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非亲缘脐带血移植应用于各种药物治疗无法改善的

恶性血液病和非血液病。在儿童和成人的急慢性白血病、

高危骨髓增生异常综合征和再生障碍性贫血等血液病，免

疫缺陷、代谢异常和神经运动发育不良等非血液病的移植

中广泛应用 [1-2]。脐带血造血干细胞 （umbilical cord blood 
hematopoieticstem cells，UCB-HSCs）是移植中造血干细胞

（hematopoietic stem cells，HSCs）的重要来源之一，由于它

容易获得，病原微生物感染率低，且淋巴细胞没有受到外界

抗原刺激，免疫原性相对较弱，能够较大程度上容许人类白

细胞抗原不匹配，从而具有移植物抗宿主病发生较低的优

势 [3]，对于缺乏同胞全相合的患者，脐带血移植已经成为继

单倍体移植的另一重要移植方式，移植数量逐年上升。

与成体造血干祖细胞  （hematopoiet ic  s tem and 
progenitor cells，HSPCs）相比，脐带血移植面临的主要问题

是 UCB- HSCs 数量不足。增加 HSCs 数量或者在干细胞的

数量不变的情况下增加其归巢的比例是目前研究热点 [4]。

单份脐带血移植所需的最小细胞数量是总有核细胞 （total 
nucleated cells，TNC）数≥（2.5 ~ 3.0）×107/kg 和 CD34+ 细

胞 ≥ 1.5×105/kg[5]。成人患者接受脐带血移植时脐带血干

细胞数量相对不足，导致造血或免疫恢复延迟，从而引起的

感染及其他非复发死亡率较高。因此，临床上尝试采用双份

脐血移植以增加 HSPCs 数量，或非血缘脐带血移植的同时

加用外周血 CD34+ 干细胞移植，促进脐带血植入，缩短造血
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【摘要】 非亲缘脐带血移植是治疗造血系统疾病的重要移植方式之一，但脐带血移植面

临的最大挑战是造血干细胞 （HSCs）数量不足，特别是成人患者受到脐带血干细胞数量的限

制，导致造血及免疫恢复延迟，非复发死亡率升高。体外扩增脐带血 HSCs （UCB-HSCs）是解

决该问题的途径之一。研究发现可以通过模拟骨髓造血龛 （niche）这一生态位使 HSCs 在体外

进行自我更新增殖，而间充质干细胞 （MSCs）正是造血龛的重要的组成细胞之一。本文将探讨

MSCs 在 UCB-HSCs 体外扩增中的应用。重点以 MSCs 促造血的特点、机制，促进脐带血干细胞

增殖的各种策略以及其临床应用和前景做一综述。
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重建时间，这些移植方式已经在部分移植中心开展。脐带血 
HSPCs 体外扩增实验也进行了几种优化扩增条件的尝试，

