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Abstract

Breast cancer (BC) is the most common cause of cancer death in women.
According to the American Cancer Society’s yearly cancer statistics, BC
constituted almost 15% of all the newly diagnosed cancer cases in 2022 for
both sexes. Metastatic disease occurs in 30% of patients with BC. The currently
available treatments fail to cure metastatic BC, and the average survival time
for patients with metastatic BC is approximately 2 years. Developing a
treatment method that terminates cancer stem cells without harming healthy
cells is the primary objective of novel therapeutics. Adoptive cell therapy is a
branch of cancer immunotherapy that utilizes the immune cells to attack
cancer cells. Natural killer (NK) cells are an essential component of innate
immunity and are critical in destroying tumor cells without prior stimulation
with antigens. With the advent of chimeric antigen receptors (CARs), the
autologous or allogeneic use of NK/CAR-NK cell therapy has raised new hopes
for treating patients with cancer. Here, we describe recent developments in NK
and CAR-NK cell immunotherapy, including the biology and function of NK
cells, clinical trials, different sources of NK cells and their future perspectives
on BC.

15% of cancer mortalities.” The treatment approach for
BC can be stratified based on the status of three hormone

According to the Global cancer burden reported in 2020,
2.26 million women were diagnosed with breast cancer
(BC), with the American Cancer Society recently
estimating BC to account for almost 32% of all cancers
among women in 2023 in the USA,' making it the most
common type of cancer in women. Among women, BC is
the second leading cause of cancer death, accounting for

receptors. The majority (65%) of BCs are progesterone
receptor—positive, and about 80% of BCs are estrogen
receptor positive.>* If BC cells are positive for either or
both of these receptors, they are hormone receptor—
positive and hormone therapy would be a viable
treatment modality. If not, BC cells are hormone receptor
negative with poor prognosis. Human epidermal growth
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factor receptor 2 (HER2) is the third receptor that is
present in about 20% of BCs.” The upside is that HER2"
BC cells are also responsive to treatment similar to
hormone receptor—positive BC. In about 10-20% of
patients with BC, tumor cells are categorized as being
negative for both hormone receptors and HER2. With
the absence of focused therapeutic alternatives, this
disease, known as triple-negative BC, is well regarded as
having the worst prognosis.”® It is necessary to make
numerous treatment decisions for patients with BC in
accordance with the tumor’s morphology; grade;
metastases; size and the expression of estrogen receptors,
HER?2 and progesterone receptors.” ° The usual treatment
for estrogen receptor—positive/progesterone receptor—
positive BC involves blocking these receptors with
hormone therapy drugs such as tamoxifen or preventing
hormone production altogether with aromatase inhibitors
such as anastrozole and letrozole.*”

A growing understanding of cancer immunology has
led to the development of immunotherapy—the use of
immune cells directly or by manipulation of their activity
—as a therapeutic approach.!' By activating immune
responses, immunotherapies are designed to initiate an
active or passive antitumor response against cancer.'>"> A
famous branch of cancer immunotherapy is adoptive cell
therapy, in which immune cells are reprogrammed to
attack tumor cells with greater precision than
conventional chemo/radiation therapy and surgery. To
date, several cancer immunotherapies have been
employed in clinical practice including adoptive cell
therapy of natural killer (NK) cells and NK T cells."*"”
NK cells are cytotoxic innate lymphocytes capable of
lysing malignant or virally contaminated cells.'®
Cancerous cells can be indirectly eliminated by NK cells
via influencing immune system cells.'" To distinguish
between normal and malignant cells, NK cells have
developed a wvariety of inherent strategies. It is
noteworthy that the destruction of tumor cells by NK cell
is independent of major histocompatibility complex I
(MHC) molecules and antibodies.'”” The expression of
MHC-I on the surface of tumor cells is commonly
reduced or deleted to avoid detection by tumor-invading
cytotoxic T lymphocytes.'” The absence of MHC-I
expression is detectable by NK cell inhibitory receptors.
Even if the diseased cell expresses sufficient MHC-I to
inhibit NK cell cytotoxicity, NK cells can circumvent this
by detecting stress-triggered self-ligands.”® The influence
of NK cells on the function of multiple immune cells,
including dendritic cells, macrophages, T cells, and
B cells, confirms their immunomodulatory effects. These
immune cells interact with one another to create a variety
of cytokines, growth factors, and chemokines.”** In this
review paper, we discuss the anticancer benefits of NK
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cells in BC and the several sources of NK cells used in
clinical trials.

NATURAL KILLER CELLS’ ACTIVATION
MECHANISM

The innate immune system acts rapidly and
nonspecifically to prevent the spread of foreign
pathogens. Complement activation, cytotoxic molecule
release and immune cell stimulation are all ways to
achieve innate immunity.”> NK cells are large, granular
lymphocytes that play extremely important roles in the
innate immune system. They defend the body against
viruses, parasites, bacteria and perhaps most significantly,
tumor cells.”! NK cells are identified by CD56 expression
and the lack of CD3, which is a T-cell marker.** They
can be further divided based on CD56 intensity and
CD16 (FcyRIIIA) expression. The two major subsets are
CD56%™Pright and  CD164™ € NK cells, each with
distinct functions. NK cells fight tumors through direct
cytotoxicity or the release of proinflammatory cytokines
or cytolytic granules. Almost 90% of NK cells are
CD56%™ % Cell-mediated apoptosis or the release of
cytotoxic molecules, such as perforins and granzymes, are
the main means of killing target cells. Another NK cell-
mediated cytotoxic response is antibody-dependent cell-
mediated cytotoxicity (ADCC) induction, in which CD16
binds to the crystallizable fragment (Fc) site of target
cell-attached immunoglobulin G to trigger cell lysis.
Activating the TNF-related apoptosis-inducing ligand or
Fas death receptors, which induce classical apoptosis, is
another alternative. CD56”"8" is an immune regulator
generally involved in cytokine/chemokine production,
including tumor necrosis factor-o and interferon (IFN)-vy,
which helps bridge innate and adaptive immunity.*® *®

In addition to providing meaningful clinical responses
for patients, ADCC might be a useful mechanism for
therapeutic antibodies. As compared with affinity- and
valency-optimized NK cell ~engagers, monoclonal
antibodies are not sufficient to fully leverage ADCC
potential.”’ An array of bispecific, trispecific and
multispecific NK cell-engaging constructs is being
investigated. These include trispecific killer engager and
bispecific killer engager molecules that engage CD16 in
NK cells.’®™' NK cell-mediated responses have been
enhanced and prolonged by these novel engagers through
targeting several different activating NK cell receptors.'>*
The trispecific molecule is generated by the interaction
between the interleukin-15 (IL-15) cytokine and the two
antibody domains.” trispecific killer engager molecules
function as cytokine signals to promote NK cell growth
while also inducing targeted NK cell-mediated death of
tumor targets.’”® Trispecific killer engagers improve
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NK cell-mediated killing, activation and expansion by
creating an antigen-specific synapse, which overcomes the
nonspecific processes of normal NK cell cytotoxicity.”
The outstanding efficacy and substantial antitumor effects
of HER2-trispecific killer engager especially in ovarian
cancer were demonstrated by Vallera et al.’

