

Review article

Autoimmune diseases and atherosclerotic cardiovascular disease

Florentina Porsch & Christoph J. Binder

Abstract

Autoimmune diseases are associated with a dramatically increased risk of atherosclerotic cardiovascular disease and its clinical manifestations. The increased risk is consistent with the notion that atherogenesis is modulated by both protective and disease-promoting immune mechanisms. Notably, traditional cardiovascular risk factors such as dyslipidaemia and hypertension alone do not explain the increased risk of cardiovascular disease associated with autoimmune diseases. Several mechanisms have been implicated in mediating the autoimmunity-associated cardiovascular risk, either directly or by modulating the effect of other risk factors in a complex interplay. Aberrant leukocyte function and pro-inflammatory cytokines are central to both disease entities, resulting in vascular dysfunction, impaired resolution of inflammation and promotion of chronic inflammation. Similarly, loss of tolerance to self-antigens and the generation of autoantibodies are key features of autoimmunity but are also implicated in the maladaptive inflammatory response during atherosclerotic cardiovascular disease. Therefore, immunomodulatory therapies are potential efficacious interventions to directly reduce the risk of cardiovascular disease, and biomarkers of autoimmune disease activity could be relevant tools to stratify patients with autoimmunity according to their cardiovascular risk. In this Review, we discuss the pathophysiological aspects of the increased cardiovascular risk associated with autoimmunity and highlight the many open questions that need to be answered to develop novel therapies that specifically address this unmet clinical need.

Sections

Introduction

Link between autoimmune diseases and ASCVD

Interplay with traditional cardiovascular risk factors

Pathophysiological mechanisms

Conclusions

Key points

- Autoimmune diseases, including systemic lupus erythematosus and rheumatoid arthritis, are associated with an increased risk of atherosclerotic cardiovascular disease and cardiovascular death.
- Epidemiological data in large cohorts of patients and experimental evidence in preclinical models have clearly established the link between autoimmunity and atherosclerosis.
- Both shared and distinct mechanisms increase the risk of atherosclerosis in patients with systemic lupus erythematosus, rheumatoid arthritis or other connective-tissue autoimmune diseases.
- Endothelial dysfunction, increased cytokine signalling (IL-1 β , IL-6 and tumour necrosis factor) and leukocyte activation (monocytes, macrophages and neutrophils), and aberrant T cell and B cell functions are key mechanisms for accelerated atherosclerosis in patients with autoimmune diseases.
- Knowledge about the functional role of classic autoimmune disease-associated autoantibodies in promoting atherosclerosis is limited.
- Anti-inflammatory therapies that are being evaluated for atherosclerotic cardiovascular disease might represent important opportunities for reducing the risk of atherosclerosis particularly in patients with autoimmunity.

Introduction

In the past decade, the approaches to the treatment and prevention of atherosclerotic cardiovascular disease (ASCVD) by targeting modifiable risk factors, such as hypercholesterolaemia, hypertension and diabetes mellitus, have improved dramatically. However, a substantial residual cardiovascular risk persists even after optimal management of traditional risk factors. One major contributor to this residual risk is inflammation, which is primarily assessed in the clinic by measuring the circulating levels of C-reactive protein (CRP). Analyses of large clinical trials on lipid-lowering therapies have revealed that assessment of CRP levels is superior to LDL cholesterol measurements for the prediction of cardiovascular events and mortality in patients receiving optimal therapy¹. This finding suggests the need for the addition of anti-inflammatory therapies to the management of these patients. Indeed, clinical trials on anti-inflammatory drugs, such as the IL-1 β -neutralizing antibody canakinumab² and the broad anti-inflammatory agent colchicine³, in patients with acute coronary syndrome or stable coronary artery disease have demonstrated the potential to reduce the inflammation-associated cardiovascular risk in these patients⁴. Notably, low-dose colchicine was approved by the US Food and Drug Administration for patients with established ASCVD, and the European Society of Cardiology guidelines include the option of adding colchicine to the standard-of-care for the prevention of recurrent cardiovascular events in patients with acute coronary syndrome⁵. In addition to abundant epidemiological data demonstrating an independent association between CRP and IL-6 levels in the plasma⁶, several studies have shown clear associations between other markers of innate and adaptive immunity and cardiovascular events, independent of traditional cardiovascular risk factors^{7–9}. Furthermore, experimental

data have demonstrated the contribution of the immune system to different stages of atherosclerosis, from disease initiation to mechanisms that trigger clinical events^{4,10} (Fig. 1). Therefore, it is not surprising that patients with autoimmune diseases have a substantially increased risk of developing ASCVD¹¹.

Autoimmune diseases are a highly heterogeneous group of pathologies with distinct clinical presentations, even within the same disease entities^{12,13}. However, some pathophysiological features that are shared across different autoimmune diseases might also contribute to the exacerbated risk of cardiovascular disease (CVD) in these patients^{14–16}. Generally, autoimmune diseases can arise in genetically susceptible individuals, and are influenced by environmental factors, resulting in loss of tolerance to self-molecules and dysregulation of adaptive and innate immune mechanisms, which can precede tissue damage and clinical disease onset by decades. Given the delayed onset of the clinical manifestations of the disease, the early identification of patients with autoimmune disease remains challenging. Therefore, assessing the effect of preclinical autoimmune disease on ASCVD is difficult. Whereas inflammation is a component of residual cardiovascular risk in patients with ASCVD, it is a more dominant contributor to cardiovascular risk in patients with autoimmune conditions. In this Review, we discuss the available evidence and the mechanisms of the increased and premature risk of ASCVD in patients with autoimmunity, with particular focus on systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Discussion of other autoimmune manifestations and organ-specific autoimmune diseases is beyond the scope of this Review.

Link between autoimmune diseases and ASCVD

Epidemiological evidence

In an analysis of 446,449 individuals with any of 19 autoimmune diseases and without CVD at baseline, 15.3% of patients developed incident CVD within a period of 6.2 years compared with 11% of 2,102,830 matched controls without autoimmune diseases or CVD at baseline¹¹. Moreover, the hazard ratio for CVD increased from 1.41 for individuals with one autoimmune disease to 3.79 for individuals with three or more autoimmune diseases. All connective tissue diseases were associated with an increased risk of CVD, with particularly strong effects for systemic sclerosis, SLE, Sjögren syndrome, RA and vasculitis¹¹. Notably, an increased risk of CVD was particularly strong in young individuals. Among the different ASCVDs, the hazard ratio was highest for peripheral artery disease (PAD) (HR 2.09), followed by ischaemic heart disease (HR 1.6) and stroke (HR 1.39)¹¹. A meta-analysis including 263,258 patients with SLE and 768,487 control individuals without SLE found an increased prevalence of PAD in patients with SLE (15.8% versus 3.9%)¹⁷. These findings are consistent with a meta-analysis of 12 studies on the risk of symptomatic CVD, which showed an increased relative risk of 1.98 in patients with SLE and a relative risk of 1.55 in patients with RA compared with individuals without autoimmune disease¹⁸. A Danish study of 3,411 patients with SLE and 13,644 controls found a 50–100% increased 10-year risk of myocardial infarction (MI) and stroke in patients with SLE¹⁹. Another study found that women with SLE aged 35–44 years have a 50-fold higher risk of MI than age-matched women without SLE²⁰. Data from the Nurses' Health Study showed that women with incident RA have a higher risk of cardiovascular death (HR 1.45) than women without RA²¹. This increased risk of ASCVD and associated mortality has also been observed for other autoimmune diseases, such as Sjögren syndrome and systemic sclerosis^{22,23} (Fig. 2).

Despite the increased prevalence of traditional cardiovascular risk factors, such as hyperlipidaemia and hypertension, in patients

with autoimmunity, additional markers to predict the cardiovascular risk in these patients are needed. For example, in the MESA study^{14,24}, women with SLE had higher coronary calcium scores after adjusting for conventional risk factors than those without SLE. Similarly, patients with mild-to-moderate SLE have increased aortic wall inflammation as assessed by ¹⁸F-fluorodeoxyglucose (¹⁸F-FDG) PET-CT²⁵. Smaller ¹⁸F-FDG PET imaging studies have also found increased ¹⁸F-FDG uptake in the aorta, and carotid and femoral arteries in patients with RA compared with patients with osteoarthritis²⁶, as well as an association between increased aortic inflammation and RA disease markers²⁷ independent of traditional risk factors. A meta-analysis of coronary CT studies in patients with RA found higher coronary calcium scores and a higher prevalence of high-risk plaques in patients with RA than in individuals without RA²⁸. Likewise, a number of studies have found higher carotid intima–media thickness (IMT) in patients with autoimmunity than in healthy individuals²⁹. Although these latter findings need to be carefully interpreted given that the usefulness of carotid IMT quantification to assess future cardiovascular risk is debatable, these measurements might have some value in the context of clinical studies³⁰. These findings also emphasize the need to start monitoring patients with autoimmune diseases early on and to identify better markers of cardiovascular risk. In addition to imaging biomarkers, specific circulating biomarkers are needed because general markers of inflammation, such as CRP, have even more limitations than imaging biomarkers for reflecting the pathophysiology of atherosclerosis in these patients.

Preclinical evidence

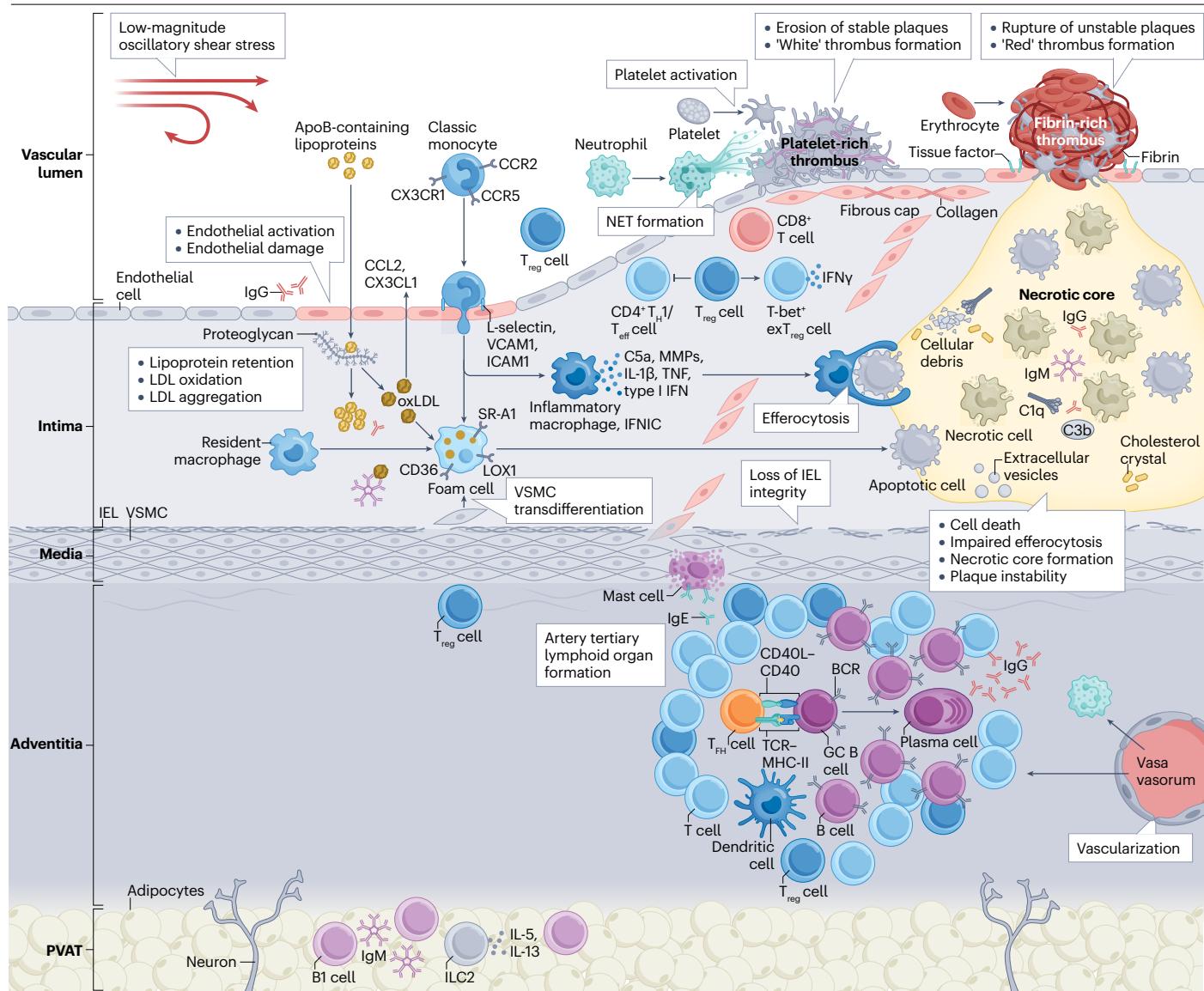
Innate and adaptive immunity contribute to early and late stages of atherosclerosis as well as to thrombotic events that lead to clinical manifestations (Box 1; Fig. 1). Thus, it is conceivable that the systemic immune dysregulation observed in patients with autoimmune diseases affects the development of atherosclerosis. In addition to robust epidemiological evidence, experimental evidence from different mouse models also supports the presence of an increased risk of atherosclerosis in autoimmunity. Several studies have evaluated this link with the use of genetic and inducible models of autoimmunity. These models show various immunological aberrations, including dysregulation of adaptive immunity with hyperactive T cells and autoantibody generation, disrupted apoptosis pathways, and antigen-specific autoimmunity. Table 1 summarizes the studies that investigated the effects of these immunological aberrations in atherosclerosis-prone mice.

