REVIEW Open Access

Check for updates

Phenotypes, mechanisms, and therapeutic strategies of natural killer cell immunosenescence

Zixuan Guo^{1,2}, Fengtian Wu^{1,2}, Yao Chen^{1,2}, Jia Xu^{1,2} and Zhi Chen^{1,2*}

Abstract

Background Natural killer (NK) cells serve as pivotal effector cells within the innate immune system, playing an indispensable role against infections and tumors. Individuals with diminished NK cell activity or NK cell deficiency are at a higher risk of developing cancers and experiencing severe viral infections. With global demographic shifts toward aging populations, elucidating the mechanisms of immunosenescence becomes increasingly critical for developing targeted therapeutic interventions against age-related disorders.

Main body of the abstract This review provides a comprehensive summary of the phenotypic characteristics, functional changes, and mechanisms of NK cells in aging and diseases. By synthesizing current research, it highlights key pathways contributing to NK cell immunosenescence in the elderly and explores potential strategies to preserve or restore their cytotoxic and immunoregulatory functions.

Short conclusion The review provides novel insights into NK cell immunosenescence and proposes innovative approaches to enhance NK cell activity in aging individuals, offering potential therapeutic avenues for mitigating agerelated immune decline.

Keywords NK cells, Immunosenescence, Cytokine dysregulation, Adoptive NK cell therapy

Zhi Chen

zjuchenzhi@zju.edu.cn

¹State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China-Singapore Belt and Road Joint Laboratory on Infection Research and Drug Development, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province 310003. China

²Yuhang Institute for Collaborative Innovation and Translational Research in Life Sciences and Technology, Hangzhou, China

Background

Natural killer (NK) cells are integral components of the innate immune system and also play a crucial role in adaptive immunity. Within the circulating lymphocyte population, NK cells account for approximately 5%–20% and can be classified into two principal subsets based on differential surface expression of CD56 and CD16: CD56^{bright}CD16⁻ NK cells and CD56^{dim}CD16⁺ NK cells [1]. The CD56^{dim}CD16⁺ NK cells, which make up about 90% of NK cells in the peripheral blood, are considered mature NK cells (mNK cells) with high cytotoxic activity [2]. Conversely, the less abundant subset, comprising only about 10%, known as CD56^{bright}CD16⁻ NK cells or immature NK cells (iNK cells), produces abundant cytokines and chemokines upon stimulation with IL-2, IL-12,

© The Author(s) 2025. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

^{*}Correspondence:

Guo et al. Immunity & Ageing (2025) 22:38 Page 2 of 12

or IL-18 [1]. It is worth noting that CD56^{bright}CD16⁻ NK cells have the ability to differentiate into mature CD56^{dim}CD16⁺ NK cells. Additionally, another distinct subset of NK cells called CD56⁻CD16⁺ has been identified in chronic human immunodeficiency virus (HIV) infection [3]. Unlike conventional CD56^{dim} NK cells, these particular cells exhibit impaired secretion of interferon-gamma (IFN- γ) along with direct target cell elimination and antibody-dependent cell-mediated cytotoxicity (ADCC) [3–5].

Immunosenescence arises from various sources of damage signals, such as oxidative stress, mitochondrial dysfunction, epigenetic modifications, and persistent DNA damage [6]. This phenomenon is characterized by the destruction and remodeling of immune organ structure, along with the dysfunction of innate and adaptive immunity [6, 7]. Consequently, individuals become more vulnerable to infections, malignancies, and autoimmune disorders [6, 8, 9]. Multiple metabolic changes occur during immunosenescence, including altered glycolysis, mitochondrial dysfunction, and increased production of reactive oxygen species (ROS) [6, 10, 11]. Identifying immunosenescence-associated features is essential to explore its impact and clinical significance. In this article, we describe the characteristics of NK cell immunosenescence, its specific mechanisms, and related diseases.

Immunosenescence of NK cell subsets

Accumulating evidence indicates that NK cell subsets undergo significant phenotypic alterations and functional decline during immunosenescence (Table 1).

CD56^{dim}CD16⁺ NK cells

Current research data show that NK cell numbers and proportions in elderly populations mostly remain stable or increase, with only a few studies reporting a decline (Table 2) [12-18]. These variations may arise from differences in age ranges, gender distribution, ethnic backgrounds, health status, and methodologies used to assess NK cells among study populations. More research is still needed to draw definitive conclusions. Age-dependent alterations in NK cell subpopulations reveal a consistent decline in CD56^{bright} NK cells accompanied by expansion of CD56^{dim} subsets [15, 17, 19]. The surface marker CD57 has been identified as a marker of cellular senescence in NK cells, correlating with both replicative senescence and impaired proliferative capacity [20-22]. A cross-sectional study conducted by Le Garff-Tavernier and Segerstrom demonstrated a higher proportion of CD56^{dim}CD57⁺ NK cells among the elderly, a finding that was further confirmed in a longitudinal study by Rebecca G. Reed et al. [15, 23, 24]. It has been demonstrated that CD57⁺ NK cells exhibit reduced proliferative capacity in response to cytokines or target cells compared to CD57- NK cells

Table 1 Immunosenescence of NK cell subsets

Subset	Change	Reason	Characteristics	Impact	
CD56 ^{dim} CD16 ⁺ NK cell	1	May be attributed to the long-term accumulation of NK cells	1. A marker of replicative senescence and impaired proliferation increase: CD57↑ 2.Activating receptors decrease: NKp30↓, NKp46↓, CD69↓, CD94/NKG2A↓, CD161↓, DNAM-1↓ 3. Inhibitory receptors increase: KLRG1↑ 4.Perforin and granzyme A↓	Affect the activation and cytotoxicity of NK cells	
CD56 ^{bright} CD16 ⁻ NK cell	1	1. Age-related alterations in the number and functionality of hematopoietic stem cells 2. Impaired generation of new NK cells	The ability to produce cytokines decrease: IFN-γ↓, MIP-1α↓, IL-8↓	poor immune regula- tion, poor resolution of inflammation, and poor induction of adaptive immunity	
CD56 ⁻ CD16 ⁺ NK cell	NK ↑ Persistent viral infection, such as chronic tion, such as chronic HIV, HCV, and EBV infection. 4. Cytokine release↓ 5. Inhibitory receptors↑ 6. Activating receptors decrease: NCRs↓, NKG2D↓ 7. Transcription factors T-bet↓		Be consid- ered dysfunc- tional cells		
Adaptive NK cell	-	Acute or chronic viral infections	1. Be long-lived and can remain stable in healthy donors from 6 months to 4 years 2. It is capable of memory recall and exhibits a degree of antigen specificity 3. ADCC activity increases and more IFN- γ and TNF- α secreted upon activation	-	

Guo et al. Immunity & Ageing (2025) 22:38 Page 3 of 12

Table 2 NK cell counts and proportions in elderly populations: variations across studies

