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Background
Natural killer (NK) cells are integral components of the 
innate immune system and also play a crucial role in 
adaptive immunity. Within the circulating lymphocyte 
population, NK cells account for approximately 5%−20% 
and can be classified into two principal subsets based 
on differential surface expression of CD56 and CD16: 
CD56brightCD16− NK cells and CD56dimCD16+ NK cells 
[1]. The CD56dimCD16+ NK cells, which make up about 
90% of NK cells in the peripheral blood, are considered 
mature NK cells (mNK cells) with high cytotoxic activ-
ity [2]. Conversely, the less abundant subset, comprising 
only about 10%, known as CD56brightCD16− NK cells or 
immature NK cells (iNK cells), produces abundant cyto-
kines and chemokines upon stimulation with IL-2, IL-12, 
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Abstract
Background  Natural killer (NK) cells serve as pivotal effector cells within the innate immune system, playing an 
indispensable role against infections and tumors. Individuals with diminished NK cell activity or NK cell deficiency are 
at a higher risk of developing cancers and experiencing severe viral infections. With global demographic shifts toward 
aging populations, elucidating the mechanisms of immunosenescence becomes increasingly critical for developing 
targeted therapeutic interventions against age-related disorders.

Main body of the abstract  This review provides a comprehensive summary of the phenotypic characteristics, 
functional changes, and mechanisms of NK cells in aging and diseases. By synthesizing current research, it highlights 
key pathways contributing to NK cell immunosenescence in the elderly and explores potential strategies to preserve 
or restore their cytotoxic and immunoregulatory functions.

Short conclusion  The review provides novel insights into NK cell immunosenescence and proposes innovative 
approaches to enhance NK cell activity in aging individuals, offering potential therapeutic avenues for mitigating age-
related immune decline.
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or IL-18 [1]. It is worth noting that CD56brightCD16− 
NK cells have the ability to differentiate into mature 
CD56dimCD16+ NK cells. Additionally, another dis-
tinct subset of NK cells called CD56−CD16+ has been 
identified in chronic human immunodeficiency virus 
(HIV) infection [3]. Unlike conventional CD56dim NK 
cells, these particular cells exhibit impaired secretion of 
interferon-gamma (IFN-γ) along with direct target cell 
elimination and antibody-dependent cell-mediated cyto-
toxicity (ADCC) [3–5].

Immunosenescence arises from various sources of 
damage signals, such as oxidative stress, mitochondrial 
dysfunction, epigenetic modifications, and persistent 
DNA damage [6]. This phenomenon is characterized by 
the destruction and remodeling of immune organ struc-
ture, along with the dysfunction of innate and adaptive 
immunity [6, 7]. Consequently, individuals become more 
vulnerable to infections, malignancies, and autoimmune 
disorders [6, 8, 9]. Multiple metabolic changes occur 
during immunosenescence, including altered glycolysis, 
mitochondrial dysfunction, and increased production 
of reactive oxygen species (ROS) [6, 10, 11]. Identifying 
immunosenescence-associated features is essential to 
explore its impact and clinical significance. In this article, 
we describe the characteristics of NK cell immunosenes-
cence, its specific mechanisms, and related diseases.

Immunosenescence of NK cell subsets
Accumulating evidence indicates that NK cell subsets 
undergo significant phenotypic alterations and functional 
decline during immunosenescence (Table 1).

CD56dimCD16+ NK cells
Current research data show that NK cell numbers and 
proportions in elderly populations mostly remain stable 
or increase, with only a few studies reporting a decline 
(Table  2) [12–18]. These variations may arise from dif-
ferences in age ranges, gender distribution, ethnic back-
grounds, health status, and methodologies used to assess 
NK cells among study populations. More research is still 
needed to draw definitive conclusions. Age-dependent 
alterations in NK cell subpopulations reveal a consistent 
decline in CD56bright NK cells accompanied by expansion 
of CD56dim subsets [15, 17, 19]. The surface marker CD57 
has been identified as a marker of cellular senescence in 
NK cells, correlating with both replicative senescence and 
impaired proliferative capacity [20–22]. A cross-sectional 
study conducted by Le Garff-Tavernier and Segerstrom 
demonstrated a higher proportion of CD56dimCD57+ NK 
cells among the elderly, a finding that was further con-
firmed in a longitudinal study by Rebecca G. Reed et al. 
[15, 23, 24]. It has been demonstrated that CD57+ NK 
cells exhibit reduced proliferative capacity in response 
to cytokines or target cells compared to CD57− NK cells 