In models of SLE, most studies found increased atherosclerosis compared with non-autoimmunity controls, without differences in serum cholesterol levels^{31–38}. However, hypercholesterolaemia itself also increased the autoimmune phenotype in some models^{32,33,35,39,40}. Notably, in atherosclerotic mouse models, FAS ligand (FASL) or FAS deficiency was associated with increased numbers of apoptotic cells in the atherosclerotic lesions, consistent with a contribution of impaired efferocytosis to heightened plaque formation^{31,32,34}. Other SLE-prone models, such as *Sle16* or *Sle1.2.3* mice (which carry SLE-susceptibility loci), also had increased atherosclerotic lesion formation compared with control mice, often in the presence of glomerulopathy (proteinuria)^{35–37}. Interestingly, transfer of CD4⁺ T cells from *Sle1.2.3* mice into *Ldlr*^{-/-}*Rag*^{-/-} mice was sufficient to increase atherosclerosis³⁸. In another genetic model of SLE (Nba2.Yaa), atherosclerotic lesion complexity was increased, which demonstrates the capacity of autoimmune-mediated responses to promote unstable plaque features⁴¹.

Despite the documented increase in the plasma levels of various autoantibodies (Box 2) in atherosclerosis-prone mice with autoimmune

conditions (Table 1) as well as in *Apoe*^{-/-} mice^{42–44}, the contribution of specific autoantibodies, such as anti-phospholipid antibodies, to atherosclerotic lesion formation is not clear^{45–47}. The effect of RA on atherosclerosis has been tested primarily with the use of the T cell receptor transgenic K/BxN mouse model, which develops autoantibodies against glucose-6-phosphoisomerase. Transfer of serum from these mice into hypercholesterolaemic mice was generally associated with increased arthropathy and inflammation as well as increased atherosclerosis^{40,48,49} or reduced diet-induced plaque regression⁵⁰. Although these studies give limited mechanistic insights, they provide evidence that, in general, mouse models of autoimmune disorders develop more atherosclerosis when the model is generated on an atherosclerosis-prone background. Of note, the renal impairment seen in some of these models might be a contributing factor for the increased atherogenesis, and the effect seems to be independent of alterations in serum cholesterol levels (Table 1), which points to a prominent effect of immune-mediated mechanisms.

Interplay with traditional cardiovascular risk factors


The autoimmunity-mediated risk of ASCVD is independent of, but can be accentuated by, traditional cardiovascular risk factors¹¹. However, the relative contribution of these factors might be different in patients with autoimmune disorders compared with the general population. For example, autoimmunity is more prevalent in young female individuals, who usually have a lower risk of ASCVD⁵¹, but the autoimmunity-associated risk of ASCVD was found to be the same in men and women¹¹. Certain ASCVD risk factors also result from organ manifestations of autoimmune diseases, such as impaired renal function and hypertension⁵². In addition, the different therapies for autoimmune diseases can alter the profile of ASCVD risk factors such as dyslipidaemia⁵³. Finally, certain environmental risk factors, most prominently cigarette smoking, are common to ASCVD and SLE⁵⁴ and RA⁵⁵. This interplay between genetic and environmental risk factors, autoimmunity and atherosclerosis adds to the complexity of the increased risk of ASCVD in patients with autoimmunity.

Dyslipidaemia

The higher prevalence of dyslipidaemia in patients with autoimmune diseases compared with the general population^{53,56} favours synergistic effects of lipid-driven and autoimmunity-mediated risk of ASCVD. Serum lipid profiles in patients with SLE are often characterized by increased triglyceride and VLDL levels and reduced HDL cholesterol levels compared with age-matched controls⁵⁷. In addition, patients with primary Sjögren syndrome or anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis have a higher prevalence of hypercholesterolaemia and metabolic alterations compared with the general population^{22,58,59}. This dyslipidaemia can result from increased inflammation but also immunosuppressive therapies, such as steroids, which can confound the interpretation of clinical studies. Whether different lipoprotein particles (LDL versus HDL versus lipoprotein remnants) have a differential contribution in autoimmunity is unknown, but SLE and RA have been shown to be associated with altered HDL particles that lack anti-inflammatory potential and that can be pro-atherogenic^{60–62}, properties that can be modulated by anti-rheumatic therapy⁶³. Interestingly, in some instances, lipid levels tend to decrease during the inflammatory phases of autoimmune disease, as has been described in patients with RA⁶⁴.

Hypercholesterolaemia can promote the production of autoantibodies in *Apoe*^{-/-} mice and *Ldlr*^{-/-} mice^{42–44}, and several studies in

Review article

mice have demonstrated exacerbated autoimmune manifestations (glomerulopathy and arthropathy) in the context of hypercholesterolaemia^{32,33,35,39,40} (Table 1). However, in the case of apolipoprotein E (apoE) deficiency, this effect might be partly dependent on the immunoregulatory functions of apoE, given that acute loss of apoE in an inducible mouse model was found to be able to trigger cellular and humoral autoimmune responses⁴². Therefore, the effect of hypercholesterolaemia in mouse models of autoimmune conditions is inconclusive.

Hypercholesterolaemia could also precipitate certain autoimmune pathologies. Indeed, in women, high cholesterol levels are associated with an increased risk of developing RA⁶⁵. However, a bidirectional Mendelian randomization study assessing the effect of genetically determined lipid traits on the risk of developing SLE found no causal relationship⁶⁶. Also, a weighted genomic risk score for SLE was not associated with dyslipidaemia⁶⁷. Nevertheless, one can speculate that hypercholesterolaemia contributes to autoimmune disease severity by modulating both innate and adaptive immunity. For example,

monocytosis and neutrophilia are triggered by dyslipidaemia⁶⁸. Additionally, cellular cholesterol metabolism modulates immune cell function, including lipid raft formation and associated T cell signalling, which can be disturbed in patients with SLE^{69,70}. In experimental studies, dyslipidaemia has been shown to modulate the number and function of regulatory T (T_{reg}) cells^{71–74}. This finding raises the possibility that dyslipidaemia favours a loss of tolerance that might facilitate the emergence of antibodies against atherosclerosis-associated antigens, resulting in the maladaptive immune response found in atherosclerosis that has been likened to an autoimmune response by some^{75,76}. Moreover, cholesterol accumulation in dendritic cells heightens their activation status and promotes autoimmune manifestations^{77,78}.

Hypertension

Patients with autoimmune diseases frequently have hypertension^{22,79}. The contribution of hypertension to the CVD risk in these patients has been extensively reviewed elsewhere⁸⁰. Inflammatory stimuli

Fig. 1 | Pathogenesis of atherosclerosis. Disturbed, non-laminar flow conditions result in endothelial dysfunction and the retention of LDL and other apolipoprotein B (apoB)-carrying lipoproteins in the arterial intimal, where they subsequently become modified and trigger endothelial cell activation. Expression of adhesion molecules, such as intercellular adhesion molecule 1 (ICAM1) and vascular cell adhesion molecule 1 (VCAM1), and production of chemokines, such as CX3C-motif ligand 1 (CX3CL1; also known as fractalkine) and CC-motif chemokine 2 (CCL2), mediate the recruitment of pro-inflammatory monocytes to the vascular wall. Resident and monocyte-derived macrophages take up aggregated or oxidized LDL (oxLDL) via scavenger receptors, leading to the formation of foam cells. Subsequent intracellular accumulation of cholesterol crystals can trigger the activation of the NLRP3 inflammasome, leading to the production of IL-1 β . Various types of macrophage, including pro-inflammatory macrophages termed interferon (IFN)-inducible cells (IFNIC), populate atherosclerotic plaques, where they secrete various cytokines, chemokines and complement factors that modulate multiple aspects of atherosogenesis. IL-5-secreting and IL-13-secreting type 2 innate lymphoid cells (ILC2), IgM-secreting B1 cells in the perivascular adipose tissue (PVAT) and FOXP3 $^+$ regulatory T (T $_{reg}$) cells are thought to mediate vascular homeostasis and atheroprotection. At later stages of atherosclerosis, CD4 $^+$ effector T (T $_{eff}$) cells, including pro-atherogenic IFN γ -secreting T helper 1 (T $_{h1}$) cells, dominate the adaptive immune response in plaques. T $_{reg}$ cells can also convert to pro-atherogenic T-bet $^+$ exT $_{reg}$ cells. Cytotoxic

CD8 $^+$ T cells also promote atherosclerosis. Disruption of the internal elastic lamina (IEL) coincides with the migration of vascular smooth muscle cells (VSMCs) to the intima, where they contribute to the formation of a collagen-rich fibrous cap that segregates the necrotic core from the vascular lumen. VSMCs can also transdifferentiate into macrophage-like cells and become foam cells. Advanced plaques are also surrounded by artery tertiary lymphoid organs (ATLOs) and can be vascularized (vasa vasorum) and innervated. ATLOs are sites for antigen presentation and germinal centre (GC) reactions involving T follicular helper (T $_{FH}$) cells and GC B cells, which promotes the generation of class-switched plasma cells that can secrete IgG or IgE. Immunoglobulins are present in atherosclerotic plaques, where they are complexed with antigens and can bind to different Fc receptors on macrophages and mast cells, which further modulates the inflammatory process. In addition, foam cells can undergo several forms of cell death, but the removal of dead cells (efferocytosis) aided by complement is impaired in atherosclerosis, resulting in the formation of cell-free necrotic areas that are hallmarks of unstable rupture-prone plaques. Atherothrombotic events are triggered by neutrophils and neutrophil extracellular traps (NETs) that promote plaque erosion as well as plaque rupture, which is a consequence of matrix metalloproteinase (MMP)-dependent degradation of the fibrous cap and the release of pro-coagulant tissue factor. BCR, B cell receptor; CCR, CC chemokine receptor; CD40L, CD40 ligand; CX3CRL, CX3C chemokine receptor 1; SR-A1, scavenger receptor type A1; TCR, T cell receptor; TNF, tumour necrosis factor.

associated with autoimmune disease can have direct effects on the cardiovascular system and on hypertension, including effects on endothelial cells and vascular reactivity. Additionally, renal pathologies resulting from autoimmune diseases can also contribute to hypertension. Moreover, some drugs, including long-term corticosteroids, can promote hypertension⁸¹. Notably, experimental data in mice suggest a pathophysiological link between hypertension and autoimmunity^{82,83}.