Inhibitory and activating receptors present on NK cells,
which are the “nuts and bolts” of NK cell function,
strongly influence their function.”® MHC-I molecules
determine whether a cell is killed or spared by NK cells.
Normal, healthy cells present “self” antigens to NK cells
via. MHC-I molecules, which are recognized by killer
immunoglobulin—like receptors (KIRs) and inhibit NK
cell activation. Leukocyte-like immunoglobulin receptors,
KIRs and type C receptors are also NK cell inhibitory
receptors.”””® Tumor cells or virally infected cells that
express low or no MHC-I receptors inhibit KIR activity
on NK cells. Stress-induced cells show a reduction in
MHC-I expression and an increase in molecules that
further activate NK cells. While the lack of MHC-I alone
to block KIR-mediated NK cell inhibition is insufficient
to stimulate NK cells, the presence of additional
cytotoxicity receptors can stimulate them as a second
signal (Figure 1).*° The inhibitory KIR receptors regulate
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NK cell activities by interacting with particular self-HLA
class T ligands, a process called licensing or education in
the NK cells’ maturation program.”>** The license gives
NK cells the capacity to find, identify and kill stressed
target cells that have lost HLA class I molecules as a
result of viral infection or tumor transformation. Lack of
inhibitory KIR-HLA connections causes hyporesponsive
or anergic NK cells.*' ™ Two groups of patients with BC
and controls exhibited similar distributions of four
inhibitory KIR-HLA class I ligand combinations,
suggesting that patients may generate functionally active
NK cells equivalent to controls. The functional activity of
mature NK cells can be reset by changing HLA
environments in tumor tissue with reduced HLA class I
expression. This is a mechanism tumors acquire to resist
adaptive immune responses.**** However, NK licensing is
not completely permanent.** Ashouri et al*® analyzed
KIR and HLA polymorphisms in 162 patients with BC
and 278 healthy controls. According to their findings, an
immunotherapeutic approach for BC may involve using
autologous activated NK cell clones with specific KIR-
HLA compositions that favor antitumor activity.

The natural cytotoxicity receptors NKp30, NKp46 and
NKp44, as well as CD16 and natural killer group 2
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Figure 1. Natural killer (NK) cell activation process. (a) NK cells’ activation signals go through the natural cytotoxicity receptors NKp30, NKp46
and NKp44, as well as CD16 and natural killer group 2 member D (NKG2D), which are the main NK cell activating receptors. (b) Virus-infected
cells, stressed cells and cancer cells, which express low or no major histocompatibility complex | (MHC-I) receptor, trigger NK cells. (c) NK cells
exert their antitumor function through direct cytotoxicity or the release of proinflammatory cytokines or cytolytic granules.
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member D (NKG2D), are the main NK cell activating
receptors. Other molecules, such as DNAX accessory
molecule 1 (DNAM-1), 2B4 and NKp80, increase NK cell
activity.”’ In contrast to NKp46 and NKp30, which are
expressed on all NK cells, only NKp44 is specifically
expressed on IL-2-activated NK cells.*® These receptors
directly activate NK cells’ cytotoxicity and cytokine
production.”” NK cells frequently express NKG2D and
DNAM-1 (CD226). MHC-I homologs MICA/B and
ULBP (cytomegalovirus UL16-binding protein) are two
examples of NKG2D ligands in humans.” In response to
the recognition of these ligands, NKG2D receptors are
activated by the adapter protein DNAX-activating protein
10 (DAP10).>! CD112 and CD155, which are abnormally
expressed in cancer cells, are detected by DNAM-1.>> In
the event of low NKG2D ligand levels, DNAM-1 ligand
expression by cancer cells becomes responsible for NK
cell-mediated death.”

BREAST CANCER AND NATURAL KILLER
CELLS

As NK cells are innate cells, unlike T cells, they can
eliminate tumor cells without prior antigen sensitivity or
clonal proliferation. Through their antitumor activity, NK
cells are essential in monitoring cancer immunity.”*>
According to studies, NK cell elimination has been linked
to an increased risk of cancer. When the expression of
MHC-I molecules on target cells is reduced, NK cells
become antitumor in function.’®>® Furthermore, tumor
cells with positive regulation of stress-induced molecules
such as NKG2D are more likely to be killed by NK
cells.”” NKG2D is one of the most prominent activating
receptors on NK cells whose ligands (NKG2DL) are
almost exclusively expressed on tumor or virus-infected
cells.*” In addition, NK cells have been shown to boost
T-cell penetration, thereby triggering immunological
responses by releasing chemokines and cytokines.®"**
Antimetastatic action is also a feature of NK cells, and
they are likely to eliminate circulating tumor cells.*>** In
a study on patients with BC, the expression of active
receptors (NKG2D, CD16, DNAM-1 and NKp30) on NK
cells decreased while that of the inhibitory receptor
(NKG2A) increased, and this malfunction of NK cells
directly impaired NK cell cytotoxicity.”* The precise
process through which innate immune system members,
specifically NK cells, interact with BC cells remains
complex and obscure. Several substances secreted by BC
cells in the tumor microenvironment (TME) are thought
to have a role in this complicated physiological response
to tumor cells. The TME is thought to be involved in
several processes, including tumor growth, progression
and metastasis. Most crucially, the TME inhibits the
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immune system’s anticancer activities, resulting in
immune suppression and tumor development.®>® In the
TME, suppressive cytokines are present that counteract
the protective functions of NK cells. Tumor growth factor
(TGF-B), released by regulatory T cells (Tregs), tumor
cells and other stromal cells, is one of the protumorigenic
cytokines secreted in TME. TGF-B directly and indirectly
inhibits NK cell activity. It lowers IFNy production as
well as NKG2D and NKp30 surface expression. In
addition, TGF-B attaches to TGFBR1 (TGF-B receptor
type 1) and TGFBR2 (TGF-B receptor type 2) subunits
that transduce the message of phosphorylated SMAD2
and SMAD3 proteins and interact with SMAD4, forming
a heterotrimeric transcriptional structure. SMAD proteins
are the critical signal transducers for TGF-B superfamily
receptors. TGF-f activates NK cells and converts them to
NK-group 1 innate lymphoid cell, the intermediate cell
types, which are weaker cytolytic cells by default
compared with NK cells. This results in less effective
cancer surveillance and ultimately paves the path for
cancer evasion.’” In addition, TGF-B promotes metabolic
dysfunction of circulating NK cells in individuals with
metastatic  BC. To  enhance @ NK  cell-based
immunotherapies, blocking TGF and/or glycoprotein A
repetitions predominant can restore NK cell metabolism
and function.®® Glycoprotein A repetitions predominant
is a transmembrane receptor mostly found on the surface
of Tregs and platelets which regulates the activation and
bioavailability of TGF-B1 and is implicated in NK cell
dysfunction.