Table 1  Immunosenescence of NK cell subsets
Subset Change Reason Characteristics Impact
CD56dimCD16+NK 
cell

↑ May be attributed 
to the long-term 
accumulation of NK 
cells

1. A marker of replicative senescence and impaired proliferation increase: 
CD57↑
2.Activating receptors decrease: NKp30↓, NKp46↓, CD69↓, CD94/NKG2A↓, 
CD161↓, DNAM-1↓
3. Inhibitory receptors increase: KLRG1↑
4.Perforin and granzyme A↓

Affect the ac-
tivation and 
cytotoxicity 
of NK cells

CD56brightCD16−NK 
cell

↓ 1. Age-related altera-
tions in the number 
and functionality of 
hematopoietic stem 
cells
2. Impaired genera-
tion of new NK cells

The ability to produce cytokines decrease: IFN-γ↓, MIP-1α↓, IL-8↓ poor immune 
regula-
tion, poor 
resolution of 
inflammation, 
and poor 
induction 
of adaptive 
immunity

CD56−CD16+ NK 
cell

↑ Persistent viral infec-
tion, such as chronic 
HIV, HCV, and EBV 
infection.

1. CD57lowKIRlow phenotype
2. Low replication
3. Toxicity↓
4. Cytokine release↓
5. Inhibitory receptors↑
6. Activating receptors decrease: NCRs↓, NKG2D↓
7. Transcription factors T-bet↓

Be consid-
ered dysfunc-
tional cells

Adaptive NK cell - Acute or chronic 
viral infections

1. Be long-lived and can remain stable in healthy donors from 6 months to 4 
years
2. It is capable of memory recall and exhibits a degree of antigen specificity
3. ADCC activity increases and more IFN-γ and TNF-α secreted upon 
activation

-

↑ Increase, ↓ Decrease, -: No data
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Table 2  NK cell counts and proportions in elderly populations: variations across studies
Aging cohort 
characteristics [N, 
age, sex]

Country Results (Young vs. Aged) References

N = 21 (9 M, 12 F);
≥ 60 years

Brazil Total NK Percentage
(% lymphocytes)

8.93 vs. 14.85
(p < 0.001)

↑ [12]

Count
(cells/mm3)

141 vs. 293 (p < 0.001) ↑

CD56dim NK Percentage
(% NK cells)

94.52 vs. 97.45 (p = 0.001) ↑

Count
(cells/mm3)

136 vs. 279 (p < 0.001) ↑

CD56bright NK Percentage
(% NK cells)

5.48 vs. 2.59 (p = 0.001) ↓

Count
(cells/mm3)

9 vs. 7 (p = 0.375) Stable

N = 21;
> 60 years

United Kingdom CD3−CD56+ NK Percentage
(% lymphocytes)

10.60 ± 0.9 vs. 17.21 ± 1.2 
(p = 0.0001)

↑ [13]

CD56dim NK Percentage
(% lymphocytes)

10.40 ± 0.9 vs. 16.75 ± 1.2 
(p < 0.0001)

↑

CD56bright NK Percentage
(% lymphocytes)

0.56 ± 0.1 vs. 0.40 ± 0.04 
(p = 0.03)

↓

N = 14;
77–89 years (mean 
81 ± 3)

Spain CD3−CD56+ NK Percentage
(% lymphocytes)

14 ± 3 vs. 32 ± 10 (p < 0.01) ↑ [14]

Count
(cells/µL)

291 ± 87 vs. 407 ± 176 
(p < 0.05)

↑

CD56dim NK Percentage
(% NK cells)

92 ± 5 vs. 97 ± 4 (p < 0.05) ↑

Count
(cells/µL)

280 ± 86 vs. 392 ± 148 
(p < 0.01)

↑

CD56bright NK Percentage
(% NK cells)

6 ± 3 vs. 3 ± 2 (NS) Stable

Count
(cells/µL)

25 ± 18 vs. 18 ± 14 (p = 0.375) Stable

N = 30;
> 80 years
(mean 87.1 ± 4.9)

France CD3−CD56+ NK Percentage
(% lymphocytes)

- ↑ [15]

N = 41 (33 M, 8 F);
65–80 years
(mean 71.6)

China CD16+CD56+ NK - - Stable [16]

N = 67;
> 60 years
(mean 79)

United Kingdom Total NK Percentage
(% lymphocytes)

9.25 ± 6.1 vs.11.22 ± 9.1 (NS) Stable [17]

Count
(cells/µL)