Diabetes mellitus

A Mendelian randomization study found a causal effect of RA-relevant single-nucleotide polymorphisms on the risk of developing type 2 diabetes and ASCVD, which supports the contribution of chronic inflammation to both diseases^{84,85}. Dyslipidaemia is a major contributor to the development of type 2 diabetes^{86–88}. Moreover, obesity predisposing to type 2 diabetes is highly prevalent in patients with RA⁸⁹, in part due to reduced physical activity.

Pathophysiological mechanisms

Endothelial dysfunction

Endothelial cell activation and dysfunction are the earliest steps in atherosogenesis (Box 1; Fig. 1). Lesion formation typically arises in large-sized and medium-sized arteries where laminar flow is disturbed in arterial branching regions^{90,91}. Interestingly, in the context of autoimmune diseases, vascular damage can occur at other locations, such as the microvasculature^{92–94}, suggesting that different pathophysiological mechanisms might be present. Autoimmune diseases are associated with increased endothelial dysfunction and activation, including the expression of vascular adhesion proteins such as vascular cell adhesion molecule 1 (VCAM1), intercellular adhesion molecule 1 (ICAM1) and E-selectin^{13,15} (Fig. 3). In some autoimmune diseases, such as systemic sclerosis, which can co-occur with SLE⁹⁵, intimal thickening and vascular stiffening are among the earliest events in disease pathogenesis⁹⁶.

Multiple mechanisms have been proposed for autoimmune-associated vascular dysfunction (Fig. 3). Circulating immune cells and pro-inflammatory cytokines, such as IL-1 β , tumour necrosis factor (TNF) or type I IFN, can directly induce endothelial dysfunction^{97–99}. Impaired


vasodilatation occurs as a result of reduced nitric oxide bioavailability, which can be caused by decreased expression of endothelial nitric oxide synthase (eNOS) as a result of increased IFN α levels in SLE¹⁰⁰ or TNF levels in RA¹⁰¹. Patients with SLE have reduced endothelial-dependent flow-mediated vasodilatation (FMV) compared with healthy controls¹⁰².

Circulating immune cells, including neutrophils that are enriched in SLE, can directly induce endothelial apoptosis, which is in part mediated by IFN α ^{103,104} or neutrophil extracellular traps (NETs) and their associated matrix metalloproteinases (MMPs)^{105,106} (Fig. 3). Consistent with these findings, patients with SLE have higher numbers of circulating apoptotic endothelial cells than patients without SLE but with coronary artery disease, and higher numbers than healthy individuals¹⁰⁷. Moreover, the number of circulating apoptotic endothelial cells correlates with vascular dysfunction as assessed by brachial artery FMV, a measure of early endothelial dysfunction¹⁰⁷. Additionally, aberrant neutrophil activity and IFN α impair the regeneration of endothelial cells by endothelial progenitor cells and circulating angiogenic cells^{103,104,108}. Moreover, NETs promote endothelial-to-mesenchymal transition, which contributes to atherosclerotic plaque growth^{90,109}. NETs are also implicated in vascular damage in ANCA-associated vasculitis^{110–112}. Circulating platelets in patients with SLE also induce endothelial dysfunction by secreting type I IFN¹¹³ and IL-1 β ¹¹⁴ or by shedding extracellular vesicles that can activate neutrophils¹¹⁵. Endothelial damage can further be triggered by anti-endothelial autoantibodies, which induce antibody-dependent cytotoxicity and immune cell infiltration^{116,117}. Notably, antibodies against endothelial antigens promote atherosclerosis in experimental models^{118,119}.

Cytokines

Cytokines are key mediators of inflammatory responses in both ASCVD and autoimmunity. Elevated circulating levels of certain cytokines are associated with increased cardiovascular risk^{120,121}, and experimental data support a functional role for these cytokines in ASCVD^{120,121} (Fig. 4). This knowledge is increasingly being translated into clinical trials aimed at interfering with the activity of these cytokines (Table 2).

Review article

Fig. 2 | Autoimmune diseases are associated with an increased risk of atherosclerotic cardiovascular disease. Epidemiological data from a large, population-based study demonstrate that most autoimmune diseases are associated with a >50% increased risk of atherosclerotic cardiovascular disease (CVD), with many associated with a twofold increased risk¹¹. Both connective tissue (shown in blue) and organ-specific (shown in grey) autoimmune diseases are associated with a high risk of atherosclerotic CVD (shown in red). The hazard ratios and 95% confidence intervals for incident ischaemic heart disease, ischaemic stroke or transient ischaemic attack and peripheral artery disease in patients with autoimmune diseases compared with matched controls are shown on the left. The hazard ratios (95% confidence intervals) for any CVD in patients with the indicated autoimmune diseases compared with matched controls are shown on the right. Data are from ref. 11. ANCA, anti-neutrophil cytoplasmic antibody.

Many of these putative therapeutic approaches for ASCVD are already being used for autoimmune diseases.

IL-1 β . IL-1, and particularly the secreted IL-1 β isoform, is strongly implicated in atherosclerosis. IL-1 β was the first pro-inflammatory cytokine to be targeted therapeutically in ASCVD, with the use of the anti-IL-1 β monoclonal antibody canakinumab in the CANTOS trial² in patients with previous MI and elevated systemic inflammation (CRP >2 mg/l). This trial demonstrated for the first time the feasibility of therapeutically targeting inflammation in ASCVD (Table 2).

IL-1 β is generated following activation of the NLRP3 inflammasome by various stimuli, including cholesterol crystals. Dying cells, hypoxia and mitochondrial or lysosomal damage all contribute to IL-1 β production⁹⁷. Interestingly, many of these features are not only hallmarks of atherosclerotic plaques but are also found in tissues affected by autoimmune diseases, such as the synovium in RA¹²². IL-1 β can promote atherosclerosis via endothelial cell activation, vascular smooth muscle cell (VSMC) proliferation and MMP expression (Fig. 4). Interestingly, the increased cardiovascular risk observed in patients with clonal haematopoiesis of indeterminate potential (CHIP) might be mediated by IL-1 β ^{123,124}. Consistent with this finding, a subgroup analysis of the CANTOS trial revealed higher treatment efficacy of canakinumab in patients with *TET2*-driven CHIP than in those without CHIP¹²⁵. Notably, the occurrence of CHIP might be increased in patients with SLE¹²⁶.

Although this study did not find an increased risk of CVD in patients with SLE with CHIP compared with patients with SLE without CHIP, the low variant allele frequency, potentially due to the young age of the study participants (median age 38 years, interquartile range 29–47 years), might have been insufficient to substantially increase the risk of CVD¹²⁶.

Although IL-1 is a key mediator in many autoinflammatory conditions¹²⁷, this cytokine is probably not central to the pathogenesis of rheumatic autoimmune diseases, as suggested by the limited efficacy of IL-1-targeted therapies in these diseases¹²⁸. Nonetheless, IL-1 β is an important modulator of RA disease activity¹²⁹, and plasma IL-1 β levels correlate with disease severity in patients with RA¹³⁰. Therefore, although the contribution of IL-1 cytokines to autoimmune pathologies is limited, increased levels of IL-1 cytokines could contribute to the exacerbated risk of ASCVD in patients with autoimmune diseases. Therefore, these patients could potentially benefit from IL-1-targeted therapeutics for the prevention of ASCVD. Notably, the IL-1 receptor antagonist anakinra is approved for the treatment of RA.

IL-6. IL-6 is a central hub in several cytokine circuits and a key orchestrator of the acute phase reaction. As such, IL-6 drives the generation of many other important cytokines, such as IL-17, TNF and IL-1 β , while IL-6 expression is promoted by IL-1 β and TNF^{131,132}. IL-6 is a potent pro-atherosclerotic driver and is a biomarker of vascular risk¹³³. A role for IL-6 in ASCVD is supported by genetic evidence showing associations between

variants in *IL6* or *IL6R* and ASCVD in genome-wide association studies and Mendelian randomization studies^{134–137}. Interestingly, a genetic variant in *IL6R* that reduces IL-6 signalling has been shown to mitigate the increased cardiovascular risk in patients with CHD¹³⁸. Importantly, a subgroup analysis of the CANTOS trial showed that only patients who achieved a reduction in plasma IL-6 to below median levels had profound reductions in cardiovascular mortality (~52%), whereas other patients did not show a clinical benefit compared with those who received placebo¹³⁹.

The majority of studies in mice support a pro-atherogenic role for IL-6, although some studies suggest that lifetime deficiency of IL-6 might be deleterious¹³³. Functionally, IL-6 regulates endothelial-dependent relaxation, potentiates vascular permeability, promotes loss-of-barrier function and upregulates the expression of vascular adhesion proteins, thereby promoting inflammatory cell accumulation in the arterial wall^{140,141}. Moreover, IL-6 can promote the occurrence of ASCVD complications such as arterial thrombosis by favouring a procoagulant environment by promoting tissue factor expression¹⁴² (Fig. 4).

The plasma levels of IL-6 are also elevated in many patients with autoimmune diseases, including RA¹⁴³, and IL-6 is a therapeutic target in these patients. In a mouse model of MRL-*Fas*^{lpr}-driven SLE, IL-6 receptor blockade restored vascular function and reduced vascular inflammation and aortic IMT¹⁴⁴. In patients with RA, plasma IL-6 levels are associated with increased coronary microvascular dysfunction, which is associated with an increased risk of cardiovascular death¹⁴⁵. Studies in patients with RA have demonstrated potential benefits of IL-6 inhibition on CVD markers beyond reducing systemic inflammation. For example, patients with RA receiving the anti-IL-6 receptor antibody tocilizumab had improved FMV and aortic stiffness as assessed by pulse-wave velocity compared with baseline^{146,147}. However, multiple studies have shown an increase in plasma lipid levels with IL-6 inhibitor therapies^{146–150}. Despite this finding, a study in patients with RA demonstrated no increase in major adverse cardiovascular events (MACE) with tocilizumab compared with etanercept treatment¹⁵¹ (Table 2). Interestingly, the plasma levels of lipoprotein(a), which is considered to be highly

Box 1 | Immunopathogenesis of atherosclerosis

Atherosclerosis is a chronic inflammatory disease of arterial blood vessels and the underlying cause of myocardial infarction, ischaemic stroke and peripheral artery disease⁴. Atherosclerosis is a lipid-driven disease that is strongly modulated by both innate and adaptive immune mechanisms. Traditional risk factors include high LDL cholesterol levels, hypertension, type 2 diabetes mellitus, male sex and smoking. High levels of LDL cholesterol, a major causal factor for disease initiation and progression, precede the development of atherosclerotic plaques. The accumulation and retention of LDL (and other apolipoprotein B-containing lipoproteins) in the subendothelial space trigger their aggregation and oxidation by enzymatic and non-enzymatic processes³⁷⁹. Oxidized LDL (oxLDL) contains several pro-inflammatory moieties that activate endothelial cells and induce the expression of adhesion molecules, which results in the recruitment of pro-inflammatory monocytes into the arterial intima. Oxidized phospholipids in oxLDL also trigger inflammatory responses in resident macrophages and newly recruited monocyte-derived macrophages, which take up oxLDL via scavenger receptors, resulting in the formation of foam cells³⁸⁰. Several innate immune pathways are implicated in the response to oxLDL, including signalling through Toll-like receptor 4 (TLR4), TLR6 and nuclear factor- κ B (NF- κ B), which induces the expression of chemokines and cytokines, and activation of the intracellular NLRP3 inflammasome by cholesterol crystals, which results in the secretion of IL-1 β and IL-18.