包括使用多种特定培养基、细胞因子组合、小分子化合物使

用、相关信号通路的调控和表观遗传学调控等，目前利用细

胞因子扩增技术仍是最重要的工具，几乎所有成熟的扩增体

系中均有细胞因子的参与 [6-7]。小分子化合物扩增和基因水

平改造受到小分子自身的细胞毒性以及基因水平的改造后

对 HSCs 的长期影响，扩增后 HSCs 的安全问题尚需进一步

观察验证，临床尚未应用。在体外如何安全扩增 UCB-HSCs
并应用到临床，仍是基础和临床科学家们关心的问题。

1978 年，Deans 等 [8] 提出了“造血龛 （niche）”的概念，使

人们认识到骨髓微环境对 HSCs 的生物学特性非常重要，它

能够调控 HSCs 的功能和分化，在龛中的 HSCs 可以维持自我

更新，一旦离开龛，就向造血祖细胞分化 [9-11]。龛是骨髓的体

内微环境，主要由成骨细胞、间充质干细胞（mesenchymal stem 
cells，MSCs）和内皮细胞及其它细胞等构成，通过细胞分泌

因子、表达与 HSCs 相结合的分子、产生细胞外基质等而产生

造血组织内特定的微环境，为 HSCs 的自我更新、分化和存活

提供了重要的前提条件 [12]。因此开发能够模拟造血生态位

微环境的体外系统将改善体外 HSPCs 扩增策略。研究显示，

骨髓微环境中 MSCs 的存在是诱导 HSCs 自我更新的关键。

MSCs 能够分泌多种细胞因子和表达黏附分子，促进 HSCs 自
我更新和分化。因此本文重点以 MSCs 作为“造血龛”的主

要成分之一体外扩增 HSCs 并保持其干性的这一能力，其各

种扩增策略及其临床应用和前景做一综述。

1  MSCs 的概况

MSCs 是发育早期中胚层内一种具有多向分化能力的

干细胞，存在于全身结缔组织和器官间质中，如骨髓、脐带、

胎盘和脂肪组织等 [13]。在 20 世纪 60 年代 Friedenstein[14] 首

次在实验中分离 MSCs，其具有多向分化潜能、支持造血和

促进 HSCs 植入、调节免疫等特点。来自羊膜、绒毛膜、脐带

华通氏胶、羊水、脐带血及骨髓的 MSCs 与 HPSCs 共培养，

均可以使 HSPCs 扩增 [15-16]。其中人骨髓来源 （human bone 
marrow mesenchymal stem cells，hBM-MSCs）和人脐带来

源 的 MSCs （human umbilical cord mesenchymal stem cell，
hUC-MSCs）促进 HSCs 增殖的研究较多，本文着重论述。

1.1 MSCs 的表面标志

2006 年国际细胞治疗学会提出鉴定 MSCs 的最低标

准 [17]：（1）体外标准培养条件下具有塑料黏附性；（2）表

达细胞表面标记物 CD105、CD73、CD90，而不表达 CD45、
CD34、CD14 或 CD11b、CD79α 或 CD19 和 HLA-DR；（3）
体外分化为成骨细胞、脂肪细胞和软骨细胞。不同来源的

MSCs 具有不同的表面标志。

1.2 MSCs 促进造血重建的相关特性

1.2.1 MSCs 分泌多种支持造血的细胞因子   MSCs 在造血

微环境中作为 HSCs 生长的天然支架，分泌造血细胞因子，为

HSPCs 增殖、分化和归巢提供支持 [18]。通过与造血细胞直接

接触、分泌细胞外基质及多种细胞因子维持造血微环境结构

和功能的完整性，实现对造血的精细调控 [19]。UC- MSCs 与

BM-MSCs 都可以表达干细胞因子 （stem cell factor，SCF）、白
血病抑制因子、巨噬细胞集落刺激因子、fms 样酪氨酸激酶 3 
（FMS-like tyrosine kinase-3，FLT3）和白细胞介素 -6 [20]。此外，

UC-MSCs 还产生粒细胞集落刺激因子和粒细胞 - 巨噬细胞

集落刺激因子等，但 BM-MSCs 中没有发现 [21]。

1.2.2  MSCs 表达与造血细胞相互作用的黏附分子   MSCs
既能分泌造血调控因子又能选择性黏附支持 CD34+ HSPCs
的增殖和分化，细胞黏附分子在 HSCs 的生长发育和归巢中

起重要作用。MSCs 与 HSCs 直接接触可分泌黏附因子，如

血管细胞黏附分子 -1、细胞间黏附因子 -1、P 选择素以及基

质细胞源性因子 -1 （stromal cell–derived factor，SDF-1），介
导 HSCs 归巢 [22]。UC-MSCs 还通过表达 C-X-C 趋化因子

