell (Fig. 2b, bottom).

Top potency-associated genes learned by CytoTRACE 2. For the
analysis presented in Fig. 2c, we examined the expression of the top
500 potency-associated markers learned by CytoTRACE 2 (matrix Fin
‘Interpretability’) in training and test sets from the single-cell potency
atlas. We first filtered and mapped gene symbols in every dataset to
CytoTRACE 2 input features (n =14,271), then CPM/TPM normalized
as appropriate and log,-adjusted the data. Keeping training and test
data separate, the expression matrices from each dataset were
mean-aggregated into pseudo-bulk expression profiles by phenotype.
Wethen further averaged shared phenotypes across datasets profiled
by the same general platform (droplet/UMIl or plate-seq/non-UMI) and
finally, by species identifier (human or mouse). This resulted in a
14,271 x 237 matrix, with 14,271 genes (rows) and 237 phenotype, spe-
ciesand platform combinations across training and test sets (columns).
Using this matrix, we calculated the mean expression of the top
500 positive/negative genes per potency category (matrix Fin ‘Inter-
pretability’; Supplementary Table 15), then unit variance normalized
the resulting expression signatures across pseudo-bulk samples
separately for training and test sets (Fig. 2c). See also Supplementary
Table16.

Validation of CytoTRACE 2 by large-scale functional genomics.
To assess the biological relevance of CytoTRACE 2 model features, we
analyzed large-scale in vivo CRISPR screening data of mouse hemato-
poiesis®® (Fig. 2d). These data encompass -7,000 genes along with
CasTLE -log,, P values, representing the effect of knockout (KO) on
HSC differentiation. Although these effects were separately measured
for lymphoid (n = 6,783 genes) and myeloid (n = 6,732 genes) lineages,
directed -log,, P values were well correlated between them (r = 0.78).
Therefore, to create a single ordered list of KO effects, we combined
directed -log,, P values for genes with effect score data in both line-
ages, keeping the most significant directed -log,, Pvalue for each gene
(positive or negative). Contributions fromeach lineage were nearly per-
fectly balanced, with higher positive scores and higher negative scores
implying that KO of a gene promotes or inhibits HSC differentiation,
respectively. Wethenintersected the resulting vector with those within
the CytoTRACE 2 model space, resultinginn = 5,757 genes. We applied

fgsea (v.1.25.1) to the rank-ordered list to jointly evaluate the enrich-
ment of the top 100 positive and negative multipotency markers from
the CytoTRACE 2 feature matrix (Fig. 2e and Supplementary Table 15).
P values were computed using the adaptive multilevel Monte Carlo
method and Q values represent false discovery rates calculated using
the Benjamini-Hochberg procedure.

To assess robustness across the number of top multipotency
markers selected, we repeated the above process checking 50,100,200
and 500 markers (Extended Data Fig. 9c and Supplementary Table 15).
Wealso compared the median -log,, Q value of gene setenrichment over
thefour gene set sizes against the same processrepeated for CytoTRACE
2 markers for all other potency categories (Extended Data Fig. 9d and
Supplementary Table 15).

Functional annotation analysis. To interpret potency-associated
genes learned by CytoTRACE 2, we applied fgsea (v.1.25.1) to each
rank-ordered gene list in F with minSize = 15 and otherwise default
parameters. F is an N x G matrix consisting of model importance
scores for all N evaluable genes (14,271) in each of G = 6 potency
categories learned on the training cohort (‘Interpretability’ above;
Supplementary Table 15). Mouse and human MSigDb signatures from
MH/H: hallmark gene sets, M2/C2: curated gene sets, including CGP
and CP:WIKIPATHWAYS, CP:REACTOME and CP:KEGG_MEDICUS; and
M5/C5: ontology gene sets were downloaded from https://www.
gsea-msigdb.org/gsea/msigdb/. We ran fgsea on mouse and human
gene sets separately, and human gene sets were limited to those with
no counterpart in mouse gene sets. When running human gene sets,
genes in F were first mapped to human orthologs by dictionary D
(‘Dictionary ofinput genes’). Gene sets with an adjusted Pvalue < 0.05
inatleastone potency category are provided in Supplementary Table17.
We selected a subset of representative molecular signatures for
display in Extended Data Fig. 9e, highlighting both canonical and
poorly understood potency-related biology.

Analysis of multipotency-associated programs. All WikiPathways
gene sets from canonical pathways (CP) in M2/C2 with positive normal-
ized enrichment scores in multipotency (see ‘Functional annotation
analysis’ above) are presented in Fig. 2f. Next, we assessed the gene set
comprising the UFA factors Fadsl, Fads2and Scd2 (Fig. 2g) for specific-
ity and conservation across tissues.

For this purpose, we analyzed pseudo-bulk-expression profiles
of each phenotyp-dataset pair in our 33-dataset potency atlas using
single-sample GSEA (ssGSEA) from the GSVA package in R (v.1.46.0)*®
tomitigate technical variation. Once ssGSEA scores were obtained for
the UFA factors, we then averaged them into the same 237 pheno-
type, species, and platform combinations described in “Top potency-
associated genes learned by CytoTRACE 2". Keeping training and test
cohortsseparate, we further averaged ssGSEA scores by developmental
system (here, denoted ‘tissue’), using the phenotype-to-clade mapping
scheme provided in Supplementary Table 9. Mean-aggregated ssGSEA
scores across 237 phenotype, species and platform combinations in
training and test sets are displayed in Fig. 2h.

Statistical assessment of the specificity of UFA genes to multi-
potency was performed via permutation testing. First, we took the
median value of the ssGSEA scores in each ground truth potency
category. Next, we calculated the pairwise difference A; between the
median ssGSEA scores of multipotent and each other potency category
i.Wethen calculated two test statistics: min (4;)and mean (4;). To simu-
late a null distribution, we permuted the phenotype-level ssGSEA
scores, recomputed the median ssGSEA score for each ground truth
potency category and calculated both statistics. We repeated this
process 10,000 times. To determine an empirical Pvalue, we tallied the
proportion of times both statistics were as high (or higher) than the
test statistics from the original data. We did this for the multipotent
category separately across the training and test cohorts (Fig. 2h).
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AUCs of UFA genes (main text) were calculated for training
and test sets separately using the ssGSEA scores described above,
but after averaging the scores by tissue type to address imbalances.
AUCs werefirst calculated in a pairwise manner between multipotency
and each other potency category, then averaged.

Experimental validation of UFA genes in multipotency

Mice. C57BL/6 mice were purchased from The Jackson Laboratory
and housed in the Stanford Animal Facility. For all analyses shown in
Fig.2i,jand Extended DataFig. 10, 8-12-week-old mice were used, with
equal numbers of males and females. Mice were maintained in-house
under aseptic sterile conditions and supplied with autoclaved food
and water. The animals were housed under a 12-h light-dark cycle at
room temperatures between 20-26 °C, with humidity levels ranging
from30-70%.