Atherosclerosis also triggers maladaptive immune responses that involve T cells and B cells⁷⁸. In the perivascular adipose tissue, resident B1-like cells secrete natural IgM antibodies that are likely to be involved in maintaining tissue homeostasis. The pro-inflammatory environment of developing plaques favours the activation of dendritic cells, which present plaque antigens and promote the generation of mature T cells, including effector T (T_{eff}) cells (such as interferon- γ (IFN γ)-producing T helper 1 (T_{H1}) cells), that are recruited to the lesions⁷. Regulatory T (T_{reg}) cells mediate atheroprotection by controlling the activity of these pro-atherogenic T cells, but with disease progression, T_{reg} cells can convert to ex T_{reg} cells with a T_{H1} phenotype, which dominate advanced atherosclerotic lesions⁷. Similarly, cytotoxic CD8 $^{+}$ T cells are present in atherosclerotic

plaques⁷. Whereas B cells are typically absent from the intimal lesions, they are found in artery tertiary lymphoid organs (ATLOs) that surround atherosclerotic plaques²⁹⁰. Germinal centre reactions in ATLOs and secondary lymphoid organs lead to the production of class-switched IgG (and IgE) antibodies, which are found in the intima of atherosclerotic plaques^{8,290}. Depending on their subclass, IgG (and IgE) can modulate atherogenesis via local complement activation and ligation of different Fc receptors on macrophages and mast cells⁸. Several antigens have been implicated, including apolipoprotein-derived oxLDL and apolipoprotein B peptides, vascular wall-derived modified matrix proteins and proteins expressed by stressed endothelial cells (HSP60 and GRP78), as well as mitochondrial antigens (ALDH4A1)⁸.

Oxidation-specific epitopes (OSEs) are of particular interest, because they are found on oxLDL, dying cells and subsets of extracellular vesicles, which are all implicated in atherogenesis³⁸¹. These epitopes are derived from lipid peroxidation products of polyunsaturated fatty acids of membrane phospholipids that have formed adducts with proteins or other phospholipids. The most prominent examples are phosphocholine-containing oxidized phospholipids, malondialdehyde and 4-hydroxynonenal adducts. OSEs are recognized as neoepitopes by both innate and adaptive immune receptors, most prominently antibodies.

At later stages of atherosclerosis, when the integrity of the internal elastic lamina is disrupted, medial vascular smooth muscle cells migrate to the intima of the plaques and form a protective collagen-rich cap that separates from the lumen the lipid core that is formed from dying foam cells that are not efficiently removed by other phagocytes. Impaired efferocytosis contributes to the progression and non-resolving inflammation of atherosclerotic lesions and the formation of a necrotic core. The fibrous cap can be degraded by matrix metalloproteinases secreted by macrophages and can ultimately rupture, thereby releasing lipids and tissue factor, which initiate thrombus formation and subsequent clinical events. In addition, thrombus formation can also be initiated by plaque erosion in the absence of plaque rupture, a process that is largely driven by the activation of neutrophils and the formation of neutrophil extracellular traps²²³.

Review article

Table 1 | Studies on the effects of immunological aberrations in atherosclerosis-prone mice

Mouse model	Sex	Autoimmune model	Atherosclerosis model	Autoimmune manifestations	Effect on blood lipids	Effect on atherosclerosis	Ref.
Systemic lupus erythematosus							
<i>gld</i> - <i>Apoe</i> ^{-/-}	NA	<i>gld</i> (FASL deficiency)	<i>Apoe</i> ^{-/-} ; regular chow diet	Versus <i>gld</i> only: ↑ Splenomegaly ↑ Lymphadenopathy ↑ ANA, aCL and total IgG levels	Versus <i>Apoe</i> ^{-/-} only: No change in TC levels	Versus <i>Apoe</i> ^{-/-} only: ↑ Aortic plaque size (en face)	32
			<i>Apoe</i> ^{-/-} ; Western diet (0.15% cholesterol, 21% fat)	Versus <i>gld</i> only: ↑ Splenomegaly ↑ Lymphadenopathy ↑ Glomerular tuft volume ↑ Proteinuria ↑ ANA, aCL and total IgG levels ↑ CD86 ⁺ B cell and CD69 ⁺ CD4 ⁺ T cell	Versus <i>Apoe</i> ^{-/-} only: ↓ TC (driven by VLDL)	Versus <i>Apoe</i> ^{-/-} only: ↑ Aortic plaque size (en face) ↑ Macrophage and T cell numbers ↑ TUNEL ⁺ apoptotic cells	32
<i>gld</i> BMT in <i>Ldlr</i> ^{-/-} mice	Male	<i>gld</i> (FASL deficiency)	<i>Ldlr</i> ^{-/-} ; Western diet (0.15% cholesterol, 20% fat)	Versus wild-type donor: ↑ Splenomegaly ↑ ANA, anti-dsDNA antibody and total IgG levels ↑ Anti-MDA-LDL IgG and IgM levels No change in urinary protein content	Versus wild-type donor: No change in TC and TG levels	Versus wild-type donor: ↑ Aortic root plaque size (oil-red O) ↑ CD68 ⁺ macrophage numbers ↑ TUNEL ⁺ apoptotic cells Expression of CCL2, ICAM1 and P-selectin	31
				Versus <i>Apoe</i> ^{-/-} only: ↑ IgG, anti-dsDNA IgG, aCL and anti-oxPL IgG levels ↑ Glomerular tuft area ↑ Proteinuria	Versus <i>Apoe</i> ^{-/-} only: ↓ TC levels No change in TG levels	Versus <i>Apoe</i> ^{-/-} only: ↑ Aortic root plaque size ↑ IgG deposition ↑ TUNEL ⁺ apoptotic cells	34
<i>Fas</i> ^{-/-} <i>Apoe</i> ^{-/-}	Male and female	<i>Fas</i> ^{-/-} (<i>lpr/lpr</i>)	<i>Apoe</i> ^{-/-} ; regular chow diet	Versus <i>Apoe</i> ^{-/-} only: ↑ IgG, anti-dsDNA IgG, aCL and anti-oxPL IgG levels ↑ Glomerular tuft area ↑ Proteinuria	Versus <i>Apoe</i> ^{-/-} only: ↓ TC levels No change in TG levels	Versus <i>Apoe</i> ^{-/-} only: ↑ Aortic root plaque size ↑ IgG deposition ↑ TUNEL ⁺ apoptotic cells	34
			<i>Apoe</i> ^{-/-} ; regular chow diet	Versus <i>lpr</i> only: No change in IgG, anti-dsDNA IgG and anti-chromatin IgG levels ↑ Anti-oxLDL IgG and IgM levels ↑ aCL IgG and IgM levels	Versus <i>Apoe</i> ^{-/-} only: ↓ TC levels	Versus <i>Apoe</i> ^{-/-} only: ↑ Aortic plaque size (en face) ↑ Aortic root plaque size (oil-red O)	33
<i>MRL/lpr</i> - <i>Apoe</i> ^{-/-}	Male and female	<i>MRL/MpJ-Fas</i> ^{lpr}	<i>Apoe</i> ^{-/-} ; regular chow diet	Versus <i>MRL/lpr</i> only: No change in IgG, anti-dsDNA IgG and anti-chromatin IgG levels ↑ Anti-oxLDL IgG and IgM and aCL IgG and IgM levels	Versus <i>Apoe</i> ^{-/-} only: ↑ TC levels	Versus <i>Apoe</i> ^{-/-} only: ↑ Aortic plaque size (en face) ↑ Aortic root plaque size (oil-red O)	33
<i>Sle16-Ldlr</i> ^{-/-}	Female	<i>Sle16</i> (SLE susceptibility locus in Chr1 in B6 mice)	<i>Ldlr</i> ^{-/-} ; low-fat diet	Versus <i>Sle16</i> only No change in anti-MDA-LDL IgG levels ↑ Anti-MDA-LDL IgG2c and anti-chromatin IgG levels ↓ Serum C3 levels	Versus <i>Ldlr</i> ^{-/-} only: No change in TC and TG levels	Versus <i>Ldlr</i> ^{-/-} only: ↑ Aortic plaque size (en face) ↑ Aortic root plaque size (oil-red O) ↓ C3d deposition	35
			<i>Ldlr</i> ^{-/-} ; high-fat diet (0.25% cholesterol, 15% fat)	Versus <i>Sle16</i> only: No change in anti-MDA-LDL IgG levels ↑ Anti-ssDNA IgG, anti-dsDNA IgG and anti-chromatin IgG ↓ Serum C3 levels ↑ Glomerulonephritis and C3 deposition in the kidney	Versus <i>Ldlr</i> ^{-/-} only: No change in TC and TG levels	Versus <i>Ldlr</i> ^{-/-} only: ↑ Aortic plaque size (en face) ↑ Aortic root plaque size ↑ VSMC numbers ↑ TUNEL ⁺ apoptotic cells ↓ C3d deposition	35
<i>Sle1.2.3</i> BMT in <i>Ldlr</i> ^{-/-} mice	NA	<i>B6.Sle1.Sle2.Sle3</i> (SLE susceptibility locus in Chr17 in B6 mice)	<i>Ldlr</i> ^{-/-} ; Western diet (0.15% cholesterol, 21% fat)	Versus wild-type donor: ↑ Splenomegaly ↑ CD4 ⁺ cells ↑ Proteinuria ↑ Serum urea and creatinine levels ↑ Anti-dsDNA IgG, anti-oxLDL IgG1 and IgG2a, and aCL IgM, IgG1, IgG2a levels	Versus wild-type donor: ↓ TC (VLDL and LDL) and TG levels	Versus wild-type donor: ↑ Aortic root plaque size ↑ CD3 ⁺ and CD4 ⁺ T cells ↑ Systolic blood pressure	36

Review article

Table 1 (continued) | Studies on the effects of immunological aberrations in atherosclerosis-prone mice