194.9 ± 140.4 vs.205.8 ± 184.0 
(NS)

Stable

CD56dim NK Percentage
(% lymphocytes)

8.49 ± 5.8 vs. 11.7 ± 9.3
(NS)

Stable

Count
(cells/µL)

179.3 ± 135.3 vs. 
197.7 ± 180.3 (NS)

Stable

CD56bright NK Percentage
(% lymphocytes)

0.76 ± 0.6 vs. 0.5 ± 0.5 
(p = 0.012)

↓

Count
(cells/µL)

15.64 ± 12.8 vs. 8.13 ± 7.9 
(p = 0.0004)

↓

N = 17;
Mean age 73.5 ± 1.6 
years

China Total NK Percentage (%) - ↓ [18]
Count - ↓

M Male, F Female, ↑ Increase, ↓ Decrease, -: No data
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[25]. Due to the high prevalence of cytomegalovirus 
(CMV) infection among older individuals, it is challeng-
ing to discern the specific effects of aging and CMV on 
NK cells. Recent studies that stratified donors based on 
CMV serology have revealed that CD57 upregulation on 
CD56dim NK cells is associated with CMV seropositivity 
rather than senescence [26]. These studies also observed 
concomitant downregulation of various NK cell surface 
markers, including NKp30 and CD161 [27, 28]. Further-
more, the expression pattern and migratory capacity of 
perforin in CD56dim NK cells are speculated to decline 
with aging, thereby directly impacting NK cell-mediated 
lysis of senescent cells [29].

CD56brightCD16− NK cells
CD56brightCD16− NK cells exhibit both quantitative 
reduction and progressive functional decline with age, 
collectively contributing to deteriorated immunoregu-
latory capacity [30]. Decreased levels of CD56bright NK 
cells in the elderly could be due to age-associated changes 
in both the quantity and functionality of hematopoietic 
stem cells, alongside a diminished capacity for generating 
new NK cells [20, 31]. A study discovered that senescent 
CD56bright NK cells exhibited markedly reduced cytokine 
production levels (such as IFN-γ, MIP-1α, IL-8) com-
pared to younger CD56bright NK cells [29].

CD56−CD16+ NK cells
The characteristics of CD56−CD16+ NK cells, which are 
considered dysfunctional cells, include low replication, 
decreased cytotoxicity, decreased cytokine secretion, 
increased expression of inhibitory NK receptors, and 
decreased expression of natural cytotoxicity receptors 
(NCRs) and NKG2D [3, 4, 32, 33]. CD56−CD16+ NK cells 
represent a mature population and expand in the elderly 
[26]. Compared with CD56dimNK cells, CD56−CD16+ 
NK cells have CD57lowKIRlow phenotype accompanied by 
reduced T-bet expression and elongated telomeres [3].

Adaptive NK cells
Adaptive NK cells are induced by acute or chronic viral 
infections such as CMV and HIV [34]. These special-
ized cells exhibit remarkable longevity, remaining stable 
in healthy individuals for periods ranging from 6 months 
to 4 years [24, 35, 36]. They also demonstrate a degree 
of antigen-specific immunological memory [37]. Unlike 
conventional NK (cNK) cells, adaptive NK cells typically 
show elevated NKG2C expression [36]. Upon activation, 
adaptive NK cells display enhanced antibody-dependent 
cellular cytotoxicity (ADCC) and produce greater quan-
tities of IFN-γ and tumor necrosis factor-alpha (TNF-
α) [38]. Additionally, a memory-like proinflammatory 
CD52+NKG2C+CD94+ NK subset that accumulates 
with aging was discovered by Guo et al. using single-cell 

transcriptome sequencing [39]. This subset exhibits pro-
inflammatory features and a type I interferon-responsive 
state, correlating with disease severity in coronavirus dis-
ease 2019 (COVID-19) [39].

Immunosenescence of NK cells in mice
Notably, the changes in NK cell subsets in aged mouse 
models are distinct from those observed in humans. Sev-
eral studies indicate that aged mice exhibit a decline in 
total NK cell numbers [40, 41]. While mature NK cells, 
commonly identified as CD11blowCD27highKLRG1+ sub-
set, decrease in aged mice, which results in a relative 
accumulation of immature CD11b−CD27+KLRG1− NK 
cells [40, 42]. However, the frequency of mature NK cells 
in bone marrow remains unchanged in aged mice, sug-
gesting that the observed reduction in circulating mature 
NK cells likely results from diminished maturation effi-
ciency and impaired egress of mature NK cells from 
the bone marrow [40]. Further research is required to 
determine whether complex factors like CMV infection 
account for the differences in NK cell alterations between 
humans and mice.