Flow cytometry. For the analyses presented in Fig. 2i and Extended
Data Fig. 10a,b, mouse HSCs and multipotent progenitors (MPPs)
(cKit'Lin Scal’, termed ‘KLS’), common myeloid progenitors (CMPs)
(cKit'Lin"Scal'”"CD34™%"CD16/32'°") and common lymphoid progeni-
tors (CLPs) (cKit"°Lin™Scal°CD135" CD127") wereisolated as described
previously*’ (Extended Data Fig. 10a). In brief, hips, femurs, tibia and
humeri were collected from C57BL/6 mice. Bones were cleaned,
cut and flushed with a syringe filled with ice-cold FACS buffer (2%
fetal bovine serum in Hanks’ balanced salt solution buffer). Cells in
FACS buffer were filtered through a 40-pmi filter, pelleted and then
incubated in ammonium-chloride-potassium (ACK) lysis buffer for
5min onice. Cells were then spun down and resuspended in 400 pl
FACS buffer per mouse. Lineage depletion beads (Miltenyi Biotec
130-110-470) were added to the cells (50 pl per mouse) and incubated
for 10 min at 4 °C. After incubation, the cells were loaded onto an LS
magnetic separation column (Miltenyi Biotec 130-042-401), which
was subsequently washed with 3 x 3 ml of FACS buffer. Before and
after washing, pass-through cells were collected, spun down and
resuspended in FACS buffer. For the isolation of KLS and CMP cells,
the following antibodies were used: anti-mouse lineage cocktail-
A700 (BioLegend 133313, 5 pul per mouse), anti-CD117 (cKit)-BV395
(Thermo Fisher Scientific 363-1171-80,1:100 dilution), anti-Scal-BV605
(BioLegend 108133, 1:100 dilution), anti-CD34-eFluor 450 (Thermo
Fisher Scientific 48-0341-80, 1:40 dilution) and anti-CD16/32-BV711
(BD Biosciences 740659, 1:100 dilution). Following the addition
of the anti-CD34 antibody, cells were incubated on ice for 45 min
before adding the remaining antibodies. The cells were thenincubated
with the remaining antibodies for an additional 20 min on ice, fol-
lowed by washing and FACS analysis. For theisolation of CLP cells, the
following antibodies were used: anti-mouse lineage cocktail-A700
(BioLegend 133313, 5 pl per mouse), anti-CD117 (cKit)-BV395 (Thermo
Fisher Scientific 363-1171-80, 1:100 dilution), anti-Scal-BV605
(BioLegend 108133, 1:100 dilution), anti-CD135-BV421 (BioLegend
135313, 1:100 dilution) and anti-CD127 (IL-7Ra)-BV711 (BioLegend
135035, 1:100 dilution). The cells were incubated with the antibodies
for20 min followed by washing and FACS analysis. Flow cytometry was
performed with a 100 pM nozzle on a BD FACSAria Il using FACSDiva
software (v.9.7).

Blood samples were collected from the same mice for the isolation
of CD8a" T cells (CD3* CD8a*) and B (CD19") cells. Peripheral blood
mononuclear cell (PBMC) isolation was performed using aSepMate-15
tube (STEMCELL Technologies 85415) according to the manufacturer’s
instructions. Enriched PBMCs were resuspended in FACS buffer and
incubated with either T cell antibodies (anti-CD3-BV711, BioLegend
100241, 1:100; anti-CD8a-BV605, BioLegend 100743, 1:100 dilution)
or B cell antibodies (anti-CD19-BV605, BioLegend 115539, 1:100 dilu-
tion) on ice for 20 min. The cells were then washed with FACS buffer
and analyzed onaBD FACSAria llusing FACSDiva software (v.9.7). Flow
cytometry data were analyzed with FlowJo (v.10.9.0).

RNA isolation and real-time PCR. For the analyses presented in
Fig. 2i and Extended Data Fig. 10b, 20,000 sorted cells from each
bone marrow and blood population noted in ‘Flow cytometry’ were
lysed in RNA lysis buffer (RLT) and subjected to RNA extraction
using the RNeasy Plus Microkit (QIAGEN, 74034). RNA was thenreverse
transcribed into cDNA with SuperScript Il First Strand Synthesis
kit (Thermo Fisher Scientific, 11752-050) according to the manu-
facturer’s instructions. Real-time quantitative PCR was conducted
on the QuantStudio 7 PRO Real-Time PCR System utilizing Power
SYBR Green PCR Master Mix (Thermo Fisher Scientific, 4368706).
Actb was used as an internal control. The following qPCR primers
were used (5" > 3’). Actb: Forward GATCATTGCTCCTCCTGAGC,
Reverse ACTCCTGCTTGCTGATCCAC; Hoxb5: Forward CGATCCAC
AAATCAAGCCC, Reverse TGCCACTGCCATAATTTAGC; Fgd5: Forward
CTGGTTTTACTCCTGGTGAC, Reverse AGCTGATACTTCCTGTCT
GG; Procr: Forward GGACTCGGTATGAACTGCA, Reverse CAGTGAT
GTGTAAGAGCGAC; Cd34: Forward ACTATAAGCTTCCTCTCCTGG,
Reverse ACACCCAATCCTCTCATCTC; Cd8a: Forward GAGAACATTC
CTTAGCACCC, Reverse GCAGTTTTGACAGTCAGCG; Cd19: Forward
AGGAAAAGGAAGCGAATGAC, Reverse GCCAGAGGTAGATGTAGGAAG;
Fads1:Forward TGGTTTGGGAGGCATTTG, Reverse GCCATCCGTTTTG
TCAAGAG; Fads2: Forward CAGGAGTGTAGAGGGAAGAG, Reverse
CTCAGAATGACATAGCGTGG; Scd2: Forward ACTCTGCCTGGGATA
CATG, Reverse CCCACCCCAAAACACAAAA.

