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Abstract

NK cells are lymphocytes of the innate immune system, which are able to deal promptly with
stressed cells. Cellular senescence is a cell stress response leading to cell cycle arrest that plays
a key role during tissue homeostasis and carcinogenesis. In this review, how senescent cells trig-
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ger an immune response and, in particular, the ability of NK cells to recognize and clear senes-
cent cells are discussed. Special attention is given to the NK cell-mediated clearance of senescent
tumor cells. NK cells kill senescent cells through a mechanism involving perforin- and granzyme-
containing granule exocytosis, and produce IFN-y following senescent cell interaction, leading to
hypothesize that NK cell-mediated immune clearance of senescent cells not only relies on direct
killing but also on cytokine production, that in turn can promote macrophage activation. These
aspects, as well as the ability of the senescence-associated secretory phenotype and senescent

cell-produced extracellular vesicles to modulate NK cell effector functions, are described.
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1 | INTRODUCTION

NK cells are lymphocytes of the innate immunity endowed with
cytolytic activity. They can target virus-infected, neoplastic, and, more
in general, “stressed” cells. Indeed, NK cells display a wide array of
activating/inhibitory receptors, which are able to engage MHC class
| and class I-like molecules that serve as indicators of cellular stress in
injured and damaged cells. Among the activating receptors, NKG2D
and DNAM-1 are of great relevance as their ligands are promptly
induced in response to stress conditions1-3 and are largely expressed
on a variety of tumor cells.*> In humans, the ligands of NKG2D are
MICA, MICB, and ULBP1-6, while murine NKG2D ligands include
RAE-1 (five different isoforms), MULT-1, and Hé0 (three different
isoforms).6 The ligands of DNAM-1 are PVR (CD155) and Nectin-2
(CD112).7 Expression of both NKG2D and DNAM-1 ligands can be
mediated by the DNA damage response (DDR) pathway via ATM
and ATR and occurs at the transcriptional level.8-19 Drug-induced
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transcription of MICA and PVR genes involves the transcriptional
factor E2F and is dependent on the cellular redox state.ll Notably,
NKG2D and DNAM-1 ligands have been shown to be expressed by
senescent cells and drug-induced senescent tumor cells, unmasking an
important role of NK cells for the immune surveillance of senescent
cells.1012,13

Senescence is a cellular program based on long-lasting cell cycle
arrest upon replicative, genotoxic, or oncogenic insult (for a review on
cellular senescence see Ref. 14). Senescent cells are apoptotic resistant
and metabolically active, producing large amounts of soluble factors
collectively called senescence-associated secretory phenotype (SASP).
The composition of SASP is not unique but is context-dependent since
it is subjected to the influence of several extrinsic and intrinsic factors.
SASP composition includes cytokines, chemokines, growth factors, and
proteases. In this way, senescent cells participate in tissue remodel-
ing during embryogenesis,1>16 wound healing,1”:18 and cancer.1? As
senescence is a barrier to exceeding cell proliferation, it is considered
a tumor suppressive mechanism. On the other hand, the proinflam-
matory feature of SASP facilitates tumor progression.2221 |ndeed, its
proinflammatory activity results in enhanced proliferation and tumori-
genesis of epithelial cells, stimulation of angiogenesis, triggering of
epithelial to mesenchymal transition, promotion of cancer cell invasion,
increased growth of xenograft tumorsin vivo, and, in general, is respon-
sible for multiple aging-related pathologies.22-24

In this regard, the life span of senescent cells seems to be the com-

pelling factor. “Acute” senescence, when senescent cells are promptly
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removed from organs, contributes to tissue repair, while “chronic”
senescence, due to the persistence of senescent cells in tissues, pro-
motes tissue ageing and inflammation, thus, enhancing tumorigen-
esis. This double aspect of senescence has arisen much interest in
uncovering the faith of senescent cells in tissues, especially in cancer
settings, as it has become clear that the efficacy of certain chemother-
apeutic drugs relies on the induction of senescence?>26 and prose-
nescence therapy is approaching.2” So, targeting senescent cells is
now a major issue of the scientific community. Beside the develop-
ment of senolytic drugs,28 the immune surveillance of senescent cells
is another aspect that is under investigation. So far, different cellu-
lar types of the immune system have been involved in the clearance
of senescent cells, with phagocytes and NK cells playing an essen-
tial role.2:30 |n particular, macrophages have been implicated in the
removal of senescent cells during embryogenesis'>1¢ and in the clear-
ance of senescent red blood cells,3! as well as premalignant/malignant
senescent cells.32-34 Neutrophils have been also shown to participate
in tumor clearance after senescence induction due to p53 reactiva-
tion in hepatocarcinoma cells.34 On the other hand, NK cells have been
described to efficiently target senescent hepatic stellate cells,3>:3¢

