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Integrated single-cell atlas of human
atherosclerotic plaques

Korbinian Traeuble 1,2,3, MatthiasMunz 3, Jessica Pauli 4,5, Nadja Sachs 5,6,
Eshan Vafadarnejad3, Tania Carrillo-Roa 3, Lars Maegdefessel 4,5,
Peter Kastner 3,7 & Matthias Heinig 1,2,5,7

Atherosclerosis, a major cause of cardiovascular diseases, is characterized by
the buildup of lipids and chronic inflammation in the arteries, leading to pla-
que formation and potential rupture. Despite recent advances in single-cell
transcriptomics (scRNA-seq), the underlying immune mechanisms and trans-
formations in structural cells driving plaque progression remain incompletely
defined. Existing datasets often lack comprehensive coverage and consistent
annotations, limiting the utility of downstream analyses. Here, we present an
integrated single-cell atlas of human atherosclerotic plaques, covering roughly
250k high-quality annotated cells. We achieve robust cell type annotations
validated by expert consensus and surface protein measurements. Using this
atlas, we introduce distinct markers for plaque neutrophils, identify a proan-
giogenic endothelial cell cluster enriched in advanced lesions, and specialized
macrophage subsets. We also establish that fibromyocytes are exclusive to
vascular tissue. This comprehensive atlas enables accurate automatic cell type
annotation of new datasets, improves experimental design by guiding sample
size and detection power, and supports the deconvolution of bulk RNA-seq
data. An interactive WebUI makes these resources widely accessible.

Atherosclerosis is the primary pathology behind acute ischemic cardi-
ovascular events, like myocardial infarction and stroke1. It is character-
ized by lipid accumulation and chronic inflammation in the arteries,
leading to plaque formation and potential rupture2,3. The overarching
immune mechanisms and transformation and differentiation processes
in vascular cells that reside within the affected arteries, such as vascular
smooth muscle cells (SMCs), endothelial cells (ECs), and fibroblasts
involved in plaque progression are incompletely understood and under
current investigation. The recent advances of single-cell transcriptomics
(scRNA-seq) gives relevant insights into these processes, unraveling
previously undetermined roles of immune and non-immune cells. For
example, Wirka et al.4 characterized modulated SMCs that transform

into fibroblast-like cells they termed fibromyocytes, which play a pro-
tective role in coronary artery disease. Fernandez et al.5 thoroughly
investigated the contribution of T cells andmacrophages, and identified
certain subsets associated with plaque vulnerability.

Many public scRNA-seq datasets of human atherosclerotic pla-
ques are available, but often do not cover the full breadth of disease-
contributing cell types, as they are focused on specific subtypes based
on cell sorting approaches and preprocessing being applied prior to
library preparation and sequencing6–9. Additionally, some cell types
are easier to harvest in scRNAseq, and hence more abundant in the
datasets10. Currently, cell type annotations of many of these data sets
are not publicly available, making the annotation of cell types and
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composition of plaques a major challenge that requires expert
knowledge. Because most downstream analysis tasks require cell type
information, accurate consensus annotation of cell types across data-
sets is of utmost importance. Consequently, single-cell atlases that
integrate and harmonize various published datasets, such as the
human lung cell atlas11 or the heart cell atlas12, emerged as useful
references enabling coherent downstream analyses13, such as auto-
matic cell type annotation of new datasets11, optimal experimental
design14, interpretation of genetic association studies11,15,16 and decon-
volution of bulk RNA-seq data sets17. These atlases typically comprise a
comprehensive integrated data resource along with a model trained
on this data. This combination allows for accurate data annotation and
promotes re-use18. Atlases of different tissues are ultimately paving the
way towards a human cell atlas19 that can be used to train foundation
models20–22, which require vast amounts of data.

While a comprehensive understanding of atherogenesis requires
insights into both healthy and diseased arterial cells, obtaining truly
“healthy” samples remains a significant challenge. Studies on “healthy”
arteries often involve patient populations with underlying cardiovas-
cular conditions, such as end stage heart failure23 or earlier stages of
atherosclerosis24–26,making it difficult to establish a definitive “normal”
phenotype. To address this limitation, we focused our analysis on
characterizing the cellular heterogeneity across various stages of
atherosclerotic plaques. To set the stage for future comparisons, it is
key to obtain a high-resolution cell type annotation of the cells of
atherosclerotic plaques.

First single-cell atlases of atherosclerotic lesions27,28 have already
been proposed. These atlases have several shortcomings, as they are
composed mainly of non-atherosclerotic tissue samples, inflating the
number of cells in the atlas. As a consequence, the effective number of
plaque specific cells is still relatively low,which limits the robustness of
cell type annotations and the ability to detect rare but disease-relevant
cell types. Moreover, there is currently no evaluation of the consensus
of annotations in the field. Finally, existing atlases are limited to two
types of arteries, carotids and coronaries, neglecting plaques from
other arterial sites like femoral arteries of great relevance to vascular
occlusive disease (PVOD). A key practical limitation appears to be the
lack of publicly available annotations andmodel weights to effectively
make use of the existing atlases.

For this current study, wehave curated an easily accessible plaque
cell atlas that encompasses the most comprehensive dataset to date

with 259,493 high quality annotated cells from human atherosclerotic
carotid, coronaryand femoral arteries.We applied thebestperforming
data integration method, selected from a wide spectrum of available
models through the most comprehensive model benchmark on a
range of metrics specifically evaluated on plaque single-cell data sets.
The cell type annotations were orthogonally validated with expert
annotation consensus and surface protein measurements. We made
the annotations and model weights easily accessible by providing an
easy-to-use interactive WebUI to automatically annotate new datasets
including uncertainty. The performance of the atlas and model was
demonstrated and validated in several downstream tasks, such as
automated cell type annotation, planning of future experiments with
scPower14, and combining the vast information of single-cell data with
the big sample sizes of bulkRNA-seq datasets by deconvolution with
BayesPrism17. Overall, this comprehensive and robust atlas marks a
significant step forward in understanding the complex mechanisms of
atherosclerosis and enhances the utility of transcriptomic profiling
technologies in cardiovascular research.

Results
Integration of public datasets into one atlas
We collected all publicly available single-cell datasets of plaque from
carotid, coronary and femoral arteries covering a total of 259,493 cells
(after quality control (QC)) of diverse cell types and pathologies (see
Table 1). Fig. 1 shows the workflow to construct the single-cell plaque
atlas. First, we pre-processed all datasets as described in the original
publications. If no detailed description was available, we applied our
own dataset-specific quality metrics (see “methods” section for
details). Subsequently, we applied ambient RNA correction29 and
doublet detection30 on each dataset/sample independently.

Next, the datasets were integrated into one latent space to elim-
inate technical batch effects and conserve biological signals. To select
the best method for this task, we performed an extensive benchmark
with scib-metrics31 of commonly used integration methods: scVI32,
Harmony33, LIGER34, scANVI35, scGen36, scPoli (with negative binomial
and mean squared error loss)37 and baseline PCA. The benchmark was
evaluated on ten metrics in the categories batch correction and bio
conservation, where the latter requires cell type labels. For this reason
and following a guideline for atlas curation18, we manually annotated a
subset of 11 samples using a carefully curated table of human plaque-
specific marker genes (see Fig. 2a). This table, the most comprehensive
to date, includes genes previously utilized for annotating plaque cells in
scRNA-seq studies. The 11 samples were manually annotated incre-
mentally until the total number of cells in each cell typewas at least 600
(see Supplementary Fig. 1). This enabled us to achieve robust annota-
tions and to cover all major cell types present in the subset of samples,
which we designated as “level 1” annotation. Next, we compared
methods based on these annotations and other metrics. As expected,
the baseline PCA had the worst batch correction score out of all
methods (see Supplementary Fig. 2). Surprisingly, scVI and LIGER per-
formedpoorly in bio conservation, while having a high batch correction
score, indicating anover correction. Fine tuning the scVImodelwith the
scANVI method demonstrated a substantial improvement in the bio
conversation score. Overall, the method scPoli outperformed all other
methods in bothbio conservation andbatch correctionmetrics andwas
hence used to integrate all the remaining samples as well.