受体 （C-X-C chemokine receptor 4，CXCR-4），提高了 CD34+

细胞向骨髓和脾脏的归巢和迁移效率 [23]。

1.2.3  MSCs 分化基质细胞构建造血龛  MSCs 除了可以分

化为成骨细胞、脂肪细胞和软骨细胞等，还能在特定条件下

分化为基质细胞，并通过分泌细胞外基质形成复杂的网状支

架结构，参与造血微环境构成，构建 HSPCs 网状基质龛，调

节定植于其中的造血细胞生理活动。对 HPSCs 的归巢、增

殖和分化起重要的调控作用 [24]。

1.3  MSCs 促造血中的 Notch 和 Wnt 信号通路

Notch 和 Wnt 信号是高度保守的细胞间通讯通路，参与

造血等发育过程。MSCs 表达和分泌包括 Notch 和 Wnt 生物

活性分子，Notch 和 Wnt 信号通路的激活对 HSCs 的维持、自

我更新、增殖和分化所有阶段至关重要。UC-MSCs 及 CD34+

细胞表面存在 Notch 信号配体及受体的表达，当它们共培养

时 Notch 通路相关信号分子 Jagged 1 和 Notch1 基因表达明

显增加 [25]，说明 Notch 信号在 MSCs 支持的 UCB-HSCs 增殖

过程中发挥重要作用。另外，MSCs 的 Notch 和 Wnt 通路激

活还参与介导 HSCs 的黏附和迁移 [7,26]，促进 HSCs 归巢。

Acuto 等 [27] 研究显示通过模拟造血生态位的直接细胞

接触培养系统，UC-MSCs 可以支持 UCB-HSCs 扩增。发现

在 Wnt 信号通路中，主要是 Wnt 蛋白具有增殖 - 诱导生长

因子的作用，它可以决定细胞的命运。但是与 BM- MSCs 相
比，UC-MSCs 的造血支持能力未显示出优势，可能是由于

UC-MSCs 对成骨细胞和脂肪细胞的谱系启动和分化能力较

弱，这与 Wnt 信号相关分子 WISP1 和 sFRP4 在 UC- MSCs
表达较低有关 [28]。

2  MSCs 构建的促进脐带血干细胞体外扩增培养体系

2.1 间充质基质细胞作为“饲养层”

MSCs 作为“饲养层”与脐带血干细胞共培养可以提高

CD34+ 细胞的干细胞数量并维持其干性。研究发现 MSCs
结合或者不结合造血刺激因子均能够提高扩增效率以增加

CD34+ 细胞的数量 [29-31]。Li 等 [32] 使用 hUC-MSCs 作为饲

养层，使用无血清培养系统和细胞因子，进行脐带血来源的

CD34+ 细胞体外扩增，TNC 增加 6 ~ 20 倍，CD34+ 细胞增

加 8 ~ 37 倍。Oubari 等 [33] 在具有添加 SCF、FLT-3、粒细胞

集落刺激因子、粒细胞 - 巨噬细胞集落刺激因子等细胞因子

和 MSCs 饲养层存在下扩增 UCB-HSCs，与无 MSCs 饲养
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层而具有细胞因子的培养条件相比，仅 FLT-3 与 MSCs 共
培养就可以使 CD34+ 达到 20 倍的扩增。Iacono 等 [27] 通过

与 hUC- MSCs 直接接触培养、Transwell 系统分离培养或在

hUC-MSCs 条件培养基存在的情况下，也发现在短期内可以

显著扩增脐带血来源的 CD34+ 的 HSPCs。
2.2  MSCs 参与仿生 3-D 造血龛

HSCs 的命运与造血龛密切相关，因此在体外模仿

HSPCs 生态位可能是一种有效的策略。过去以 MSCs 为基

础模拟骨髓龛的胶原或纤维蛋白 3D 支架促进了 HSCs 的
增殖 [34]。近几年利用各种无机和有机生物支架在体外联合

MSCs 促进 HSCs 增殖的研究较多。Liu 等 [35] 以人股骨干骺

端生物源骨为支架，将不含任何细胞因子的骨髓源性 MSCs
与 MSCs 分化而来的成骨细胞共培养，这种新型的 HSPCs
三维培养体系不仅促脐带血来源的 HSCs 的自我更新和体

外扩增，而且维持了原始 HSPCs 的表型和功能。Darvish
等 [36] 利用 3D 聚乳酸支架，将 MSCs 填充在支架上作为脐

带血 HSCs 的微环境，从而有效促进其扩增。Tavakol 等 [37]