IL-6 and IL-10 are other immunosuppressive
cytokines.”””® IL-6 disrupts NK cell function by
activating the signal transducer and activator of
transcription 3 (STAT3) signaling pathway, leading to a
decrease in natural cytotoxicity receptor expression.”’
IL-10 promotes tumor cell proliferation and metastasis
through immunosuppression. IL-10-mediated
immunosuppression is caused by the production of IL-12,
IL-1, tumor necrosis factor and chemokines, as well as
the downregulation of CD80 and CD86 molecules. It has
been reported that IL-10 can both promote and prevent
tumor growth.”' It appears that IL-10’s ability to
modulate the immune response is influenced by both the
TME and the amount of IL-10 receptors on immune
cells.”* TME is characterized by metabolic dysregulation
that results in NK cell dysfunction. For instance, lactate
levels rise in the TME that suppresses the proliferation of
cytotoxic T cells and NK cells and lowers their cytokine
output.”” TME-mediated acidification in hepatic
metastasis has also been reported to lead to NK cell
apoptosis.”* The survival and effective performance of
NK cells are limited because of low pH, low nutrient
concentrations and hypoxia in the TME, and NK cells
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Figure 2. Interactions of natural killer (NK) cells in breast cancer with cancer stem cells (CSCs) and the tumor microenvironment (TME).
Suppressive cytokines such as transforming growth factor (TGF)-B in the TME negate the protective functions of NK cells. (a) TGF-B lowers
interferon alpha (IFNa) production as well as the surface expression of natural killer group 2 member D (NKG2D) and NKp30. (b) NK cells
differentiate CSCs by boosting major histocompatibility complex | (MHC-I), CD54 and programmed death-ligand 1 (PD-L1) expression, inhibiting

tumor development and metastasis.

have less penetration and lower toxicity in solid tumors
as a result.”* Abnormal angiogenesis in solid tumors
causes hypoxic conditions that reduce cytokine
production and activated receptor expression and lead to
NK cell degranulation. All of these factors reduce NK cell
toxicity. Therefore, immunotherapy can target hypoxic
conditions to improve the function of NK cells.”> Their
effect on cancer stem cells (CSCs) demonstrates NK cells’
ability to target tumor cells. CSCs are undifferentiated
cells that are key to tumor formation. They are defined
by low constitutive CD54 and programmed cell death
protein 1 (PD-1) expression levels and high CD44
expression.”®  These characteristics improve CSC
susceptibility to NK cell attack and increase
chemotherapy resistance.”* NK cells differentiate CSCs by
boosting MHC-1, CD54 and programmed death-ligand 1
(PD-L1) expression and inhibit tumor development and
metastasis.”® This demonstrates the critical role of NK
cells in suppressing malignancies and restricting their
proliferation. In comparison, other studies indicated that
CSCs in BCs are resistant to NK cell activity, implying
that additional research is necessary to determine the

interactions between NK cells and BC stem cells
(Figure 2).7° There is little information available
regarding cancer cells’ ability to reprogram NK cells and
their transformation into a premetastatic condition.”’
Chan et al’® showed that NK cells respond to
K14-positive cancer cell accumulations in the lungs. The
basal epithelial marker K14 indicates the presence of
highly migrating cells in cancer and their growth
potential.”” Some studies have been conducted regarding
the expression and necessity of K14 in highly metastatic
BC cells that result in systemic diffusion, cluster invasion
and colonization of distant organs.*>®" Invading cells
with positive K14 markers escape immune surveillance by
not expressing MHC-I molecules.*” This indicates that
these invading cells respond to NK cell targeting,””

NK CELL-BASED THERAPY FOR BREAST
CANCER

A multitude of research published in the past few years
has demonstrated that NK cells are potentially beneficial
in treating malignancies.*> Numerous pitfalls regarding
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NK cell metabolism are being addressed in studies to
improve their survival and antitumor potential in the
TME of solid tumors, including BC. Injection of ILs, such
as IL-2 or IL-15, improves NK cell survival.** According
to a previous study, cord blood NK cells transduced with
a retroviral vector that produces IL-15 significantly
increased their function.®” These strategies are thought to
enhance the clinical delivery of this medicine and help
overcome severe limitations associated with current
chimeric antigen receptor (CAR)-T-cell therapies.®
Numerous research groups have recently demonstrated
that infusing mouse and human NK cells preactivated
with an IL-15/12/18 cocktail increases and enhances
sustained anticancer activities both in vitro and in vivo.*”
In addition to these cytokines, inhibiting GSK3 kinase
with CHIR99021 (an aminopyrimidine derivative)
stimulates the ex vivo maturation of human peripheral
blood (PB) NK cells and enhances their antitumor
capabilities in wvitro and in vivo. Human NK cells
expanded with IL-15 with GSK3 inhibition expressed
significantly higher CD57 cell maturity markers and
transcription factors associated with the final stages of NK
cell maturation, such as zinc finger E-box-binding
homeobox 2 (ZEB2), T-box expressed in T cells (T-bet)
and B lymphocyte-induced maturation protein-1 (BLIMP-
1) than those expanded with IL-15 alone. When expanded
human NK cells were combined with Herceptin, an anti-
HER2 antibody, they demonstrated increased ADCC and
tumor control in a mouse ovarian cancer xenograft
transplantation model.”” Recent investigations have
revealed an increase in the percentage of NK cells in
women with HER2/neu” tumors (the most prevalent
subtype), but no change in the percentage of NK cells in
patients with HER2/neu’ tumors was reported.”’
Chemokines released by lymphocytes attract circulating
NK cells to cancerous areas, and the effect of these cells
begins with an imbalance of signals sent by surface
receptors.”>”> In normal cells, ligands for NK cell
activation receptors are poorly expressed. However,
aberrant cell proliferation in cancer cells contributes to
DNA replication stress and genomic instability. This
results in the production of DNAM-1 and NKG2D ligands
in stressed cells.”* The expression of NKG2D and DNAM-
1 receptors on NK cells also affects their ability to lyse
leukemia, myelodysplastic syndrome, multiple myeloma
and ovarian cancer cells.”*>* To avoid detection by
CD8" T cells, cancer cells decrease MHC-I molecule
production, which stimulates NK cells and activates
them.”””® NK cells produce and release perforins and
granzymes immediately in the synaptic cleft, initiating
apoptosis, whereas ligand-mediated apoptosis occurs
later.”” Although NK cells have weak penetration and
cytotoxic capacity in the TME, they are essential for
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carcinogenesis suppression. As cancer development is
connected to NK cell dysfunction, increasing NK cell
activity is critical for anticancer immunity.*’