Aging cohort characteristics [N, age, sex]	Country	tions in elderly populations: variations across studies Results (Young vs. Aged)				References
N=21 (9 M, 12 F);	Brazil	Total NK	Percentage 8.93 vs. 14.85		1	[12]
≥60 years			(% lymphocytes)	(p < 0.001)		
			Count (cells/mm³)	141 vs. 293 (p < 0.001)	1	
		CD56 ^{dim} NK	Percentage (% NK cells)	94.52 vs. 97.45 (p=0.001)	1	
			Count (cells/mm³)	136 vs. 279 (<i>p</i> < 0.001)	1	
		CD56 ^{bright} NK	Percentage (% NK cells)	5.48 vs. 2.59 (p=0.001)	1	
			Count (cells/mm³)	9 vs. 7 (p=0.375)	Stable	
N=21; >60 years	United Kingdom	CD3 ⁻ CD56 ⁺ NK	Percentage (% lymphocytes)	$10.60 \pm 0.9 \text{ vs. } 17.21 \pm 1.2$ ($p = 0.0001$)	1	[13]
		CD56 ^{dim} NK	Percentage (% lymphocytes)	$10.40 \pm 0.9 \text{ vs. } 16.75 \pm 1.2$ ($p < 0.0001$)	↑	
		CD56 ^{bright} NK	Percentage (% lymphocytes)	0.56 ± 0.1 vs. 0.40 ± 0.04 ($p = 0.03$)	\downarrow	
N=14; 77-89 years (mean 81 ± 3)	Spain	CD3 ⁻ CD56 ⁺ NK	Percentage (% lymphocytes)	14 ± 3 vs. 32 ± 10 ($p < 0.01$)	↑	[14]
			Count (cells/µL)	291 ± 87 vs. 407 ± 176 (p < 0.05)	↑	
		CD56 ^{dim} NK	Percentage (% NK cells)	92 ± 5 vs. 97 ± 4 ($p < 0.05$)	↑	
			Count (cells/µL)	$280 \pm 86 \text{ vs. } 392 \pm 148$ (p < 0.01)	↑	
		CD56 ^{bright} NK	Percentage (% NK cells)	$6 \pm 3 \text{ vs. } 3 \pm 2 \text{ (NS)}$	Stable	
			Count (cells/µL)	25 ± 18 vs. 18 ± 14 ($p = 0.375$)	Stable	
√= 30; > 80 years mean 87.1 ± 4.9)	France	CD3 ⁻ CD56 ⁺ NK	Percentage (% lymphocytes)	-	↑	[15]
N=41 (33 M, 8 F); 65–80 years (mean 71.6)	China	CD16 ⁺ CD56 ⁺ NK	-	-	Stable	[16]
N=67; >60 years (mean 79)	United Kingdom	Total NK	Percentage (% lymphocytes)	9.25 ± 6.1 vs.11.22 ± 9.1 (NS)	Stable	[17]
			Count (cells/µL)	194.9 ± 140.4 vs.205.8 ± 184.0 (NS)	Stable	
		CD56 ^{dim} NK	Percentage (% lymphocytes)	8.49 ± 5.8 vs. 11.7 ± 9.3 (NS)	Stable	
			Count (cells/µL)	179.3 ± 135.3 vs. 197.7 ± 180.3 (NS)	Stable	
		CD56 ^{bright} NK	Percentage (% lymphocytes)	$0.76 \pm 0.6 \text{ vs. } 0.5 \pm 0.5$ ($p = 0.012$)	\downarrow	
			Count (cells/µL)	$15.64 \pm 12.8 \text{ vs. } 8.13 \pm 7.9$ ($p = 0.0004$)	\downarrow	
V = 17;	China	Total NK	Percentage (%)	-	\downarrow	[18]
Mean age 73.5 ± 1.6			Count	-	\downarrow	

M Male, F Female, ↑ Increase, ↓ Decrease, -: No data

Guo et al. Immunity & Ageing (2025) 22:38 Page 4 of 12

[25]. Due to the high prevalence of cytomegalovirus (CMV) infection among older individuals, it is challenging to discern the specific effects of aging and CMV on NK cells. Recent studies that stratified donors based on CMV serology have revealed that CD57 upregulation on CD56^{dim} NK cells is associated with CMV seropositivity rather than senescence [26]. These studies also observed concomitant downregulation of various NK cell surface markers, including NKp30 and CD161 [27, 28]. Furthermore, the expression pattern and migratory capacity of perforin in CD56^{dim} NK cells are speculated to decline with aging, thereby directly impacting NK cell-mediated lysis of senescent cells [29].

CD56^{bright}CD16⁻ NK cells

CD56^{bright}CD16⁻ NK cells exhibit both quantitative reduction and progressive functional decline with age, collectively contributing to deteriorated immunoregulatory capacity [30]. Decreased levels of CD56^{bright} NK cells in the elderly could be due to age-associated changes in both the quantity and functionality of hematopoietic stem cells, alongside a diminished capacity for generating new NK cells [20, 31]. A study discovered that senescent CD56^{bright} NK cells exhibited markedly reduced cytokine production levels (such as IFN-γ, MIP-1α, IL-8) compared to younger CD56^{bright} NK cells [29].

CD56⁻CD16⁺ NK cells

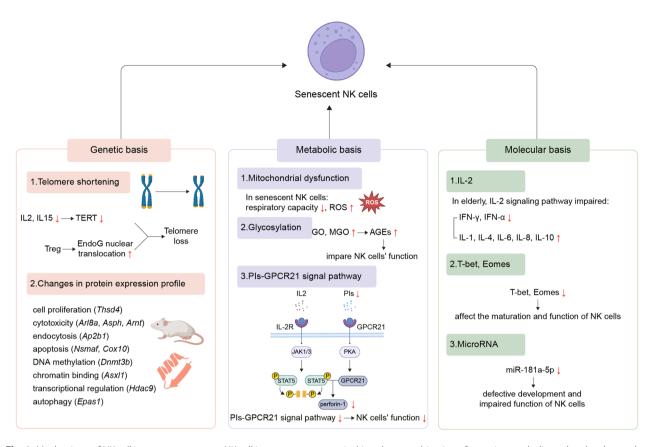
The characteristics of CD56⁻CD16⁺ NK cells, which are considered dysfunctional cells, include low replication, decreased cytotoxicity, decreased cytokine secretion, increased expression of inhibitory NK receptors, and decreased expression of natural cytotoxicity receptors (NCRs) and NKG2D [3, 4, 32, 33]. CD56⁻CD16⁺ NK cells represent a mature population and expand in the elderly [26]. Compared with CD56^{dim}NK cells, CD56⁻CD16⁺ NK cells have CD57^{low}KIR^{low} phenotype accompanied by reduced T-bet expression and elongated telomeres [3].

Adaptive NK cells

Adaptive NK cells are induced by acute or chronic viral infections such as CMV and HIV [34]. These specialized cells exhibit remarkable longevity, remaining stable in healthy individuals for periods ranging from 6 months to 4 years [24, 35, 36]. They also demonstrate a degree of antigen-specific immunological memory [37]. Unlike conventional NK (cNK) cells, adaptive NK cells typically show elevated NKG2C expression [36]. Upon activation, adaptive NK cells display enhanced antibody-dependent cellular cytotoxicity (ADCC) and produce greater quantities of IFN-γ and tumor necrosis factor-alpha (TNF-α) [38]. Additionally, a memory-like proinflammatory CD52+NKG2C+CD94+ NK subset that accumulates with aging was discovered by Guo et al. using single-cell

transcriptome sequencing [39]. This subset exhibits proinflammatory features and a type I interferon-responsive state, correlating with disease severity in coronavirus disease 2019 (COVID-19) [39].

Immunosenescence of NK cells in mice


Notably, the changes in NK cell subsets in aged mouse models are distinct from those observed in humans. Several studies indicate that aged mice exhibit a decline in total NK cell numbers [40, 41]. While mature NK cells, commonly identified as CD11blowCD27highKLRG1+ subset, decrease in aged mice, which results in a relative accumulation of immature CD11b-CD27+KLRG1- NK cells [40, 42]. However, the frequency of mature NK cells in bone marrow remains unchanged in aged mice, suggesting that the observed reduction in circulating mature NK cells likely results from diminished maturation efficiency and impaired egress of mature NK cells from the bone marrow [40]. Further research is required to determine whether complex factors like CMV infection account for the differences in NK cell alterations between humans and mice.

Mechanisms of NK cell immunosenescence Genetic basis of NK cell immunosenescence Telomere shortening

Among the factors involved in the regulation of NK cell lifespan, telomere length plays a pivotal role. Telomeredependent senescence occurs after clonal expansion of lymphocytes and loss of telomeres, which results from cell division stimulated by persistent antigens [43–45]. Telomere shortening is facilitated by cell differentiation, and as a result, mature CD56dim NK cells have shorter telomeres than immature CD56^{bright} NK cells [46]. Research indicates that NK cells undergo age-dependent telomere attrition and progressive loss of telomerase activity [47]. The observed telomere shortening in senescent NK cells may result from stem cell telomere depletion, proliferation induced by immune homeostasis or viral infection, or a combination of these factors [20]. Further studies are necessary to elucidate the underlying mechanisms.