Mouse model	Sex	Autoimmune model	Atherosclerosis model	Autoimmune manifestations	Effect on blood lipids	Effect on atherosclerosis	Ref.
Systemic lupus erythematosus (continued)							
			<i>Ldlr</i> ^{-/-} ; regular chow diet	Versus wild-type donor: ↑ Anti-dsDNA IgG, anti-oxLDL IgM, IgG1 and IgG2a, and anti-b2GP1 IgM, IgG1 and IgG2a	Versus wild-type donor: No change in TC and TG levels	Versus wild-type donor: ↑ Aortic root plaque size ↑ CD4 ⁺ cells	37
			<i>Ldlr</i> ^{-/-} ; Western diet (0.15% cholesterol, 21% fat)	Versus wild type-donor: ↑ Anti-dsDNA IgG, anti-oxLDL IgM, IgG1 and IgG2a, and anti-b2GP1 IgG1 and IgG2a ↑ Glomerular immune complexes ↑ Proteinuria	Versus wild-type donor: ↓ TC and TG levels	Versus wild-type donor: ↑ Aortic root plaque size ↑ CD4 ⁺ cells ↑ Systolic blood pressure	37
<i>Sle1.2.3</i> CD4 ⁺ T cell transfer to <i>Ldlr</i> ^{-/-} <i>Rag1</i> ^{-/-} mice	Female	B6. <i>Sle1.Sle2.Sle3</i>	<i>Ldlr</i> ^{-/-} <i>Rag1</i> ^{-/-} ; Western diet (0.15% cholesterol, 21% fat)	Versus wild-type CD4 ⁺ T cell transfer: ↑ Proteinuria	Versus wild-type CD4 ⁺ T cell transfer: No change in TC and TG levels	Versus wild-type CD4 ⁺ T cell transfer: ↑ Aortic root plaque size	38
<i>Sle1.2.3</i> T _{eff} cell and T _{reg} cell transfer to <i>Ldlr</i> ^{-/-} <i>Rag1</i> ^{-/-} mice	Female	B6. <i>Sle1.Sle2.Sle3</i>	<i>Ldlr</i> ^{-/-} <i>Rag1</i> ^{-/-} ; Western diet (0.15% cholesterol, 21% fat)	Versus wild-type T _{eff} cell transfer: ↑ Proteinuria	Versus wild-type T _{eff} cell transfer: NA	Versus wild-type T _{eff} cell transfer: ↑ Aortic root plaque size (oil-red O) ↑ CD4 ⁺ T cells	38
<i>Sle3</i> BMT in <i>Ldlr</i> ^{-/-} mice	Female	<i>Sle3</i> (SLE susceptibility locus in Chr17 in B6 mice)	<i>Ldlr</i> ^{-/-} ; Western diet (0.15% cholesterol and 21% fat)	Versus wild-type donor: ↑ Splenomegaly ↑ Anti-dsDNA IgG, aCL IgM and IgG1, anti-b2GP1 IgM and IgG1, and anti-oxLDL IgG levels	Versus wild-type donor: ↓ TC (VLDL, LDL) levels No change in TG levels	Versus wild-type donor: No change in aortic root plaque size (oil-red O)	355
<i>Nba2</i> , <i>Yaa-Apoe</i> ^{-/-}	NA	New Zealand black autoimmunity 2 locus (Chr1) and Y-linked autoimmune acceleration (<i>Yaa</i>) locus (X-linked <i>Tlr7</i> duplication on ChrY)	<i>Apoe</i> ^{-/-} ; (1.25% cholesterol, 20% fat)	Versus <i>Apoe</i> ^{-/-} only: Splenomegaly ↓ Platelet numbers ↑ Anti-dsDNA IgG and anti-apoA-I IgG levels ↓ Blood urea nitrogen	Versus <i>Apoe</i> ^{-/-} only: No change in TC and TG levels	Versus <i>Apoe</i> ^{-/-} only: No change in aortic plaque size (en face) or aortic root plaque size (oil-red O) ↓ Neutrophils ↑ CD68 ⁺ cells ↑ MMP9 content ↓ Collagen content ↓ Fibrous cap thickness ↑ Necrotic core area	41
Antiphospholipid syndrome							
<i>β₂-GPI</i> immunization	Female	<i>β₂-GPI</i> immunization (in CFA)	<i>Apoe</i> ^{-/-} ; high-fat diet (1.125% cholesterol, 0.5% cholate)	↑ Anti- <i>β₂</i> -GPI IgG levels	Versus ovalbumin-immunized control: No change in TC levels	Versus ovalbumin-immunized control: ↑ Aortic root plaque size (oil-red O)	45
	Male	Polyclonal rabbit <i>β₂-GPI</i> IgG injection	<i>Apoe</i> ^{-/-} ; high-fat diet (2% cholesterol, 10% lard, 0.5% cholate)	None	Versus control IgG: No change in TC and TG levels	Versus control IgG: ↑ Carotid artery and aortic arch plaque size ↑ CD68 ⁺ macrophages ↑ MMP9 levels ↓ Collagen content	46
Anti-phospholipid antibody immunization	NA	Monoclonal anti-phospholipid antibody IgG2b (from NZW x BXSB)F1	<i>Ldlr</i> ^{-/-} ; high-fat diet (1.25% cholesterol, 20% fat, 0.5% cholate)	None	Versus control IgG2b: No change in TC levels	Versus control IgG2b: ↓ Aortic plaque (en face) and aortic root plaque size (oil-red O)	47

Review article

Table 1 (continued) | Studies on the effects of immunological aberrations in atherosclerosis-prone mice

Mouse model	Sex	Autoimmune model	Atherosclerosis model	Autoimmune manifestations	Effect on blood lipids	Effect on atherosclerosis	Ref.
Arthritis							
CIA	Male	CIA (type II chicken collagen in CFA ID and type II chicken collagen IP boost)	Apoe ^{-/-} ; Western diet (0.15% cholesterol, 21% fat)	Versus wild-type: ↓ Arthropathy ↓ Anti-collagen IgG levels ↓ Serum IL-17 levels	Versus no CIA: No change in TC and TG levels	Versus no CIA: No change in aortic root plaque size	356
	Male	B10.RIII (H-2 ^d) (type II bovine collagen in CFA ID)	Apoe ^{-/-} ; regular chow diet	Versus wild-type: ↑ Arthropathy ↓ Anti-CII IgG1 ↑ IL-1 β , IL-6, IL-17, IL-21 and IFN γ levels in joints	Versus wild-type: ↑ TC and TG levels	Versus wild-type: No change in aortic root plaque size	39
K/BxN	Female	K/BxN (express the TCR transgene KRN and the MHC class II allele H-2k (Ag7))	Background not reported; high-fat diet	Versus chow diet: ↑ Arthropathy ↑ Anti-G6PI IgG	Versus chow diet: ↑ TC and TG levels	Versus chow diet: ↑ Aortic root plaque size (oil-red O)	40
	Male and female	K/BxN	C57BL/6 K/Bx ^{Aβ} ; Western diet (1.2% cholesterol, 15.8% fat)	Versus chow diet: No change in arthropathy ↑ Pro-inflammatory cytokines and chemokines in serum	Versus chow diet: No change in TC levels ↑ LDL/VLDL levels	Versus chow diet: ↑ Aortic plaque size (en face) ↑ Macrophage numbers in aortic root	48
K/BxN STIA	Male and female	Transfer of K/BxN serum (anti-G6PI antibodies)	C57BL/6; Western diet (1.2% cholesterol, 15.8% fat)	None	Versus no STIA: ↓ TC levels ↑ LDL/VLDL levels	Versus no STIA: ↑ Aortic plaque size (en face)	48
			Apoe ^{-/-} ; Western diet (1.25% cholesterol, 15.80% fat)	Versus wild-type: ↑ Arthropathy ↑ Articular and extra-articular inflammation ↑ Collagen content	Versus Apoe ^{-/-} without STIA: No change in TC (LDL/VLDL) levels	Versus Apoe ^{-/-} without STIA: Trend for ↑ aortic plaque size (en face) ↑ IL-6 levels in serum	49
	Male	Transfer of K/BxN serum (anti-G6PI antibodies)	Ldlr ^{-/-} ; atherosclerosis regression study; Western diet (0.15% cholesterol, 22% fat) followed by chow diet	Versus Ldlr ^{-/-} : ↑ Monocytosis (Ly6C ^{high}) ↑ Plasma IL-6 and TNF levels	Versus Ldlr ^{-/-} : No change in TC levels	Versus Ldlr ^{-/-} : ↑ Aortic root plaque size (H&E and oil-red O) ↑ CD68 ⁺ macrophages	50
DR4tg-Ldlr ^{-/-}	Male and female	HLA-DRB1*04:01 (DR4tg)	Ldlr ^{-/-} ; Western diet (0.2% cholesterol, 21.2% fat)	None	Versus Ldlr ^{-/-} : ↓ TC (driven by LDL) ↑ oxLDL levels	Versus Ldlr ^{-/-} : No change in aortic plaque size (en face) No change in citrullinated protein levels and liver inflammation	357

β_2 -GPI, β_2 -glycoprotein 1; aCL, anti-cardiolipin antibodies; ANA, anti-nuclear antibodies; apoA-I, apolipoprotein A-I; BMT, bone marrow transplantation; CCL2, CC-motif chemokine 2; CFA, complete Freund's adjuvant; Chr, chromosome; CIA, collagen-induced arthritis; dsDNA, double-stranded DNA; FASL, FAS ligand; G6PI, glucose-6-phosphoisomerase; H&E, haematoxylin-eosin; ICAM1, intercellular adhesion molecule 1; ID, intradermal; IFN γ , interferon- γ ; IP, intraperitoneal; MDA, malondialdehyde; MMP9, matrix metalloproteinase 9; NA, not available; oxLDL, oxidized LDL; oxPL, oxidized phospholipid; SLE, systemic lupus erythematosus; ssDNA, single-stranded DNA; STIA, serum transfer-induced arthritis; TC, total cholesterol; TCR, T cell receptor; T_{eff}, effector T; TG, triglycerides; TNF, tumour necrosis factor; T_{reg}, regulatory T; TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labelling; VSMC, vascular smooth muscle cell.

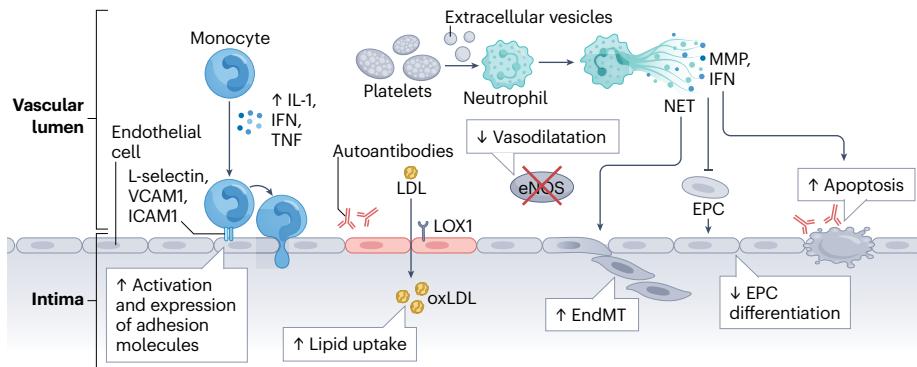
pro-atherogenic, were decreased following tocilizumab treatment^{149,151}. The novel anti-IL-6 antibody ziltivekimab does not elevate plasma lipid levels¹⁵² and is being tested for the prevention of cardiovascular events in the large-scale ZEUS trial¹⁵³ in patients with chronic kidney disease and elevated plasma CRP levels. Given that IL-6-targeted therapies are approved for RA, they might become an option in the future to address the increased risk of ASCVD in patients with autoimmune diseases.

TNF. TNF is a key driver of autoimmunity, particularly RA, where it is also one of the most prominent therapeutic targets. TNF elicits largely pro-inflammatory responses, but can also have immunosuppressive functions^{154,155}. TNF is generally considered to be pro-atherogenic through multiple mechanisms^{99,121}. Most of the studies in mice support a pro-atherogenic role for TNF, but some studies suggest potentially atheroprotective functions of TNF or downstream signalling

receptors¹²¹. Generally, TNF can promote leukocyte recruitment to atherosclerotic lesions via activation of endothelial cells and their expression of adhesion molecules, chemokines and pro-inflammatory cytokines such as IL-1 β and IL-6 (refs. 121,155). In addition, TNF can increase the subendothelial accumulation of oxidized LDL by upregulating the expression of the lectin-type oxidized LDL receptor 1 (LOX1) on endothelial cells¹⁰¹.