Mechanisms of NK cell immunosenescence
Genetic basis of NK cell immunosenescence
Telomere shortening
Among the factors involved in the regulation of NK cell 
lifespan, telomere length plays a pivotal role. Telomere-
dependent senescence occurs after clonal expansion of 
lymphocytes and loss of telomeres, which results from 
cell division stimulated by persistent antigens [43–45]. 
Telomere shortening is facilitated by cell differentiation, 
and as a result, mature CD56dim NK cells have shorter 
telomeres than immature CD56bright NK cells [46]. 
Research indicates that NK cells undergo age-dependent 
telomere attrition and progressive loss of telomerase 
activity [47]. The observed telomere shortening in senes-
cent NK cells may result from stem cell telomere deple-
tion, proliferation induced by immune homeostasis or 
viral infection, or a combination of these factors [20]. 
Further studies are necessary to elucidate the underlying 
mechanisms.

It has been demonstrated that IL-2 and IL-15 can 
enhance telomerase activity and upregulate the level of 
telomerase reverse transcriptase (TERT) mRNA, which 
in turn prevents telomere loss in NK cells [48, 49]. How-
ever, the telomere length in NK cells is influenced by the 
reduced availability of IL-2 and IL-15 in the aging micro-
environment, as these cytokines play a critical role in 
NK cell homeostasis and telomere maintenance [12, 50, 
51]. Furthermore, telomerase activity is inhibited by the 
relocation of apoptotic endonuclease G (EndoG) to the 
nucleus. Regulatory T (Treg) cells can regulate EndoG 
nuclear translocation, leading to telomere loss and cell 
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senescence [43] (Fig.  1). Telomere shortening activates 
the DNA damage response (DDR) and p53-dependent 
apoptotic pathway, thereby inducing programmed cell 
death. Complete telomere loss may lead to chromosomal 
end-to-end fusions or breakage, resulting in genomic 
instability that ultimately culminates in cell necrosis or 
mitotic catastrophe [52].

Changes in protein expression profile
Using in-silico mapping techniques, S.A. Bumgardner et 
al. identified potential genes associated with the pheno-
type of senescent NK cells in mice [53]. Many of them are 
protein-coding genes, which were categorized based on 
the protein functions to screen for genes that are either 
directly or indirectly related to the activity of NK cells. 
Such protein functions include cell proliferation (Thsd4), 
cytotoxicity (Arl8a, Asph, Arnt), endocytosis (Ap2b1), 
apoptosis (Nsmaf, Cox10), DNA methylation (Dnmt3b), 
chromatin binding (Asxl1), transcriptional regulation 
(Hdac9), and autophagy (Epas1) [53]. These selected 
genes require further verification. This study reveals the 
genetic basis of the NK cell senescence phenotype for the 

first time and offers insights for further research on the 
mechanisms of NK cell senescence.

Metabolic basis of NK cell immunosenescence
It has been demonstrated that cell metabolism is crucial 
for the generation of immune cell phenotypes and for 
achieving optimal immune cell function.

Mitochondrial dysfunction
A characteristic of NK cell senescence may be impaired 
cellular signaling and mitochondrial function [6, 54]. The 
respiratory capacity of activated NK cells is decreased, 
and the production of ROS is increased in the elderly, 
which affects the function of NK cells [6]. The research-
ers found that stimulation with high levels of IL-2 
increased neither mitochondrial mass nor mitochon-
drial membrane potential in senescent NK cells, unlike 
in younger NK cells [54]. Furthermore, in NK cells from 
senior donors, IL-2 does not increase the expression of 
PPAR-gamma coactivator 1-alpha (PGC-1α), which can 
enhance mitochondrial function and metabolism and 
provide protection against various aging-related diseases 

Fig. 1  Mechanisms of NK cell immunosenescence. NK cell immunosenescence is driven by a combination of genetic, metabolic, and molecular mecha-
nisms. EndoG: endonuclease G; GO: Glyoxal; GPCR21: G protein-coupled receptor 21; JAK1/3: Janus kinase 1/3; MGO: Methylglyoxal; NK: Natural killer; Pls: 
Plasmalogens; PKA: Protein kinase A; ROS: Reactive oxygen species; STAT5: Signal transducer and activator of transcription 5; TERT: Telomerase reverse 
transcriptase; Treg: Regulatory T cells. Created in https://BioRender.com
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[54]. Mitochondrial dysfunction markedly impairs cell 
viability and compromises antitumor activity [55].