We then proceeded with the atlas building step by transferring
level 1 cell type annotations to the remaining unlabeled cells using the
scArches38 method. Subsequently, we examined each level 1 cell type
cluster to manually adjust potentially mis-annotated cells. For
instance, we identified subclusters expressing T cell specific markers
among cells initially annotated as natural killer (NK) cells at level 1;
these cells were consequently relabeled as T cells. Notably, we
observed a distinct cluster within the monocyte population where
typical monocyte markers were not expressed. This cluster

Table 1 | All publicly available scRNA-seq datasets for plaque
tissues in humans fromcoronary, femoral and carotid arteries
in the atlas after excluding low quality, uncertain cells and
undefined cells in level 2 annotations

Dataset Plaque
location

# Cells # Samples Accession
number

Pan et al.70 carotid 8850 3 GSE155512

Alsaigh et al.26 carotid 34,626 3 GSE159677

Ahmad et al.48 carotid 5554 2 GSE179159

Dib et al.8 carotid 25,147 6 GSE210152

Fernandez et al.5 carotid 9935 7 GSE224273

Slysz et al.9 carotid 27,245 3 GSE234077

Pauli et al.25 carotid 1269 8 GSE247238

Bashore et al.47 carotid 75,582 18 GSE253904

Wirka et al.4 coronary 11,750 8 GSE131778

Emoto et al.6 coronary 1621 2 GSE184073

Chowdhury
et al.7

coronary 22,543 12 GSE196943

Slysz et al.9 femoral 35,371 7 GSE234077

Total 259,493 79
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consistently appeared regardless of the batch correction technique
employed. It distinctly expressed neutrophil-associated genes such as
NAMPT39, IFITM240, G0S241, CXCL842, NEAT141, SRGN43 and AQP944, sug-
gesting that these cells are neutrophils. This finding is particularly
interesting because neutrophils are known to be difficult to detect in
scRNAseq45. This challenge may be attributed to their high content of
readily releasable ribonucleases that rapidly degrade endogenous RNA
and their limited gene expression profile, consisting of only a few
hundred genes46. In line with that, 10x Genomics, the manufacturer of
the scRNAseq technology used, indicates that the Cell Ranger software
may, bydefault,filter out neutrophils. In plaque tissue, only one study27

has detected neutrophils in very low numbers, and in the Bashore et al.
study47 they were identified using surface proteins.

All uncertain cells were labeled as uncertain and subsequently
mapped on the retrained corrected reference. SMCs, fibromyocytes,

and fibroblasts form a distinct cluster, as do macrophages, DCs, and
monocytes. Similarly, T cells and NK cells are grouped together, while
B cells, plasma cells, and ECs all form their own separate clusters
(Supplementary Fig. 3). The dot plot depicting the marker genes
expression in this reference atlas is shown in Fig. 2b.

To validate the cell type annotations of the atlas, we used two
orthogonal methods. First, via label consensus, and secondly with
unbiased protein surface markers from CITE-seq data. Three of the
datasets (Pauli25, Emoto6 andWirka4)were annotated independently by
an expert and annotations of onedatasetwereprovidedby the authors
(Ahmadet al.48). The predicted cell types inour atlaswere compared to
the provided labels. The precision of the annotations is 89.79% in the
Pauli dataset and higher than 90% in the three other datasets (see
Fig. 3a–d). The confusion matrices also show the mismatch of labels
mostly within cell types that are hard to distinguish because of similar

Fig. 1 | Workflow to construct the single-cell plaque atlas. (1) All publicly avail-
able scRNA-seq datasets from atherosclerotic plaques from carotid, coronary and
femoral arteries were collected from the NCBI GEO database. (2) The same pre-
processing pipeline was applied to all datasets. Doublets were tagged, counts were
corrected for ambient RNA and cells and genes were filtered as described in the
original publication. A subset of samples was manually annotated with level 1
marker genes for the subsequent benchmark of integration methods. (3) A
benchmark of integration methods on five batch correction and five biological
conservation metrics identified the best performing method, scPoli. (4) ScPoli was
applied on the subset of annotated samples to build the atlas. Subsequently, we

made adjustments on the level 1 cell types, retrained the reference andmapped the
yet unclear cells. The resulting atlas was validated by expert provided labels and
surface protein measurements. (5) The annotated plaque atlas was used in the
following downstream applications: First, automatic cell type annotation, which
was validated with an independent dataset (Bashore et al.) and included in the
subsequent reference. This referencewas subclustered to define finer-grained level
2 cell types, which were then used for bulk deconvolution and abundance analysis.
Lastly, the atlas was used to design future experiments with scPower and mapped
on non-lesion arteries and diverse tissue compendium. Created in BioRender.
Träuble, K. (2025) https://BioRender.com/keay6f9.
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transcriptomes, such as NK and T cells or DC, macrophages and
monocytes. SMCs, fibroblasts and fibromyocytes are also more diffi-
cult to distinguish for the model, and they form one cluster in the
UMAP. Overall the consensus is very high with residual uncertainty
only between closely related cell types, demonstrating the robustness

of the annotations. These results demonstrate a very high consensus
between different manual annotations, but it appears impossible to
decide which annotation is more accurate in the absence of objective
ground truth cell type labels. For a more unbiased validation, we
analyzed CITE-seq data5 of a sample included in the atlas. The mRNA

Fig. 2 | Cell type annotation. a Shows an overview of marker genes in athero-
sclerotic plaques previously used in scRNA-seq datasets to annotate cells. Level 1
cell types refer tomajor cell types commonly used in studies, while level 2 refers to
a finer grained sublevel annotation of specific cell types with a distinct biological
function. A more detailed list of references and the cell types’ role in the disease
progression are provided in SupplementaryTable 1.b Shows a dot plot of the level 1

marker genes in the predicted cell types in the reference atlas. The color coding
shows normalized gene expression of themarker genes (y-axis) in each cell type (x-
axis), with light red indicating low expression and dark red indicating high
expression. Genes are shown repeatedly if they servemarker genes formultiple cell
types. Created in BioRender. Träuble, K. (2025) https://BioRender.com/2mwy4mj.
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expression data of these cells was part of the atlas, and was used to
predict cell type labels. These predicted labels were compared to the
proteomics surfacemarkers,whichwerenot used tomakepredictions.
The available surface markers were grouped by their cell type speci-
ficity and visualized across our cell type annotations (see Fig. 3e). The
surface markers show highly specific expression patterns across pre-
dicted cell types, providing an unbiased validation of our cell type
annotation on the protein level.

Overall, this extensive and thorough orthogonal validation
demonstrates the robustness of the annotations in the atlas and pro-
vides confidence in using it as a reference for future studies.

Automatic cell type annotation
A key use case of the plaque cell atlas is to automatically annotate and
integrate future scRNA-seq plaque datasets by reference mapping. To
validate the quality of automatic cell type annotations based on our
atlas, we analyzed an additional independent carotid plaque dataset47

by Bashore et al. consisting of more than 75k cells, of whichmore than
25k have additionally been profiled by CITE-seq. We utilized this as a
querydata set andmapped it to the atlas as a reference using scArches.
Fig. 4 shows the UMAP projection of the query onto the reference
colored by level 1 (Fig. 4a, b) cell type annotation. In addition to the
annotations, the uncertainty of the cell type assignments is provided,

which is derived from the scaled euclidean distance to the closest cell
type prototype in the reference37 (see Fig. 4c). The annotation shows
strong confidence in the majority of cells, while only a small percen-
tage of cells have a high uncertainty. The UMAP projections of the
whole atlas including the automatically annotated cells shows that cell
types of query cells were assigned consistently with the reference
(Fig. 4d). Cells with uncertainty greater than 0.5 were excluded (1449
cells out of 77,112). This atlas is used for all subsequent level 1 down-
stream tasks.