TNF might be an important mediator of the increased risk of ASCVD in patients with autoimmune disease, given that systemic TNF levels are increased in these patients¹⁵⁶. Consistent with this observation, elevated serum TNF and IL-6 levels are associated with increased coronary artery calcification in patients with RA independently of Framingham risk factors¹⁵⁷. TNF inhibitor treatment was associated with significant reductions in carotid IMT in patients with RA within 6–12 months of treatment initiation^{158,159}. One study demonstrated that patients with RA treated with TNF inhibitors have a reduced incidence of first MACE compared with patients with RA who are not taking TNF inhibitors¹⁶⁰. Another study showed that patients

with RA who respond to TNF inhibitor therapy have a reduced incidence of MI within 6 months of treatment initiation compared with patients receiving traditional disease-modifying antirheumatic drugs (DMARDs)¹⁶¹. Two meta-analyses demonstrated that patients with RA treated with a TNF inhibitor have a reduced risk of cardiovascular events (relative risk 0.46 compared with traditional DMARDs¹⁶², and relative risk 0.7 compared with non-TNF inhibition standard-of-care or no treatment¹⁶³). However, several studies have also found increased plasma cholesterol levels after TNF inhibitor therapy¹⁶⁴, which could have detrimental effects on the cardiovascular risk in these patients. In the acute setting after MI, elevated serum TNF levels are associated with an increased risk of recurrent MI¹⁶⁵. However, TNF inhibitor therapy had no effect or even detrimental effects on disease outcomes in patients with heart failure^{166,167}. Therefore, despite the potential beneficial effects of TNF inhibition on vascular inflammation in patients with RA in the TARGET trial¹⁶⁸ (Table 2), the feasibility of TNF inhibitor therapy in autoimmunity-accelerated ASCVD requires further investigation.


Box 2 | Autoantibodies

In autoimmunity, the development of autoantibodies is typically the result of aberrant B cell selection or increased plasma cell differentiation, which indicates a loss of tolerance to self-molecules. The presence of autoantibodies is a major criterion for the diagnosis of autoimmune diseases, although they are not always present in these diseases. Typically, the production of autoantibodies precedes the onset of autoimmune disease manifestations³⁸², such as synovitis in rheumatoid arthritis (RA) or flares in systemic lupus erythematosus (SLE), which are thought to require several steps of aberrant immune activation^{12,13,272}. Each of these autoantibodies is associated with different functional effects and mediates tissue damage by promoting inflammation via different mechanisms, including complement activation, Fc receptor-mediated signalling, and Toll-like receptor activation by nucleic acid-containing immune complexes³⁸³. Depending on the antigens that the autoantibodies recognize, they can also trigger neutrophil extracellular trap formation or thrombosis^{384,385}.

In SLE, autoantibodies are typically directed against nuclear antigens, such as anti-nuclear antibodies (ANA), but also other self-antigens, including C1q, platelets and erythrocytes. ANAs include autoantibodies against nucleosome components, such as double-stranded DNA, histones and RNA-binding proteins (anti-Sjögren syndrome-related antigen A (anti-SSA; also known as anti-SSA/Ro), anti-SSB (also known as anti-SSB/La), anti-Smith (anti-Sm) and anti-ribonucleoproteins antibodies). Low titres of ANAs can also be found in the general population. Antiphospholipid autoantibodies, present in antiphospholipid syndrome and in some patients with SLE, are directed against lipid antigens, including cardiolipin and the associated protein β_2 -glycoprotein 1, and are linked to venous and arterial thrombosis³⁸⁶. Autoantibodies against apolipoprotein A-I, the major protein in HDL, have also been described in the context of SLE and could modulate HDL functions and inflammation^{14,387}. Anti-neutrophil cytoplasmic protein antibodies are prototypic for the vasculitis associated with SLE³⁸⁸.

Seropositive RA, which might be pathophysiologically different from seronegative RA, is typically characterized by the presence

of rheumatoid factors, which are antibodies directed against the Fc portion of IgG. Post-translational modifications targeted by autoantibodies include citrullination (anti-citrullinated protein autoantibodies (ACPA)), carbamylation (anti-carbamylated protein antibodies) and acetylation³⁸⁹. Compared with rheumatoid factor, which is also found in a small percentage of healthy individuals, ACPAs are more specific for RA³⁹⁰. Rheumatoid factor appears much later than ACPAs (closer to disease onset) and seems to be more associated with disease activity¹². Typically, both rheumatoid factor and ACPAs are present when RA is clinically manifest; however, the presence of ACPAs alone seems to be less robustly associated with overt disease. Functionally, rheumatoid factor-ACPA immune complexes trigger complement activation as well as monocyte and macrophage activation, leading to the production of pro-inflammatory cytokines, including tumour necrosis factor, IL-1 β , IL-6 and IL-8 (ref. 391), which are all relevant to atherosclerotic cardiovascular disease. These immune complexes can also trigger the activation of neutrophils, which leads to the generation of reactive oxygen species and the formation of neutrophil extracellular traps^{230,231}, which contain citrullinated proteins that further fuel the inflammatory process. The majority of autoantibodies in autoimmune diseases are class-switched IgG antibodies that are generated over time from polyreactive IgM antibodies and are more pathogenic than the IgM antibodies^{13,392}. Interestingly, autoreactive IgA and IgE antibodies have also been described in autoimmune diseases³⁹². Rheumatoid factor is typically of the IgM isotype, but IgG and IgA rheumatoid factor antibodies have also been described. The potential functions of different IgG subtypes in autoimmunity are not well established, but different affinities for Fc γ receptors and different complement-activating capacity might influence their pathogenicity. For example, ACPA IgG1 might have higher pro-inflammatory potential than other ACPA subclasses, which might also activate inhibitory Fc γ receptors, such as Fc γ RIIB. However, the functional relevance of different autoantibody subclasses for autoimmunity or atherosclerotic cardiovascular disease is unknown.

Fig. 3 | Shared immune pathways in ASCVD and autoimmunity and their potential effects on endothelial dysfunction. Endothelial dysfunction is a central feature of autoimmunity-mediated increased risk of atherosclerotic cardiovascular disease (ASCVD). After endothelial cell activation, increased endothelial expression of adhesion molecules, including L-selectin, vascular cell adhesion molecule 1 (VCAM1) and intercellular adhesion molecule 1 (ICAM1), promotes the recruitment of leukocytes, including monocytes, whereas increased expression of lectin-type oxidized LDL receptor 1 (LOX1) on endothelial cells

promotes oxidized LDL (oxLDL) uptake into the vascular wall. Vasorelaxation is impaired due to reduced endothelial nitric oxide synthase (eNOS) activity. Endothelial-to-mesenchymal transition (EndMT) is promoted by pro-inflammatory, matrix metalloproteinase (MMP)-carrying neutrophil extracellular traps (NET) and contributes to atherosclerotic plaque growth. Endothelial damage is exacerbated by increased endothelial cell apoptosis that could be further promoted by endothelial cell-specific autoantibodies and impaired endothelial progenitor cell (EPC) differentiation. IFN, interferon; TNF, tumour necrosis factor.

Type I IFN. Type I IFN exacerbates multiple aspects of atherosclerosis in mice⁹⁸. IFN-associated genes increase leukocyte recruitment to the atherosclerotic plaque in a chemokine-dependent manner, resulting in increased macrophage accumulation¹⁶⁹. In mononuclear cells, type I IFN causes the upregulation of scavenger receptor A1 (SR-A1) expression and increased lipid uptake^{170–172} (Fig. 4).

After lipid loading, foamy macrophages show reduced expression of inflammatory genes, including IFN-responsive genes^{173,174}. However, single-cell RNA sequencing studies of atherosclerotic plaques have revealed a macrophage subtype termed type I IFN-inducible cells (IFNICs) that express high levels of IFN-inducible genes¹⁷⁵. Although the function of IFNICs in atherosclerosis is unknown, they have been found to accumulate in the injured myocardium in mouse models of MI, where these cells promote inflammation and impair cardiac function¹⁷⁶. Additionally, in mice, IFNIC numbers are increased in plaques during atherosclerosis progression versus regression¹⁷⁷, suggesting that these cells might have pro-atherogenic roles. However, type I IFN can have both pro-inflammatory effects, such as epigenetic reprogramming to render macrophages more sensitive to inflammatory stimuli¹⁷⁸, and anti-inflammatory effects, including the suppression of IL-1 β production^{179,180}. In light of the prominent presence of IFNICs in human and mouse atherosclerotic plaques, it will be interesting to evaluate whether these macrophages contribute to an increased risk of ASCVD in patients with autoimmune diseases.

An IFN signature characterized by heightened type I IFN (IFN α and IFN β) expression as well as IFN-stimulated target genes in circulating cells and in affected tissues is a hallmark of many autoimmune diseases¹⁸¹. Type I IFN expression is driven by the activation of endosomal TLRs, such as TLR7 and TLR9, or cytosolic DNA sensors by nucleic acids, including oxidized mitochondrial DNA and RNA. These nucleic acids are present in immune complexes with anti-nuclear autoantibodies, in NETs or on circulating extracellular vesicles^{182–187}. The main cellular source of type I IFN is likely to be plasmacytoid dendritic cells, which have also been shown to promote atherosclerosis in experimental models¹⁸⁸. Notably, platelets, which have a more activated phenotype in patients with SLE than in individuals without

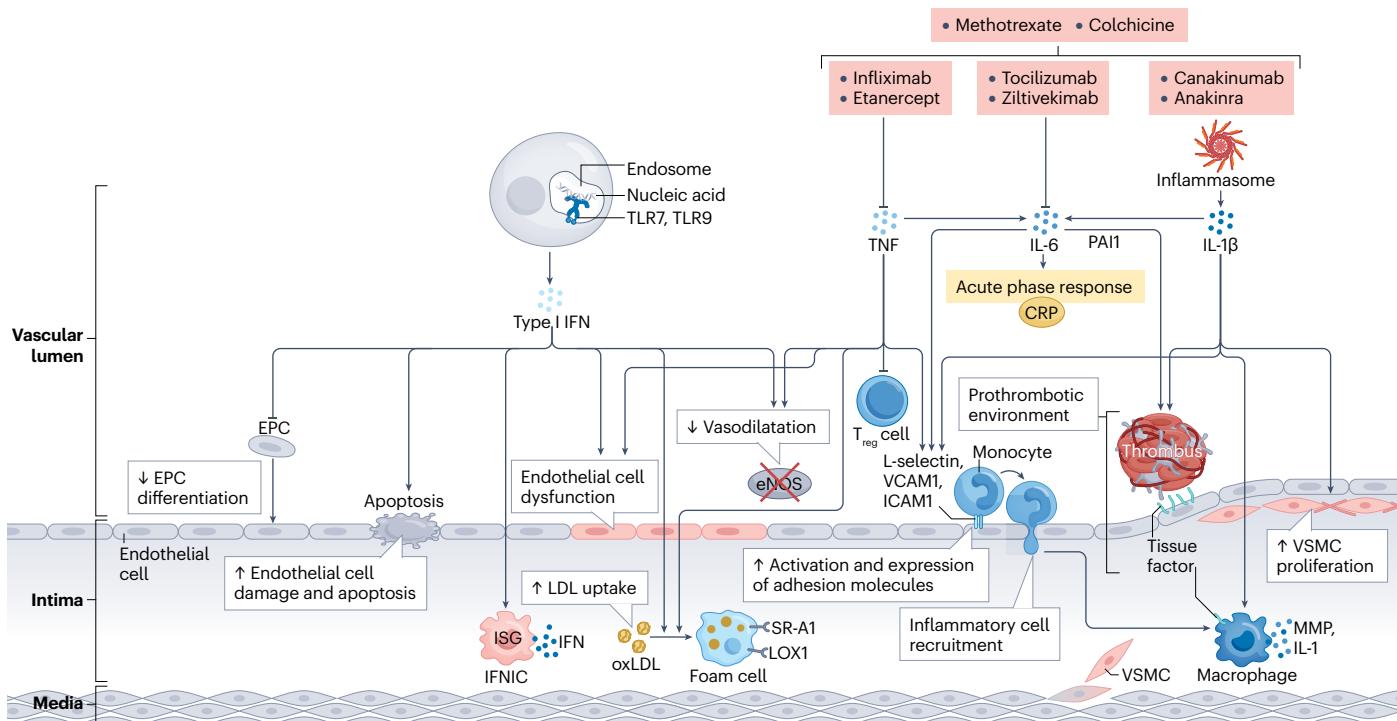
SLE, also have a prominent IFN signature and can activate both plasmacytoid dendritic cells and endothelial cells^{113,114,189,190}. These activated platelets could promote ASCVD progression in patients with autoimmune disease by modulating leukocyte recruitment and endothelial–leukocyte adhesion as well as activation of monocytes, consistent with the pro-atherogenic functions that have been proposed for platelets^{191–193}.