Activation of NK cells after injection into the body is
difficult, despite their high numbers.”® In addition, for
NK cell therapy to fulfill its therapeutic potential, both a
sufficient number of and high-quality NK cells are
required. According to Sawasdee et al,”” the use of
doxorubicin in combination with NK cells increases NK
cell activity. They also investigated how doxorubicin
therapy modulated FasR protein (CD95) expression and
the ability of NK cells to kill cancer cells.”® This study
showed that doxorubicin could be utilized as an adjuvant
therapy with other cellular immunotherapies to boost
immune cell function and combat rapidly proliferating
cancer cells and their robust microenvironment. In
addition, FasR/FasL signaling is crucial for immune cell
functionality. The development and application of
combination chemoimmunotherapy and
immunomodulation for the treatment of BC are
supported by other studies.”

PRECLINICAL AND CLINICAL STUDIES
ON THE APPLICATIONS OF NK CELLS IN
CANCER TREATMENT

NK cell dysfunction and reduction of its cytotoxic
molecules lead to tumor growth and metastasis.'” %
Studies have shown that large numbers of tumor-
infiltrating NK cells are associated with a better prognosis
in solid cancers, including breast, lung, head, neck, liver
and colon cancers.'®>'** Recent studies have reported
that an increase in activating receptors in NK cells is
associated with improved outcomes in patients with
prostate cancer and BC.'°>'%° The effectiveness of NK
cells in solid tumors remains limited, despite their success
in hematologic malignancies. This may be related to the
solid tumor’s suppressive microenvironment, which is
associated  with  impaired detection, penetration,
activation and cytotoxic functions of NK cells.'"”” CAR-
modified NK cells can potentially overcome this. In
contrast to CAR-T cells, CAR-NK cells do not proliferate
in response to external stimuli.'*®

To date, the selective transfer of autologous NK cells
has been explored in a variety of solid tumors with
limited clinical benefit. This may be explained by the host
immune system being suppressed, as the inhibitory
receptors on autologous NK cells match molecules on the
tumor cell surface.'”''’ In many clinical studies, NK
cells were activated in the ex vivo environment, which
reduced CD16 expression and rendered them unsuitable
for ADCC (Table 1).''" Therefore, Tian and colleagues112
showed that Herceptin decreases CD16 expression on NK
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Table 1. Continued.

Phase

Recruitment status

Primary outcome

Design

Location

Trial ID

Title and sponsor

Number

Recruiting

* Nature and frequency of AEs
* Nature and frequency of

A phase Ib study with a safety

NCT05385705 Barcelona, Spain

A study of allogenic NK cells in

14.

June 1, 2022

lead-in cohort and expansion

combination with trastuzumab

and pertuzumab in adult

SAEs
* Treatment-limiting toxicity

* Alterations in clinical

phase of the safety, tolerability,
biological effect and efficacy of

allogenic NK cells in

patients with refractory

metastatic Her2 positive breast
cancer. NK-ACT-BC_2020

combination with trastuzumab

and pertuzumab in adult

laboratory test results

* Alterations in

Sponsor: Vall d’Hebron Institute

of Oncology

electrocardiogram results

¢ Alterations in vital sign

patients with refractory

metastatic HER2-positive breast

cancer.

measurements
¢ Alterations in physical

examination findings
* Alterations in assessment

of ECOG

AE, adverse event; D-CIK, dendritic and cytokine-induced killer cell; DLT, dose-limiting toxicity; ECOG, Eastern Cooperative Oncology Group; HER2, human epidermal growth factor receptor 2;
IL, interleukin; NK, natural killer; PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1; pNK, precursor natural killer; RECIST, Response Evaluation Criteria in Solid

Tumors; SAE, severe adverse event; SoC, site of care; t-haNK, targeting high-affinity natural killer; TNBC, triple-negative breast cancer.
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cells via monoclonal antibodies and used it in a patient
with BC. They demonstrated that the relative response of
a patient with progressive metastatic HER2" BC receiving
Herceptin-treated NK cells (5.9 x 10°, 3.9 x 10°,
8.1 x 10° and 6.5 x 10°) was associated with increased
activity and proliferation of Herceptin-mediated NK cells
in vitro.''* In this pilot study, the authors reported that
Herceptin increases the population of cytotoxic NK cells
by interacting with them. By doing so, these cells migrate
and cause cytotoxicity to HER2" cancer cells. This study
demonstrated the therapeutic potential of Herceptin-
treated NK cells in patients with BC who cannot tolerate
Herceptin.''? In another trial, Geller et al''’ employed
allogeneic NK cells to treat patients with recurrent
ovarian and BC. The cells were delivered intravenously
2 days following the administration of fludarabine. On
the day of the NK cell injection, patients started to
receive subcutaneous IL-2 injections three times a week.
They received a lymphatic drainage preparation regimen
consisting of 525 mg m > fludarabine and 260 mg kg >
cyclophosphamide, and seven patients received 200 cGy
total body irradiation to enhance host immune
suppression. The mean dosage of NK cells per kilogram
was 2.16 x 107 cells.!*> In this study, the short
persistence of donor NK cells was during the patients’
lymphodepletion period under the preparation regimen.
However, after 14 days, the host’s T cells regenerated.
This indicates that the factors induced by the TME may
inhibit the proliferation of the donor NK cells.'"” The
proliferation of NK cells transplanted to the patient may
be limited by factors including effector T cells, myeloid-
derived suppressor cells and recipient Tregs.''*''®
According to Geller and his colleagues,'”” half of the
patients had significantly increased Treg proliferation.
Hence, effective adaptive cell therapy requires Tregs
depletion.