To demonstrate the consensus of annotations within the field, we
compared our predictions with the annotations provided by the
authors (see Fig. 4e). In a first analysis, the authors’ annotations were
harmonized to match our cell types, keeping only the common cell
types. Our predictions achieved a precision of 94.01% and a recall of
91.74%, demonstrating high consensus. Similar to the atlas validation,
blocks between transcriptionally similar cell types are forming. Nota-
bly, while Bashore et al. had used surface protein expression to
annotate neutrophils, we obtained almost perfect precision and recall
for neutrophil annotations only based on transcriptomic profiles.

To corroborate the accuracy of predicted cell types, we assessed
the expression levels of surface proteins measured by CITE-seq. The
dot plot indicates highly cell type specific expression of established
surface protein markers47 for all cell types (Fig. 4f), indicating a high

Fig. 3 | Validation of cell type label transfer. a–d show the confusionmatrices for
different data sets (data set name given in the panel headers) providing the number
of cells with specific combinations of expert annotations (“Expert provided Label”
on the y-axis) and labels predicted by the atlas (“Predicted Label” on the x-axis). To
compensate for the differences in cell type abundance the colormap is normalized
along the rows and the overall precision and recall are weighted according to their
abundance. e Depicts the dot plot of surface markers grouped according to cell

types (x-axis) in a CITE-seq sample to orthogonally validate the cell type annota-
tions of the atlas (y-axis). The highly specific expression pattern of the surface
protein is depicted with black boxes. The color coding shows normalized protein
expression of the proteins encoded by the marker genes, with light red indicating
low expression and dark red indicating high expression. Source data are provided
as a Source Data file.
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Fig. 4 | Reference mapping with a dataset consisting of more than 75k cells.
a the UMAP projection of the query cells with cells colored by their annotations on
level 1 while (b) additionally includes cells of the reference in gray. The uncer-
tainties of the predictions are shown by the color code in (c). d The whole atlas,
including the colored reference. e Confusion matrix comparing labels (y-axis)
provided by the authors of the original datasets with our predictions (x-axis) with a
row normalized colormap to account for differences in cell type abundances. fDot

plot of CITE-seq protein expression of surface markers grouped according to cell
types (x-axis) for each annotated cell type (y-axis). The highly specific expression
pattern of the surface protein is depictedwith black boxes. The color coding shows
normalized protein expression of the proteins encoded by the marker genes, with
light red indicating low expression and dark red indicating high expression. Cells
with uncertainty greater than 0.7 are excluded from this analysis. Source data are
provided as a Source Data file.
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agreement of predictions with the cells’ true identity. Importantly,
fibromyocytes express both SMC and fibroblast markers, as these cells
are rendered fibroblast-like SMCs4. Additionally, the neutrophils,
annotated based on our mRNA derived markers, express known neu-
trophil surface proteins CD15 and CD16. Together with the consensus
to the author-provided annotation, this highlights the robustness of
our proposed marker genes.

This validation by unbiased CITE-seq and annotation consensus
confirms that the plaque atlas yields highly accurate automatic cell
type annotations. Additionally, we investigated the annotations of cell
types that were not shared between our dataset and the authors’
dataset. In the Bashore et al. dataset, monocytes and fibromyocytes
were not identified. As expected, our predicted fibromyocytes were
classified as fibroblasts and SMCs by the authors, while ourmonocytes
were determinedmostly asmacrophages (Supplementary Fig. 4). Cells
that were not annotated by the authors were mostly labeled as mac-
rophages in our analysis.

To enhance accessibility for researchers annotating their datasets,
we provide our atlas as a reference via the user-friendly archmap web
server and also offer a solution that does not require data upload,
comprising a preconfigured Python script and a Docker container.
Both approaches eliminate the need for advanced technical profi-
ciency, enabling researchers of any background to efficiently annotate
their datasets. Having established a validated reference for plaque cell-
type annotation, we next asked how the atlas could inform the pro-
spective design of future studies. Powered sample-size estimation is a
critical yet often overlooked step in single-cell experiments, particu-
larly in human cardiovascular research where tissue availability and
sequencing budgets are limited.

Atlas-guided experimental design with scPower
Leveraging the cell-type-specific gene-expression priors contained in
the plaque atlas, we applied the scPower14 framework to estimate the
sample sizes, cell numbers and sequencing depth required to detect
biologically meaningful differential-expression signatures across pla-
que cell populations. This requires assumptions about the gene
expression levels and effect sizes (log fold change) of genes of interest.
To enable plaque-specific power analysis, we used the atlas data to
learn the parameters of these cell type specific gene expression prior
distributions (Supplementary Fig. 5). Moreover, we derived several
technical parameters from the Pauli et al.25 dataset, which are required
as additional input. In the analyses that follow, we specified a fixed
budget as well as the costs of typical sequencing runs (see “Methods”).

To evaluate the power to detect differentially expressed gene
signatures, we formulated assumptions for three scenarios with dif-
ferent average effect sizes of differential gene expression: a pessimis-
tic, neutral, and optimistic scenario with fold changes (FC) 1.1, 1.5 and
2.5 respectively. ScPower can estimate power for specific gene sets,
which reflect the aims of the experiment and canbe derived fromprior
knowledge. Here, we made use of this feature and evaluated the
average power for three atherosclerosis-related gene sets, which are
expected to be active in different cell types: (1) targets of the CCL1949

chemokine, which is overexpressed in carotid plaques of symptomatic
patients50,51 and its targets downstream of CCR7 are expected to be
expressed in T-cells, B-cells, dendritic cells andNKcells52,53; (2) genes of
the Interferon-Gamma (IFN-y) pathway, which is active in athero-
sclerotic lesions and a well known activator of macrophages54; and (3)
genes of the vascular remodeling pathway, which were identified
through genome-wide association studies of coronary artery disease55

and areexpected tobe active in structural cells. For all combinations of
these specific pathways and fold changes, we evaluated the power to
identify differentially expressed genes with a total sample size of 22
individuals.

For abundant cell types the power is generally high, while lower
abundance cell types show substantially less power (Fig. 5). As

expected, higher effect size leads to an increase in power. For
detecting differential expression in the vascular remodeling pathway,
structural cell types, such as SMCs, ECs, fibromyocytes, and fibro-
blasts, exhibit comparatively higher statistical power than other cell
populations, despite their lower abundances, as the relevant genes are
highly expressed in these cells. Accordingly, the IFN-y signaling path-
way demonstrates its strongest power in immune cells, including
T cells, macrophages andmonocytes. Within the CCL19 targets, T cells
show one of the highest power estimates. Under less optimistic
assumptions, the overall power for these gene sets remains below
75%, indicating that larger sample sizes are essential for achieving
robust statistical detection. In case an investigation of rare cell types
is desired, we recommend sorting with FACS prior to sequencing
to enrich these cells enough to have sufficient power to detect dif-
ferentially expressed genes. Insights like these can streamline
resource allocation and informnecessary adjustments to experimental
designs.