It has been demonstrated that IL-2 and IL-15 can enhance telomerase activity and upregulate the level of telomerase reverse transcriptase (TERT) mRNA, which in turn prevents telomere loss in NK cells [48, 49]. However, the telomere length in NK cells is influenced by the reduced availability of IL-2 and IL-15 in the aging microenvironment, as these cytokines play a critical role in NK cell homeostasis and telomere maintenance [12, 50, 51]. Furthermore, telomerase activity is inhibited by the relocation of apoptotic endonuclease G (EndoG) to the nucleus. Regulatory T (Treg) cells can regulate EndoG nuclear translocation, leading to telomere loss and cell

Guo et al. Immunity & Ageing (2025) 22:38 Page 5 of 12

Fig. 1 Mechanisms of NK cell immunosenescence. NK cell immunosenescence is driven by a combination of genetic, metabolic, and molecular mechanisms. EndoG: endonuclease G; GO: Glyoxal; GPCR21: G protein-coupled receptor 21; JAK1/3: Janus kinase 1/3; MGO: Methylglyoxal; NK: Natural killer; Pls: Plasmalogens; PKA: Protein kinase A; ROS: Reactive oxygen species; STAT5: Signal transducer and activator of transcription 5; TERT: Telomerase reverse transcriptase; Treg: Regulatory T cells. Created in https://BioRender.com

senescence [43] (Fig. 1). Telomere shortening activates the DNA damage response (DDR) and p53-dependent apoptotic pathway, thereby inducing programmed cell death. Complete telomere loss may lead to chromosomal end-to-end fusions or breakage, resulting in genomic instability that ultimately culminates in cell necrosis or mitotic catastrophe [52].

Changes in protein expression profile

Using in-silico mapping techniques, S.A. Bumgardner et al. identified potential genes associated with the phenotype of senescent NK cells in mice [53]. Many of them are protein-coding genes, which were categorized based on the protein functions to screen for genes that are either directly or indirectly related to the activity of NK cells. Such protein functions include cell proliferation (*Thsd4*), cytotoxicity (*Arl8a*, *Asph*, *Arnt*), endocytosis (*Ap2b1*), apoptosis (*Nsmaf*, *Cox10*), DNA methylation (*Dnmt3b*), chromatin binding (*Asxl1*), transcriptional regulation (*Hdac9*), and autophagy (*Epas1*) [53]. These selected genes require further verification. This study reveals the genetic basis of the NK cell senescence phenotype for the

first time and offers insights for further research on the mechanisms of NK cell senescence.

Metabolic basis of NK cell immunosenescence

It has been demonstrated that cell metabolism is crucial for the generation of immune cell phenotypes and for achieving optimal immune cell function.

Mitochondrial dysfunction

A characteristic of NK cell senescence may be impaired cellular signaling and mitochondrial function [6, 54]. The respiratory capacity of activated NK cells is decreased, and the production of ROS is increased in the elderly, which affects the function of NK cells [6]. The researchers found that stimulation with high levels of IL-2 increased neither mitochondrial mass nor mitochondrial membrane potential in senescent NK cells, unlike in younger NK cells [54]. Furthermore, in NK cells from senior donors, IL-2 does not increase the expression of PPAR-gamma coactivator 1-alpha (PGC-1 α), which can enhance mitochondrial function and metabolism and provide protection against various aging-related diseases

Guo et al. Immunity & Ageing (2025) 22:38 Page 6 of 12

[54]. Mitochondrial dysfunction markedly impairs cell viability and compromises antitumor activity [55].

Glycosylation

Glycation is a defining characteristic of molecular senescence, specifically manifested by the production of advanced glycation end products (AGEs) [56]. Two highly potent dicarbonyl compounds that generate AGEs are glyoxal (GO) and methylglyoxal (MGO), and their levels in plasma are elevated in aging and age-related diseases [57]. In vitro studies have shown that both GO and MGO interfere with the function of NK cells [57]. Furthermore, the glycosylation of tumor cells can disrupt the cytotoxic function of NK cells against tumor cells [57, 58]. Therefore, glycation exerts significant negative effects on NK cell function.

PIs-GPCR21 signal pathway

Plasmalogens (Pls) are a particular type of phospholipid which are reduced in the elderly [59]. NK cells specifically express G protein-coupled receptor 21 (GPCR21) on their surface, which can recognize and bind to Pls [60]. The Pls-GPCR21 signaling cascade activates signal transducer and activator of transcription 5 (STAT5), thereby inducing the expression of perforin-1 [60, 61]. However, when Pls levels decline with age, the Pls-GPCR21 signaling cascade is downregulated, leading to restricted perforin-1 expression and impaired NK cell function. Thus, the age-dependent reduction of this signaling cascade may be one of the contributing factors to NK cell immunosenescence [60].

Molecular basis of NK cell immunosenescence Cytokines

A variety of cytokines are essential for NK cell development, differentiation, and function. IL-2 is a crucial cytokine that links adaptive immunity with NK cells, serving to boost cytokine release, promote proliferation, and improve killing capacity [62]. Previous studies have reported age-related impairment of the IL-2 signaling pathway in NK cells [14]. It indicates that in the elderly, IL-2 rarely promotes the development of NK cells and generates lower levels of IFN-γ and IFN-α while raising levels of IL-1, IL-4, IL-6, IL-8, and IL-10 [63, 64]. IL-2 has been used as an immunotherapeutic agent to promote the antitumor activity of NK cells and is currently used in the treatment of metastatic renal cell carcinoma (MRCC) and melanoma [62]. Additionally, IL-12, IL-15, and IL-18 also play an important role in the immunosenescence of NK cells [49, 65-67].

Transcription factors T-bet and Eomes

The transcription factor T-bet (encoded by *Tbx21*) is a tyrosine- and serine-phosphorylated protein exhibiting

hematopoietic lineage-restricted expression [68]. Eomes (Eomesodermin) is another transcription factor critical for the development, differentiation, and function of immune cells, particularly in regulating the cytotoxic activity of CD8+ T cells and NK cells [68, 69]. Both of them are downregulated in the process of NK cell senescence and are associated with the impaired cytotoxicity of NK cells [42]. In aged mice, T-bet and Eomes expression in the bone marrow is inversely correlated with poor NK cell maturation [42, 70]. Hesham M et al. constructed bone marrow chimeras from young and old individuals respectively, and examined how NK cells developed under the same conditions in the two groups. They discovered that one factor contributing to NK cell maturation and functional impairment was the nonhematopoietic environment [42]. The aging non-hematopoietic environment may influence NK cell maturation and function by downregulating the levels of transcription factors Eomes and T-bet. This is supported by the fact that their levels recovered in the young environment [42]. This indicates external factors cause the senescent phenotype, as demonstrated by other studies [42, 68].

MicroRNA

MicroRNAs are short (approximately 22 nt), endogenously activated, non-coding RNAs that act as post-transcriptional regulatory factors to negatively regulate gene expression [71]. Each microRNA can regulate multiple mRNAs, and an mRNA can also be regulated by multiple microRNAs [72]. The microRNA expression profile of NK cells changes with aging. For instance, the decreased level of miR-181a-5p leads to developmental defects and decreased function of NK cells [73]. It is suggested that we may preserve or reestablish the function of NK cells in the elderly by adjusting the expression levels of microRNAs.

NK cells in the tumor microenvironment Impaired NK cell viability and function in the tumor microenvironment

The immunosuppressive tumor microenvironment (TME) impairs NK cell viability and function through multiple mechanisms. Regulatory T cells (Tregs) secrete TGF- β , which inhibits NK cell proliferation and IFN- γ production [74]. Tumor-associated macrophages (TAMs) further dampen NK cell activity through CD80/CD86 signaling [75]. Additionally, tumor-derived PGE2 and TGF- β downregulate activating receptors such as NKp30, NKp44, and NKG2D, thereby reducing NK cell cytotoxicity [76].