12,34 and drug-

senescent hepatocarcinoma cells after p53 restoration,
induced senescent multiple myeloma cells.1%37 Finally, premalignant
N-RAS-expressing senescent hepatocytes have been reported to be
controlled by a CD4 T lymphocyte-mediated immune response, that
likely then supports macrophages and NK cells.33 It is worth mention-
ing that nevi contain numerous senescent melanocytes without any
immune clearance for unknown reasons.38

This review focuses on the ability of NK cells to recognize and clear
senescent cells both in physiological and in pathological conditions, as
well as it describes the latest studies showing the way senescent cells

modulate NK cell effector functions.

2 | RECOGNITION OF SENESCENT CELLS
BY NK CELLS DRIVES TISSUE HOMEOSTASIS

Nowadays, it is clear that cellular senescence plays a role in tissue
homeostasis. This aspect has been clearly addressed in a model of
liver fibrosis, where hepatic damage is caused by CCl, treatment.
After liver injury, hepatic stellate cells (HSCs, also called Ito cells)
proliferate and promote organ repair producing extracellular matrix.
Excessive HSC activity leads to fibrosis, eventually triggering liver
cirrhosis.3? Krizhanovsky and colleagues have demonstrated that acti-
vated HSCs undergo cellular senescence to limit matrix deposition.
Senescent HSCs reduce secretion of extracellular matrix, enhance
secretion of matrix-degrading enzymes, and, at the same time, stim-
ulate an immune response aimed at HSC removal, thus, promoting
the resolution of fibrosis. NK cells largely characterize this immune
response (Fig. 1).35 Curiously, the natural compound curcumin has
been reported to foster HSC senescence.*? Senescent HSCs upreg-
ulate IL-8 (CXCLS8), the adhesion molecule CD58, and the NKG2D
ligands MICA and ULBP2, thereby, supporting NK cell engagement.3>
The specific killing of senescent HSCs by NK cells is mediated by

granule exocytosis, while death receptor signaling is not required. To

partially account for this mechanism, expression of the decoy death
receptor DCR2 is observed on senescent HSCs.3¢ Quiescent mouse
HSCs do not express the NKG2D ligand RAE-1, making NKG2D ligand
expression peculiar of the senescence condition rather than cell cycle
arrest related.*!

Involvement of NKG2D ligands for senescent cell targeting has
been confirmed also in human fibroblast IMR-90 cells induced to
senescence by DNA damage with etoposide treatment, by replicative
senescence through prolonged cell culture, and by H-RAS overexpres-
sion. MICA, ULBP1, and ULBP2 are constantly upregulated in all the
investigated settings. ULBP2 expression is ATM signaling dependent,
while MICA expression has been ascribed to ERK activity. As IL-6, IL-
8, CXCL1, CXCL10, and CCL2 (MCP-1) expression in the senescent
secretome requires ERK activity too, ERK seems to be a key factor for
NK cell engagement upon senescent cell interaction.13

Regarding pancreatitis, senescence of pancreatic stellate cells has
been found to increase their susceptibility to immune cell cytotoxi-
city, including NK cell activity. Nevertheless, NK cell contribution to
the pancreatic wound healing seems not essential, as fibrosis is not
affected by NK cell depletion.#2