This framework provides a valuable resource for the research
community to plan future experiments more efficiently and cost-
effectively. A web-based dashboard (https://scpower.helmholtz-
muenchen.de/) allows users to specify their own parameters, e.g.,
expected cell type abundances, samples, cells or financial budget and
others. Additionally, it is possible to obtain power calculations for very
specific gene sets or pathways that can be provided based on pilot
experiments. This enables researchers with less technical proficiency
to first use the web-based scPower tool to plan their experiments and
subsequently automatically annotate their data using the web-based
archmap tool described above. This user-friendly web-based workflow
makes the field of scRNA-seq more accessible to the cardiovascular
research community.

Cell type abundance analysis using single-cell and bulk RNA
sequencing
The plaque cell atlas also enables the analysis of cell type abundances
across different datasets and sorting strategies. Single-cell data allows
researchers to directly assess abundances or deconvolute bulk RNA-
seq data for broader insights. For all compositional data analyses, the
estimated abundances were centered and log ratio transformed (CLR).
The atlas includes datasets from carotid, femoral, and coronary
arteries, sorted by different criteria: unsorted, CD45+ cells, or T cells
(see Supplementary Fig. 6). This diversity facilitates sanity checks
across and comparisons within these groups (see Supplementary
Fig. 7). The annotations of the atlas are in line with the expectations, as
cells in T cell-sorted datasets are predominantly annotated as T cells
and NK cells in our atlas, while CD45+ sorted datasets largely lack
structural cells, which are highly abundant in unsorted datasets.
Additionally, abundance patterns vary by origin. Monocytes and den-
dritic cells are abundant in carotid plaques, but nearly absent in the
femoral ones (t-test on CLR values: t = 2.9, p = 0.008, df = 23; t = −2.5,
p =0.02, df = 23). In unsorted coronary datasets, fibroblasts and ECs
aremore prevalent, whereas T cells appear less common compared to
carotid plaques. A comparisonoforigins usingunsorteddatasets is not
possible, since theWirka et al. study is the only one of coronary origin,
which confounds the analysis. These findings highlight variability in
cell type composition between origins, but should be interpreted
cautiously due to potential biases from varying sampling and extrac-
tion methods and small numbers of tissue specimens obtained using
comparable techniques.

To circumvent this limitation and take advantage of larger sample
sizes of bulk RNA-seq experiments, we applied deconvolution of bulk
RNA samples using our atlas as a reference. This approach uses cell
type specific gene expression information from scRNA-seq as prior to
deconvolute bulk samples into a mixture of cell type specific expres-
sion profiles and their respective cell type abundances. Moreover,
since sample collection and phenotyping is usually harmonized within
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a study, this approach also eliminates potential confounding due to
dataset specific abundance differences. We used BayesPrism17 to
deconvolute a dataset of 236 (202 after QC, see “methods” section for
details) bulk RNA seq samples from carotid artery plaque tissue25.

The plaque samples are classified into early or late (advanced)
lesions of stenosed carotid arteries (see “methods”). This enables us to
investigate differences in cell type composition between early lesions
and diseased carotid arteries. Structural cells, such as fibromyocytes,
SMCs, ECs, and fibroblasts together with macrophages, were most
abundant (see Fig. 6a). Stratifying by plaque status reveals significantly
more SMCs (t-test on CLR values: p = 2.8e-04, Supplementary Table 2)
in early lesions than in late lesions, and vice versa significantly more
fibroblasts (t-test on CLR values: p = 3.0e-05, Supplementary Table 2)
in late, furthest progressed lesion states. This indicates the high cel-
lular plasticity of SMCs and their transition from SMCs to fibroblast-
like cells4.

We also observemore fibromyocytes in early lesions compared to
advanced lesions (t-test on CLR values: p = 1.9e-03, Supplementary
Table 2), which supports their protective role in atherosclerosis4.

Additionally, significantly more macrophages (t-test on CLR
values: p = 2.0e-04, Supplementary Table 2) are observed in late
lesions validating the infiltration and increased activity of macro-
phages in more progressed atherosclerotic lesions and the immune
system’s contribution to disease acceleration8,56. Finally, no significant
difference in EC abundance was detectable.

To investigate differences among more granular cell
types–referred to as “level 2” annotations—we annotated subclusters
of ECs, dendritic cells (DCs), T cells, and macrophages, as these have
clearly defined functional subtypes and marker genes (see Supple-
mentary Table 1 and “Methods”).

In the EC population, we identified one cluster expressing ACKR1,
AQP1, FABP4, and NR2F2, which can be attributed to a proangiogenic
phenotype of venous origin57,58. Another EC subcluster expressed
established EndoMT genes COL1A2 and FN1, along with co-expression
of GJA4, GJA5, MECOM, and GATA2, indicating their arterial origin59–61.
Classical EndoMT regulators such as SNAI1 and SNAI2 were not
expressed in any ECs, except for SNAI1 in a subset of cells from Wirka
et al. (see Supplementary Figs. 8 and 9). This underscores the advan-
tage of simultaneously analyzing multiple integrated datasets and
indicates that classical EndoMT regulators are not consistently
expressed across all scRNA-seq studies. Because the remaining ECs
lacked distinct pro-angiogenic or EndoMT signatures yet expressed
PECAM1 and VWF, we labeled them as normal ECs.

We further sub-clustered the macrophages into distinct clusters
previously described by a myeloid plaque atlas8. Foamy macrophages
were classified based on their hallmark gene TREM2, as well asMARCO,
FABP4/5 and CD36. One cluster was uniquely identified by expression
of TREM1, PLIN2 together with CCR2 ligand CCL2 and CCL7, CCL20,
CXCL1/2/3/8. Another cluster exhibited a mixed inflammatory sig-
nature, with S100A8/S100A9 (calgranulins) and IL1B indicating a
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Fig. 5 | Power analysis utilizing the scPower framework. The plot shows the
statistical power of gene sets related to atherosclerosis with a pessimistic (FC 1.1),
neutral (FC 1.5) and an optimistic (FC 2.5) scenario per cell type. The gray bars

depict the expected frequencyof the cell types in the scRNA-seq study. Source data
are provided as a Source Data file.
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strong pro-inflammatory phenotype, while the presence of IRF7 and
interferon-stimulated genes (IFITM3, ISG15, IFIT2) points toward
engagement of the type I interferon pathway. The absence of che-
mokines might suggest a less pronounced migratory recruitment
function, focusing instead on local inflammatory responses. One
cluster displayed a gene expression profile closely resembling the
HMOX1hi cluster identified byDib et al. This included genes associated
with heme degradation (HMOX1), iron processing and export (FTL,
SLC40A1, NUPR1), and antioxidant activity (SELENOP, PRDX1). Addi-
tionally, this cluster showed enrichment of lysosomal proteases (CTSB,
CTSD), lysosomal pathway genes (LAMP2, LGMN, LIPA, GPNMB), and
genes involved in lipoprotein metabolism (APOC2, APOE, LRP1, NPC2).
Of note,HMOX1was also expressed by the PLIN2/TREM1 cluster. Lastly,
all other clusters that showed none of the above described signatures
were termed ‘other macrophages’ (see Supplementary Figs. 8 and 9).

Dendritic cells formed distinct clusters of conventional dendritic
cells 1 (cDC1), expressing SNX3, CLEC9A, and IRF8, and conventional
dendritic cells 2, expressing CD1C, CLEC10A, and FCER1A. Additionally,
there was a cluster expressing plasmacytoid dendritic cell (pDC)
markers, including TCF4, GZMB, TLR7, TLR9, NRP1, SCAMP5, CLEC4C,
and IRF762 (see Supplementary Figs. 8 and 9).