Glycosylation
Glycation is a defining characteristic of molecular senes-
cence, specifically manifested by the production of 
advanced glycation end products (AGEs) [56]. Two highly 
potent dicarbonyl compounds that generate AGEs are 
glyoxal (GO) and methylglyoxal (MGO), and their levels 
in plasma are elevated in aging and age-related diseases 
[57]. In vitro studies have shown that both GO and MGO 
interfere with the function of NK cells [57]. Furthermore, 
the glycosylation of tumor cells can disrupt the cytotoxic 
function of NK cells against tumor cells [57, 58]. There-
fore, glycation exerts significant negative effects on NK 
cell function.

PIs-GPCR21 signal pathway
Plasmalogens (Pls) are a particular type of phospholipid 
which are reduced in the elderly [59]. NK cells specifically 
express G protein-coupled receptor 21 (GPCR21) on 
their surface, which can recognize and bind to Pls [60]. 
The Pls-GPCR21 signaling cascade activates signal trans-
ducer and activator of transcription 5 (STAT5), thereby 
inducing the expression of perforin-1 [60, 61]. However, 
when Pls levels decline with age, the Pls-GPCR21 signal-
ing cascade is downregulated, leading to restricted per-
forin-1 expression and impaired NK cell function. Thus, 
the age-dependent reduction of this signaling cascade 
may be one of the contributing factors to NK cell immu-
nosenescence [60].

Molecular basis of NK cell immunosenescence
Cytokines
A variety of cytokines are essential for NK cell devel-
opment, differentiation, and function. IL-2 is a crucial 
cytokine that links adaptive immunity with NK cells, 
serving to boost cytokine release, promote proliferation, 
and improve killing capacity [62]. Previous studies have 
reported age-related impairment of the IL-2 signaling 
pathway in NK cells [14]. It indicates that in the elderly, 
IL-2 rarely promotes the development of NK cells and 
generates lower levels of IFN-γ and IFN-α while raising 
levels of IL-1, IL-4, IL-6, IL-8, and IL-10 [63, 64]. IL-2 has 
been used as an immunotherapeutic agent to promote 
the antitumor activity of NK cells and is currently used in 
the treatment of metastatic renal cell carcinoma (MRCC) 
and melanoma [62]. Additionally, IL-12, IL-15, and IL-18 
also play an important role in the immunosenescence of 
NK cells [49, 65–67].

Transcription factors T-bet and Eomes
The transcription factor T-bet (encoded by Tbx21) is a 
tyrosine- and serine-phosphorylated protein exhibiting 

hematopoietic lineage-restricted expression [68]. Eomes 
(Eomesodermin) is another transcription factor criti-
cal for the development, differentiation, and function 
of immune cells, particularly in regulating the cytotoxic 
activity of CD8+ T cells and NK cells [68, 69]. Both of 
them are downregulated in the process of NK cell senes-
cence and are associated with the impaired cytotoxicity 
of NK cells [42]. In aged mice, T-bet and Eomes expres-
sion in the bone marrow is inversely correlated with 
poor NK cell maturation [42, 70]. Hesham M et al. con-
structed bone marrow chimeras from young and old 
individuals respectively, and examined how NK cells 
developed under the same conditions in the two groups. 
They discovered that one factor contributing to NK cell 
maturation and functional impairment was the non-
hematopoietic environment [42]. The aging non-hema-
topoietic environment may influence NK cell maturation 
and function by downregulating the levels of transcrip-
tion factors Eomes and T-bet. This is supported by the 
fact that their levels recovered in the young environment 
[42]. This indicates external factors cause the senescent 
phenotype, as demonstrated by other studies [42, 68].

MicroRNA
MicroRNAs are short (approximately 22 nt), endoge-
nously activated, non-coding RNAs that act as post-tran-
scriptional regulatory factors to negatively regulate gene 
expression [71]. Each microRNA can regulate multiple 
mRNAs, and an mRNA can also be regulated by multiple 
microRNAs [72]. The microRNA expression profile of 
NK cells changes with aging. For instance, the decreased 
level of miR-181a-5p leads to developmental defects 
and decreased function of NK cells [73]. It is suggested 
that we may preserve or reestablish the function of NK 
cells in the elderly by adjusting the expression levels of 
microRNAs.