In situ hybridization and immunofluorescence. Intestinal tissues
analyzed in Fig. 2j and Extended Data Fig. 10c-e were collected from
C57BL/6 mice, cleaned with cold PBS and fixed in 10% neutral buffered
formalin at 4 °C overnight. Then, 7-pum optimal cutting temperature
compound frozen sections were prepared for the RNAscope HiPlex12
Reagents Kit v.2 assay (Advanced Cell Diagnostics, 324409), which
was performed accordingto the manufacturer’sinstructions with the
following probes: Mm-Lgr5-T1 (Advanced Cell Diagnostics, 312171-T1),
Mm-Mki67-T2 (Advanced Cell Diagnostics, 416771-T2), Mm-Fads1-T3
(Advanced Cell Diagnostics, 801641-T3), Mm-Fads2-T4 (Advanced Cell
Diagnostics, 568621-T4), Mm-Fgfbpi1-T5 (Advanced Cell Diagnostics,
508831-T5) and Mm-Scd2-T7 (Advanced Cell Diagnostics, 486111-T7).
Protease Plus (Advanced Cell Diagnostics, 322331) was used for
tissue pre-treatment. Following the last round of in situ hybridization
imaging, fluorophores were cleaved using fresh 10% cleaving solution
v.2. The intestinal tissues were then subjected to immunofluores-
cence staining. In brief, tissues were washed with PBS, permeabilized
with 0.1% Triton X-100 in PBS and then blocked with 5% bovine
serum albumin (BSA) in PBS for 30 min at room temperature. The
tissues were then incubated with anti-E-Cadherin-Alexa Fluor 488
antibody (BD Biosciences 560061, 1:50 dilution) diluted in stain-
ing buffer (5% BSA in PBS with 0.1% Triton X-100) for 1 h at room
temperature, followed by washing and imaging. All fluorescence
images were acquired on a Zeiss LSM 980 confocal microscope. To
quantify colocalization, cells along the crypts-villi axis were first
categorized into different cell zones, as described in the caption of
Extended Data Fig. 10e. Mean fluorescence intensities were then
determined using ImageJ (v.1.53t).

Statistics and reproducibility

Relationships between two ordered variables were assessed by cor-
relation tests or linear regression. Unless otherwise stated, statistical
significance for Kendall correlations was determined by a two-sided
z-test. Two-group comparisons were assessed using unpaired or
paired tests, as appropriate. Results with P < 0.05 were considered
significant. No statistical method was used to predetermine sam-
ple size. Data analyses were performed using Python (v.3.9.0) and R
(v.4.2.0+). Software packages and versions specific to each analysis
aredetailed in the Methods. For routine plotting and data manipula-
tion, we also used the R packages ggplot2 (v.3.4.3), Matrix (v.1.6.1)
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and dplyr (v.1.1.3), as well as the Python packages pandas (v.2.2.3)
and numpy (v.1.26.3).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All datasets comprising the single-cell potency atlas assembled in
this work (Supplementary Table 1) are publicly available from GEO,
ArrayExpress or the SRA with the following accession codes: GSE52583
(‘AT2/AT1 lineage (C1)’), GSE109774 (‘Bone marrow (10x)’, ‘Bone mar-
row (Smart-seq2)’ and ‘Tabula Muris (Smart-seq2/10x)’), GSE60783
(‘Dendritic cells (C1)’), GSE97391 (‘Direct in vitro neuron (inDrop)’
and ‘Standard in vitro neuron (inDrop)’), GSE70245 (‘HSPCs (C1)’),
GSE113197 (‘Humanbreast1(10x)’ and ‘Humanbreast 1(C1)’), GSE161529
(‘Human breast 2 (10x)’), GSE36552, (‘(Human embryo (Tang et al.)
(ref.60)’) GSE92332 (‘Intestine (Drop-seq)’ and ‘Intestine (Smart-seq2)’),
GSE85066 (‘Mesoderm (C1)’), GSE45719 (‘Mouseembryo1(Tangetal.),
(ref. 60)"), SRP073767 (‘Peripheral blood (10x)’), GSE128639 (‘BM-MNC
(CITE-seq)’), GSE100866 (‘Cord blood (CITE-seq)’), E-MTAB-9067
(‘HSC development (Smart-seq2)’), GSE90742 (‘HSCs and MPPs
(inDrop)’), E-MTAB-11536 (‘Immune cell atlas (10x)’), GSE76408
(‘Lgr5-CreER intestine (CEL-seq)’), E-MTAB-3321 (‘Mouse embryo 2
(Smart-seq2)’), GSE59892 (‘Mouse embryo 3 (Smart-seq)’), GSE162044
(‘Neural crest (Smart-seq2)’), GSE132188 (‘Pancreas (10x)’), GSE99933
(‘Peripheral glia (Smart-seq2)’), GSE122466 (‘Retinal neurons (10x)"),
GSE64447 (‘Skeletal stem cell (C1)’) and GSE201333 (‘Tabula Sapiens
(Smart-seq2/10x)).

Raw FASTQ or BAM files analyzed in this work are available from the
SRA with the following accessions: SRP188993 (‘BM-MNC (CITE-seq)’),
SRP168426 (‘Retinal neurons (10x)’), SRP200419 (‘Pancreas (10x)’),
SRP109011 (‘Peripheral glia (Smart-seq2)’), SRP239468 (‘Skeletal stem
cell (C1)’), SRP094420 (‘HSCs and MPPs (inDrop)’) and SRP476153
(‘Mouse neurogenesis (10x)’ and ‘Mouse mature neural cell types (10x)’).
Five expression datasets covering mouse embryogenesis periods from
implantationto organogenesis are accessible from GEO or ArrayExpress
with the followingaccessions: GSE100597 (‘Implantation (E3.5-E6.5)),
GSE109071 (‘Implantation (E5.5-E6.5)’), E-MTAB-6967 (‘Gastrulation
(E6.5-E8.5)), GSE186069 (‘Organogenesis (E8.5)’), and GSE228590
(‘Organogenesis (E8.75-P0)’).

The publicly available oligodendroglioma and AML expression data
analyzed in this work are available with GEO accession numbers
GSE70630 and GSE116256, respectively.

Reference genomes and annotation files for GRCm39 (mouse) and
GRCh38.p13 (human)were obtained from Ensemblrelease109 (February
2023) viathearchive at https://feb2023.archive.ensembl.org.

Code availability

Rand Python packages for running CytoTRACE 2 with the pre-trained
model are freely available for non-profitacademic use at https://github.
com/digitalcytometry/cytotrace2. Both packagesimplement optional
parallel processing for efficient execution and provide built-in plotting
functions (UMAPs and box plots). Documentation, vignettes and input
examples are provided. The Python version of the package is also avail-
ableviaPyPlat https://pypi.org/project/cytotrace2-py/.Aninteractive
RShiny web application s available, allowing users to:

*Run CytoTRACE 2 on user-provided datasets via an intuitive,
interactive interface

*Browse CytoTRACE 2 results for 33 datasets with ground truth
potency annotations

« Explore potency-associated geneslearned by CytoTRACE 2 and inves-
tigate potency enrichment of user-defined genes and gene sets across
the single-cell potency atlas

*Download the single-cell potency atlas

« Access tutorials, vignettes and FAQs, along with additional Python
code and vignettes for training the CytoTRACE 2 model and for creat-
ing custom GSBN architectures.