Finally, T cells were divided into CD4⁺ and CD8⁺ T cells. CD4⁺
T cells prominently displayed CD4, FTH1, IL7R, and ANXA1, while CD8⁺
T cells highly expressed CD8A, CCL4L2, CRTAM, CCL4, GZMK, and
GZMH (see Supplementary Figs. 8 and 9). Additionally, CD8⁺ T cells
showed expression of the CD8 surface protein, which was not
expressed in CD4⁺ T cells; conversely, CD4⁺ T cells expressed the
CD3 surface protein. This analysis was enabled by the inclusion of the
CITE-seq data from Bashore et al. in the atlas.

For the subsequent deconvolution, we used the level 2 cell types
with more granular macrophage, DCs, T cells and EC subtypes (see
Fig. 6B). The aforementioned differences in SMCs, fibroblasts and
fibromyocytes are still visible, while new features are revealed. The
newly annotated EC subtypes presentwith highly significant differences
between early and late lesions. While the proangiogenic ECs with
venous origin are more abundant (t-test on CLR values: p=4.3e-03,
Supplementary Table 2) in the more advanced carotid plaques,
EndoMT-ECs of arterial origin present the opposing abundance pattern
(t-test on CLR values: p= 3.2e-10, Supplementary Table 2) in early lesion
tissues compared to late-stageplaques.One-third (31.6%) of the venous-
signature, pro-angiogenic ECs in our single cell reference set originate
from carotid plaques. Both the unsorted single-cell carotid profiles and

the bulk RNA-seq samples were obtained by carotid endarterectomy.
This procedure excises the atherosclerotic plaque together with adja-
cent intimal tissue while leaving the outer media and adventitia in situ,
thereby ruling out contamination by ECs from neighboring veins in the
deconvolution and supporting their derivation from intraplaque neo-
vascularization. Together these interesting observations confirm the
notion that these EC-rich neovessels in late plaques are allegedly the
entry point for immune cells that infiltrate the tissue and likely con-
tribute to lesion progression and instability. This becomes particularly
relevant when EC barrier function becomes impaired, neovessels start
to leak, and intraplaque hemorrhages occur63,64.

The stratified macrophage subtype abundance shows that foamy
macrophages are, as expected, significantlymore present (t-test onCLR
values: p = 7.2e-06, Supplementary Table 2) in the late compared to
early lesions, reflecting the important role of macrophage infiltration
and activity in late-stage atherosclerotic plaques8,56. We did not deter-
mine any significant differences in the inflammatory, other macro-
phages as well as the PLIN2+/TREM1+ cluster. The latter is particularly
interesting, as it is associated with vascular events8, indicating that not
the abundance of these macrophages, but rather their gene programs
influences disease progression. Another interesting observation is the
significantly higher abundance of HMOX1+macrophages in late lesions
(t-test on CLR values: p = 1.4e-04, Supplementary Table 2), which may
reflect the plaque’s adaptation to intensified oxidative stress and
changing iron-handling associated pathways. In these cells, genes such
as FTL, SLC40A1, and NUPR1 are associated with ironmetabolism, while
antioxidative components including SELENOP andPRDX1 appear tohelp
counterbalance the increased presence of reactive oxygen species. At
the same time, the increased expression of lysosomal proteases like
CTSB and CTSD, along with lysosomal machinery genes, such as LAMP2,
LGMN, LIPA, and GPNMB, highlights enhanced proteolytic activity and
more robust catabolic processing within these macrophage subtypes.
Furthermore, the presence of genes involved in lipoproteinmetabolism
(APOC2, APOE, LRP1, and NPC2) suggests an active role in handling and
redistributing lipids as the lesion destabilizes. Together, these mole-
cular characteristics imply that as the plaque environment becomes
more complex, these specialized macrophages respond by ramping up
their iron management, antioxidative defense, and lipid-handling
capacities in an attempt to preserve cellular homeostasis.

Overall, bulk to single-cell RNA-seq deconvolution demonstrates
theutility of a robustly annotated atlasbyhighlightingdisease-relevant
biological processes and comprehensively dissecting cell subtype

Fig. 6 | Deconvolution of 202 bulk RNA-seq samples using BayesPrism and the
plaque atlas. a Stratified deconvolution results using the level 1 cell types in the
atlas as the reference. b Deconvoluted abundances of the bulk samples using the
finer grained level 2 cell types in our atlas. (Right) Cell type proportions; (Left)
Centered and log-transformed (CLR) proportions to better highlight differences in
small abundances. Boxplots depict the median as the center line, box limits at the
25th and 75th percentiles (interquartile range), whiskers extending to the most

extreme values within 1.5 × IQR, and individual points beyond the whiskers as
outliers. For each of the cell-type comparisons (n = 13 for level 1 and n = 22 in level
2), CLR-transformed abundances in early vs. late lesions were tested by two-sided,
unpairedWelch’s t-tests (unequal-variance Student’s t). Raw p values are displayed,
with significance assigned only to those surviving Benjamini–Hochberg FDR
adjustment at q <0.05. Source data are provided as a Source Data file.
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abundance with relevance towards atherosclerotic plaque formation
and progression.

Mapping on diverse tissues
Fibromyocytes and macrophages are frequently discussed as relevant
cell types for plaque progression4,65. Having defined these plaque-
specific cell types in our atlas, we next wondered if these cell types are
exclusively found in atherosclerotic plaques. Therefore, we investi-
gated 455,953 cells of a total of 23 different scRNA-seq datasets from
various organs24 and assessed their similarity to the cells in the atlas
using the automatic mapping tool. Four exemplary organs are show-
cased in Fig. 7. Interestingly, fibromyocytes were only found in the
vasculature in significant numbers (more than 0.22% of total cells),
highlighting that cells that were labeled as fibromyocyte are distinct
enough tonot bedetected inother tissues (see SupplementaryFig. 10).
Of note, the vascular cells in the Tabula sapiens data set were sampled
from individuals with CAD. To investigate the presence of fibromyo-
cytes in non-atherosclerotic vascular tissues, we mapped a dataset of
arteries23 onto our atlas (see Supplementary Fig. 11). The analysis
revealed a significant abundance of fibromyocytes in these non-
atheroclerotic vessels, indicating that these cells are not exclusive to
plaques, but are a normal component of the vasculature, in line with
the results of previous studies27 and our bulk deconvolution analysis in
early lesions.

We also screened for foamy macrophages in other tissues and
found them highly abundant in accordance with the literature in the
lung66 (see Supplementary Fig. 10). In the original analyses, these cells
were mostly annotated as macrophages and their phenotype was not
recognized.

As expected, the uncertainty for annotating cells originating from
vascular tissues is the lowest, because the atlas includes the sur-
rounding tissues of the plaques as well. In all other organs we observed
clusters of cells with very high uncertainty. Further analysis revealed
that these clusters are organ specific cells, such as bladder urothelial
cells in thebladder, kidney epithelial cells in kidney, andhepatocytes in
liver. In the vasculature dataset there was a small cluster of uncertain
cells, which were identified as erythrocytes that are not part of
our atlas. Simultaneously, the clusters with low uncertainty were cor-
rectly assignedby the automaticmapping to the cell type annotatedby
the authors (see Supplementary Fig. 12). Together this highlights the
robustness of our atlas and indicates that atherosclerosis associated
cell types can also occur in non-atherosclerotic subjects.

Discussion
The plaque atlas showcased in this current study represents the most
comprehensive curation of single-cell RNA sequencing (scRNA-seq)
datasets of atherosclerotic lesions to date27,28. This atlas, extensively
validated through annotation consensus, protein measurements, and
the illustration of known biological processes, serves as a robust
reference for future studies. It provides a foundation for integrating
new research questions and advancing our understanding of athero-
sclerosis in the hunt for novel biomarkers and therapies.