A pivotal role for senescent cells and their clearance by NK cells
in tissue homeostasis has been well described during tissue remod-
eling of cycling human endometrium.*® Replication stress of rapid
endometrial growth during the proliferative phase induces senes-
cence in a pool of decidualizing endometrial stromal cells (EnSCs).
The transcription factor FOXO1, inducing cell cycle exit of EnSCs,
not only drives differentiation into decidual cells but also forces a
pool of EnSCs to enter senescence, that in turn, is supported in an
autocrine/paracrine way by the secretion of IL-8 by the senescent
decidual cells themselves.*344 The SASP of senescent decidual cells
encompasses IL-8, IL-6, and CXCL1 secretion, supporting the tran-
sient inflammatory state observed during decidualization. In parallel,
differentiated decidual cells secrete IL-15, a key cytokine for NK cell
proliferation and activation, in order to activate uterine NK cells, thus,
regulating the clearance of their senescent counterpart. Accordingly,
NK cells target senescent EnSCs only after decidualization, when IL-15
levels support NK cell activity. Also in this setting, NK cells eliminate
senescent cells through perforin- and granzyme-containing granule
exocytosis upon NKG2D engagement.*3 Efficacy of senescent decidual
cell removal by uterine NK cells regulates endometrial remodeling and
assures homeostasis in cycling endometrium (Fig. 1).

3 | NK CELL-MEDIATED CLEARANCE
OF SENESCENT TUMOR CELLS

The first evidence of senescent tumor cell recognition and killing
by NK cells stems from the discovery by Scott-Lowe’s group that
p53 restoration in murine liver carcinoma results in tumor regres-
sion due to the clearance of senescent tumor cells by an innate
immune response that includes NK cells.3* This study has changed
the perspective about senescence. Cellular senescence is not only
a cell-autonomous mechanism imposing a barrier to cell prolifera-

tion, but is a process that strongly involves the recognition of the
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FIGURE 1 Schematicrepresentation of NK cell response against senescent cells in different settings. NK cells target senescent cells in liver and
endometrium promoting tissue remodeling (upper side). NK cells, as well as macrophages, perform immune surveillance of premalignant senescent
cells contributing to cancer prevention (left side). NK cells recognize and clear senescent tumor cells during prosenescence therapies against cancer
cells (right side). HSC, hepatic stellate cell; EnSC, endometrial stromal cell; M®, macrophage; MDSC, myeloid-derived suppressor cell; MM cells,
multiple myeloma cells

senescent cells by the immune system. Senescent cells and cells of From a mechanistic point of view, the model of p53 reactivation
the immune system interact with each other and deeply shape tissue in hepatocarcinoma cells has shown the requirement of NK cells for
homeostasis, performing tissue remodeling during carcinogenesis and tumor regression after the induction of senescence, as NK cell deple-
tumor progression. tion strongly delays tumor eradication.1234 In line with this evidence,
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abrogation of the senescence program because of additional p53 muta-
tions causes aggressive hepatocarcinoma development.4®

Targeting of the senescent cells occurs via NKG2D recognition of
its ligands on tumor cells. Indeed, NKG2D blocking antibodies can
prevent tumor clearance.2 In this tumor model, NKG2D ligand expres-
sionon senescent cells is not enhanced by p53. Instead, p53 restoration
is associated with increased chemokine secretion. In particular, senes-
cent tumor cells, through the SASP, release CCL2, CCL3, CCL4, CCL5,
CXCL1(GROa), and CXCL2. Among these, CCL2 is essential for NK cell
recruitment to the tumor site (Fig. 1).12

The ability of NK cells to recognize and clear senescent cells and
the association between senescent cells and NKG2D ligands have been
largely addressed by our group in a model of drug-induced senescence.
In this context, multiple myeloma (MM) cell lines and patient-derived
malignant plasma cells treated with sublethal (not apoptotic) doses of
chemotherapeutic drugs, namely doxorubicin and melphalan, become
senescent with increased cell surface expression of the NKG2D ligands
(MICA/B and ULBP1-3) and DNAM-1 ligands (PVR and Nectin-2).10
Similarly, in a mouse model of MM, low doses of melphalan promote
the in vivo establishment of a senescent tumor cell population, harbor-
ing high levels of the stress-induced ligands RAE-1 and PVR.37 Remark-
ably, engagement of NKG2D and DNAM-1 not only targets senescent
tumor cells to NK cell-mediated cytotoxicity,1037 but also triggers NK
cell production of IFN-y, that in turn can elicit macrophage activity,
thus, contributing to the clearance of senescent cells (Fig. 1).11 NKG2D
and DNAM-1 ligand upregulation is p53-independent but dependent
on the redox state, as doxorubicin and melphalan DDR triggering is
based on ROS signaling.1! Induction of tumor senescence associated to
increased oxidative stress has been reported also in breast cancer due
to protein acyltransferase dysregulation.*¢ The resulting SASP, charac-
terized by the secretion of CCL2, CXCL1, CXCL16, and IL-8, recruits
antitumor “M1-like” macrophages and NK cells leading to reduced
tumor growth.4¢