This application canbe accessed at https://cytotrace2.stanford.edu.
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Extended Data Fig. 1| CytoTRACE 2 architecture and benchmarking
metrics. a, Schematic overview of the CytoTRACE 2 core model, focusing on
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layer for asingle gene set binary network (GSBN) module. Note that six GSBN
modules, one per broad potency category, are included in the full model, as
illustrated in Fig. 1c. For additional details, see Methods. b, Serialimpact of three
postprocessing procedures (“Postprocessing” in Methods) on the accuracy

of predicting (i) relative developmental orderings (n = 33 systems; bottom)
and (ii) potency classes (F1score, mean-aggregated across six broad potency
categories; top) on training datasets (Methods). All results were obtained via
leave-one-out cross-validation (LOOCV). ¢, Box plot showing the performance
of CytoTRACE 2 for the prediction of relative orderings (Supplementary Table
4) after subsampling cells for the Markov diffusion step of the postprocessing
procedure (Methods). All training datasets were analyzed using LOOCV
(Supplementary Table 1). d, lllustration of the difference between absolute and
relative developmental potential using two hypothetical sScRNA-seq datasets,
one spanning totipotent through pluripotent cells ‘(Embryo’) and the other
encompassing multipotent through differentiated cells (‘Blood’). Hypothetical
prediction scores are shown for absolute and relative orderings, with the

latter reset for each dataset (for example, as for CytoTRACE 1, RNA velocity,
Monocle, and CellRank). ESC, embryonic stem cell; HSC, hematopoietic stem
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B cell progenitor; T-p, T cell progenitor; Mk, megakaryocyte; E, erythrocyte; G,
granulocyte; M, monocyte. e-f, Impact of hyperparameter values on training set
performance, showing weighted accuracy for single-cell potency classification
using nested LOOCV (Supplementary Table 6; Methods). e, Left: Each point
(n=500) denotes the results from one iteration of the hyperparameter sweep.
Right:Same as the left but showing weighted accuracy plotted by the number

of gene sets per GSBN module. f, Weighted accuracy of models trained using
distinct gene set enrichment procedures (AMS and/or UCell) after selecting
robust hyperparameter values as described in Methods. Statistical significance
was determined using a two-sided paired Wilcoxon test in panelsbandcand a
two-sided unpaired Wilcoxon test in panel f. *P < 0.05; **P < 0.01; ***P < 0.001;
****p < 0.0001; ns, not significant. Note that tissue-specific expression matrices
from plate- and droplet-based platforms within Tabula Muris*’ were analyzed
individually in panels b and cfor clarity, yielding 33 total systems with known
developmental orderings.Inb, ¢, e, and f, the box center lines, bounds of the box,
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was created using BioRender.com.
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Extended Data Fig. 2 | Validation and generalizability of CytoTRACE 2.

a, Performance of CytoTRACE 2 for reconstructing relative developmental
trajectories (left) and six broad potency categories (right) in 33 ground truth
scRNA-seq datasets (Fig. 1b), stratified by species and platform. Performance
was evaluated at the single-cell level using weighted Kendall correlation (1), as
described in Supplementary Table 5and Methods. To promote a fair comparison,
we evaluated absolute order correlations (right) with and without the inclusion
oftotipotent and pluripotent cells, as the corresponding potency categories
were not available for human and droplet-only datasets in the test cohort. ns,
notsignificant (two-sided unpaired Wilcoxon test). b, Same as panel a (left) but
showing relative order performance stratified by developmental clade (Fig. 1b).
ns, not significant (Kruskal-Wallis test). ¢, Same as Fig. 1d-e but showing
performance on 21 cell phenotypes that were unseen during model training,
including cranial neural crest cells, apical progenitors, skeletal stem cells,

epsilon cells, and photoreceptor cells (Supplementary Table 7). d, Performance
of CytoTRACE 2 on different training-test configurations, comparing the
original split (‘Original test set’; Fig. 1b) with three additional splits, the latter

of which were randomized to balance potency categories between cohorts
(Supplementary Table 8; Methods). Performance was evaluated with four
metrics, each calculated at the single-cell level in held-out data: absolute order
(weighted 1), relative order (median weighted tacross evaluable systems with
known developmental orderings), multiclass F1 for predicting broad potency
classes (n = 6), and one minus the mean absolute error (MAE) for predicting
broad potency classes (n = 6). For details, see Methods. e, Same as Fig. 1e but
showing held-out data from three random training/test splitsind. In a-e, the
box center lines (a-d) and circles (c right and e), bounds of the box, and whiskers
denote medians, 1stand 3rd quartiles, and minimum and maximum values within
1.5 xIQR (interquartile range) of the box limits, respectively.

Nature Methods


http://www.nature.com/naturemethods

Brief Communication

https://doi.org/10.1038/s41592-025-02857-2

a

0% perturbed

Annotation perturbation probability

20% perturbed

0.0

0.0

0.0

0.0

50% perturbed

Diff. Uni. Oligo. Multi. Pluri. Toti.

Toti. Pluri. Multi

Oligo. Uni

Perturbed potency annotation

< R 00 00 00 00 00 B 0.0
g 5 N 00 00 00 00 [ m 01 00 00
2 o o
= = =
=R 00 00 00 00 00 ER 00 0.1 m 01 0.0
g = =
=B 00 00 0.0 00 00 8 00 00 0.1 m 0.1
a 0o s}
% g 00 00 00 00 n E§ 00 00 00 0.1 m
© = 00 00 00 00 00 JEKY = 00 00 00 00 01
) )
Toti. Pluri. Multi. Oligo. Uni. Diff. Toti. Pluri. Multi. Oligo. Uni. Diff.
b Cell-level annotation perturbation (o]
(Test set, n = 14 datasets)
T 100 |eeo-o—_ S 100 |- o}
° ®, 3 — °
6.~ 754 \ 5~ 757 + S
R 50 + 0¥ 504 ) o
2+ 254 £~ 254 =
8 0 ko) 0 2
< — T T T T T <
0 20 40 60 80 0 20 40 60 80
100 oy 27
N
£ 5] +\‘\ < b g
L 95 ) = / h
ego-® o
0 0
T T T T T T T T T T
0 20 40 60 80 0 20 40 60 80
Fraction of cells perturbed (%)
d Downsample gene count e
(Test set, n = 14 datasets)
$ 100 ge-e e T 100 o—o——9 g
G~ 75 ¢ 6~ 75- /¢ G~
o x o
< 504 gv 50-+,+ 5
o~ 254 ®" 254 or
8 0-e K 0 3
< T 71 1 I B B . <
VO . O .S
RO n&e S & "190
1009 _ee—m °
~ 754 _* 24 \ —~
S o w xX
= 01/ g |- =
w 25 ®~e-o. ] w
0 0
T T T

O PSS
LSS
& P

Number of genes
Extended Data Fig. 3 | Robustness of CytoTRACE 2. a-c, Impact of perturbing

OO .S ®
LSS
& P

Diff. Uni. Oligo. Multi. Pluri. Toti.

Diff. Toti.