NK cells in the tumor microenvironment
Impaired NK cell viability and function in the tumor 
microenvironment
The immunosuppressive tumor microenvironment 
(TME) impairs NK cell viability and function through 
multiple mechanisms. Regulatory T cells (Tregs) secrete 
TGF-β, which inhibits NK cell proliferation and IFN-γ 
production [74]. Tumor-associated macrophages (TAMs) 
further dampen NK cell activity through CD80/CD86 
signaling [75]. Additionally, tumor-derived PGE2 and 
TGF-β downregulate activating receptors such as NKp30, 
NKp44, and NKG2D, thereby reducing NK cell cytotoxic-
ity [76].

Beyond immunosuppressive factors, metabolic stress 
in the TME significantly disrupts NK cell function. Nutri-
ent deprivation, hypoxia, acidic pH, and metabolic waste 
accumulation not only affect tumor cells but also severely 
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impair NK cell activity. NK cells rely on both glycolysis 
and oxidative phosphorylation (OXPHOS) for energy 
metabolism, and disruption of either pathway reduces 
IFN-γ secretion and cytotoxic potential [77]. In multiple 
myeloma, hypoxia suppresses perforin and granzyme B 
expression while downregulating activating receptors like 
NKG2D [78]. Collectively, these metabolic disturbances 
contribute to the functional impairment of NK cells in 
antitumor immunity.

Metabolic reprogramming of NK cells in the tumor 
microenvironment
Metabolic reprogramming refers to the process by which 
cells alter their metabolic pathways and energy utiliza-
tion to adapt to environmental changes or functional 
demands. Originally described in cancer biology (e.g., the 
Warburg effect), this concept has since been extended 
to immune cells, including NK cells, which dynamically 
modulate their metabolism to regulate effector functions 
[79]. The metabolic plasticity of NK cells represents a 
fundamental mechanism for their adaptation to the TME 
and enhancement of antitumor activity.

Studies indicate that the TME typically suppresses 
glucose metabolism in NK cells, impairing both glycoly-
sis and OXPHOS, thereby diminishing cytotoxic func-
tion. However, research by Ali A. Ashkar and colleagues 
revealed that NK cells exhibiting a “Warburg-like” meta-
bolic shift—while retaining metabolic flexibility—not 
only sustain viability under metabolically hostile condi-
tions but also significantly enhance tumor-killing capac-
ity [80]. Hypoxia triggers APOBEC3G-mediated RNA 
editing to promote stress adaptation [81]. Furthermore, 
the IRE1α-XBP1-MYC axis contributes to NK cell acti-
vation, and SREBP regulates the citrate-malate shuttle 
system to influence the production of effector molecules 
such as IFN-γ and granzyme B [82, 83]. These findings 
not only establish metabolic reprogramming as a critical 
determinant of NK cell functionality in the TME but also 
provide a conceptual framework for developing next-
generation NK cell-based immunotherapies through 
metabolic modulation.

Clinical associations of NK cell immunosenescence
Numerous clinical studies have established that the phys-
iological deterioration of NK cell activity in the elderly 
serves as a significant risk factor for multiple morbidities, 
with particularly strong associations observed for infec-
tious diseases, atherosclerosis, and malignant tumors. 
Additionally, studies have indicated that the mortality 
rate is higher in the elderly with lower NK cell counts 
than in those with higher NK cell counts [30]. The exist-
ing data appears to corroborate the idea that NK cell phe-
notype and function change with the disease progression.

Infectious diseases
After viral infection in older adults, the NK cell pool is 
highly skewed and unable to replenish naive NK cells due 
to inefficient NK cell differentiation or viral-specific NK 
cell cloning and amplification, both of which may impair 
NK cell function [41]. As mentioned above, there is a cor-
relation between CMV infection and the increased fre-
quency of CD57+ NK cells in the elderly [26]. Campos 
et al. showed that young adults with CMV seropositivity 
exhibited a substantially greater frequency of CD57+ NK 
cells than CMV-negative young adults, but a similar fre-
quency to that of older adults with CMV positivity [26]. 
This highlights the importance of accounting for CMV 
infection when analyzing NK cell immunosenescence 
and cancer surveillance in the elderly. Abnormal clonal 
expansion of KIR+NKG2C+ NK cells occurred in patients 
with CMV infection, which accounted for more than 
50% of the total NK cells [84]. Similarly, multiple stud-
ies have shown that NKG2Cbright NK cells expand during 
infections with HIV, hantavirus, hepatitis B virus (HBV), 
and hepatitis C virus (HCV) [41, 85–87]. The profile of 
NK cell activation in COVID-19 indicates a correlation 
between disease severity and CD56bright NK cell arm-
ing [88, 89]. Guo et al. found that the aggregation of 
CD52+NKG2C+CD94+ NK cell subsets was associated 
with the severity of COVID-19 by single-cell sequencing 
[39].