An 1l-year prospective cohort study of healthy
individuals discovered that poor NK cytotoxicity was
related to a high risk of cancer development. Increased
levels of tumor-infiltrating NK cells have been linked to
favorable outcomes in patients with colorectal and gastric
carcinomas, as well as lung squamous cell carcinoma,
indicating that NK cell infiltration is an excellent
prognostic  factor.'"”  Clinical investigations  with
autologous NK cells have revealed them to be a nontoxic
but also relatively ineffective therapy, which may be
related to NK cell suppression by self-MHC-I molecules.
As a result, allogeneic therapy may offer a more effective
treatment option. In 2002, it was demonstrated for the
first time that alloreactive NK cells play a direct role in
eliciting the antitumor effect of hematopoietic stem cell
(HSC) transplantation."”® NK cells promoted graft
healing by supporting graft-versus-leukemia  and
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suppressing  graft-versus-host disease (GvHD), mainly
when a KIR ligand mismatch between the donor and host
was found. It is suggested that GvHD reduction is
achieved by the recipient’s antigen-presenting cell lysis
while the graft-versus-leukemia impact persists. These
effects were then replicated in an animal model utilizing
acute myelocytic leukemia (AML)-positive nonobese
diabetic/severe combined immunodeficiency mice injected
with alloreactive NK cells. The clearance of tumors
demonstrated the importance of NK cells in maintaining
graft-versus-leukemia effectiveness.'”'

Miller and colleagues'** later established NK cell
therapy in a clinical trial by injecting allogeneic NK cells
into patients with metastatic melanoma, renal cell
carcinoma, Hodgkin lymphoma and AML, plus
subcutaneous IL-2. This study found that NK cells
transplanted from a haploidentical donor can proliferate
in vivo. In vivo, NK cells expand only in a high-dose
preconditioning regimen (Hi-Cy/Flu). NK cell infusions
were found to be feasible and safe, in addition to
demonstrating complete remission in 5 of the 19 patients
with poor prognoses.'”> Furthermore, the efficacy of
haploidentical NK cell therapy in patients with refractory
diseases was increased by host Tregs depletion using IL-2
diphtheria  toxin fusion, which inhibits Tregs’
immunosuppressive activity.** In addition to HSC
transplantation, NK cell alloreactive potential might be
used in different settings. Studies conducted on patients
with glioma and malignant neuroblastoma, for instance,
demonstrated that NK cell infusion was safe and
somewhat effective.'”>'** Thus, individuals with different
types of cancer can benefit from NK cell immunotherapy,
as well as routine clinical trials, including pancreatic,
lung, head and neck, breast and kidney carcinomas.'?
Therefore, activated NK cells can regulate tumor growth
and prevent the rapid spread of metastatic cancers
through immunological monitoring mechanisms. NK
cells were isolated and grown in the laboratory using
K562-mb15-41BBL cells and then reinjected intravenously
into patients at doses of 1 x 10° cells kg™', 1 x 107 cells
kg', 5 x 107 cells kg™' and 1 x 10® cells kg™"' in a
study. NK cell therapy in combination with trastuzumab
was well tolerated in these patients.'*® Although the
number of NK cells did not increase in the patients, the
phenotype of these cells changed significantly: for
example, an increase in the CD56 marker and a decrease
in the CD16 marker. It should be noted that autologous
NK cells were expanded and activated, with no
engineering changes to increase their toxicity.'"*® Thus,
allogeneic NK cells are not suppressed by self-MHC and
may have stronger ADCC than autologous NK cells.'*’

In a study by Liang and colleagues,'”® the clinical
results of allogeneic and autologous NK cell

NK cell therapies for breast cancer

transplantation in patients with recurrent BC were
compared. In this study, 36 patients with relapsed BC
were transplanted with NK cells intravenously for 30 min
on days 13-15. They showed that cell therapy using
allogeneic NK cells has better clinical effectiveness than
using autologous cells. It also significantly improved the
patients’ clinical outcome and immune system function,
as well as reducing the number of circulating tumor
cells."*®

THE ADVANCES OF CHIMERIC ANTIGEN
RECEPTOR NK CELL IMMUNOTHERAPY

Following the advent of CARs and the Food and Drug
Administration approval of Kymriah and Yescarta CAR-T
cells in 2017, adoptive cell therapy was revitalized.'**'*°
CAR-T cells have shown great success by inducing
complete remission and satisfactory overall survival in
high percentages of patients with relapsed or refractory
B-cell acute lymphoblastic leukemia'*>'** and chronic
lymphocytic leukemia."*"'** Investigating CAR-NK cell
potential in oncotherapy was inevitable. CARs are
synthetic receptors that recognize a certain antigen with
their single-chain variable fragment (scFv) of the
extracellular domain and transmit an activation signal to
the immune cells upon which they are mounted via their
intracellular signaling domain.'”»'** CAR itself is not
cytotoxic but helps traffic the modified cells to the tumor
site.">»1?* The scFv itself is composed of the heavy-chain
variable region and the light-chain variable region of a
monoclonal antibody that create the extracellular portion
of CAR when attached to a hinge region. The
transmembrane domain (e.g. NKG2D) fixes the construct
to the cell, and the intracellular domain transmits the
stimulatory signal to the immune cell. The latter consists
of a costimulatory domain (e.g. 2B4, CD28, 4-1BB) and a
signaling domain (e.g. CD3(, DAP10, DAP12). The
costimulatory domain is crucial in activating the immune
cell which, although not as optimized as CAR-T cells, is
more potent when it is specifically NK tailored."*>"** As
mentioned, the lectin-like NKG2D receptor is
instrumental in cytotoxic response, which it owes to the
DAPI10 signaling adaptor molecule.”” DAP12 transmits
the signal of NKG2C and NKp44 to downstream proteins
of NK cells. This makes the fusion of the adaptor
molecules with their corresponding receptor a viable
strategy to produce potent CAR-NK constructs.'”> CAR—
NK cells are defined in a sequential, physical order, for
instance, HER2 scFv—(NKG2D)-2B4-DAP10. Unlike
conventional T cells that require the presentation of
antigen peptides by MHCs of an antigen-presenting cell,
CAR-T cells are able to bypass the need for MHC
molecules for target cell recognition. With NK cells’
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similar inherent ability, CAR-NK cells can utilize two
non-MHC-I-restricted recognition procedures.'”® After
obtaining NK cells from any of the available sources, the
CAR transgene is transferred to the cells either virally
(retroviral or lentiviral) or nonvirally (DNA or messenger
RNA electroporation). After confirming high-efficiency
transduction via flow cytometry, the cells are expanded to
large numbers and ready for infusion.