Phenotype-level annotation perturbation
(Test set, n = 14 datasets)

100 —{eee-g. S 100 {0eq.¢
754 h B T
50 o0& 50+
25 e 25+ +
0 © 0+
b2
T T T T T T T T T T
0 20 40 60 80 0 20 40 60 80
2 -
2Py +
50 - \0 €1 /
N = ¥
2§~ o o"'°/
B S S e O r—T—T1T—T1 71—
0 20 40 60 80 0 20 40 60 80
Fraction of phenotypes perturbed (%)
Downsample UMI count
(Test set, n = 7 datasets)
100 o—o—o T 100 ———t
754 S S 75 A7
0] o2 50+ ‘/{
25 ‘" 254
0 _. Q 0 -
T T T T T T X T T T T T T
PP PLSSS PP PP
& @Q {b@ N @QQ S {)90 {b@ > (000
100 H —0—* *e
75 e |_|<J 1 \.
2 e
0- 0
T T T T T T T T T T T T
NERSERN SRS RIS PP LS
S WQQ (b@ @Q (OQQ S WQQ %QQ @0 (OQQ

potency labels in the training set. a, Heat maps depicting individual potency

labels and their transition probabilities at different perturbation levels
(Methods). b-c, Performance of CytoTRACE 2 models trained on potency labels
with defined perturbation levels (as illustrated in aand described in Methods)
applied to individual cells (b) or phenotypes (c) in the training set. Performance
in held-out test data was evaluated with four metrics: absolute order (weighted

tofbroad potency levels across datasets), relative order (median weighted
tofeachdataset analyzed individually), multiclass F1for predicting broad

potency classes (n = 6), and the mean absolute error (MAE) for predicting broad

potency classes (n = 6). For details, see Methods. Absolute order (1), relative

order (1), and F1score are expressed as a percentage of the results obtained with
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five replicates of random perturbation. Error bars represent 95% confidence

intervals. d, Analysis of robustness to the number of genes per cell using all
test datasets (n =14) (Supplementary Table 1) assessed with the same metrics

as panels b and c. Results for each dataset represent the average across five
rounds of gene count downsampling and are expressed relative to results with
no downsampling. e, Same as panel d but shown for UMIs per cell in evaluable
test datasets (n =7).f, Impact of the number of cells per phenotype on the

consistency of CytoTRACE 2 potency scores in test datasets. Eleven phenotypes
spanning a range of potencies were titrated in defined amounts (x-axis) while

other cells were left unchanged. CytoTRACE 2 was then applied to predict

potency scores. Points represent averages from five random samplings (without

the unperturbed CytoTRACE 2 model. Each point represents the mean across

replacement) per phenotype and error bars represent 95% confidence intervals.
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Mouse cranial neural crest (Smart-seq2)

Ground truth CytoTRACE 2
(Potency level) (Potency score)

Toti.
Pluri.
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Oligo.
Uni.
Diff.

Extended Data Fig. 4| CytoTRACE 2 correctly identifies a transient pluripotent  cells (CNCCs). Right inset: Cells predicted as pluripotent by CytoTRACE 2. Cells
cell state during mouse cranial neural crest development. Same as Fig. 1g but predicted as pluripotent by CytoTRACE 2 showed significantly higher Pousf1
focusing on mouse cranial neural crest cells profiled by Zalc et al.”. Left inset: Log expression than others, with P=2.6 x 10~ by two-sided Wilcoxon test.
expression levels of core pluripotency factor Pou5fI in mouse cranial neural crest
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Extended DataFig. 5| Large-scale reconstruction of cell potency during
mouse embryogenesis. a, Overview of single-cell expression datasets analyzed
inb-e and corresponding developmental time points profiled (n = 62). Icons
denoting key stages of mouse embryogenesis were created using BioRender.
com. b, Linearity between the average CytoTRACE 2 potency score per time point
(weighted equally across author-annotated phenotypes) expressed in rank space
(y-axis) and the corresponding time points (n = 62; x-axis). Concordance was
calculated using linear regression (dashed line) and Kendall correlation (1), with
the latter weighted by the number of time points per embryonic day. ¢, Scatter
plot comparing the performance of CytoTRACE 2 to previous approaches for
reconstructing the temporal hierarchy of 45 time points spanning organogenesis
(beginning at E8.0%) to birth (y-axis) versus 17 time points preceding
organogenesis (x-axis). Correlations are weighted by whole day intervals to

account forimbalancesin the number of evaluable time points per day. Point
sizes represent the average weighted Kendall correlation per approach. d, Top:
Data-driven lineage tree of mouse embryogenesis, where nodes represent
celltypes (n=259), edges represent developmental transitions inferred by
Qiuetal.?, and colors represent the corresponding rank distance from each

cell type to the root (“Ground truth”). Center and bottom: Same as top, but with
CytoTRACE 2 and CytoTRACE 1 predictions each averaged by phenotype, then
rank-ordered along the path to the root. Lower ranks indicate shorter distances.
Distances were averaged for cell types with multiple direct paths to the root.

e, Scatter plots showing all distances ind, with concordance between CytoTRACE
methods (center and bottom panels of d) and lineages inferred by Qiu et al.?

(top panel of d). The significance of Tinb and e was determined using a two-sided
Z-test.
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a Enrichment of known gene signatures in AML b Stemness in IDH-mutant oligodendroglioma
(n = 6 patients)
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Extended DataFig. 6 | Tracing developmental lineages in AML and
oligodendroglioma. a, Box plots showing relative expression levels of cell state
signatures from patients with acute myeloid leukemia (AML)* in 13,445 AML
cells stratified by potency categories identified by CytoTRACE 2. Each point
denotes asingle gene from the corresponding gene set ID indicated above the
plot (Supplementary Table 10). Genes were internally normalized within each
tumor sample as the mean log, fold change (FC) within a given potency category
versus the remaining cells in the tumor, as described in Methods, then z-score
normalized (standardized) across potency categories. The four signatures,
LSPC-Primed, LSPC-Quiescent, GMP-like, and Mono-like, are expected to be
most highly expressed in multipotent, multipotent, oligopotent, and unipotent/
differentiated cells, respectively (Supplementary Table 10). Statistical

[ Differentiated-like

Fraction of

Lineage score i
predicted potency

significance comparing the expected potency level(s) with each other potency
level was determined by a two-sided Wilcoxon test. ****P < 0.0001. Box center
lines, bounds of the box, and whiskers denote medians, 1st and 3rd quartiles,
and minimum and maximum values within 1.5 x IQR (interquartile range) of the
box limits, respectively. b, Left: Scatter plot of oligodendroglioma cells from six
tumors organized by previously described stemness and lineage enrichment
scores”. Right: Stacked bar plot showing how the fractional representation of
cells with predicted potency categories (CytoTRACE 2) changes as a function

of author-supplied stemness scores (y-axis). Cells predicted to have the highest
oligo- and multilineage potential by CytoTRACE 2 correspond to those annotated
as stem-like by Tirosh etal.”. Potency colors reflect eight evenly spaced bins per
potency category.