It should be taken into consideration that the release of NKG2D
ligands from the cell surface in their soluble form by proteolytic
cleavage plays an important role in tumor cell escape from NKG2D-
dependent immune surveillance.*’ Interestingly, it has been demon-
strated that genotoxic stress-induced upregulation of ADAM10 expres-
sion and soluble MICB secretion are primarily associated with senes-
cent cells.*® Thus, the release of soluble NKG2D ligands has been
proposed to be a component of tumor cell SASP, contributing to the
creation of a microenvironment suitable for tumor escape (Fig. 1).48
Strategies aimed at targeting metalloproteases or that encompass
antibody-mediated blocking of MICA ligand release in conjunction
with chemotherapy could be successful to preserve NKG2D ligands on
the cell surface of senescent cells.4?

CCL2 plays a central role in NK cell, as well as mono-
cyte/macrophage recruitment to the tumor site and CCL2-CCR2
axis has been shown to be crucial in the senescence surveillance of
premalignant hepatocytes. Premalignant N-RAS-expressing senescent
hepatocytes produce a large amount of CCL2 driving CCR2*™ myeloid
cell accumulation and maturation in the senescent liver, where
differentiated macrophages can perform precancerous senescent

hepatocyte clearance, achieving anticancer effects.32 Strikingly, if

premalignant hepatocytes escape or bypass senescence (or if senes-
cent hepatocytes are not efficiently removed) leading to hepatocel-
lular carcinoma growth, the SASP-driven effect of oncogene-induced
senescent hepatocytes is to recruit immature myeloid cells that, in a
tumor context, do not differentiate into macrophages but induce an
immunosuppressive environment.32 Tumor-infiltrating NK cells are
strongly inhibited by myeloid-derived suppressor cells (MDSCs), with
reduced IFN-y release and cytotoxic capacity.”® Thereby, the SASP
can exert opposite jobs, procancer as well as anticancer functions,
depending on the efficacy of senescent cell clearance by the immune
system (Fig. 1).

Supporting this statement, senescent stromal cells that accumu-
late in aged skin, likely because of reduced immune clearance, create,
through the SASP factor IL-6, a myeloid-driven immunosuppressive
environment that does not restrain tumor formation.>* Thus, accumu-
lation of senescent cells in tissues is able to establish a chronic inflam-
matory state that is tumor permissive.

Many findings highlight the opposing functions of SASP as a pro-
cancer as well as anticancer mechanism. To ensure that the established
SASP promotes antitumor immunity, a possible innovative approach
is to reprogram the SASP from procancer toward anticancer effec-
tor function. In this regard, a work by Toso and colleagues has pro-
vided evidence of the possibility of reprogramming the SASP to restore
an immune response.>2 Pten-null senescent prostate tumor cells are
characterized by an immunosuppressive SASP, but Jak2/Stat3 genetic
or pharmacological inhibition changes the profile of cytokine secre-
tome, reducing CXCL2, M-CSF, GM-CSF, IL-10, IL-13, and increas-
ing CCL2, CXCL10, thus, reactivating senescence surveillance by NK
cells. This work highlights also the importance of the genetic back-
ground of senescent cells for the feature of SASP and, consequently,
for the efficacy of chemotherapy that relies on antitumor immunity.>2
An interesting strategy to erase the side effects of SASP has been
exploited by Georgilis and colleagues. Through a large-scale RNA inter-
ference library screen in RAS-driven senescent human diploid fibrob-
lasts, the authors have identified and targeted transcripts associated to
the SASP pathway without interfering with the senescent cell growth
arrest.>3 All together, these studies focus on the importance of SASP-
associated cytokines and chemokines to drive the immune surveillance
of senescent cancer cells, but recent evidence has shown that also
SASP-derived extracellular vesicles (EVs) can significantly contribute
to this effect.