The MHC independence of NK cells, their established
role in tumor suppression, their rapid response and their
direct and indirect cytotoxicity prompted researchers to
equip them with CARs for target therapy. Compared with
CAR-T cells, CAR-NK cells are cheaper to produce and
less time-consuming, can be derived from multiple
sources and possess a range of cytotoxic abilities."”> One
of the main selling points of CAR-NK cells is their safety
in relation to GvHD, neurotoxicity and cytokine
storms.'”® Because of a lack of an endogenous T-cell
receptor, NK cells are less likely to cause acute/chronic
GvHD, a common problem with T-cell-based
immunotherapies.'*® These features make investigating
CAR-NK cells as an allogeneic cell therapy worthwhile.

The CAR aspect of CAR-NK cells redirects NK cells
for a more directed approach. The target antigens are the
same as CAR-T cells. CD19, for instance, is the most
common target antigen for CAR-T and CAR-NK cells.
HER2 (ErbB2) is a prime target for CAR-NK cell
therapy. Before CARs became mainstream, Kruschinski
et al."”” engineered and retrovirally transduced “chimeric
receptors” in primary NK cells that were functional
against breast and ovarian cancer cell lines (HER2 scFv—
CD28-CD3(). This was one of the first preclinical studies
of CAR-NK cells in solid tumors, which was preceded by
another study on CD19 B-acute lymphoblastic leukemia
cell lines."*® The BC preclinical studies that followed used
either PB'*”"*” or NK-92 cell lines'**'** as a source. NK-
92 cells are an enticing substitute for endogenous NK
cells because of their high cytotoxicity against tumor
cells, which they probably owe to a lack of MHC-
responsive inhibitory receptors.'*> Anti-ErbB2 CAR NK-
92 cells are cytolytic for ErbB2-expressing BC cells
without prior sensitization, and their function and
receptor expression are not affected by CAR expression.
These cells suppress BC cells’ growth in vivo as well as
reducing lung metastasis and increasing IFNy
secretion.'** Similarly, satisfactory results were achieved
in another study where intravenously injected ErbB2-
directed CAR NK-92 cells accumulated in ErbB2-positive
breast carcinoma xenografts compared with unmodified
NK cells.'"*" These cells retained specific cytotoxicity against
target cells after y-irradiation as well. y-Irradiation of cell
products in phase I trials is a precautionary safety
measure to prevent the engraftment and proliferation of
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the injected cells.'"** Epidermal growth factor receptor
(HER1) is a potential target for triple-negative BC
tumors because it is overexpressed in at least half of the
patients.'* The in vitro and in vivo cytotoxicity of
epidermal growth factor receptor—directed CAR NK-92
cells'** and PB-derived CAR-NK cells'*® toward triple-
negative BC cells has been demonstrated. Furthermore,
preclinical studies have demonstrated the feasibility of
CAR-NK combination therapy for the treatment of BC.
Chen et al'*? showed how a combinational
administration of anti—epidermal growth factor receptor
CAR NK-92 cells and oncolytic herpes simplex virus 1
eradicated BC cells more efficiently in vitro and in an
intracranial mouse model of BC brain metastasis.
Interestingly, tumor cell lysis was more robust when the
cancer cells were treated with CAR NK-92 cells first and
oncolytic herpes simplex virus 1 second. Viruses
aggregate and gradually lyse target cells which, in this
case, could have reduced the surface area of tumor cells
and hindered CAR NK-92 cells’ function.

Although preclinical studies are proof-of-concept for
CAR-NK therapy, clinical studies are needed to first
determine the safety and efficacy of this treatment and
then to determine whether it would be worth investing
in. With the exception of coronavirus disease-19
(NCT04324996), CAR-NK trials are exclusively focused
on its application in patients with cancer. Looking into
the registered clinical trials shows that the CAR-NK
cancer therapy is still in its infancy. As of January 2023,
we found 44 entries for CAR-NK in the clinicaltrials.gov
database, 15 of which have focused on solid tumors and
none on BC. Considering the TME of hematological
malignancies, most novel therapies are prioritized for
leukemia/lymphoma first. Except for one trial registered
in 2009, three trials were registered in 2016 (same
location), three in 2017, two in 2018 and seven in 2019,
the rest were registered in the past 4 years, and the
increasing number of trial registrations per year shows a
trend of growing popularity. The status of 12 and 3 of
the trials is unknown and withdrawn, respectively. The
rest are still recruiting patients which is understandable
given the recent date of most trials. Unsurprisingly, only
one trial is in the second phase, and the rest are in phase
I or phase I/I; 2 of the 44 trials are reported as
completed (NCT05563545 and NCT00995137), but we
found no published results, and 1 trial (NCT03415100)
published its experiment on a xenograft mouse model.'*®
The first-in-human trial (NCT02944162) of CAR-NK
therapy was a safety test of administering three doses of
CD33-directed irradiated CAR NK-92 cells every couple
of days in three patients with relapsed or refractory AML
after salvage chemotherapy.'”” The patients tolerated
doses of up to 5 x 10° cells with minimal side effects,
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GvHD or cytokine release syndrome, but one patient
relapsed, one died and the third was unresponsive.'*® The
next trial (NCT03415100) was unique in that the NK-
specific DAP12 signaling domain was used instead of T
cells’ CD3(, and the NKG2D ligand—directed CAR-NK
cells were sourced from PB NK cells of three patients
with refractory colorectal cancer.'*® Two of the patients
received autologous CAR-NK, and the other had
haploidentical CAR-NK cells, and direct infusion of the
cells into the malignant site greatly reduced tumor
burden in all three patients. The most recent trial
(NCT03056339) published its phase I/II results, and 7 of
the 11 patients with CD19" relapsed or refractory
hematological malignancies achieved complete remission
after receiving cord blood—derived, partially matched
CAR-NK cells.'"¥” GvHD, neurotoxicity and cytokine
release syndrome were not seen in any of the patients.
CAR-NK cells persisted for up to 12 months regardless
of the infusion dose. Interestingly, responding patients
had significantly higher CAR-NK expansion within the
first 28 days than nonresponders. Apart from the
unsatisfactory results of the first trial, which could be
attributed to the aggressive nature of AML,'" the
published results of the trials show both the safety and
efficacy of CAR-NK therapy. In all three trials, retroviral,
lentiviral or messenger RNA transfer of CAR and local or
systemic infusion of CAR had minimal side effects."*” '’
All three trials used different NK cell sources. This greatly
supports the idea of off-the-shelf CAR-NK cell therapy,
and with minimal side effects from mismatched donors,
mass production of such cells could further reduce
manufacturing costs. Although none of the trials enrolled
patients with BC, with the positive results from solid
tumors, and the progress in controlling BC reportedly
stagnated,’””® employing CAR-NK therapy in breast
tumors is a viable strategy.