Beyond immunosuppressive factors, metabolic stress in the TME significantly disrupts NK cell function. Nutrient deprivation, hypoxia, acidic pH, and metabolic waste accumulation not only affect tumor cells but also severely Guo et al. Immunity & Ageing (2025) 22:38 Page 7 of 12

impair NK cell activity. NK cells rely on both glycolysis and oxidative phosphorylation (OXPHOS) for energy metabolism, and disruption of either pathway reduces IFN- γ secretion and cytotoxic potential [77]. In multiple myeloma, hypoxia suppresses perforin and granzyme B expression while downregulating activating receptors like NKG2D [78]. Collectively, these metabolic disturbances contribute to the functional impairment of NK cells in antitumor immunity.

Metabolic reprogramming of NK cells in the tumor microenvironment

Metabolic reprogramming refers to the process by which cells alter their metabolic pathways and energy utilization to adapt to environmental changes or functional demands. Originally described in cancer biology (e.g., the Warburg effect), this concept has since been extended to immune cells, including NK cells, which dynamically modulate their metabolism to regulate effector functions [79]. The metabolic plasticity of NK cells represents a fundamental mechanism for their adaptation to the TME and enhancement of antitumor activity.

Studies indicate that the TME typically suppresses glucose metabolism in NK cells, impairing both glycolysis and OXPHOS, thereby diminishing cytotoxic function. However, research by Ali A. Ashkar and colleagues revealed that NK cells exhibiting a "Warburg-like" metabolic shift—while retaining metabolic flexibility—not only sustain viability under metabolically hostile conditions but also significantly enhance tumor-killing capacity [80]. Hypoxia triggers APOBEC3G-mediated RNA editing to promote stress adaptation [81]. Furthermore, the IRE1α-XBP1-MYC axis contributes to NK cell activation, and SREBP regulates the citrate-malate shuttle system to influence the production of effector molecules such as IFN-y and granzyme B [82, 83]. These findings not only establish metabolic reprogramming as a critical determinant of NK cell functionality in the TME but also provide a conceptual framework for developing nextgeneration NK cell-based immunotherapies through metabolic modulation.

Clinical associations of NK cell immunosenescence

Numerous clinical studies have established that the physiological deterioration of NK cell activity in the elderly serves as a significant risk factor for multiple morbidities, with particularly strong associations observed for infectious diseases, atherosclerosis, and malignant tumors. Additionally, studies have indicated that the mortality rate is higher in the elderly with lower NK cell counts than in those with higher NK cell counts [30]. The existing data appears to corroborate the idea that NK cell phenotype and function change with the disease progression.

Infectious diseases

After viral infection in older adults, the NK cell pool is highly skewed and unable to replenish naive NK cells due to inefficient NK cell differentiation or viral-specific NK cell cloning and amplification, both of which may impair NK cell function [41]. As mentioned above, there is a correlation between CMV infection and the increased freguency of CD57⁺ NK cells in the elderly [26]. Campos et al. showed that young adults with CMV seropositivity exhibited a substantially greater frequency of CD57⁺ NK cells than CMV-negative young adults, but a similar frequency to that of older adults with CMV positivity [26]. This highlights the importance of accounting for CMV infection when analyzing NK cell immunosenescence and cancer surveillance in the elderly. Abnormal clonal expansion of KIR⁺NKG2C⁺ NK cells occurred in patients with CMV infection, which accounted for more than 50% of the total NK cells [84]. Similarly, multiple studies have shown that NKG2Cbright NK cells expand during infections with HIV, hantavirus, hepatitis B virus (HBV), and hepatitis C virus (HCV) [41, 85-87]. The profile of NK cell activation in COVID-19 indicates a correlation between disease severity and CD56bright NK cell arming [88, 89]. Guo et al. found that the aggregation of CD52+NKG2C+CD94+ NK cell subsets was associated with the severity of COVID-19 by single-cell sequencing [39].

Atherosclerosis

Atherosclerosis is a disease caused by repeated damage to the arterial wall. The risk of developing atherosclerosis and other diseases increases in the elderly, and this is associated with reduced NK cell activity [90]. Research by Guma et al. demonstrated that CMV-induced expansion of NKG2C+ NK cells (adaptive NK cells) correlates with the instability of carotid atherosclerotic plaque (CAP). High-risk patients exhibited elevated levels of NKG2C+ NK cells compared to lower-risk individuals [91]. However, Alsulami K found the reverse effect, where adaptive NK cell enrichment in CMV-seropositive subjects correlated with decreased coronary plaque burden [92]. This disparity lacks a conclusive explanation. It may be that the protective and pathogenic roles of adaptive NK cells differ at different stages of atherosclerosis. Another possibility is that carotid and coronary atherosclerosis differ in their biological development. To understand this variation in outcomes, further research is required.

Malignant tumors

NK cells can control the growth of tumor cells during the occurrence and development of malignant tumors. However, the tumor microenvironment induces functional alterations in NK cells that facilitate immune evasion, ultimately promoting malignant growth and metastasis

Guo et al. Immunity & Ageing (2025) 22:38 Page 8 of 12

[93]. Degos and colleagues revealed significant alterations in NK cell biology within tumor microenvironments. Their research demonstrated that while tumors exhibit overall diminished NK cell infiltration, the proportion of CD56^{bright} NK cells increases [93]. Notably, the tumor-resident CD103+ NK cell subset displayed substantially higher surface expression of co-inhibitory molecules, such as T cell immunoreceptor with Ig and ITIM domains (TIGIT) and T cell immunoglobulin and mucin domain-containing protein 3 (Tim-3), compared to CD103- NK cells. Most importantly, these intratumoral NK cells manifested functional impairment through markedly reduced granzyme B (GZMB) production when contrasted with NK cells from neighboring healthy tissues, suggesting substantial suppression of their cytotoxic capacity in the tumor milieu [93]. Furthermore, tumors exhibited decreased levels of the cytotoxic cytokine IL-15 and elevated levels of IL-6, which inhibits the STAT-5 pathway and NK cell activity [94]. When compared to nearby NK cells in healthy tissue, tumorresident NK cells produced less GZMB, indicating a potential loss of cytotoxic activity [93].

In lung cancer, the downregulation of NKp30 and NKG2D results in an inhibitory phenotype for NK cells, and a reduction in GZMB impairs their cytolytic function [95, 96]. In breast tumors, the expression of NK cell activating receptors is decreased, whereas the expression of inhibitory receptors is increased, limiting the antitumor immunity of NK cells [97]. The research showed that the endometrial cancer tumor microenvironment has a significant impact on resident NK cells, as it can decrease their cytotoxic capacity and remodel their phenotype and function, ultimately promoting tumor progression [93]. Chronic myeloid leukemia (CML) is a disease associated with aging (about half of all cases are diagnosed in people over 65 years of age) [98]. Some studies have revealed that CML patients experience progressive functional deterioration of NK cells at all stages of the disease [98]. Patients with CML exhibit higher levels of CD57 expression in the bone marrow and TIGIT expression on the surface of NK cells in peripheral blood. Because decreased proliferation is linked to high expression of CD57, there is a decrease in NK cell proliferation in the bone marrow [99]. NK cells from patients with acute myeloid leukemia (AML) also downregulate the expression of activating receptors NKp30, NKp46, and DNAM-1 [100, 101].

Notably, NK cell senescence appears to be not merely an immunological disorder but may also constitute an adaptive mechanism preserved through evolution for host life cycle regulation. Uterine natural killer (uNK) cells are abundantly present at the maternal-fetal interface [102]. During early pregnancy, soluble HLA-G secreted by fetal trophoblasts binds to CD158d of uNK cells, activating the DNA damage response pathway and

promoting a senescent phenotype [103, 104]. This process generates various SASP factors that facilitate angiogenesis and trophoblast invasion [103]. This reveals the potential physiological significance of NK cellular senescence during pregnancy, though this mechanism remains to be further validated by additional research.