4 | EVs AS A KEY COMPONENT OF SASP
MODULATE NK CELL FUNCTIONS

A large body of evidence shows that EVs, including exosomes and
microvesicles, that are important mediators of intercellular communi-
cation, represent a key component of SASP.543> |n general, EVs carry
and transfer awide variety of molecules, such as micro RNAs (miRNAs),
messenger RNAs, DNA, and proteins. Remarkably, EVs secreted from
senescent cells have unique characteristics and contribute to regulate
the behavior of recipient cells similarly to soluble SASP factors.>¢:57

By analyzing EVs from senescent human dermal fibroblasts,

85U80| 7 SUOWWIOD 3AIIa.D 3|qeol|dde auy Ag peusenob 8Je ssjole YO ‘@SN JO Sa|ni Joj ARIq1T 8UIIUO AB]IM UO (SUORIPUCD-PUR-SLLBY WD A3 | 1M AReiq 1l UO//SdNY) SUORIPUOD PUe swie | 8L} 88S *[G202/0T/62] U0 AriqiT auljuo AB|IM H662-8T.L0H IN'EIC/Z00T 0T/I0p/w0o" A 1w Areiqipuljuo-q //:sdny wo.y pepeojumod ‘9 ‘6TOZ ‘€L9E8E6T



ANTONANGELI ET AL.

Terlecki-Zaniewicz and colleagues have identified a set of selec-
tively retained or secreted miRNAs and have shown that senescent
cell-derived EVs with their miRNA cargo contribute to an antiapop-
totic environment in tissues where senescent cells accumulate.>8
Furthermore, ovarian cancer-derived exosomes expressing miRNA-
433 have the potential to modulate the tumor microenvironment
by inducing cellular senescence in neighboring cells.>? In addition to
miRNA pattern, also protein profile significantly changes in senescent
cell-derived exosomes, as described by a proteomic study demon-
strating that EVs derived from drug-induced senescent breast cancer
cells contain proteins involved in cell proliferation, ATP depletion, and
apoptosis.?? Moreover, typical SASP components, such as soluble IL-6
receptor and ICAM-1, have been described in EVs.61:62

A number of studies have demonstrated that stress conditions, such
as heat shock, oxidative stress, chemotherapy, irradiation, hypoxia, and
hypothermia, which can induce cellular senescence, are reported to
increase EV secretion and, in some circumstances, to induce remark-
able changes in the compositions of EVs.63-¢8 Mechanistically, the
increased exosome secretion from senescent cells is mediated by
p53 activation.t4¢? Similarly to SASP soluble factors, EVs can have
both immunosuppressive and immunostimulating effects on NK cell-
mediated functions. Exosomes derived from leukemia cells in response
to oxidative stress express high levels of NKG2D ligands that have the
capability to turn-off NKG2D, thus, reducing NK cell-mediated recog-
nition of cancer cells.é> On the other hand, EVs released by etoposide-
treated hepatocellular carcinoma cells express high levels of HSPs and
induce NK cell activation.®” In line with these observations, our group
has recently demonstrated that melphalan stimulates the secretion of
exosomes from MM cells and that these nanovesicles have the capabil-
ity to trigger IFN-y production by NK cells with a mechanism depen-
dent on HSP70/TLR2 interaction.®® The immunostimulatory property
of the exosomes from drug-induced senescent MM cells has been fur-
ther proven by the finding that the exosomes express the IL-15/IL-
15RA complex and can transpresent IL-15, thereby promoting NK
cell activation and proliferation.”? Collectively, these findings suggest
a mechanism whereby chemotherapeutic drugs act in synergy with
antitumor NK cell response by enhancing the release of nanovesicles
exposing immunomodulating molecules (Fig. 1). Although the charac-
terization of the immunomodulatory roles exerted by the EVs released
from senescent cells is still largely unknown and need further investi-
gation, senescence-associated EVs may have the potential to be aratio-
nal therapeutic target.