Nature Methods


http://www.nature.com/naturemethods

Brief Communication

https://doi.org/10.1038/s41592-025-02857-2

a Benchmarking CytoTRACE 2 against supervised machine learning b Median performance
methods over 33 ground truth datasets (n = 4 folds)
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Extended Data Fig. 7| Benchmarking against supervised machine learning
methods. a, Box plots comparing the performance of CytoTRACE 2 against eight
baseline methods (supervised machine learning models, including leading tools
for reference-guided annotation of scRNA-seq data) implemented for single-

cell potency classification (Methods). Each method was trained to assign cells

to six broad potency categories using identical training-test splits. Four-fold
cross-validation was performed for each method, where each point represents
performancein one fold of held-out data (the original training-test split [Fig. 1b]

® Radial SVM
and three random splits [Supplementary Table 8]). Performance was assessed at
the single-cell level using multiclass F1 (left) and one minus the mean absolute
error (MAE; right) for predicting broad potency classes (n = 6). Box center lines,
bounds of the box, and whiskers denote medians, 1st and 3rd quartiles, and
minimum and maximum values within 1.5 x IQR (interquartile range) of the box
limits, respectively. b, Scatter plot comparing median performance scores for all
methods from panel a.
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Extended Data Fig. 8 | Benchmarking against scVelo. a-b, Representative test
datasets comparing CytoTRACE 2 and scVelo. a, UMAP representation of mouse
pancreas development (10x) (Supplementary Table1). Left: Cells colored by
ground truth granular potency level (Fig. 1b; Supplementary Table 3). Center:
Cells colored by CytoTRACE 2 potency scores. Right: Cells colored by scVelo
latent time (differential kinetics model). b, Same as abut showing humanbone
marrow (CITE-seq) (Supplementary Table1). ¢, Left: Bar plot showing mean
absolute order (weighted T applied to single cells) performance across six broad
potency levels (circles) and ten granular order potency levels (triangles) for
nine test datasets evaluable by CytoTRACE 2 and scVelo (Supplementary Tables
3 and 14; Methods). Two models are shown for the latter: dynamical latent time
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and differential kinetics latent time. Right: Violin and box plots showing relative
order performance (weighted t applied to single cells) on the same test datasets
(n=8evaluable datasets with relative developmental orderings, Supplementary
Tables 4 and 14). Statistical significance was determined by two-sided paired
ttest. Violin plot bounds denote minimum and maximum values. Box center
lines, bounds of the box, and whiskers denote medians, 1st and 3rd quartiles,
and minimum and maximum values within 1.5 x IQR (interquartile range) of

the box limits, respectively. d, Same as Fig. 1e but shown for the nine evaluable
test datasetsin c. Left: CytoTRACE 2 potency scores. Right: scVelo latent time
(differential kinetics model). Statistical significance was determined using a
one-sided Z-test. ns, not significant.
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a Analysis of CytoTRACE 2 gene sets
by cohort, species, cellular system, and platform
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Extended Data Fig. 9| Extended analysis of potency programs and genes.
a,Same as Fig. 2b but separated by cohort, species, cellular system (three general
categories shown for clarity), and scRNA-seq platform. The embedding in Fig. 2b
isshown as areference in the upper left. Colors denote potency scores (same as
the color barinFig. 2b, top) for reference and cohort-stratified embeddings.

b, Heat map depicting pairwise similarity of gene sets learned by CytoTRACE 2
across all19 ensemble models from leave-one-out cross-validation on the
19-dataset training cohort. Overlap was quantified by Jaccard index and stratified
into gene sets with positive (left, n =1,490) and negative weights (right, n =1,246);
gene set polarity was determined as described in “Interpretability,” Methods.

¢, Same as Fig. 2e but showing the consistency between CytoTRACE 2
multipotency markers and hematopoietic stem cell (HSC) knockout (KO)
phenotypes across arange of top kK markers, whether positive or negatively
associated with multipotency (k =50,100, 200, and 500). GSEA statistics are
expressed as directed -log,, Q values. Statistical significance between groups

d Median enrichment of potency-associated gene sets

Overlap of gene sets by Jaccard similarity
for all potency categories learned by CytoTRACE 2
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was determined using a two-sided unpaired Wilcoxon test. Box center lines,
bounds of the box, and whiskers denote medians, 1st and 3rd quartiles, and
minimum and maximum values within 1.5 x IQR (interquartile range) of the box
limits, respectively. d, Same as ¢, but showing the median directed -log,, Q value
across all top k markers shownin ¢, stratified by positive and negative markers,
and extended to all potency categories in the CytoTRACE 2 feature importance
matrix (Supplementary Table 15). e, Enrichments of selected gene sets from
MSigDb in the CytoTRACE 2 feature importance matrix (Fig. 2a, right;
Supplementary Table 15). Bubbles are colored by signed -log,, adjusted p-values
(adjusted for multiple comparisons) calculated by GSEA, where the sign is
determined by the direction of association between the genes and the potency
category. All -log,, adjusted p-values, including those exceeding the color bar
range, are provided in Supplementary Table 17. Bubble sizes are proportional to
unsigned -log,, adjusted p-values within the color bar.
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a Flow cytometry gating scheme b Expression in mouse hematopoietic subsets (qQPCR)
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Extended Data Fig. 10 | Validation of multipotency-associated genes.

a, Representative gating schemes for FACS-purification of mouse hematopoietic
subsets analyzed in Fig. 2i (HSCs/MPPs, CMPs, and CLPs from bone marrow and
T/B cells from peripheral blood). KLS, Kit" Lin” Scal* multipotent cell subset
consisting of HSCs and MPPs (multipotent progenitors); KL, Kit* Lin~Scal subset
devoid of multipotent cells; CMP, common myeloid progenitor; CLP, common
lymphoid progenitor. b, Bar plots showing biological replicates and controls for
quantitative PCR experiments, related to Fig. 2i. Each gene is shown normalized
to the maximum mean expression across all groups. Top: markers of HSC/MPP
(Hoxbs, Fgds, Procr), progenitors (Cd34), and differentiated lineages (Cd8a,
Cd19). Bottom: unsaturated fatty acid (UFA) synthesis genes identified as markers
of multipotency by CytoTRACE 2 (Fadsl1, Fads2, and Scd2). Actb was used as an
internal control. Error bars reflect s.e.m. (standard error of the mean) across
three biological replicates. c-d, Same as Fig. 2j but shown for mouse duodenum
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(c) andileum (d). Scale bars, 50 pm (top) and 10 pm (bottom). e, Quantification
of mRNA hybridization signal in multipotent and unipotent/differentiated
zones of mouse jejunum (left, corresponding to images in Fig. 2j), duodenum
(center, corresponding to confocal images inc), and ileum (right, corresponding
toimages ind). Multipotent zones are divided as previously described*’ on the
basis of cell location from the crypt base, with red and green regions expected
to be most enriched in Lgr5 and Fgfbpl, respectively. Bars represent the mean
fluorescence intensity per zone, with error bars denoting s.e.m. (n = 20 paired
crypts and villi from each intestinal region [jejunum, duodenum, ileum] pooled
from two mice, with a total of 10 paired crypts and villi per region per mouse).
Statistical significance was determined by a two-sided paired ¢ test, with the
resulting p-values adjusted by the Benjamini-Hochberg method separately
applied tojejunum, duodenum, and ileum samples (*Q < 0.05; **Q < 0.01,
***Q<0.001,***Q < 0.0001).
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IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Gjve P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

O0OX O O00000%

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Standard FACSDiva software (v9.7) was used for flow cytometry on a BD FACSAria Il. Fluorescence images were acquired on a Zeiss LSM 980
confocal microscope. Publicly available FASTQ files were downloaded using sra-tools v3.1.1.