Autologous NK cell infusion therapy: rejuvenating immune function

By expanding and reinfusing autologous NK cells in vitro, this therapy can effectively clear senescent cells, improve immune function, and mitigate systemic inflammatory responses. A randomized controlled trial involving 37 healthy middle-aged volunteers found that subjects receiving autologous NK cell infusions exhibited a significant reduction in senescent and exhausted T cell subsets (CD28⁻ and CD57⁺ subsets), along with decreased expression of immunosuppressive markers such as PD-1⁺ and TIM-3⁺ [105]. Furthermore, levels of key proinflammatory cytokines (IL-6, IL-8, IL-17) were markedly reduced, suggesting that NK cell therapy alleviates age-related "inflammaging" [105]. Additional research revealed that expanded NK cells selectively eliminate senescent CD4+ T cells while sparing normal CD4+ T cells, a specificity potentially mediated by altered surface receptor expression (e.g., downregulation of NKG2C/ KLRG1 and upregulation of NKG2A/TIM3) [105]. In aged mouse models, the combination of autologous NK cells with dopamine-releasing peptides (opioid peptides) synergistically enhanced the clearance efficiency of senescent cells, outperforming monotherapy while improving tissue function and extending healthspan [106]. Another small-scale trial involving five healthy elderly individuals demonstrated that in vitro-activated and reinfused NK cells reduced the levels of senescence markers (p16, β-galactosidase), with effects lasting over eight months and significantly decreasing inflammatory markers [107]. These findings highlight the potential of autologous NK cell therapy in mitigating immunosenescence and suggest its broader role in delaying overall aging.

Currently, NK cell therapy is emerging as an innovative anti-senescence approach, not only capable of restoring age-compromised immune function but also offering new avenues for treating various age-related diseases. However, translating these findings into clinical applications requires further exploration of optimal treatment timing, dosage, and the efficacy and safety of NK cells from different sources. With advancing research, we may witness the rise of a novel medical strategy—leveraging NK cell therapy to help humanity better combat aging and its associated challenges.

Guo et al. Immunity & Ageing (2025) 22:38 Page 9 of 12

Conclusions

Immunosenescence, the age-related decline of immune function, plays a crucial role in both the normal aging processes and the development of various age-related diseases. As key effectors of innate immunity, NK cells exhibit distinct phenotypic and functional alterations during senescence that significantly compromise overall immune competence. The most well-established biomarker of NK cell aging is the progressive accumulation of CD57⁺ cells, which indicates terminal differentiation and reduced proliferative capacity. Concurrently, aging induces a characteristic shift in NK cell subsets, characterized by the expansion of the cytotoxic CD56^{dim}CD16⁺ population and the contraction of the immunoregulatory CD56^{bright}CD16⁻ subset. These changes are accompanied by significant alterations in receptor expression patterns and cytokine production profiles, ultimately leading to functional impairments through multiple mechanisms, including diminished cytotoxic activity, reduced interferon-y secretion, and impaired responsiveness to cytokine stimulation. The clinical implications of NK cell senescence are particularly evident in malignancies, chronic viral infections, and autoimmune disorders, where the senescent phenotype is associated with worse clinical outcomes. This understanding has sparked increasing interest in developing innovative NK cell-based therapeutic strategies to counteract the effects of immunosenescence, such as ex vivo expansion and reinfusion of autologous NK cells, genetic engineering approaches to enhance cytotoxic potential, and combination therapies with immunomodulatory agents. Future research should focus on elucidating the molecular mechanisms underlying NK cell senescence, identifying more precise biomarkers for clinical monitoring, and developing targeted interventions to either reverse the senescent phenotype or harness its unique features for therapeutic benefit. As global demographics continue to shift toward an aging population, enhancing our understanding of NK cell immunosenescence will be essential for developing effective treatments and improving clinical outcomes in age-related diseases, ultimately contributing to healthier aging.

Abbreviations

ADCC Antibody-dependent cell-mediated cytotoxicity

AGEs Advanced glycation end products
AML Acute myeloid leukemia
CAP Carotid atherosclerotic plaque

CMV Cytomegalovirus
CML Chronic myeloid leukemia
cNK conventional NK
COVID-19 Coronavirus disease 2019
DDR DNA damage response
EndoG endonuclease G
Eomes Eomesodermin

GO Glyoxal

GPCR21 G protein-coupled receptor 21

GZMB Granzyme B

HBV Hepatitis B virus
HCV Hepatitis C virus

HIV Human immunodeficiency virus

iNK immature NK MGO Methylglyoxal mNK mature NK

MRCC Metastatic renal cell carcinoma

NK Natural killer

OXPHOS Oxidative phosphorylation PGC-1α PPAR-gamma coactivator 1-alpha

Pls Plasmalogens

ROS Reactive oxygen species

STAT5 Signal transducer and activator of transcription 5

TAMs Tumor-associated macrophages
TERT Telomerase reverse transcriptase

TIGIT T cell immunoreceptor with Ig and ITIM domains

Tim-3 T cell immunoglobulin and mucin domain-containing protein 3

TME Tumor microenvironment
Treg cells Regulatory T cells
uNK Uterine natural killer

Acknowledgements

Not applicable.

Authors' contributions

Z.C. and Z.G. conceived the review topic and designed the structure. Z.G., F.W., Y.C., and J.X. performed the literature search and analysis. Z.G. and F.W. drafted the manuscript. Y.C. and J.X. contributed to critical revisions. Z.C. supervised the study and provided expert guidance. All authors reviewed and approved the final version of the manuscript.

Funding

Not applicable.

Data availability

No datasets were generated or analysed during the current study.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Received: 25 April 2025 / Accepted: 21 August 2025 Published online: 21 October 2025

References

- Deng X, Terunuma H, Nieda M. Immunosurveillance of cancer and viral infections with regard to alterations of human NK cells originating from lifestyle and aging. Biomedicines. 2021;9(5): 557.
- Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol. 2001;22(11):633–40.
- Müller-Durovic B, Grählert J, Devine OP, Akbar AN, Hess C. CD56-negative NK cells with impaired effector function expand in CMV and EBV co-infected healthy donors with age. Aging. 2019;11(2):724–40.
- Alter G, Teigen N, Davis BT, Addo MM, Suscovich TJ, Waring MT, Streeck H, Johnston MN, Staller KD, Zaman MT, et al. Sequential deregulation of NK cell subset distribution and function starting in acute HIV-1 infection. Blood. 2005;106(10):3366–9.
- Brunetta E, Fogli M, Varchetta S, Bozzo L, Hudspeth KL, Marcenaro E, Moretta A, Mavilio D. The decreased expression of Siglec-7 represents an early marker of dysfunctional natural killer-cell subsets associated with high levels of HIV-1 viremia. Blood. 2009;114(18):3822–30.