The IFN signature is the most prominently enriched pathway in the blood in patients with SLE^{194,195}, which strongly contributes to disease severity. Systemic sclerosis and Sjögren syndrome are also linked to type I IFN signatures^{196–199}, whereas this signature is less pronounced in RA¹⁹⁹. In a study in patients with SLE, serum type I IFN activity was independently associated with reduced FMV and increased carotid IMT and coronary calcification independently of Framingham risk factors²⁰⁰. This finding further supports a key role for type I IFN in promoting endothelial dysfunction and CVD in patients with SLE.

Innate immunity

Monocytes. Monocytes and macrophages are crucially involved in chronic inflammatory conditions including atherosclerosis and autoimmunity-associated tissue damage. In humans, monocyte numbers, particularly CD14 $^{++}$ CD16 $^{+}$ intermediate monocytes, are positively correlated with cardiovascular events²⁰¹. Interestingly, this monocyte subtype is also increased in RA, in which they display increased adhesiveness, heightened expression of cytokines and chemokine receptors such as CCR5, and an increased capacity to activate T helper 17 (T_H17) cells^{202,203}. Similarly, monocytes from patients with SLE display extensive epigenetic changes in IFN-related enhancer regions and heightened expression of the IFN signature and of pro-atherogenic cytokines including CCL2 (refs. 204–206). In patients with SLE, non-classic CD16 $^{+}$ CD14 $^{\text{dim}}$ monocyte numbers correlated with carotid IMT in a small study²⁰⁷, but this correlation was not observed in another study²⁰⁸. Given the central role of the CCL2–CCR2 and CX3CL1–CX3CR1 axes and CCR5 and its ligands in regulating leukocyte recruitment to the atherosclerotic plaque^{209,210}, the increased number of monocytes with high chemokine receptor expression in RA or with high

chemokine expression in SLE might contribute to increasing the risk of atherosclerosis (Fig. 5).


Neutrophils. Neutrophils are emerging players in ASCVD. Multiple studies have found that the neutrophil-to-lymphocyte ratio as well as a neutrophil-related plasma proteomic signature independently predict cardiovascular events^{211,212}. Neutrophil numbers have been shown to be predictive of cardiovascular end points in observational and genetic analyses of the Copenhagen General Population study and in Mendelian randomization studies of the UK Biobank and Blood Cell Consortium, which suggests a causal role for neutrophils in ASCVD²¹³. Interestingly, the latter analyses showed no significant associations between ASCVD and other leukocyte types²¹³.

Mechanistically, neutrophils can affect atherosclerosis and the associated complications by multiple mechanisms (Fig. 5), including NET formation and release of their granule contents and cytokines. Neutrophil depletion ameliorates atherosclerosis development in mice, particularly when depletion occurs during early disease stages^{214,215}. Neutrophils promote endothelial activation and the oxidation of subendothelially retained lipoprotein particles via myeloperoxidase and the generation of reactive oxygen species²¹⁶. Moreover,

neutrophil granule contents, such as cathelicidins, have been implicated in promoting monocyte recruitment²¹⁷ and cellular LDL uptake²¹⁸. NETs modulate multiple stages of atherosclerosis, including the early activation and damage of endothelial cells^{105,106,219,220} and VSMCs²²¹ as well as microvascular obstruction during MI²²².

Importantly, neutrophils are implicated in superficial plaque erosion, which is becoming an increasingly important cause of thrombotic complications of atherosclerosis in the era of widely available, strong lipid-lowering therapies²²³. Neutrophils contribute to arterial intima injury through the release of their granule contents, reactive oxygen species and NET formation²²⁴. Indeed, granulocyte depletion or impairment of NET formation improved endothelial cell survival and integrity in mouse carotid cuff models, which generate intimal lesions that resemble human erosion-prone plaques^{225,226}. Moreover, NETs contribute to the propagation of thrombosis via entrapment of tissue factor, fibrin and platelets^{227,228}. Consistent with these findings, white thrombi overlying eroded plaques are rich in platelets and myeloperoxidase-positive inflammatory cells²²⁹.

Neutrophils and NETs also have a key role in the perpetuation of autoimmune diseases^{230,231}, where they are functionally and phenotypically altered. In RA, neutrophils are essential mediators of

Fig. 4 | Shared cytokine pathways in autoimmunity and ASCVD and their potential effects on atherosclerosis and its complications. Cytokines can promote atherosclerotic cardiovascular disease (ASCVD). Increased nucleic acid sensing via Toll-like receptors (TLR7 and TLR9) promotes type I interferon (IFN) production. Tumour necrosis factor (TNF), as well as IL-1 β , which is generated following NLRP3 inflammasome activation, promote IL-6 production to trigger an acute phase response, including generation of C-reactive protein (CRP). Pro-atherogenic mechanisms of these cytokines include endothelial dysfunction and damage (TNF and type I IFN), leukocyte activation and recruitment (TNF, IL-1 β and IL-6), impairment of vasorelaxation (TNF and type I IFN), promotion of modified LDL and oxidized LDL (oxLDL) uptake (TNF and type I IFN), promotion

of vascular smooth muscle cell (VSMC) proliferation (IL-1 β) and regulatory T cell (T_{reg}) dysfunction (TNF), and favouring of a prothrombotic environment by increasing the expression of tissue factor (IL-1 β and IL-6) and plasminogen-activator inhibitor 1 (PAI1) (IL-6). Potential therapeutics (red boxes) and their targets include infliximab and etanercept (TNF), tocilizumab (IL-6 receptor), ziltivekimab (IL-6), canakinumab (IL-1 β), anakinra (IL-1 receptor) and methotrexate and colchicine (broad anti-inflammatory drugs). eNOS, endothelial nitric oxide synthase; EPC, endothelial progenitor cell; ICAM1, intercellular adhesion molecule 1; IFNIC, interferon-inducible cell; ISG, IFN-stimulated gene; LOX1, lectin-type oxidized LDL receptor 1; MMP, matrix metalloproteinase; SR-A1, scavenger receptor type A1; VCAM1, vascular cell adhesion molecule 1.

Review article

Table 2 | Randomized clinical trials of anti-inflammatory therapies in CVD

Drug (target); approved use in autoimmune diseases	Trial name	Cohort	Intervention	End points	Follow-up	Outcomes	Notes
Methotrexate (broad anti-inflammatory); RA	CIRT ³⁵⁸	4,789 patients with stable CAD (previous MI or multivessel CAD) and type 2 diabetes mellitus or metabolic syndrome	Low-dose methotrexate versus placebo	MACE (non-fatal MI, non-fatal stroke or cardiovascular death) and hospitalization for unstable angina leading to coronary revascularization	2.3 years	No significant difference in MACE (HR 0.96, 95% CI 0.79–1.16)	Prematurely stopped due to lack of benefit; no reduction in inflammatory parameters; small but significant increases in liver enzyme levels and incidence of non-basal skin cancer
Colchicine (broad anti-inflammatory); gout, Behçet syndrome (CVD prevention)	COLCOT ³⁵⁹	4,745 patients with recent MI (<30 days)	Low-dose colchicine versus placebo	Composite of cardiovascular death, resuscitated cardiovascular arrest, MI, stroke, urgent hospitalization for angina leading to coronary revascularization	22.6 months	↓ Primary end point with colchicine (HR 0.77, 95% CI 0.61–0.96; P=0.02)	Mild but significantly increased risk of pneumonia in the colchicine group
	LoDoCo ³⁶⁰	532 patients with stable CAD (taking statins and aspirin or clopidogrel)	Low-dose colchicine versus placebo	Composite of ACS (AMI, unstable angina), out-of-hospital cardiac arrest, non-cardioembolic ischaemic stroke	36 months	↓ Primary end point with colchicine (HR 0.33, 95% CI 0.18–0.59; P<0.001)	–
	LoDoCo2 ³⁶¹	5,522 patients with stable, chronic CAD	Low-dose colchicine versus placebo	Composite of cardiovascular death, MI, ischaemic stroke, ischaemia-driven coronary revascularization	28.6 months	↓ Primary end point with colchicine (HR 0.69, 95% CI 0.57–0.83; P<0.001)	Small, non-significant increase in the incidence of non-CVD-related death in the colchicine group (HR 1.51, 95% CI 0.99–2.31)
CLEAR-Synergy (Oasis 9) ³⁶²		7,063 patients with STEMI or NSTEMI undergoing primary PCI	Low-dose colchicine versus placebo, spironolactone versus placebo, or colchicine plus spironolactone versus placebo; administered via drug-eluting stent	MACE (death, recurrent target-vessel MI, stroke, ischaemia-driven target-vessel revascularization), and cardiovascular death or new-onset or worsening HF	1 year for MACE, estimated average of 3 years for cardiovascular death	Expected completion July 2024	–
CONVINCE ³⁶³		3,154 patients with ischaemic stroke or TIA (excluding cardioembolic stroke)	Low-dose colchicine plus standard care versus standard care alone	Recurrence of non-fatal ischaemic stroke, non-fatal cardiac event (MI, cardiac arrest, unstable angina), vascular death	Median follow-up 36 months	Non-significant reduction in primary end point (HR 0.84, 95% CI 0.68–1.05; P=0.12)	–
Canakinumab (anti IL-1 β antibody); gout flares	CANTOS ^{2,125,139}	10,061 patients with MI; hsCRP >2 mg/l	Canakinumab versus placebo	Composite of cardiovascular death, non-fatal MI, non-fatal stroke	3.7 years	For 150 mg canakinumab: 15% decrease in MACE (HR 0.85, 95% CI 0.74–0.98; P=0.021) but no reduction in CVD death; no difference in all-cause death	↑ Incidence of non-fatal infection ↓ Cancer mortality (especially lung cancer) Subgroup analyses showed higher benefit in patients who had reduced hsCRP or IL-6 levels with canakinumab and in patients with TET2-driven CHIP

Review article

Table 2 (continued) | Randomized clinical trials of anti-inflammatory therapies in CVD