Data analysis Software packages used in this study are detailed in Methods, including CytoTRACE 1 v0.3.3, scPred v1.9.2, pySingleCellNet v0.1.1, scmap
v1.26.0, scikit-learn v1.1.1 & v1.4.2, XGBoost v2.1.1, SCENT v1.0.3, FitDevo v1.2.0, SLICE v0.99.0, RacelD v0.1.4, scTour v1.0.0, org.Hs.eg.db
v3.15.0, cutadapt v4.9, dropest v0.8.6, STAR v2.7.11b, Cell Ranger v8.0.1, velocyto.py v0.17.17, scVelo v0.3.1, and wandb v0.16.4. Seurat
versions 4.3.0 and 5.1.0, fgsea v1.25.1, GSVA v1.46.0, RANN v2.6.1, HiClimR v2.2.1, and various R v4.2+ packages (e.g., ggplot2 v3.4.3, matrix
v1.6.1, dplyr 1.1.3) and python v3.9+ packages (e.g., pandas v2.2.3, numpy v1.26.3) were also used. CytoTRACE 2 results were generated with
version 1.1.0.3 (cytotrace2-py) which uses python v3.9.0 and PyTorch v2.0.0.

Flow cytometry data was analyzed with FlowJo (v10.9.0). Fluorescence images were analyzed with ImageJ (v1.53t) to obtain mean
fluorescence intensities.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All datasets comprising the single-cell potency atlas assembled in this work (Supplementary Table 1) are publicly available from the Gene Expression Omnibus
(GEO), ArrayExpress, or the Sequence Reach Archive (SRA) with the following accessions: GSE52583 ('AT2/AT1 lineage (C1)'), GSE109774 ('Bone marrow (10x)',
'‘Bone marrow (Smart-seq2)', and 'Tabula Muris (Smart-seq2/10x)"), GSE60783 ('Dendritic cells (C1)'), GSE97391 ('Direct in vitro neuron (inDrop)' and 'Standard in
vitro neuron (inDrop)'), GSE70245 ('HSPCs (C1)'), GSE113197 ('"Human breast 1 (10x)' and 'Human breast 1 (C1)'), GSE161529 ('Human breast 2 (10x)'), GSE36552
('"Human embryo (Tang et al.)'), GSE92332 ('Intestine (Drop-seq)' and 'Intestine (Smart-seq2)'), GSE85066 (‘Mesoderm (C1)'), GSE45719 ('"Mouse embryo 1 (Tang et
al.)"), SRPO73767 ('Peripheral blood (10x)'), GSE128639 ('BM-MNC (CITE-seq)'), GSE100866 ('Cord blood (CITE-seq)'), E-MTAB-9067 ('HSC development (Smart-
seq2)'), GSE90742 ('HSCs and MPPs (inDrop)'), E-MTAB-11536 ('Immune cell atlas (10x)'), GSE76408 ('Lgr5-CreER intestine (CEL-seq)'), E-MTAB-3321 ('Mouse
embryo 2 (Smart-seq2)'), GSE59892 ('Mouse embryo 3 (Smart-seq)'), GSE162044 ('Neural crest (Smart-seq2)'), GSE132188 ('Pancreas (10x)'), GSE99933 ('Peripheral
glia (Smart-seq2)'), GSE122466 ('Retinal neurons (10x)'), GSE64447 ('Skeletal stem cell (C1)'), and GSE201333 ('Tabula Sapiens (Smart-seq2/10x)').

Raw FASTQ or BAM files analyzed in this work are available from the SRA with the following accessions: SRP188993 (‘BM-MNC (CITE-seq)’), SRP168426 (‘Retinal
neurons (10x)’), SRP200419 (‘Pancreas (10x)’), SRP109011 (‘Peripheral glia (Smart-seq2)’), SRP239468 (‘Skeletal stem cell (C1)’), SRP094420 (‘HSCs and MPPs
(inDrop)’), and SRP476153 (‘Mouse neurogenesis (10x)" and ‘Mouse mature neural cell types (10x)’).

Five expression datasets covering mouse embryogenesis periods from implantation to organogenesis are accessible from GEO or ArrayExpress with the following
accessions: GSE100597 (‘Implantation (E3.5-E6.5)"), GSE109071 (‘Implantation (E5.5-E6.5)’), E-MTAB-6967 (‘Gastrulation (E6.5-E8.5)’), GSE186069 (‘Organogenesis
(E8.5)), and GSE228590 (‘Organogenesis (E8.75-P0O)’).

The publicly available oligodendroglioma and AML expression data analyzed in this work are available with GEO accession numbers GSE70630 and GSE116256,
respectively.

Reference genomes and annotation files for GRCm39 (mouse) and GRCh38.p13 (human) were obtained from Ensembl release 109 (February 2023) via the archive
at https://feb2023.archive.ensembl.org.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender No human data was generated for this study.

Reporting on race, ethnicity, or N/A
other socially relevant

groupings

Population characteristics N/A
Recruitment N/A
Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size For both single-cell RNA-seq studies and mouse experiments, sample sizes were based on prior studies with similar designs and optimized for
feasibility. The selected sizes were sufficient to detect consistent and biologically meaningful trends across replicates and conditions, and to
support the statistical analyses presented. Where applicable, findings were validated in independent cohorts or with orthogonal methods to
ensure robustness. All results were analyzed and interpreted using statistically appropriate techniques as described in Methods.
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Data exclusions  Quality control metrics for data exclusion are fully described in Methods. Key exclusions included scRNA-seq samples of tumors which were
derived from cell lines or for which fewer than 10 malignant cells were identified, and from these samples, non-malignant cells annotated by
the author as "undifferentiated". In generating the potency atlas presented in this study, phenotypes in Tabula Sapiens with fewer than five
cells for a given tissue/platform pair were excluded.

Replication The CytoTRACE 2 model was developed over a portion of the curated gold standard potency atlas, then tested over fully held-out data from
the remainder as well as Tabula Sapiens data not included in either cohort. To ensure replicability and generalizability, CytoTRACE 2 was also
tested in a leave-clade-out framework as described in Methods. CytoTRACE 2 performance was strongly concordant across these experiments
and cohorts.