Previous integration efforts for single-cell data from plaque
tissue27,28 were often constrained by limited scope, validation, and
usability. In contrast, our atlas encompasses all major lesion locations,
offers thorough orthogonal validation, and enables user-friendly
exploration via an interactive web interface. By integrating diverse
datasets, we were able to identify neutrophils, which were overlooked
in most of the individual datasets, as it is notoriously difficult to
identify in scRNA-seq data45,46. Interestingly, our neutrophil cluster
consisted almost exclusively of cells fromthe Slysz et al. dataset9 which
is CD45+ sorted. This highlights differences in sensitivity among var-
ious datasets and protocols used and underscores the advantage of
integrating them into an unified atlas. Here we propose new human
plaque marker genes to robustly identify this cell type in all future

studies. Despite having defined granular level 2 cell type annotations
for the deconvolution, we recognize that the consensus on these
annotations can vary depending on the specific research question.
Often, these specific subtypes are transcriptionally highly similar,
whichmakes it difficult to unambiguously distinguish them. Hence, we
recommend using level 1 annotations initially, followed by sub-
clustering into level 2 cell types of interest, as demonstrated in our
bulk deconvolution workflow, which yielded results in line with pre-
viously published studies from the cancer field17.

The scPoli model, integral to this atlas, is trained on predefined
cell types, limiting its predictive capacity to those included in the
study. The level 1 cell type annotations are in high concordance with
the author-provided annotations and represent the consensus in the
field. Thus, we expect this level of annotation to remain stable. Level 2
cell type annotations are currently limited to those subtypes that have
well established functional roles and establishedmarkerswhich clearly
separate cell type clusters in our atlas. These level 2 annotations
heavily depend on experimental evidence and are likely to evolve as
new findings emerge. Consequently, additional experimental evidence
will also uncover new functional roles for specific cell subsets. In case
of a new single-cell study that includes a novel sufficiently distinct
subset of cells, the model provides uncertainty metrics to flag these
cells. Clusters of cells with high model uncertainty could indicate the
presence of yet unidentified cell types not included in the atlas, as
demonstrated with the non-plaque tissue mappings.

Overall, this atlas not only serves as a robust foundation for future
research but also enhances accessibility for newcomers to the field, by
making it easy to use. Our atlas can be integrated into the training of
foundation models20–22, thereby expanding the dataset corpus to
include plaque tissues. This inclusion is crucial, as current models
often underperform in out-of-distribution tasks, reflecting an overly
homogeneous training corpus.

Wedemonstrated four primarydownstream tasks: automated cell
type annotation, power analysis and study planning, cross-organ ana-
lysis and abundance analysis with single-cell data and bulk RNA sample
deconvolution. For future studies, the atlas can be used in additional
downstream applications, such as integrating scRNA-seq data with
spatial transcriptomics datasets and conducting cell type specific
genome-wide association studies using prior atlas information27. Given
the availability of specially designed bulk RNA-seq experiments, the
atlas can facilitate the deconvolution of phenotype-specific signals or
survival analysis. Reference mapping, including healthy reference
atlases, can highlight differences between healthy and diseased tissue
samples at the single-cell level, as recently emphasized67. This under-
scores the necessity of an atlas comprising exclusively diseased
samples.

We acknowledge that there are certain limitations. First, the
representation of cells of different arterial origins is not balanced. In
particular, femoral arteries were only sampled in a single study, where
a pre-selection for CD45 positive cells was applied. Thus, structural
cells in femoral arteries could not be sufficiently characterized. In
general this scarcity of cells of femoral origin hinders comprehensive
comparisons across different vascular beds and origins. Second, the
lack of a clearly defined dataset of “healthy” arteries makes compar-
isons between healthy and aberrant cell states difficult. Third, the
quality of cell type annotations depends on the publicly available
marker genes. While we mitigated this issue by incorporating a con-
sensus annotation from independent experts and surface marker
measurements, the experts likely relied on similar marker genes. Last,
the deconvolution approach is limited to cell types present in the
reference atlas. While we believe all major cell types described in the
literature are covered, newly discovered cell types first need to be
annotated in the atlas before cell type proportions can be deconvo-
luted. Both bulk and scRNAseq can have technical biases that can skew
the observed proportions of cell types within tissues. However,
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because samples from the same technology share the same bias,
comparisons within technologies still reveal meaningful relative dif-
ferences while comparisons across technologies have to be treated
with caution and are not advised. In cases where detailed character-
ization of structural cell populations is required, single-nucleus RNA
sequencing may be an alternative to scRNA-seq68.

In summary, this comprehensive and robust atlas serves as a
powerful resource, unlocking countless opportunities for downstream
applications and enabling the discovery of novel cellular processes in
atherosclerosis. Importantly, it highlights that fibromyocytes are spe-
cific for vascular tissues, indicates expansion of pro-angiogenic
endothelial subsets, and shows enrichment of HMOX1+ macrophages

Fig. 7 | Mapping Tabula Sapiens organs scRNA-seq datasets on plaque atlas.
Four exemplary mappings of the Tabula Sapiens dataset on the plaque atlas. For
each organ, the predicted level 1 cell type is shown on the left panel, the models

uncertainty on the right and the free annotations provided by the Tabula Sapiens
authors in the middle.
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in advanced plaques. These findings reveal potential cellular
mechanisms of lesion progression and instability that warrant follow-
up investigations. Looking ahead, the atlas will be regularly updated to
incorporate new findings, ensuring it remains at the forefront of
advancing our understanding of this complex disease.

Methods
Preprocessing of all data sets
In all datasets QC was applied on the uncorrected counts. Doublets
were tagged with scDblFinder30 with the sample as the batch para-
meter and the counts are corrected for ambient RNAwith celda69 using
the sample as the batch parameter and rounded to integers. The
uncorrected counts and celda corrected counts were kept as separate
layers.

Preprocessing of Pan et al.70

The three samplesweredownloaded fromGEOandcamealreadyfiltered
with 200 <#genes <4000, maximum counts of 20.000 per cell and
mitochondrial gene count percentage lower than 10%. The three samples
were outer joined with the concatmethod of the anndata71 package.

Preprocessing of Alsaigh et al.26

The dataset was downloaded from GEO and only plaque samples
(barcode suffixes 2, 4 and 6) were taken and adjacent tissue samples
excluded. The samples were renamed from 2, 4, and 6 to 1, 2, and 3
respectively. Cells were filtered on the uncorrected counts according
to the original publication with 200 <#genes <4000 and percenta-
ge_counts_mitochondrial >10%. Additionally, we filtered out genes
expressed in less than 3 cells.

Preprocessing of Fernandez et al.5

Thedatasetwas downloaded fromGEOand each sample is read inwith
scanpy72 and outer joined with the concat method from anndata. As
sample 6 is a CITE-seq sample it also includes surface proteinmarkers.
Thesewere removed fromthedataset as the atlas is only basedongene
expression. We applied our own filtering on the uncorrected counts
and filtered out cells with less than 200 expressed genes, 500
<#counts <40000 andmore than 10%mitochondrial gene percentage.
Genes were filtered out that are expressed in less than 3 cells.

Preprocessing of Pauli et al.25

The dataset was preprocessed with Seurat with nFeature_RNA > 200 &
nFeature_RNA< 10000 & nCount_RNA> 1000 & nCount_RNA < 50000
& percent.mt <20. Only the diseased samples were taken and the
adjacent samples excluded.

Preprocessing of Dib et al.8

The dataset was downloaded from GEO and the sample ids extracted
from the barcode suffixes. The sample ids were changed from 5 to 4,
sample 6 to 5 and sample 7 to 6, but kept sample IDs 1, 2, and 3 the
same. Cells were filtered on the uncorrected counts with more than
400 genes expressed, 1000 <#counts <30000, and pct_counts_mt
<10%. Genes that are expressed in less than 3 cells were filtered out.