EVs, as well as SASP composition can be affected by the metabolic
state of the cell and senescent cells, undertaking relevant metabolic
changes, affect many aspect of cellular physiology, including
autophagy.”? While it is widely recognized that senescent cells
are resistant to apoptosis, the relationship between senescence
and autophagy is much more controversial and a discussion about
this topic is beyond the scope of the present paper (for a review on
senescence and apoptosis see Ref. 72, for reviews on senescence and
autophagy see Ref. 73,74). Of interest for NK cell biology, Baginska
and colleagues have shown that the activation of autophagy in cancer
cells due to hypoxic conditions leads to a reduced NK cell-mediated

killing. This impairment has been ascribed not to a defect in tumor
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cell recognition by NK cells but to the degradation of NK cell-derived
granzyme B in autophagosomes.”> Considering the relevance of
SASP for NK cell recruitment and activation, it is worth noting that
stabilization of the transcription factor GATA4, that is necessary for
SASP establishment, is mediated by the selective inhibition of GATA4
autophagic degradation. Under normal conditions, GATA4 is degraded
by p62-mediated selective autophagy. During the senescence process,
this regulation is abrogated and GATA4, through TRAF3IP2 and
IL1A, sustains NF-xB activity to initiate the SASP.7¢ Remarkably, the
GATA4-NF-kB pathway for SASP induction relays on ATM/ATR while
is independent of p53 or p16, thus, connecting autophagy and DDR to
senescence independently of cell cycle arrest.”¢ This finding confirms
the strong interplay between senescence and autophagy.

5 | TYPE I INTERFERONS AT THE
CROSSROAD BETWEEN SENESCENT AND
VIRUS-INFECTED CELLS

Cytokines belonging to the family of type | IFN, including IFN-a and
IFN-B, play a major role during antiviral response in concert with NK
cells.”” Notably, senescent cells secrete type | IFN78 and long expo-
sure to IFN-p has been reported to be sufficient to induce the state
of senescence.”? Therefore, senescent cells are able to stimulate and
reinforce the senescent condition of neighboring cells also through the
production of IFN-p. This finding, together with the observation that
some viruses have developed strategies to overcome senescence,8081
can lead to the idea that cellular senescence may be evolved as an
antiviral mechanism.82 Undoubtedly, senescence is an important host
defense mechanism against oncogenic virus effects.83

Recent studies highlight the link between cytosolic DNA sensing
and the induction of cellular senescence, stressing the pivotal role of
the cGAS-STING pathway, thus, providing the molecular basis for con-
sidering cellular senescence as a defense system against virus infec-
tion, as well as genomic/neoplastic insult.84-87 Accordingly, type |
IFNs result protective against retrotransposition events®® and cells
accumulating DNA damage produce endogenous IFN-g and become
senescent.8%90 Hence, it is reasonable that type | IFN signaling drives
cellular response upon both virus infection and DNA damage to
protect genome integrity, becoming actually a tumor suppressive
mechanism.

In this context, Katlinskaya and colleagues have shown that the
production of IFN-# by senescent cells contributes to the NK cell-
mediated clearance of senescent cells not only acting on the effector
cells, performing NK cells priming,?192 but also having effect on tar-
get senescent cells. Indeed, the engagement of the IFN pathway on
senescent cells increases their expression of NKG2D ligands, that is,
MICA and ULBP2, promoting NK-mediated killing.”® Thereby, type |
IFNs operate at different levels, inducing cellular senescence as a cell-
autonomous safeguard mechanism and, at the same time, triggering
the immune system, namely NK cells, as an extrinsic response.

NKG2D ligand coding genes do not belong to the bondfide IFN gene
signature. From a molecular point of view, DDR and ROS signaling drive

NK activating ligand expression, whether cellular stress comes from
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direct DNA damage, such as genotoxic drugs or viral infection.894 So,
it is possible to speculate that NK cells recognize senescent cells and
virus-infected cells in a similar way. However, little is known on how NK
cells behave during the infection of senescent cells compared to unin-
fected senescent cells and further investigations are needed to clarify

this point.