Despite showing great promise, CAR-NK therapy
suffers from some drawbacks as well. Indeed, CAR-NK
cells have lower transduction rates, low in vivo persistence
and are more susceptible to stress during in vitro
production stages than CAR-T cells. As a result of the
inherent, intracellular defense of NK cells against viruses,
the transfer of the CAR gene into NK cells is a major
obstacle. This results in subpar transduction efficacy.'™'
One of the first in vitro studies to produce functional
anti-CD19 CAR-NK cells used retroviruses for
transduction.'*® Viral transduction of CAR provides a
longer, more stable expression which offers persistent
modified immune cells to prevent relapse. However, it
might allow the population of CAR-NK cells to grow
uncontrollably. This phenomenon is especially life-
threatening in CAR-T cell therapies when T cells’
overzealous cytokine production causes toxicities such as

NK cell therapies for breast cancer

cytokine release syndrome and immune effector cell-
associated neurotoxicity syndrome.'”* Although such side
effects are negligible based on clinical studies, they should
not be ignored. With messenger RNA transfection, a
short-lived CAR-NK product can be produced, which
allows for a controlled, safety test. However, larger cell
doses must be injected in shorter intervals. The safety and
tolerability of irradiated NK-92 cells were established long
ago,"”»'>* but their aggressiveness may also act as a
double-edged sword. One flaw with using NK-92 cells is
that since their parental cells are derived from malignant
cells, they have to be irradiated in order not to
overexpand in the host. The downside of irradiation is
that it represses the cytotoxic capacity and proliferation
of CAR NK-92 cells, causing their function and numbers
to drop only days after infusion.'”” The short life of
infused NK cells is exacerbated by the lack of autologous
IL-2 secretion. Other sources of CAR-NK cells with
moderate expansion, suicide genes introduction (e.g.
inducible caspase 9'*’)—previously demonstrated with
CAR-T cells'*—or transient CAR expression by using
messenger RNA transfection should be studied to
ascertain the optimal approach. While some interpret the
fleeting CAR—NK presence in the patient as an advantage,
the ever-present modified immune cells can inhibit any
remaining tumor cells beyond the minimal residual
disease to prevent relapse. A successful adoptive cell
therapy is greatly dependent on the long-term persistence
of the modified cells to eliminate any residual tumor cells
and prevent relapse, a condition previously satisfied by
long-lasting memory CAR-T cells that remain quiescent
unless they are exposed to tumor antigens. As recently
reported in an elegant study where two currently in-
remission patients with chronic lymphocytic leukemia
who had received CART19 therapy more than a decade
ago, the presence of CD4" CAR-T cells with memory
phenotypes was the main reason remission was sustained
for more than 10 years.'*®

Future studies on the efficacy and cost-effectiveness of
CAR-NK therapy, especially compared with its more
mainstream cousin CAR-T cells, will judge its worth.

SOURCES OF NK CELLS FOR CLINICAL
USE

NK cells mature and enter the bloodstream from the
bone marrow, lymph nodes, the spleen, tonsils and the
thymus."”” A clinically relevant number of functional NK
cells capable of surviving in vivo is required for NK cell
immunotherapy to be effective. Numerous attempts have
been made to produce higher numbers of NK cells from
various sources. The cells can be isolated from cord
blood or PB. However, because NK cells represent only
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Figure 3. Allogeneic sources of natural killer (NK) cells, peripheral blood mononuclear cell (PBMC), bone marrow, genetically modified NK cells,
induced pluripotent stem cells and umbilical cord. Numerous attempts have been made to produce higher numbers of NK cells from various
sources. There are multiple strategies for raising cell count, including in vitro expansion of cells using various cytokine combinations with or
without a nutritional layer, NK cell lines and derivation of NK cells from hematopoietic stem cells.

10% of circulating lymphocytes in the PB and 30% of
lymphocytes in the cord blood,"”®'® the quantity of
recovered cells is limited, and this method is not suitable
for multiple injections. There are multiple strategies to
raise cell count, including in vitro expansion of cells using
various cytokine combinations with or without a
nutritional layer, NK cell lines and the development of
NK cells from HSCs (Figure 3).1%

Umbilical cord blood—derived NK cells

Umbilical cord blood (UCB) is a rich source of HSCs,
which differentiate into a variety of therapeutic cells,
including NK cells. By selecting CD34" cells from cord
blood, HSCs can be isolated using the CliniMACS
method for therapeutic applications.'® NK cells constitute
the CD3-CD56" population of UCB cells and are
categorized as immature NK cells (CD56bright) or mature
NK cells (CD56%™). UCB has a high CD56" 8" to-
CD56%™ NK cell ratio than PB, according to
studies."”®'® UCB-derived NK cells are younger and
more proliferative than PB-derived NK cells.'®® In
addition, because of the low number of immature T cells

in UCB, GvHD incidence is  significantly

718

diminished.'*>'®" One study discovered that when UCB-
derived CD56""¢™ NK cells were treated with IL-12 and
IL-18, they exhibited enhanced CD69 expression and
produced significantly more IFNy than PB-NK cells.'*
Fewer NK cells are generated from UCBs because of the
UCB unit’s modest volume.'”” UCB-derived NK cells had
lower cytotoxicity against K562 cells than PB-derived NK
cells because granzyme B in cord blood-NK cells is
deficient.'®> According to published studies, UCB-derived
NK cells express less CD16, DNAM-1, KIRs, IL-2R,
NKG2C and granzyme B but more NKG2A, resulting in
decreased effectiveness in killing target cells compared
with PB-derived NK cells.”””'®> However, when these
cells were activated with cytokines, their cytotoxicity was
comparable to that of PB-derived NK cells.'**'¢*

Peripheral blood—derived NK cells

PB-NK cells are predominantly CD56%™ cells that are
highly cytotoxic to target cells.'>'*® In comparison,
roughly 2-10% of PB-NK cells are CD56"'" with
limited cytotoxicity, which interact with dendritic cells
and T cells to participate directly in acquired
immunity.'®>'*® In general, NK cells are present in small
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numbers in peripheral blood mononuclear cells. As a
result, researchers have concentrated on optimizing NK
cell expansion in wvivo and in vitro under good
manufacturing
immunotherapy.'®”'®® A phase I clinical trial evaluated

practice conditions for

the anticancer effects and safety of autologous peripheral
blood mononuclear cell-derived NK cells in patients with
advanced  metastatic  cancers and  hematologic
malignancies.'® Large-scale, ex vivo generation of
alloreactive NK cells suitable for multiple infusions has
been described in patients with AML.'7°