Preprocessing of Slysz et al.9

The samples were downloaded from GEO. Femoral and carotid sam-
ples were loaded in and concatenated with concat of anndata into a
femoral and carotid anndata object. For both objects the cells were
filtered on the uncorrected counts according to the authors with 200
<#genes <10000, 200 <#counts <10000 and pct_counts_mt <10.

Preprocessing of Ahmad et al.48

The dataset was downloaded from GEO. We selected the “Fresh_-
ROB_2026” and “Fresh_DTAN_4047” samples and concatenate them
into one dataset with concat from the anndata package. Metadata was

also available and cells which had “Removed by QC” as cell types were
removed. To be as consistent as possible we converted the provided
ensembl gene ids in this dataset into gene names using the mapping
created out of the Fernandez et al. dataset5. 4250 genes found no
mapping and were removed and kept 32251 genes. Cells were addi-
tionally filteredon the uncorrected counts by uswithmin_genes = 200,
500 <#counts <40000 and pct_counts_mt <10, while genes that are
expressed in less than 3 cells were excluded as well.

Preprocessing of Emoto et al.6

The dataset was downloaded from GEO and the SAP and ACS samples
were preprocessed according to the author with min_genes = 500,
min_cells = 3, pct_counts_mt < 8 and max_genes = 5000. Subsequently,
both datasets were concatenated with concat from the anndata
package. The ACS samples are termed sample 1, while the SAP samples
are termed sample 2.

Preprocessing of Chowdhury et al.7

The dataset was downloaded from GEO and came already filtered with
the following criteria: Genes were filtered that are expressed in less than
5 cells. Cells were filtered with more than 38% pct_counts_mt. Cells for
10x v2 samples were filtered with min_genes = 300 and max_counts =
15.000, while 10x v3 samples were filtered with min_genes = 500 and
max_counts = 20.000. The blood samples were excluded and only the
plaque samples were kept. The sample ids were changed from alpha-
betical to numerical according to the letters position in the alphabet.

Preprocessing of Wirka et al.4

The dataset was downloaded from GEO and came already filtered with
the following criteria: Genes expressed in less than 5 cells were filtered
out. Cells were filtered with pct_counts_mt <7.5% and kept with 500
<#genes <3500. There were duplicate barcodes which we investigated
more closely. They had different gene expressions, hence we assumed
they are different cells and made the barcodes unique.

Preprocessing of Bashore et al.47

The dataset was downloaded from GEO and only the gene expression
data from the sampleswas read in and concatenatedwith concat of the
anndata package. It was filtered according to the authors with 200
<#min_genes < 6000, max_counts = 40.000, min_cells = 3 and
pct_counts_mt < 30. For this dataset the doublet tagging ambientRNA
correction was applied shortly before the reference mapping.

Manual annotation of samples
Because samples within datasets can also entail batch effects due to
the data collection or other factors, we annotated and integrated on a
sample level.Wemanually annotated sample 1, 2, and3ofAlsaigh et al.,
sample 2 and 3 of Pan et al., sample 6 and 8 of the Slysz et al. femoral
dataset and sample 5, 6, 7, and 8 of the Wirka et al. dataset. For all
datasets we performed scran73 normalization with an initial clustering
of total counts normalization with 1e6 as target sum, log1p normal-
ization, PCA, neighborhood calculation on 30 PCs and Leiden clus-
tering with a resolution of 0.22. The resulting size factors were used to
normalize the counts. Subsequently log1p transformation is applied,
top 2000 highly variable genes selected, PCA and neighborhood cal-
culation on 30 PCs. Then UMAPs are calculated for each sample and
clusters were manually annotated with the level 1 marker genes.
Doublet clusters were annotated as doublets. Clusters with no distinct
marker gene patterns were annotated as unknown. In cases of uncer-
tainties of cluster annotations, these clusters were sub clustered and
annotated on a finer resolution.

Benchmark of integration methods
All annotated samples are concatenated into one dataset and the gene
names are mapped to Ensembl ids to solve the problemwith changing
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gene names and aliases. Duplicate genes after the mapping were
aggregated. The resulting dataset was normalized with scran using
the same parameters as in the manual annotations and log1p
transformed. The sample ids were suffixed with the dataset name to
make the sample ids unique. Unknown and doublet cells were
removed. It was preprocessed with the reduce_data method with
sample id as batch_key of the scib31 package. Highly variable genes
were selected and cells with zero counts were removed. Additionally,
cells with the duplicate gene expressions were removed as well. The
methods that are benchmarked are scVI32, Harmony33, LIGER34,
scANVI35, scGen36, scPoli37 and baseline PCA. For scGen, the scib
implementation was used on the log-normalized counts with the
sample id as the batch key and the manual annotations as cell types.
For scVI the default parameters and counts are used. Subsequently the
scVI model is fine-tuned with scANVI with the cell type labels. For
scPoli, the default parameters are used, but the loss is changed to
“mse” and calculated on the log-normalized counts. Harmony is cal-
culated on the PCA embedding with the harmony-pytorch package.
LIGER embeddings are calculated following the tutorial on scib-
metrics31. The resulting embeddings are benchmarked with the scib-
metrics benchmarker using the sample id as batch key and cell types as
label key.

Atlas integration
To generate the whole atlas all preprocessed datasets except Bashore
et al. were concatenated with concat from anndata. The sample ids
were made unique by suffixing the dataset. Subsequently the gene
names were harmonized by mapping them to ensembl genes and
aggregating duplicates. Duplicate and zero count cells were removed
and the whole dataset was scran normalized and log1p transformed
with the parameters described earlier. Manual annotations were
transferred from the benchmark subset. For the preprocessing of the
whole object, the same pipeline as in the benchmark was applied. A
split of reference and query dataset was performed where the manual
annotations serve as the reference. A scPoli model was trained on the
reference dataset log-normalized counts with the sample as the con-
dition key and the cell type annotations as cell type key. An embedding
dimension of 10 was chosen and trained with a mse reconstruction
loss. For everything else default parameters were used. Subsequently,
the query dataset was mapped to the reference using the pretrained
reference scPoli model and did transfer learning with scArches and
new labels including uncertainties predicted. Afterwards, all level 1 cell
type clusters were reanalyzed independently to validate the robust-
ness of the annotations. This resulted in the identification of neu-
trophils, which was overlooked in the previous annotations. Unsure
cells were labeled as unknown and subsequently remapped to the
reference.

Validation of annotations (expert and CITE-seq)
To validate the annotations, an expert annotated three datasets
(Pauli25, Emoto6 andWirka4) independently fromuswithout our helpor
interaction using his own methods and judgment. One dataset48 was
annotated by the authors of the original publication. To compare the
cell type annotations with our predictions, they needed to be harmo-
nized. For this, we used our level 1 cell types and did the same to the
provided annotations from the expert and authors. The intersection of
cell types between our predictions and the author/expert provided
annotations were used to calculate confusion matrices and precision/
recall. The precision and recall was calculated per cell type and then
weighted according to their abundance to yield an overall precision
and recall per dataset. For the CITE-seq dataset we looked at the pro-
teinmeasurements and used the dotplot function in scanpy to plot our
predicted cell types in these samples to the surface markers that we
grouped into cell types, while scaling the expression between 0 and 1
within each surface protein (default).