Atherosclerosis
Atherosclerosis is a disease caused by repeated damage 
to the arterial wall. The risk of developing atherosclero-
sis and other diseases increases in the elderly, and this is 
associated with reduced NK cell activity [90]. Research by 
Guma et al. demonstrated that CMV-induced expansion 
of NKG2C+ NK cells (adaptive NK cells) correlates with 
the instability of carotid atherosclerotic plaque (CAP). 
High-risk patients exhibited elevated levels of NKG2C+ 
NK cells compared to lower-risk individuals [91]. How-
ever, Alsulami K found the reverse effect, where adaptive 
NK cell enrichment in CMV-seropositive subjects corre-
lated with decreased coronary plaque burden [92]. This 
disparity lacks a conclusive explanation. It may be that 
the protective and pathogenic roles of adaptive NK cells 
differ at different stages of atherosclerosis. Another pos-
sibility is that carotid and coronary atherosclerosis differ 
in their biological development. To understand this vari-
ation in outcomes, further research is required.

Malignant tumors
NK cells can control the growth of tumor cells during the 
occurrence and development of malignant tumors. How-
ever, the tumor microenvironment induces functional 
alterations in NK cells that facilitate immune evasion, 
ultimately promoting malignant growth and metastasis 
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[93]. Degos and colleagues revealed significant altera-
tions in NK cell biology within tumor microenviron-
ments. Their research demonstrated that while tumors 
exhibit overall diminished NK cell infiltration, the pro-
portion of CD56bright NK cells increases [93]. Notably, 
the tumor-resident CD103+ NK cell subset displayed 
substantially higher surface expression of co-inhibitory 
molecules, such as T cell immunoreceptor with Ig and 
ITIM domains (TIGIT) and T cell immunoglobulin and 
mucin domain-containing protein 3 (Tim-3), compared 
to CD103− NK cells. Most importantly, these intra-
tumoral NK cells manifested functional impairment 
through markedly reduced granzyme B (GZMB) pro-
duction when contrasted with NK cells from neighbor-
ing healthy tissues, suggesting substantial suppression of 
their cytotoxic capacity in the tumor milieu [93]. Further-
more, tumors exhibited decreased levels of the cytotoxic 
cytokine IL-15 and elevated levels of IL-6, which inhib-
its the STAT-5 pathway and NK cell activity [94]. When 
compared to nearby NK cells in healthy tissue, tumor-
resident NK cells produced less GZMB, indicating a 
potential loss of cytotoxic activity [93].

In lung cancer, the downregulation of NKp30 and 
NKG2D results in an inhibitory phenotype for NK cells, 
and a reduction in GZMB impairs their cytolytic func-
tion [95, 96]. In breast tumors, the expression of NK cell 
activating receptors is decreased, whereas the expression 
of inhibitory receptors is increased, limiting the antitu-
mor immunity of NK cells [97]. The research showed that 
the endometrial cancer tumor microenvironment has a 
significant impact on resident NK cells, as it can decrease 
their cytotoxic capacity and remodel their phenotype and 
function, ultimately promoting tumor progression [93]. 
Chronic myeloid leukemia (CML) is a disease associated 
with aging (about half of all cases are diagnosed in people 
over 65 years of age) [98]. Some studies have revealed that 
CML patients experience progressive functional deterio-
ration of NK cells at all stages of the disease [98]. Patients 
with CML exhibit higher levels of CD57 expression in the 
bone marrow and TIGIT expression on the surface of NK 
cells in peripheral blood. Because decreased proliferation 
is linked to high expression of CD57, there is a decrease 
in NK cell proliferation in the bone marrow [99]. NK 
cells from patients with acute myeloid leukemia (AML) 
also downregulate the expression of activating receptors 
NKp30, NKp46, and DNAM-1 [100, 101].

Notably, NK cell senescence appears to be not merely 
an immunological disorder but may also constitute an 
adaptive mechanism preserved through evolution for 
host life cycle regulation. Uterine natural killer (uNK) 
cells are abundantly present at the maternal-fetal inter-
face [102]. During early pregnancy, soluble HLA-G 
secreted by fetal trophoblasts binds to CD158d of uNK 
cells, activating the DNA damage response pathway and 

promoting a senescent phenotype [103, 104]. This pro-
cess generates various SASP factors that facilitate angio-
genesis and trophoblast invasion [103]. This reveals the 
potential physiological significance of NK cellular senes-
cence during pregnancy, though this mechanism remains 
to be further validated by additional research.