Guo et al. Immunity & Ageing (2025) 22:38 Page 10 of 12

- Liu ZQ, Liang QM, Ren YQ, Guo CG, Ge XY, Wang LB, Cheng Q, Luo P, Zhang Y, Han XW. Immunosenescence: molecular mechanisms and diseases. Signal Transduct Target Ther. 2023. https://doi.org/10.1038/s41392-023-01451-2.
- 7. McElhaney JE, Effros RB. Immunosenescence: what does it mean to health outcomes in older adults? Curr Opin Immunol. 2009;21(4):418–24.
- Thomas R, Wang WK, Su DM. Contributions of age-related thymic involution to immunosenescence and inflammaging. Immun Ageing. 2020. https://doi. org/10.1186/s12979-020-0173-8.
- Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, Franceschi C, Lithgow GJ, Morimoto RI, Pessin JE, et al. Geroscience: linking aging to chronic disease. Cell. 2014;159(4):708–12.
- Patsoukis N, Bardhan K, Chatterjee P, Sari D, Liu BL, Bell LN, Karoly ED, Freeman GJ, Petkova V, Seth P, et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun. 2015. https://doi.org/10.1038/ncomms7692.
- Henson SM, Lanna A, Riddell NE, Franzese O, Macaulay R, Griffiths SJ, Puleston DJ, Watson AS, Simon AK, Tooze SA, et al. p38 signaling inhibits mTORC1independent autophagy in senescent human CD8+T cells. J Clin Invest. 2014;124(9):4004–16.
- Almeida-Oliveira A, Smith-Carvalho M, Porto LC, Cardoso-Oliveira J, Ribeiro AD, Falcao RR, Abdelhay E, Bouzas LF, Thuler LCS, Ornellas MH, et al. Agerelated changes in natural killer cell receptors from childhood through old age. Hum Immunol. 2011;72(4):319–29.
- Hazeldine J, Hampson P, Lord JM. Reduced release and binding of perforin at the immunological synapse underlies the age-related decline in natural killer cell cytotoxicity. Aging Cell. 2012;11(5):751–9.
- Borrego F, Alonso MC, Galiani MD, Carracedo J, Ramirez R, Ostos B, Pena J, Solana R. NK phenotypic markers and IL2 response in NK cells from elderly people. Exp Gerontol. 1999;34(2):253–65.
- Le Garff-Tavernier M, Beziat V, Decocq J, Siguret V, Gandjbakhch F, Pautas E, Debre P, Merle-Beral H, Vieillard V. Human NK cells display major phenotypic and functional changes over the life span. Aging Cell. 2010;9(4):527–35.
- Qin L, Jing X, Qiu Z, Cao W, Jiao Y, Routy JP, Li T. Aging of immune system: immune signature from peripheral blood lymphocyte subsets in 1068 healthy adults. Aging. 2016;8(5):848–59.
- Chidrawar SM, Khan N, Chan YL, Nayak L, Moss PA. Ageing is associated with a decline in peripheral blood CD56bright NK cells. Immun Ageing. 2006;3: 10.
- Jin W-N, Shi K, He W, Sun J-H, Van Kaer L, Shi F-D, Liu Q. Neuroblast senescence in the aged brain augments natural killer cell cytotoxicity leading to impaired neurogenesis and cognition. Nat Neurosci. 2020;24(1):61–73.
- Stervbo U, Meier S, Malzer JN, Baron U, Bozzetti C, Jurchott K, Nienen M, Olek S, Rachwalik D, Schulz AR, et al. Effects of aging on human leukocytes (part I): immunophenotyping of innate immune cells. AGE. 2015;37(5): 92.
- Solana R, Campos C, Pera A, Tarazona R. Shaping of NK cell subsets by aging. Curr Opin Immunol. 2014;29:56–61.
- Judge SJ, Murphy WJ, Canter RJ. Characterizing the dysfunctional NK cell: assessing the clinical relevance of exhaustion, anergy, and senescence. Front Cell Infect Microbiol. 2020;10: 49.
- DeWolfe D, Aid M, McGann K, Ghofrani J, Geiger E, Helzer C, Malik S, Kleiboeker S, Jost S, Tan CS. NK cells contribute to the immune risk profile in kidney transplant candidates. Front Immunol. 2019;10: 1890.
- Segerstrom SC, Al-Attar A, Lutz CT. Psychosocial resources, aging, and natural killer cell terminal maturity. Psychol Aging. 2012;27(4):892–902.
- 24. Reed RG, Al-Attar A, Presnell SR, Lutz CT, Segerstrom SC. A longitudinal study of the stability, variability, and interdependencies among late-differentiated T and NK cell subsets in older adults. Exp Gerontol. 2019;121:46–54.
- Lopez-Vergès S, Milush JM, Pandey S, York VA, Arakawa-Hoyt J, Pircher H, Norris PJ, Nixon DF, Lanier LL. CD57 defines a functionally distinct population of mature NK cells in the human CD56dimCD16 + NK-cell subset. Blood. 2010;116(19):3865–74.
- Campos C, Pera A, Sanchez-Correa B, Alonso C, Lopez-Fernandez I, Morgado S, Tarazona R, Solana R. Effect of age and CMV on NK cell subpopulations. Exp Gerontol. 2014;54:130–7.
- Campos C, López N, Pera A, Gordillo JJ, Hassouneh F, Tarazona R, Solana R. Expression of NKp30, NKp46 and DNAM-1 activating receptors on resting and IL-2 activated NK cells from healthy donors according to CMV-serostatus and age. Biogerontology. 2015;16(5):671–83.
- Lopez-Sejas N, Campos C, Hassouneh F, Sanchez-Correa B, Tarazona R, Pera A, Solana R. Effect of CMV and aging on the differential expression of CD300a, CD161, T-bet, and Eomes on NK cell subsets. Front Immunol. 2016;7: 476.

- Hazeldine J, Lord JM. The impact of ageing on natural killer cell function and potential consequences for health in older adults. Ageing Res Rev. 2013;12(4):1069–78.
- Gounder SS, Abdullah BJJ, Radzuanb N, Zain F, Sait NBM, Chua C, Subramani B. Effect of Aging on NK Cell Population and Their Proliferation at Ex Vivo Culture Condition. Anal Cell Pathol (Amst). 2018;2018:7871814.
- 31. Wang JW, Geiger H, Rudolph KL. Immunoaging induced by hematopoietic stem cell aging. Curr Opin Immunol. 2011;23(4):532–6.
- Mavilio D, Lombardo G, Benjamin J, Kim D, Follman D, Marcenaro E,
 O'Shea MA, Kinter A, Kovacs C, Moretta A, et al. Characterization of CD56-/
 CD16+ natural killer (NK) cells: a highly dysfunctional NK subset expanded in
 HIV-infected viremic individuals. P Natl Acad Sci USA. 2005;102(8):2886–91.
- Gonzalez VD, Falconer K, Björkström NK, Blom KG, Weiland O, Ljunggren HG, Alaeus A, Sandberg JK. Expansion of functionally skewed CD56-negative NK cells in chronic hepatitis C virus infection: correlation with outcome of pegylated IFN-a and ribavirin treatment. J Immunol. 2009;183(10):6612–8.
- Kared H, Martelli S, Tan SW, Simoni Y, Chong ML, Yap SH, Newell EW, Pender SLF, Kamaruizaman A, Rajasuriar R et al. Adaptive NKG2C + CD57 + Natural killer cell and Tim-3 expression during viral infections. Front Immunol. 2018:9:686.
- 35. Lee J, Zhang TX, Hwang I, Kim A, Nitschke L, Kim M, Scott JM, Kamimura Y, Lanier LL, Kim S. Epigenetic modification and antibody-dependent expansion of memory-like NK cells in human cytomegalovirus-infected individuals. Immunity. 2015;42(3):431–42.
- Merino AM, Kim H, Miller JS, Cichocki F. Unraveling exhaustion in adaptive and conventional NK cells. J Leukoc Biol. 2020;108(4):1361–8.
- Roe K. NK-cell exhaustion, B-cell exhaustion and T-cell exhaustion-the differences and similarities. Immunology. 2022;166(2):155–68.
- 38. Luetke-Eversloh M, Hammer Q, Durek P, Nordström K, Gasparoni G, Pink M, Hamann A, Walter J, Chang HD, Dong J et al. Human cytomegalovirus drives epigenetic imprinting of the IFNG locus in NKG2Chi natural killer cells. Plos Pathoq. 2014;10(10):e1004441.
- 39. Guo C, Wu M, Huang B, Zhao R, Jin L, Fu B, Wang P, Wang D, Zheng M, Fang J, et al. Single-cell transcriptomics reveal a unique memory-like NK cell subset that accumulates with ageing and correlates with disease severity in COVID-19. Genome Med. 2022;14(1): 46.
- Beli E, Duriancik DM, Clinthorne JF, Lee T, Kim S, Gardner EM. Natural killer cell development and maturation in aged mice. Mech Ageing Dev. 2014;135:33–40.
- 41. Manser AR, Uhrberg M. Age-related changes in natural killer cell repertoires: impact on NK cell function and immune surveillance. Cancer Immunol Immunother. 2016;65(4):417–26.
- Shehata HM, Hoebe K, Chougnet CA. The aged nonhematopoietic environment impairs natural killer cell maturation and function. Aging Cell. 2015;14(2):191–9.
- 43. Zhdanov DD, Gladilina YA, Pokrovsky VS, Grishin DV, Grachev VA, Orlova VS, Pokrovskaya MV, Alexandrova SS, Sokolov NN. Murine regulatory T cells induce death of effector T, B, and NK lymphocytes through a contact-independent mechanism involving telomerase suppression and telomere-associated senescence. Cell Immunol. 2018;331:146–60.
- 44. Chou JP, Effros RB. T cell replicative senescence in human aging. Curr Pharm Des. 2013;19(9):1680–98.
- 45. Effros RB. Telomere/telomerase dynamics within the human immune system: effect of chronic infection and stress. Exp Gerontol. 2011;46(2–3):135–40.
- 46. Ouyang Q, Baerlocher G, Vulto I, Lansdorp PM. Telomere length in human natural killer cell subsets. Ann N Y Acad Sci. 2007;1106:240–52.
- Fali T, Papagno L, Bayard C, Mouloud Y, Boddaert J, Sauce D, Appay V. New insights into lymphocyte differentiation and aging from telomere length and telomerase activity measurements. J Immunol. 2019;202(7):1962–9.
- 48. Kawauchi K, Ihjima K, Yamada O. IL-2 increases human telomerase reverse transcriptase activity transcriptionally and posttranslationally through phosphatidylinositol 3'-kinase/Akt, heat shock protein 90, and mammalian target of Rapamycin in transformed NK cells. J Immunol. 2005;174(9):5261–9.
- Watkinson F, Nayar SK, Rani A, Sakellariou CA, Elhage O, Papaevangelou E, Dasgupta P, Galustian C. IL-15 upregulates telomerase expression and potently increases proliferative capacity of NK, NKT-like, and CD8 T cells. Front Immunol. 2021. https://doi.org/10.3389/fimmu.2020.594620.
- Lutz CT, Quinn LS. Sarcopenia, obesity, and natural killer cell immune senescence in aging: altered cytokine levels as a common mechanism. Aging. 2012;4(8):535–46.