All experiments were replicated three times independently.

Randomization  To ensure generalizability and limit any bias from the primary training cohort selection, we repeated the training and testing process of

CytoTRACE 2 across three additional train/test splits, generated randomly, as detailed in Methods. Performance was strongly concordant

across these experiments and cohorts.

The robustness experiments in Extended Data Figure 3 were conducted with randomization and replicated five times as described in Methods.
Averages across replicates were presented with confidence intervals.

For experiments with mice, randomization was not applicable as there was no treatment involved.

Blinding The investigators were not blinded to group allocation, but the training and test cohorts analyzed in this work were generated without prior
knowledge of CytoTRACE 2 potency predictions. The randomization framework detailed above serves as an additional control.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies g D ChiIP-seq
|:| Eukaryotic cell lines |:| Flow cytometry
D Palaeontology and archaeology IZ D MRI-based neuroimaging

Animals and other organisms
D Clinical data

|:| Dual use research of concern

D Plants

XXXOXX[s

Antibodies

Antibodies used Immunostaining antibody:
anti-E-Cadherin-Alexa Fluor 488 antibody (BD Biosciences 560061, 1:50)

Flow cytometry antibodies:

anti-mouse lineage cocktail-A700 (BioLegend 133313, 5 pl per mouse)
anti-CD117 (c-Kit)-BV395 (Thermo Fisher Scientific 363-1171-80, 1:100)
anti-Scal-BV605 (BioLegend 108133, 1:100)

anti-CD34-eFluor 450 (Thermo Fisher Scientific 48-0341-80, 1:40),
anti-CD16/32-BV711 (BD Biosciences 740659, 1:100)
anti-CD135-BV421 (BiolLegend 135313, 1:100)

anti-CD127 (IL-7Ra)-BV711 (BioLegend 135035, 1:100)
anti-CD3-BV711 (BiolLegend 100241, 1:100)

anti-CD8a-BV605 (BioLegend 100743, 1:100)

anti-CD19-BV605 (BioLegend 115539, 1:100)

Validation All antibodies used were validated by the respective manufactures. The validation statement of the antibodies on the manufacture's
website can be found below.
anti-E-Cadherin-Alexa Fluor 488 antibody (https://www.bdbiosciences.com/en-us/products/reagents/microscopy-imaging-reagents/
immunofluorescence-reagents/alexa-fluor-488-mouse-anti-e-cadherin.560061 ?tab=product_details), anti-mouse lineage cocktail-
A700 (https://www.biolegend.com/en-us/products/alexa-fluor-700-anti-mouse-lineage-cocktail-with-isotype-ctrl-8122), anti-CD117
(c-Kit)-BV395 (https://www.thermofisher.com/antibody/product/CD117-c-Kit-Antibody-clone-2B8-Monoclonal/363-1171-80), anti-
Scal-BV605 (https://www.biolegend.com/en-us/products/brilliant-violet-605-anti-mouse-ly-6a-e-sca-1-antibody-8664), anti-CD34-
eFluor 450 (https://www.thermofisher.com/antibody/product/CD34-Antibody-clone-RAM34-Monoclonal/48-0341-80), anti-
CD16/32-BV711 (https://www.bdbiosciences.com/en-us/products/reagents/flow-cytometry-reagents/research-reagents/single-
color-antibodies-ruo/bv711-rat-anti-mouse-cd16-cd32.740659?tab=product_details), anti-CD135-BV421 (https://
www.biolegend.com/en-us/products/brilliant-violet-421-anti-mouse-cd135-antibody-8728), anti-CD127 (IL-7Ra)-BV711 (https://
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www.biolegend.com/en-us/products/brilliant-violet-711-anti-mouse-cd127-il-7ralpha-antibody-10632), anti-CD3-BV711 (https://
www.biolegend.com/en-us/products/brilliant-violet-711-anti-mouse-cd3-antibody-10022), anti-CD8a-BV605 (https://
www.biolegend.com/en-us/products/brilliant-violet-605-anti-mouse-cd8a-antibody-7636), and anti-CD19-BV605 (https://
www.biolegend.com/en-us/products/brilliant-violet-605-anti-mouse-cd19-antibody-7645)

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in

Research
Laboratory animals
Wild animals
Reporting on sex

Field-collected samples

Ethics oversight

8- to 12-week-old C57BL/6 mice were used.
The study did not involve wild animals.
Equal numbers of males and females were used.

This study did not involve samples collected from the field.

All animal procedures were conducted according to a protocol approved by the Stanford University APLAC committee (10868).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Plants

Seed stocks

Novel plant genotypes

Authentication

Flow Cytometry

Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

wdas applied. . .
Describe-any-atithentication-procedures foreach seed stock-tised-or-novel-genotype generated—Describe-any-experiments-tused-to

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.

Plots
Confirm that:

g The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|Z The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

|Z| All plots are contour plots with outliers or pseudocolor plots.

|Z| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Instrument

Software

Hips, femurs, tibia, and humeri were harvested from C57BL/6 mice. Bones were cleaned, cut, and flushed with a syringe filled
with ice-cold FACS buffer (2% fetal bovine serum [FBS] in Hanks’ Balanced Salt Solution [HBSS] buffer). Cells in FACS buffer
were filtered through a 40 um filter, pelleted, and then incubated in ammonium-chloride-potassium (ACK) lysis buffer for 5
minutes on ice. Cells were then spun down and resuspended in 400 pl FACS buffer per mouse. Lineage depletion beads
(Miltenyi Biotec 130-110-470) were added to the cells (50 pl per mouse) and incubated for 10 min at 4°C. After incubation,
the cells were loaded onto an LS magnetic separation column (Miltenyi Biotec 130-042-401), which was subsequently
washed with 3 x 3 mL of FACS buffer. Before and after washing, pass-through cells were collected, spun down, and
resuspended in FACS buffer.

Blood samples were collected from the same mice for the isolation of CD8a+ T cells (CD3+ CD8a+) and B (CD19+) cells.
Peripheral blood mononuclear cell (PBMC) isolation was performed using a SepMate™-15 tube (STEMCELL technologies
85415) according to the manufacturer's instructions.

The cells were analyzed on a BD FACSAria Il sorter.

Data were analyzed with FlowJo V10.
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Il |ati bund The post-sort samples were re-analyzed using FACS to verify a purity level of over 95%.
Cell population abundance p p 1% g y a purity

Gating strategy The major cell populations were first identified within the FSC/SSC plots, followed by doublet exclusion. The mouse HSC,

MPP, T cell, and B cell populations were then gated according to previously published gating strategies (PMID: 33236985).

Fluorescence-minus-one (FMO) controls were used to discriminate between positive and negative staining.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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