通过在多孔的、胶原包覆的羧甲基纤维素微支架中共同培

养 MSCs 和 HSPCs，在体外模拟三维造血生态位，证实在没

有外源性细胞因子的情况下，该模型具有支持体外造血的能

力。利用不同的生物材料制作造血模型均离不开 MSCs 的
支持，3D 支架提供了 HSCs 的生态位，且研究显示仿生的环

境中 MSCs 以三维球体的形式存在利于 HSPCs 增长 [38]。

2.3  MSCs 来源的胞外囊泡 （extracellular vesicles，EVs）作
为造血龛的“交通工具”

MSCs 是分泌 EVs 能力最强的细胞之一。EVs 是细胞在

血浆和其他体液中释放的不同大小的膜包裹颗粒，分为 3 种：

来自细胞膜外层的微粒或微囊泡 （microvesicles，MVs），由细

胞膜内层形成的外泌体和凋亡小体 [39-40]。它们作为载体转移

各种分子，如基因、蛋白质、mRNA 和 miRNA 等，以活性形式

将其成分转移到目标细胞，是细胞间通信的重要工具。研究

表明 MSCs 通过旁分泌携带活性的蛋白质、细胞因子和核酸

类物质的 EVs 方式发挥作用 [41]。这些颗粒在造血龛调节中

调节 HSCs 的增殖和分化等 [42]。骨髓来源的 MSCs 囊泡中富

含 HSCs 代谢、增殖、分化和归巢必需的 miRNA[43]。Ghebes
等 [44] 发现来自成人和胎儿骨髓 MSCs 的 EVs 能够不同程

度地促进 UCB-HSCs 的体外扩增。在体外加入 MSCs 来源

MVs 的共培养系统中，MSCs-MVs 通过上调 β-catenin 表达，

增加脐带血中 CD34+ 细胞增殖率，并提高早期造血前体祖细

胞的数量 [45]。Sarvar 等 [46] 研究 MSCs 来源的 MVs 对脐带血

来源的 CD34+ 细胞红系分化的影响，发现 MSCs 来源的 MVs
降低脐带血来源的 CD34+ 干细胞向红细胞分化。MSCs-MVs
还能够促进脐带血来源的 CD34+ 干细胞向巨核细胞谱系的分

化，促进巨核细胞特异性基因的表达 [47]。Jalnapurkar 等 [48] 研

究显示通过携带编码 HSCs 支持基因 MVs 的细胞间转移，显

著地提高了与 MSCs 共培养 UCB-HSCs 的植入能力。

2.4  基因修饰的 MSCs 促进造血

基因修饰技术也被尝试应用于 MSCs 促进 HSCs 体外扩

增。Zhang 等 [49] 利用重组腺病毒，进行基因重组表达 SDF- 1、
HOXB4 和 SDF-1/HOXB4 融合基因，然后将这些基因修饰

过的 MSCs 与 UCB-HSCs 共培养，结果发现 SDF- 1/ HOXB4
融合基因修饰的 MSCs（SDF- 1/ HOXB4- MSCs）和人脐血

CD34+ 细胞共培养，明显提高了 HSCs 体外扩增的数量，而

且辐射小鼠的血细胞快速恢复，造血潜能显著提升。Ajami
等 [50] 利用过表达 SCF 和 SDF-1 的 MSCs 共培养 CD34+ 
HSCs，其 CD34+ 细胞被扩增了 （4.73±0.26）倍，克隆形成能

力也增加 （5.3±0.25）倍 [50]。另一项研究评估了 HSCs 和
过表达 CXCR4 的小鼠骨髓来源的 MSCs （CXCR4-MSCs）
共移植对接受致死照射小鼠中重建潜力的影响 [51]。发现

CXCR4- MSCs 共移植后受体 BM 中 c-kit+Sca+lin- HSCs 的频

率更高，这表明 CXCR4- MSCs 联合移植可促进早期造血恢

复和持续造血 [51]。Kiani等 [52]使用过表达缺氧诱导因子 -1α的
MSCs 扩增脐带血来源的 CD34+ HSCs 可以改善 HSCs 的支

持功能，并增强共培养的 HSCs 的集落形成能力。这种效应

与缺氧诱导因子 -1α修饰的MSCs产生更高水平的SCF有关。

2.5  联合造血龛中其他细胞促进造血

HSCs 位于小梁内膜 （成骨细胞生态位）或窦状动脉

血管周围 （血管生态位）区域。除了 MSCs，造血龛中的成

骨细胞和内皮细胞 也是其重要的组成部分。成骨细胞与 
HSCs 通过信号传导和细胞黏附分子相互作用，维持 HSCs
在细胞分裂 / 增殖和静止之间的平衡 [53]。同时它可以调节 
HSCs 的募集，以及根据其分化阶段，沿着淋巴、髓系和红细