Guo et al. Immunity & Ageing (2025) 22:38 Page 11 of 12

- Prado GHJD, Sardeli AV, Lord JM, Cavaglieri CR. The effects of ageing, BMI and physical activity on blood IL-15 levels: A systematic review and meta-analyses. Exp Gerontol. 2022;168:111933.
- Hayashi MT, Cesare AJ, Fitzpatrick JAJ, Lazzerini-Denchi E, Karlseder J. A telomere-dependent DNA damage checkpoint induced by prolonged mitotic arrest. Nat Struct Mol Biol. 2012;19(4):387–94.
- 53. Bumgardner SA, Zhou Y, Jiang Z, Coe EJ, Yakaitis CL, Xiao Y, Pazdro R. Genetic influence on splenic natural killer cell frequencies and maturation among aged mice. Exp Gerontol. 2018;104:9–16.
- Miranda D, Jara C, Mejias S, Ahumada V, Cortez-San Martin M, Ibañez J, Hirsch S, Montoya M. Deficient mitochondrial biogenesis in IL-2 activated NK cells correlates with impaired PGC1-α upregulation in elderly humans. Exp Gerontol. 2018;110:73–8.
- Guo X, Tan S, Wang T, Sun R, Li S, Tian P, Li M, Wang Y, Zhang Y, Yan Y, et al. NAD+salvage governs mitochondrial metabolism, invigorating natural killer cell antitumor immunity. Hepatology. 2023;78(2):468–85.
- 56. Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. Korean J Physiol Pha. 2014;18(1):1–14.
- 57. Rosenstock P, Bezold V, Bork K, Scheffler J, Horstkorte R. Glycation interferes with natural killer cell function. Mech Ageing Dev. 2019;178:64–71.
- Chiavarina B, Nokin MJ, Bellier J, Durieux F, Bletard N, Sherer F, Lovinfosse P, Peulen O, Verset L, Dehon R, et al. Methylglyoxal-mediated stress correlates with high metabolic activity and promotes tumor growth in colorectal cancer. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18010213.
- Hossain MS, Mawatari S, Fujino T. Biological functions of plasmalogens. Adv Exp Med Biol. 2020;1299:171–93.
- Hossain MS, Mawatari S, Fujino T. Plasmalogen-mediated activation of GPCR21 regulates cytolytic activity of NK cells against the target cells. J Immunol. 2022;209(2):310–25.
- Zhang J, Scordi I, Smyth MJ, Lichtenheld MG. Interleukin 2 receptor signaling regulates the perforin gene through signal transducer and activator of transcription (Stat)5 activation of two enhancers. J Exp Med. 1999;190(9):1297–307.
- 62. Hernandez R, Poder J, LaPorte KM, Malek TR. Engineering IL-2 for immunotherapy of autoimmunity and cancer. Nat Rev Immunol. 2022;22(10):614–28.
- Rink L, Cakman I, Kirchner H. Altered cytokine production in the elderly. Mech Ageing Dev. 1998;102(2–3):199–209.
- Camous X, Pera A, Solana R, Larbi A. NK cells in healthy aging and ageassociated diseases. J Biomed Biotechnol. 2012. https://doi.org/10.1155/2012 /195956
- Sun JC, Beilke JN, Bezman NA, Lanier LL. Homeostatic proliferation generates long-lived natural killer cells that respond against viral infection. J Exp Med. 2011;208(2):357–68.
- Yasuda K, Nakanishi K, Tsutsui H. Interleukin-18 in health and disease. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20030649.
- Long EO, Kim HS, Liu D, Peterson ME, Rajagopalan S. Controlling natural killer cell responses: integration of signals for activation and Inhibition. Annu Rev Immunol. 2013;31:227–58.
- 68. Simonetta F, Pradier A, Roosnek E. T-bet and eomesodermin in NK cell development, maturation, and function. Front Immunol. 2016;7:241.
- Di Vito C, Mikulak J, Mavilio D. On the way to become a natural killer cell. Front Immunol. 2019;10: 1812.
- Alvarez M, Simonetta F, Baker J, Pierini A, Wenokur AS, Morrison AR, Murphy WJ, Negrin RS. Regulation of murine NK cell exhaustion through the activation of the DNA damage repair pathway. JCI Insight. 2019. https://doi.org/10. 1172/jci.insight.127729.
- Bartel DP. Micrornas: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.
- Huang Y, Shen XJ, Zou QA, Wang SP, Tang SM, Zhang GZ. Biological functions of micrornas: a review. J Physiol Biochem. 2011;67(1):129–39.
- Lu J, Li S, Li X, Zhao W, Duan X, Gu X, Xu J, Yu B, Sigal LJ, Dong Z, et al. Declined miR-181a-5p expression is associated with impaired natural killer cell development and function with aging. Aging Cell. 2021;20(5): e13353.
- Ghiringhelli Fo, Ménard Cd, Terme M, Flament C, Taieb J, Chaput N, Puig PE, Novault S, Escudier B, Vivier E, et al. CD4+CD25+regulatory T cells inhibit natural killer cell functions in a transforming growth factor–β–dependent manner. J Exp Med. 2005;202(8):1075–85.
- 75. Noy R, Pollard Jeffrey W. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014;41(1):49–61.
- Knudsen NH, Manguso RT. Tumor-derived PGE2 gives NK cells a headache. Immunity. 2020;53(6):1131–2.