Stem cells and induced pluripotent stem cells

Another approach for producing large numbers of
functional cells is to differentiate NK cells in vitro from
induced pluripotent stem cells or HSCs. Frozen bone
marrow, human embryonic stem cells, cord blood stem
cells and PB stem cells have been used to differentiate
frozen HSCs into NK cells in vitro."”> Human NK cells
can be generated from bone marrow—derived CD34"
hematopoietic progenitor cells cultured under specific
conditions, such as IL-2 plus an allogeneic feeder cell
layer or IL-2 plus additional growth factors such as IL-
15 or c-kit ligand, or in a long-term culture system
dependent on brain stroma.'”’ In addition, human
embryonic stem cell- and induced pluripotent stem
cell-derived NK cells have several advantages over PB-
derived NK cells, including successful genetic
modification and increased in vivo survival. However,
ethical concerns exist regarding collecting cells from
embryos as young as 5-7 days old.'”!

Natural killer cell lines

NK cell lines are excellent sources of allogeneic
therapeutic NK cells. Seven NK cell lines have been
identified, including NK-YS, NK-92, NKL, HANK-1,
KHYG-1, YT and NKG.'”! The anticancer activity of NK-
92, NKL, KHYG-1 and NKG has been validated. The
other three cell lines (YT, HANK-1 and NK-YS) are
being used to investigate the biological aspects of
leukemia/Epstein—Barr virus-related lymphomas. NK-92
cells are a safe and effective screening method to study
patients with advanced malignancies, melanoma and
renal cell carcinoma. The NK-92 cell line is currently the
only NK cell line in clinical trials and may serve as a
basis for future NK cell-based immunotherapies.'”* NK-
92 cells are a convenient replacement for endogenous NK
cells. Because of the lack of suppressive KIR receptors
(except for KIR2DL4), these CD16-positive cells are more
cytotoxic against a wide range of tumor cells and are
unreactive toward normal cells.'*’ The fact that they lack

NK cell therapies for breast cancer

NK cells antiviral defense mechanism and are
consequently more transducible incentivizes their use
over NK cells.

NK cell lines have the unique advantage of being easily
stored and subsequently expanded to large numbers
under good manufacturing practice conditions. Their
anticancer activity could be further enhanced as well.'”
Kotzur et al.'** showed that it is possible to produce NK-
92 cells quicker, cheaper and easier while still maintaining
their ability to cause cytotoxicity. This makes them even
easier to use and supports the therapeutic and research
utility of these cells. Thus, selective transfer of registered
cell lines that exhibit broad antitumor activity provides
more feasible quality control and bulk manufacturing
technique in clinical trials.

Memory-like NK cells

The cytokine-induced memory-like (ML) NK cells that
are activated with IL-12, IL-15 and IL-18 show robust
antitumor responses and can successfully induce complete
remissions in patients with leukemia.'”* The induction of
remissions in patients with AML by ML NK cells with
the predominant NKG2A checkpoint expression, which is
phenotypically different from the in vivo conventional
NK cells, has been deemed safe and efficient and is
regarded as a new route to promote CAR-NK cell
treatments.?®!7> As compared with conventional NK cells,
ML NK cells respond more rapidly and effectively to a
variety of triggers, including cancer cells.**'’® Results
from preclinical experiments suggest that human ML NK
cells engineered to express 19-CARs (19-CAR-ML NK
cells) have significantly improved responses to typically
NK-resistant B-cell lymphoma malignancies in vitro and
in vivo, offering a novel method for treating blood cancer
through cell therapy.'”* In vivo, the developed ML CAR-
NK cells showed higher activation receptors versus
myeloid leukemia and longer survival without the usual
KIR-KIR ligand interactions, which is noteworthy.*®'””
PB-derived ML-NKs with a shortened CDI19-CAR
transduction showed dramatically increased IFNy
production and degranulation, broader identification and

targeted killing against NK-resistant lymphoma.'”*

ADVANTAGES AND DISADVANTAGES OF
ALLOGENEIC AND AUTOLOGOUS NK
CELL SOURCES

Autologous NK cells are a viable option because of their
ease of obtaining, the absence of immunological
suppression and minimal GvHD risk. However,
increasing NK cell numbers in the PB by inhibiting self-
HLA molecules does not produce the therapeutic
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response expected in patients with hematologic
malignancies, renal cell carcinoma and metastatic
melanoma.”®'”®!17® Unlike autologous NK cells, allogeneic
NK cells are not restricted by a tumor’s expression of
HLA molecules. This significantly boosts their anticancer
activity in the patient."”*'® In addition, autologous NK
cells proliferation and functional state are limited
compared with allogeneic NK cells, because these cells are
frequently obtained from patients who have previously
received aggressive treatment.''” Unlike autologous cells,
allogeneic NK cells have the advantage of sharing KIR-
KIR mismatch ligands between host and donor cells;
however, these therapies are associated with a significant
risk of GvHD, which can result in severe tissue damage
in the patient."® Tt is also difficult to evaluate the
anticancer effects of injected autologous NK cells in
patients. The reason for this is that it is difficult to
distinguish between altered autologous NK cells and
those transferred from circulating, unmodified NK
cells."® To prevent the recipient from developing an
immune response, nonmyeloablative chemotherapy

. . 122
regimens are administered before the transfer.

CONCLUSION

Cell therapy is a relatively burgeoning approach for
treating diseases such as cancer. NK cells play a crucial
role in the body’s defense against tumors, and a number
of drugs can impair their activity in various ways. As NK
cells cannot attack tumor cells in patients with cancer for
various reasons, strategies to restore or replace NK cell
cytotoxicity may be required for successful host defense
against cancer. In order for NK cell-based
immunotherapy to be effective, a significant number of
active NK cells must be present. Moreover, the
persistence of these cells in a patient’s body contributes
to the fight against cancerous cells. Despite its potent
anticancer activity, NK cell therapy faces significant
obstacles that limit its effectiveness. Nevertheless, NK and
CAR-NK cell therapies have multiple advantages over
other cell therapies, such as T-cell-based therapies, which
make investigating them worthwhile. There is a lack of
research on BC, but positive results from other solid
tumors are encouraging. As a result, there is a need for
further research on novel and realistic NK cell expansion
and activation techniques in the laboratory to elicit the
therapeutic benefits of these cells against tumor cells.
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