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Progress on chimeric antigen receptor T cells in virus-related application

QIAN Le-qi, QI Fa-zhi (Department of Plastic and Reconstructive Surgery, Zhongshan Hospital Af fi-
lated to Fudan University, Shanghai 200032, China)

Abstract: Chimeric antigen receptor T cell (CAR-T) therapy is a novel cellular immunotherapy developed in recent years which
uses genetic engineering techniques to make T cells express specific chimeric antigen receptor (CAR). CAR-T cells are capable
of specifically recognizing and killing target cells with corresponding antigens independent of MHC. Currently, CAR-T therapy
has achieved unprecedented clinical success in patients with hematological malignancies. However, there are still many
obstacles to its applications in solid tumors. Oncolytic viruses can directly lyse solid tumor cells and reverse the
immunosuppressive tumor microenvironment, showing synergistic effects when combined with CAR-T therapy in solid tumors
treatment. In addition, CAR-T therapy also plays some roles in anti-viral infections, including human immunodeficiency virus
(HIV) and HBV. This review focuses on the relationship between CAR-T and viruses, mainly discusses the progress of
CAR-T cell therapy targeting viral infections and the mechanism of combination of oncolytic viruses and CAR-T therapy against
solid tumors, and provides new perspectives on the applications of CAR-T in virus infections and combined immunotherapy.
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Abstract: The study aims to compare the immunosuppressive property of exosome (Exo) isolated from myeloid-derived
suppressor cell (MDSC) culture supernatant under normoxia (21% O,) and hypoxia (1% O,) conditions. MDSCs were
isolated from the spleen of colon cancer-bearing mice by affinity magnetic beads and Exo was extracted from the supernatant of
MDSC culture medium under normoxia and hypoxia conditions. The morphology and quality of the MDSC-derived exosome
(MDSC-Exo0) were identified by transmission electron microscopy, flow cytometric, and Western blotting. MDSC-Exo were
added to CD4™ and CD8™ T cell cultures in vitro to test their effect on the proliferation of these cells. Compared to MDSC-Exo
isolated from normal conditions, MDSC-Exo from hypoxia conditions inhibited both CD4" and CD8" T cell proliferation more
effectively (both P<C0.05). Meanwhile, hypoxia MDSC-Exo contained significantly increased arginase 1 (Arg-1) (P<C0.01),
which was inhibited by the interference of hypoxia-inducible factor 1a (HIF-1a) (P<C0.01). Taken together, hypoxia endows
the MDSC-Exo with stronger immunosuppressive function and this property depends on the expression of Arg-1 mediated by
HIF-1a.
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