Automatic cell type annotation on Bashore dataset
The gene expression data of the Bashore et al.47 dataset was used to
validate the automatic cell type annotations. We made the sample
names unique, mapped the gene ids to ensembl ids with our mapping,
removed 22 non-mapped genes and aggregated duplicated genes (same
workflow as before). Our standard scran-log1p normalization/transfor-
mation was applied. The dataset was then subsetted for the 2000 genes
used in the scPoli model, where 9 genes were not in the query dataset.
The missing information was filled with zeroes. This resulted in 77.112
cells that were loaded into the reference model and trained with scAr-
ches. Finally, cells with uncertainty higher than 0.7 are removed. The
samepipeline for validationwith confusionmatrices andprotein surface
markers as in the previous section was applied, where the author pro-
vided us with the cell type labels. Cells that were not given a label by the
authors were labeled as “unknown” by us. The atlas including the
Bashore dataset was used for subsequent downstream tasks.

Power analysis with scPower
To calculate the gene expression priors the uncorrected counts and
level 1 cell type annotations were used. The gamma and dispersion fits
were calculated per cell type. The matrices were subsampled using
multinomial sampling to simulate 25%, 50%, and 75% total counts.
Because the T cell matrix was too big in memory, we used a more
memory efficient subsampling method that uses sparse matrices
instead of dense matrices. Subsequently, the gammas and dispersion
priors were fitted using the tutorial in the vignette of scPower. To
model the transcriptome mapped reads to UMI relationship we used
the Pauli et al. dataset as priors where we had CellRanger outputs. The
same holds for the cell type frequency priors, for which we used the
predictions of the atlas in this dataset. We assumed 22 samples with
200 cells each, a read depth of 334.015 andmapping efficiency of 43%
which were the mean parameters in our samples. All of these para-
meters can be easily changed in our interactive web-based dashboard
according to your experimental setup. The three gene sets used were:
(1) targets of the CCL19 chemokine and its targets downstream of
CCR7. To get these we downloaded the ligand-target matrix from
https://zenodo.org/record/3260758/files/ligand_target_matrix.rds and
extracted the top 50 genes of the CCR7 targets with the highest score;
(2) genes of the Interferon-Gamma (IFN-y) pathway which where
downloaded fromhttps://www.gsea-msigdb.org/gsea/msigdb/human/
geneset/HALLMARK_INTERFERON_GAMMA_RESPONSE.html; and (3)
vascular remodeling genes, which were identified through genome-
wide association studies of coronary artery disease in Chen et al.55.

Sample collection bulk RNAseq data
Sample collection and preparation for sequencing was performed as
described before25. The classification of human carotid artery samples
into early and late-stage atherosclerosis was initially performed
visually during the cutting and preparation process. This means the
identification and separation of advanced plaque parts with small
lumen versus large lumen without visually detectable plaque. The
classifications were then confirmed through subsequent histomor-
phological analysis of FFPE-processed adjacent sections. Lesions were
categorized according to AHA guidelines74–77 as previously described25.
Samples classified as I, II and III were designated as early lesions, while
those classified as V to VIII were assigned late lesions.

Preprocessing bulk RNAseq data
We reprocessed the data from Pauli et al.78 and performed adaptor clip-
ping and quality trimming of sequences using Fastp v0.23.2 (https://
github.com/OpenGene/fastp). Subsequently, reads were aligned to the
GENCODE v40 GRCh38 reference transcriptome using the transcript
quantifier Salmon v1.6.0 (https://salmon.readthedocs.io/). The R package
tximeta was employed to combine Salmon transcript quantifications with
sample data and to summarize transcript quantifications at the gene level.
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To assess data quality at both the read and alignment levels, we
utilized FastQC v0.11.9 (www.bioinformatics.babraham.ac.uk/
projects/fastqc/) and MultiQC v1.13a (https://multiqc.info/) to gen-
erate statistics before and after trimming. Outlier samples were
detected by performing a principal component analysis (PCA) on
variance-stabilizing transformed counts for the 500 genes with the
highest variance, using the R package DESeq2. The resulting counts
can be found in Supplementary Data 1.

Based on the QC metrics, we removed samples that met the fol-
lowing criteria: PCA outliers (determined by visual inspection), per-
centage of mapped reads <75%, percentage of duplication > 60%, and
number of mapped reads <10,000,000. After filtering, a total of
202 samples remained.

Cell type abundance analysis using single-cell and bulk RNA
sequencing
For finer grained level 2 cell types we used the level 1 predictions from
the atlas integration.We selected all cells of a certain cell type, took the
rounded corrected counts layer and applied our standard preproces-
sing pipeline to log-normalize it. Harmony was selected over other
integration tools due to its effectiveness in reducing batch effects
without relying on predefined cell types. This allowed for an unbiased
identification of sub-cell types by minimizing the risk of clustering
biases within Level 1 categories. Harmony provided an integrationwith
good biological signal retention, which we used solely for reannota-
tion; the integrated embedding was then discarded, and only the
updated cell annotations were used in further analyses. The resulting
datasetwas clusteredwith the Leiden algorithmandmanually assigned
to cell types with our level 2 marker genes. This was done for macro-
phages, dendritic cells, T cells and ECs. We were also looking for
potential mis-classifications and corrected them by assigning the
correct cell type. Cells with no clear signature (n = 264) were labeled as
“Undefined” and removed from the atlas in downstream tasks.

To deconvolute the bulk samples we used BayesPrism and closely
followed their tutorial provided in the GitHub repository (https://
github.com/Danko-Lab/BayesPrism/). The uncorrected counts of the
atlas including the cell type annotations were loaded and Ensembl IDs
were used in both the scRNAseq reference and the bulk matrix. Genes
were first filtered with the cleanup.genes function with default para-
meters, then filtered for protein coding genes with select.gene.type
and finally signature genes were calculated with get.exp.stat and sub-
sequently filtered with select.marker. For the level 1 deconvolution the
level 1 cell types were used as the cell.type.labels and the level 2 cell
types used as the cell.state.labels. For the level 2 deconvolution both
the cell.type.labels and the cell.state.labels were set to the level 2 cell
types in the atlas. Finally, the theta values for each cell type per sample
are used for the figures. The cell types are sorted according to their
mean proportions across all samples. The abundances were centered
and log transformed with the clr function of the compositions79

package. For significance testing a t-test with default parameters was
applied on the CLR transformed values.

Mapping on diverse tissues
We retrained the scPoli model separately with the level 1 and level 2
annotation as the reference. All datasets from the Tabula Sapiens
dataset were downloaded from Zenodo. All tissues were put into our
automatic cell type annotation scripts provided in the GitHub repo,
which includes normalization, selection of genes, optional renamingof
genes to Ensembl IDs, and finally the mapping to the atlas. For abun-
dance analysis cellswith a higher uncertainty then0.5were removed to
exclude uncertain cells, while for the confusion matrices we opted to
use an uncertainty threshold of 0.7 to includemore uncertain cells. To
make the comparisons of the author provided labels with our predic-
tions, we renamed the author provided labels to match our ontology.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The scRNAseq data used in this study is all publicly available under the
provided references in Table 1. The fully processed atlas is available
through the CELLxGENE portal at https://cellxgene.cziscience.com/
collections/db70986c-7d91-49fe-a399-a4730be394ac. The processed
bulk dataset including metadata used in this study is accessible in
Supplementary Data 1. Source data are provided with this paper.

Code availability
The Python and R code to reproduce the results is available at https://
github.com/heiniglab/reproducibility-plaque-atlas (https://doi.org/10.
5281/zenodo.15389565). The Python script and Docker container for
the automatic cell type annotation are available at https://github.com/
heiniglab/plaque-atlas-mapping (https://doi.org/10.5281/zenodo.
15389569)80 and https://github.com/matmu/plaque-atlas-mapping_
docker. The WebUI is accessible at https://www.archmap.bio/#/
genemapper/create. To use the tool, select “Plaque” as the atlas and
“scPoli” as the model. The platform will then provide detailed
instructions for uploading and preparing data for annotation.
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