- Yang Y, Chen L, Zheng B, Zhou S. Metabolic hallmarks of natural killer cells in the tumor microenvironment and implications in cancer immunotherapy. Oncogene. 2022;42(1):1–10.
- Alici E, Sarkar S, Germeraad WTV, Rouschop KMA, Steeghs EMP, Gelder Mv, Bos GMJ, Wieten L. Hypoxia induced impairment of NK cell cytotoxicity against multiple myeloma can be overcome by IL-2 activation of the NK cells. PLoS ONE. 2013;8(5):e64835.
- Hanahan D, Weinberg Robert A. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.
- Poznanski SM, Singh K, Ritchie TM, Aguiar JA, Fan IY, Portillo AL, Rojas EA, Vahedi F, El-Sayes A, Xing S, et al. Metabolic flexibility determines human NK cell functional fate in the tumor microenvironment. Cell Metabol. 2021;33(6):1205–e12201205.
- 81. Sharma S, Wang J, Alqassim E, Portwood S, Cortes Gomez E, Maguire O, Basse PH, Wang ES, Segal BH, Baysal BE. Mitochondrial hypoxic stress induces wide-spread RNA editing by APOBEC3G in natural killer cells. Genome Biol. 2019. ht tps://doi.org/10.1186/s13059-019-1651-1.
- Dong H, Adams NM, Xu Y, Cao J, Allan DSJ, Carlyle JR, Chen X, Sun JC, Glimcher LH. The IRE1 endoplasmic reticulum stress sensor activates natural killer cell immunity in part by regulating c-Myc. Nat Immunol. 2019;20(7):865–78.
- Assmann N, O'Brien KL, Donnelly RP, Dyck L, Zaiatz-Bittencourt V, Loftus RM, Heinrich P, Oefner PJ, Lynch L, Gardiner CM, et al. Srebp-controlled glucose metabolism is essential for NK cell functional responses. Nat Immunol. 2017;18(11):1197–206.
- 84. Béziat V, Liu LL, Malmberg JA, Ivarsson MA, Sohlberg E, Björklund AT, Retière C, Sverremark-Ekström E, Traherne J, Ljungman P, et al. NK cell responses to cytomegalovirus infection lead to stable imprints in the human KIR repertoire and involve activating KIRs. Blood. 2013;121(14):2678–88.
- 85. Björkström NK, Lindgren T, Stoltz M, Fauriat C, Braun M, Evander M, Michaëlsson J, Malmberg KJ, Klingström J, Ahlm C, et al. Rapid expansion and long-term persistence of elevated NK cell numbers in humans infected with hantavirus. J Exp Med. 2011;208(1):13–21.
- Beziat V, Dalgard O, Asselah T, Halfon P, Bedossa P, Boudifa A, Hervier B, Theodorou I, Martinot M, Debre P, et al. CMV drives clonal expansion of NKG2C + NK cells expressing self-specific KIRs in chronic hepatitis patients. Eur J Immunol. 2012;42(2):447–57.
- 87. Gumá M, Cabrera C, Erkizia I, Bofill M, Clotet B, Ruiz L, López-Botet M. Human cytomegalovirus infection is associated with increased proportions of NK cells that express the CD94/NKG2C receptor in aviremic HIV-1-positive patients. J Infect Dis. 2006;194(1):38–41.
- 88. Maucourant C, Filipovic I, Ponzetta A, Aleman S, Cornillet M, Hertwig L, Strunz B, Lentini A, Reinius B, Brownlie D, et al. Natural killer cell immunotypes related to COVID-19 disease severity. Sci Immunol. 2020. https://doi.org/10.11 26/sciimmunol.abd6832.
- 89. Varchetta S, Mele D, Oliviero B, Mantovani S, Ludovisi S, Cerino A, Bruno R, Castelli A, Mosconi M, Vecchia M, et al. Unique immunological profile in patients with COVID-19. Cell Mol Immunol. 2021;18(3):604–12.
- Solana R, Pawelec G, Tarazona R. Aging and innate immunity. Immunity. 2006;24(5):491–4.
- Martinez-Rodriguez JE, Munne-Collado J, Rasal R, Cuadrado E, Roig L, Ois A, Muntasell A, Baro T, Alameda F, Roquer J, et al. Expansion of the NKG2C + natural killer-cell subset is associated with high-risk carotid atherosclerotic plaques in seropositive patients for human cytomegalovirus. Arterioscler Thromb Vasc Biol. 2013;33(11):2653–9.
- Alsulami K, Sadouni M, Tremblay-Sher D, Baril JG, Trottier B, Dupuy FP, Chartrand-Lefebvre C, Tremblay C, Durand M, Bernard NF. High frequencies of adaptive NK cells are associated with absence of coronary plaque in cytomegalovirus infected people living with HIV. Medicine (Baltimore). 2022;101(38): e30794.
- Degos C, Heinemann M, Barrou J, Boucherit N, Lambaudie E, Savina A, Gorvel L, Olive D. Endometrial tumor microenvironment alters human NK cell recruitment, and resident NK cell phenotype and function. Front Immunol. 2019:10: 877
- Cifaldi L, Prencipe G, Caiello I, Bracaglia C, Locatelli F, De Benedetti F, Strippoli R. Inhibition of natural killer cell cytotoxicity by interleukin-6: implications for the pathogenesis of macrophage activation syndrome. Arthritis Rheumatol. 2015;67(11):3037–46.
- Castriconi R, Cantoni C, Della Chiesa M, Vitale M, Marcenaro E, Conte R, Biassoni R, Bottino C, Moretta L, Moretta A. Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proc Natl Acad Sci U S A. 2003;100(7):4120–5.

Guo et al. Immunity & Ageing (2025) 22:38 Page 12 of 12

- Aktas ON, Ozturk AB, Erman B, Erus S, Tanju S, Dilege S. Role of natural killer cells in lung cancer. J Cancer Res Clin Oncol. 2018;144(6):997–1003.
- Mamessier E, Sylvain A, Thibult ML, Houvenaeghel G, Jacquemier J, Castellano R, Gonçalves A, André P, Romagné F, Thibault G, et al. Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity. J Clin Invest. 2011;121(9):3609–22.
- Rodrigues-Santos P, López-Sejas N, Almeida JS, Ruzičková L, Couceiro P, Alves V, Campos C, Alonso C, Tarazona R, Freitas-Tavares P, et al. Effect of age on NK cell compartment in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors. Front Immunol. 2018. https://doi.org/10.3389/fimmu.2018.0 2587
- Yao D, Xu L, Liu L, Zeng X, Zhong J, Lai J, Zheng R, Jin Z, Chen S, Zha X, et al. Increased Expression of TIGIT/CD57 in Peripheral Blood/Bone Marrow NK Cells in Patients with Chronic Myeloid Leukemia. BioMed res int. 2020;2020:9531549.
- 100. Sanchez-Correa B, Campos C, Pera A, Bergua JM, Arcos MJ, Banas H, Casado JG, Morgado S, Duran E, Solana R, et al. Natural killer cell immunosenescence in acute myeloid leukaemia patients: new targets for immunotherapeutic strategies? Cancer Immunol Immunother. 2016;65(4):453–63.
- 101. Sanchez-Correa B, Gayoso I, Bergua JM, Casado JG, Morgado S, Solana R, Tarazona R. Decreased expression of DNAM-1 on NK cells from acute myeloid leukemia patients. Immunol Cell Biol. 2012;90(1):109–15.
- 102. Male V, Moffett A. Natural killer cells in the human uterine mucosa. Annu Rev Immunol. 2023;41(1):127–51.

- Rajagopalan S, Long EO. Cellular senescence induced by CD158d reprograms natural killer cells to promote vascular remodeling. Proc Natl Acad Sci U S A. 2012;109(50):20596–601.
- Rätsep MT, Felker AM, Kay VR, Tolusso L, Hofmann AP, Croy BA. Uterine natural killer cells: supervisors of vasculature construction in early decidua basalis. Reproduction. 2015;149(2):R91–102.
- 105. Tang X, Deng B, Zang A, He X, Zhou Y, Wang D, Li D, Dai X, Chen J, Zhang X, et al. Characterization of age-related immune features after autologous NK cell infusion: protocol for an open-label and randomized controlled trial. Front Immunol. 2022. https://doi.org/10.3389/fimmu.2022.940577.
- 106. Bai Z, Yang P, Yu F, Li Z, Yao Z, Martinez J, Li M, Xu H. Combining adoptive NK cell infusion with a dopamine-releasing peptide reduces senescent cells in aged mice. Cell Death Dis. 2022. https://doi.org/10.1038/s41419-022-0456 2-w.
- 107. Chelyapov N, Nguyen TT, Gonzalez R. Autologous NK cells propagated and activated ex vivo decrease senescence markers in human PBMCs. Biochem Biophys Rep. 2022. https://doi.org/10.1016/j.bbrep.2022.101380.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.