Autologous NK cell infusion therapy: rejuvenating 
immune function
By expanding and reinfusing autologous NK cells in vitro, 
this therapy can effectively clear senescent cells, improve 
immune function, and mitigate systemic inflamma-
tory responses. A randomized controlled trial involving 
37 healthy middle-aged volunteers found that subjects 
receiving autologous NK cell infusions exhibited a sig-
nificant reduction in senescent and exhausted T cell sub-
sets (CD28− and CD57+ subsets), along with decreased 
expression of immunosuppressive markers such as 
PD-1+ and TIM-3+ [105]. Furthermore, levels of key pro-
inflammatory cytokines (IL-6, IL-8, IL-17) were mark-
edly reduced, suggesting that NK cell therapy alleviates 
age-related “inflammaging“ [105]. Additional research 
revealed that expanded NK cells selectively eliminate 
senescent CD4+ T cells while sparing normal CD4+ T 
cells, a specificity potentially mediated by altered surface 
receptor expression (e.g., downregulation of NKG2C/
KLRG1 and upregulation of NKG2A/TIM3) [105]. In 
aged mouse models, the combination of autologous NK 
cells with dopamine-releasing peptides (opioid peptides) 
synergistically enhanced the clearance efficiency of senes-
cent cells, outperforming monotherapy while improving 
tissue function and extending healthspan [106]. Another 
small-scale trial involving five healthy elderly individu-
als demonstrated that in vitro-activated and reinfused 
NK cells reduced the levels of senescence markers (p16, 
β-galactosidase), with effects lasting over eight months 
and significantly decreasing inflammatory markers [107]. 
These findings highlight the potential of autologous NK 
cell therapy in mitigating immunosenescence and suggest 
its broader role in delaying overall aging.

Currently, NK cell therapy is emerging as an innovative 
anti-senescence approach, not only capable of restoring 
age-compromised immune function but also offering 
new avenues for treating various age-related diseases. 
However, translating these findings into clinical applica-
tions requires further exploration of optimal treatment 
timing, dosage, and the efficacy and safety of NK cells 
from different sources. With advancing research, we may 
witness the rise of a novel medical strategy—leveraging 
NK cell therapy to help humanity better combat aging 
and its associated challenges.
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Conclusions
Immunosenescence, the age-related decline of immune 
function, plays a crucial role in both the normal aging 
processes and the development of various age-related 
diseases. As key effectors of innate immunity, NK cells 
exhibit distinct phenotypic and functional alterations 
during senescence that significantly compromise over-
all immune competence. The most well-established bio-
marker of NK cell aging is the progressive accumulation 
of CD57+ cells, which indicates terminal differentiation 
and reduced proliferative capacity. Concurrently, aging 
induces a characteristic shift in NK cell subsets, charac-
terized by the expansion of the cytotoxic CD56dimCD16+ 
population and the contraction of the immunoregula-
tory CD56brightCD16− subset. These changes are accom-
panied by significant alterations in receptor expression 
patterns and cytokine production profiles, ultimately 
leading to functional impairments through multiple 
mechanisms, including diminished cytotoxic activity, 
reduced interferon-γ secretion, and impaired respon-
siveness to cytokine stimulation. The clinical implica-
tions of NK cell senescence are particularly evident in 
malignancies, chronic viral infections, and autoimmune 
disorders, where the senescent phenotype is associ-
ated with worse clinical outcomes. This understanding 
has sparked increasing interest in developing innovative 
NK cell-based therapeutic strategies to counteract the 
effects of immunosenescence, such as ex vivo expan-
sion and reinfusion of autologous NK cells, genetic engi-
neering approaches to enhance cytotoxic potential, and 
combination therapies with immunomodulatory agents. 
Future research should focus on elucidating the molecu-
lar mechanisms underlying NK cell senescence, identify-
ing more precise biomarkers for clinical monitoring, and 
developing targeted interventions to either reverse the 
senescent phenotype or harness its unique features for 
therapeutic benefit. As global demographics continue to 
shift toward an aging population, enhancing our under-
standing of NK cell immunosenescence will be essential 
for developing effective treatments and improving clini-
cal outcomes in age-related diseases, ultimately contrib-
uting to healthier aging.
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