胞谱系的活性、增殖和分化 [54]。在胚胎发育过程中，内皮细

胞和 HSPCs 是来源于同一前体细胞，功能位上决定了内皮

祖细胞和 HSPCs 有着密切的联系。骨髓血窦血管内皮细胞

通过表达细胞因子、黏附分子参与 HSCs 的动员、归巢及移

植过程，利用血管内皮细胞和 MSCs 构建 3D 模型，模拟造

血龛能够促进 HSPCs 增殖 [55]。

3  MSCs 体外扩增脐带血干细胞的临床应用

MSCs 在调节骨髓微环境和支持造血方面发挥重要作

用，因而在临床中具有潜在的应用价值，特别是在脐带血

移植。移植失败常与较低的造血细胞数量相关，研究显示

MSCs 与 HSCs 共同输注可增加移植的成功率 [56]。临床研

究证实 MSCs 可以促进 HSCs 移植后造血重建，缩短粒细胞

和血小板植入时间，延长生存时间 [27,57]。Lima 等 [58] 在新英

格兰杂志发表了 31 例成人血液肿瘤患者接受 MSCs 扩增的

脐带血移植结果。患者接受了 2 份脐带血移植，其中 1 份脐

带血在体外与异体间充质干细胞共培养。将这些移植的患

者与接受 2 份未经处理的脐带血移植的 80 例患者作为对照

组进行比较，接受扩增脐带血的患者中性粒细胞植入的中

位时间为 15 d，血小板植入的中位时间是 42 d，而对照组分

别为 24 d 和 49 d。在第 26 天，扩增后的中性粒细胞植入累

积植入率为 88 ﹪，对照组累积植入率为 53 ﹪；第 60 天，血

小板的累积植入率分别为 71 ﹪和 31 ﹪。Mehta 等 [59] 研究

报道了 27 例血液肿瘤患者在减低强度预处理下接受了利用

MSCs 扩增的 UCB，中性粒细胞植入的中位时间为 12 d，而
对照组为 16 d。第 26 天累积中性粒细胞植入率为 75 ﹪，而

未扩增的患者为 50 ﹪。表明利用 MSCs 扩增的 UCB 的移

植是安全有效，且植入速度更快。
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4  MSCs 扩增脐带血干细胞应用前景

MSCs 扩增脐带血从基础到临床已经做了大量的研究，

不仅 MSCs 能够在体外促进 UCB-HSCs 扩增，在体内也可

以促进 HSPCs 增殖、分化和归巢，加快造血重建。新型的模

拟造血干细胞生态位的培养方法是体外扩增 HPSCs 的新方

法，也是进一步研究 HPSCs 行为的生物特性的新工具 [60]。

体外模拟的造血龛能够扩增 HPSCs 的同时维持其干性，具

有其它扩增方式不可比拟的优势。另外，MSCs 的 EVs 具
有与其亲代 MSCs 相同的免疫调节活性，可携带 HSCs 代
谢、增殖，分化和归巢所需的分子，且体积小，性质稳定、易

低温保存，可以形成一种随时可用的生物制剂，用它来扩

增脐带血 HSCs 更方便快捷，可能比 MSCs 具有广泛的应

用。与 hBM- MSCs 相比，hUC-MSCs 具有较高的扩增能力

和较低的免疫原性，且取材方便，无伦理学争议等优势，因此

hUC- MSCs 的临床应用价值更高。扩增后的脐带血 HSCs
是否具有与新鲜脐带血一样的功能和“干性”, 只有充分了

解脐血 HPSCs 体外扩增过程中的机制、途径以及影响因素，

才能制定合理有效的方案以促进临床的更广泛应用。
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