6 | CONCLUSIONS AND PERSPECTIVES

First studies paid attention to the proliferation arrest aspect of senes-
cence, highlighting its implications as a tumor suppressive mechanism.
Nowadays, cellular senescence is considered a more complex pro-
gram, triggered by a plethora of stimuli during both physiological and
pathological conditions. Senescent cells, via SASP, are able to evoke
an immune response and to orchestrate important tissue remodeling.
The effects of SASP are wide and may achieve even opposite results
depending on the cellular context. In this regard, it is of great relevance
if senescent cells are recognized and efficiently cleared by the immune
system, or they persist in tissues, promoting chronic inflammation and,
as a matter of fact, immune suppression, 2 characteristics of aged tis-
sues. Recent works on the ability of senescence to promote stemness
feature and tissue rejuvenation emphasize the importance of timing,
opposing transient versus chronic SASP exposure.?>~97

NK cells, together with macrophages, have been shown to play a
major role in senescent cell immune surveillance. The activating recep-
tors, NKG2D and DNAM-1, are able to promptly recognize stressed
cells, make NK cells peculiar in their role of sentinels of senescent
cells. Indeed, senescent cells have been demonstrated to upregulate
NKG2D and DNAM-1 ligands and to secrete NK cell recruiting and
activating factors. On the other hand, a role of the death receptor lig-
ands FASL and TRAIL in the killing of senescent cells by NK cells has
been ruled out in different settings. NK cells are observed in close
proximity to senescent cells and, beyond their role in senescent cell
clearance, can contribute to tissue remodeling due to their capacity
of cytokine secretion. This aspect is exemplified by the endometrium
physiology, where NK cells and senescent cells cooperate to assure
tissue receptivity. All together, these findings support the concept of
immunogenic senescence, a safety program through which senescent
cells flag themselves as the target of the immune system to restore
tissue integrity. 10

Senescent cells are reported to accumulate in aging tissues, thus,
contributing to tissue dysfunction.”8?? The weakening of the immune
system during ageing may account for this accrual, with immune cells
no longer able to efficiently recognize senescent cells. In elderly indi-
viduals, a negative correlation between CD56b"&ht NK cells and CRP
levels (assessed as a marker of inflammation) has been reported,00
leading to speculate that NK cells contribute to control inflammation,
likely performing senescent cell immune surveillance. Accordingly, a
positive association between the total NK cells and healthy elderly
individuals has been reported t00.199 It would be interesting to verify
whether NK cell number negatively correlates with senescent cell
accumulation in aging tissues. Cells of the immune system, includ-

ing NK cells, display a senescent phenotype with increasing age, a

process called immunosenescence.101-103 The idea of ameliorate aged
tissue functionality by killing senescent cells is supported by different
studies,104-106

Anticancer prosenescence therapies are currently under

investigation,27-107.108 = 4nd

recently approved drugs, such as
CDK4/6 selective inhibitors, have been shown to induce tumor
senescence.?526:109 Senescence induction in cancer cells may rep-
resent a valid approach to restrain tumor growth, but persistent
senescent tumor cells may act as the silent factor for tumor relapse.
For this reason, much effort is being spent in discovering tools and
drugs that selectively target senescent cells.28:106.110-113 Ajternative
approaches to target senescent cells have been explored. Georgilis
and colleagues have split the unwanted protumorigenic effects from
the beneficial proliferation arrest of senescent cells by specifically
targeting the secretory pathway of SASP.>3 Notably, the suppression
of SASP is associated with poor immune cell infiltration, apparently
with no augmented risk of tumorigenesis, but further investigations
are needed. Kim and colleagues, instead, identified dipeptidyl pepti-
dase 4 (DPP4) or CD26 by MS analysis as a surface protein specifically
expressed by senescent fibroblasts. This feature allowed them to
sensitize senescent cells to ADCC by using an anti-DPP4 antibody,
thereby targeting senescent cells, but not dividing fibroblasts, to NK
cell clearance. 114

The idea of making tumor cells more prone to NK cell killing is not
new, but the finding that senescent cells are preferentially recognized
and cleared by NK cells extends the field of application. NK cell-based
anticancer therapies are promising?1>116 and NK cell immunother-
apy should be considered as part of a prosenescence therapy. A com-
bined treatment could be conceived in which tumor cells are forced
to senescence and then removed by in vivo boosted NK cells or in
vitro activated adoptively transferred NK cells. In line with this idea,
a recent article by Ruscetti and colleagues clearly demonstrates how
cytostatic agents used in cancer therapy, specifically a MAPK inhibitor
(trametinib) and a CDK4/6 inhibitor (palbociclib), able to induce cellu-
lar senescence result cytotoxic because of the recruitment and activa-
tion of NK cells.117:118
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