Drug (target); approved use in autoimmune diseases	Trial name	Cohort	Intervention	End points	Follow-up	Outcomes	Notes
Anakinra (IL-1 receptor antagonist); RA	MRC-ILA Heart ³⁶⁴	182 patients with non-ST-segment elevation ACS, <48h of symptom onset	Anakinra or placebo once daily for 14 days	AUC for hsCRP and other inflammatory and CVD markers; secondary end point: MACE (cardiovascular death, MI or stroke) and myocardial parameters	30 days for hsCRP, 1 year for MACE	↓ hsCRP and IL-6 AUC and absolute levels with anakinra after 14 days No difference in infarct size ↑ MACE with anakinra after 1 year (18.9% versus 5.4%; P=0.0233)	–
	VCU-ART ³⁶⁵	10 patients with STEMI	Anakinra or placebo once daily for 14 days	Left ventricular remodelling: LVESVi, LVEDVi (assessed by CMR and echocardiography) hsCRP levels	10–14 weeks	Improved LVESVi and LVEDVi No difference in infarct size No difference in hsCRP, but CRP changes correlated with LVESVi	–
	VCU-ART2 ³⁶⁶	30 patients with clinically stable STEMI	Anakinra or placebo once daily for 14 days	LVESVi, LVEDVi, LVEF, hsCRP levels	10–14 weeks	No differences in LVESVi, LVEDVi or LVEF ↓ CRP increase with anakinra Trend for reduced new-onset HF	–
	VCU-ART3 ³⁶⁷	99 patients with STEMI	Anakinra or placebo once or twice daily for 14 days	hsCRP levels, preservation of left ventricular systolic function, HF incidence	14 days for hsCRP levels; 12 months for LVESVi, LVEF and HF	↓ hsCRP AUC (P<0.001) No difference in LVESVi or LVEF ↓ Incidence of new-onset HF or death	–
Tocilizumab (anti-IL-6R antibody); RA	MEASURE ¹⁴⁹	132 patients with moderate- to-severe RA and inadequate response to methotrexate	Methotrexate plus tocilizumab or placebo	Change in PWV and LDL particle number	24 weeks double-blind, 80 weeks open label	↑ LDL-C and ↓ SAA, PLA2 and Lp(a) levels in plasma with tocilizumab Greater reduction in PWV in placebo group at 12 weeks but not at 24 weeks	–
	Kleveland et al. ^{368,369}	117 patients with NSTEMI	Single-dose tocilizumab or placebo before coronary angiography	AUC for hsCRP and hsTnT during hospitalization	6 months	↓ Median hsCRP and hsTnT AUC with tocilizumab, primarily in patients treated within <2 days of symptom onset and who underwent PCI	Secondary analysis revealed increased plasma levels of some cytokines (CXCL10, CCL4) with tocilizumab
	STAT-MI ³⁷⁰	27 patients with STEMI or NSTEMI	Tocilizumab or placebo within 24h of hospital admission	MACE after 30 days; changes in CRP and QT/QTc	30 days	No difference in MACE, CRP or QT/ QTc; potential trend for increases in tocilizumab group (low patient number)	Halted prematurely due to lack of benefit

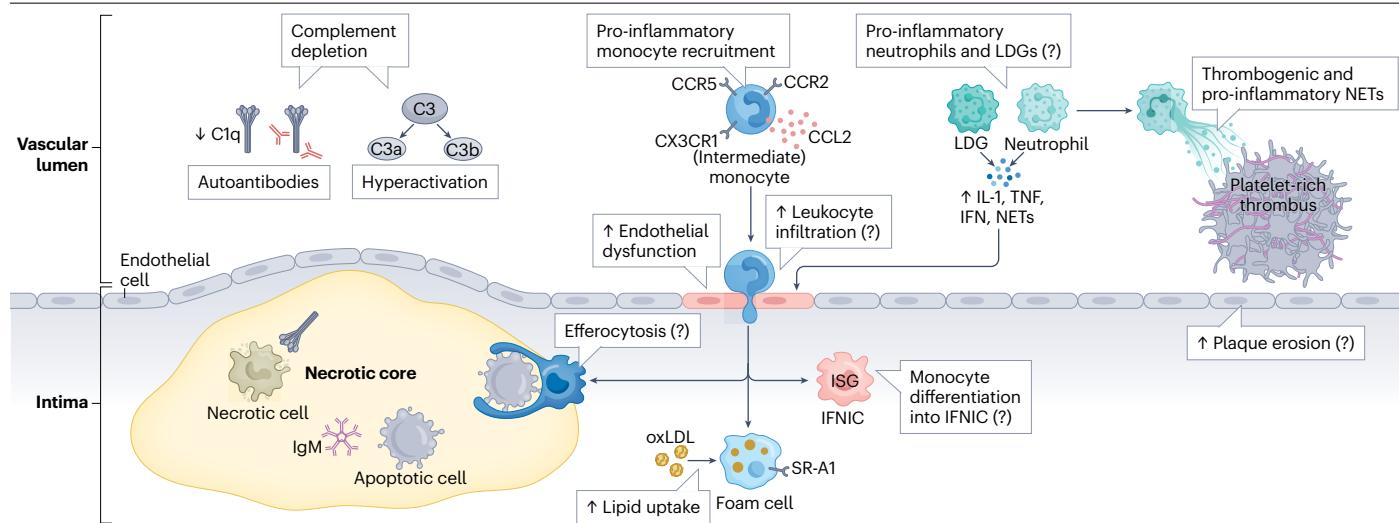
Review article

Table 2 (continued) | Randomized clinical trials of anti-inflammatory therapies in CVD

Drug (target); approved use in autoimmune diseases	Trial name	Cohort	Intervention	End points	Follow-up	Outcomes	Notes
Tocilizumab (anti-IL-6R antibody); RA (continued)	ASSAIL-MI ³⁷¹	199 patients with STEMI undergoing PCI	Single-dose tocilizumab or placebo >6h of symptom onset	Myocardial salvage index as assessed by MRI a median of 5 days after treatment; final infarct size 6 months after the intervention	Median 5 days for myocardial salvage index and 6 months for final cardiac MRI (final infarct size)	Improved myocardial salvage index (5.6%, 95% CI 0.2–11.3%; $P=0.04$), microvascular obstruction ($P=0.03$) and CRP AUC ($P<0.001$) with tocilizumab No difference in infarct size, hsTnT AUC or left ventricular volume	–
	DOBER-MANN ^{372,373}	100 patients with STEMI with high risk of cardiogenic shock undergoing PCI	Tocilizumab or dobutamine tocilizumab plus dobutamine versus placebo	NT-proBNP as a marker of cardiogenic shock and haemodynamic instability, post-MI salvaged myocardium and echocardiographic measurements of haemodynamics as secondary outcome	48h for NT-proBNP, 3 months for imaging	Expected completion 2025	–
Tocilizumab and etanercept (TNF inhibitor); RA	ENTRACTE ¹⁵¹	3,080 patients with RA with inadequate response to csDMARD, and CVD risk factors, including history of CVD event	Tocilizumab versus etanercept	Primary end point: time to occurrence of first MACE (cardiovascular death, non-fatal MI, non-fatal stroke)	Mean 3.2 years	↑ LDL-C, HDL-C and TG levels (all $P<0.001$) with tocilizumab No differences in MACE (HR 1.05, 95% CI 0.77–1.43)	↑ Risk of serious infections and gastrointestinal perforation with tocilizumab versus etanercept
Tocilizumab, adalimumab and etanercept (TNF inhibitors), and methotrexate and leflunomide (csDMARD); RA	Bacchiega et al. ¹⁴⁶	40 patients with RA and no history of ACS or uncontrolled hypertension (<3 months)	Tocilizumab versus adalimumab or etanercept, versus methotrexate or leflunomide	Endothelial function as assessed by FMV after 16 weeks	16 weeks	↑ FMV with tocilizumab ($P=0.03$), non-significant trend for ↑ FMV with TNF inhibitors ($P=0.09$) and no difference with csDMARD ↑ Total cholesterol with tocilizumab ($P=0.003$) and csDMARD ($P=0.04$), no difference with TNF inhibitors	–
Adalimumab or etanercept; RA	TARGET ¹⁶⁸	115 patients with RA	Methotrexate plus adalimumab or etanercept versus methotrexate plus hydroxychloroquine plus sulfasalazine	Arterial inflammation as assessed 18F-FDG PET-CT	24 weeks	Reduction in arterial inflammation in both treatment groups	–
Ziltivekimab (anti-IL-6 antibody); no approval so far	RESCUE ^{152,211}	264 patients with CKD and hsCRP >2mg/l	Different doses of ziltivekimab or placebo once per month for 24 weeks	Change in CRP and other CVD-associated markers	24 weeks; 12 weeks for primary end point	Dose-dependent reduction in CRP (77–92%) with ziltivekimab ↓ Fibrinogen, SAA, haptoglobin, secretory PLA2 and Lp(a) levels No effect on total cholesterol-to-HDL or apoB-to-apoA-I ratio	Secondary analysis suggests reductions in NLR (an independent predictor of CVD events) with ziltivekimab

Table 2 (continued) | Randomized clinical trials of anti-inflammatory therapies in CVD

Drug (target); approved use in autoimmune diseases	Trial name	Cohort	Intervention	End points	Follow-up	Outcomes	Notes
Ziltivekimab (anti-IL-6 antibody); no approval so far (continued)	ZEUS ^{153,374}	6,200 patients with stage 3–4 CKD, hsCRP >2 mg/l	Zilivekimab or placebo once per month for up to 4 years	MACE (cardiovascular death, non-fatal MI, non-fatal stroke); CKD parameters	48 months	Expected completion autumn 2025	–
	ARTEMIS ³⁷⁵	10,000 patients with STEMI or NSTEMI and previous CVD, CKD or diabetes	Ziltivekimab or placebo once per month for up to 2 years	MACE (cardiovascular death, non-fatal MI, non-fatal stroke)	25 months	Expected completion autumn 2026	–
Rituximab (anti-CD20 antibody); RA	RITA-MI ³⁷⁶	24 patients with STEMI	Single-dose rituximab	Safety and B cell and antibody changes in plasma	6 months	Treatment was well tolerated Efficient B cell depletion	–
	RITA-MI 2 ³¹¹	558 patients with acute anterior STEMI	Rituximab versus placebo	Cardiac remodelling as assessed by LVEF at 6 months	12 months	Expected completion 2027	–
Aldesleukin (recombinant IL-2); no approval for autoimmune disease so far	LILACS ³⁷⁷	44 patients with stable ischaemic heart disease or patients with acute NSTEMI or unstable angina	Low-dose aldesleukin once daily for 5 days	Safety and immune cell changes	7 days and 7 days+median 7 days after final treatment	Dose-dependent increase in circulating regulatory T cell numbers	–
	IVORY ^{267,378}	60 patients with ACS (unstable angina, NSTEMI or STEMI) and hsCRP >2 mg/l	Low-dose aldesleukin versus placebo, once daily for 5 days followed by once weekly for 7 weeks	Vascular inflammation as assessed by 18F-FDG PET-CT, immune cell changes	61 days	Expected completion 2024	–


ACS, acute coronary syndrome; AMI, acute myocardial infarction; AUC, area under the curve; CAD, coronary artery disease; CCL4, CC-motif chemokine 4; CHIP, clonal haematopoiesis of indeterminate potential; CKD, chronic kidney disease; CMR, cardiac MRI; CRP, C-reactive protein; csDMARD, conventional synthetic disease-modifying antirheumatic drug; CVD, cardiovascular disease; CXCL10, CXC-motif chemokine ligand 10; 18F-FDG, 18F-fluorodeoxyglucose; FMV, flow-mediated vasodilatation; HDL-C, HDL cholesterol; HF, heart failure; hsCRP, high-sensitivity C-reactive protein; hsTnT, high-sensitivity troponin T; IL-6R, IL-6 receptor; LDL-C, LDL cholesterol; Lp(a), lipoprotein(a); LVEDVi, left ventricular end-diastolic volume index; LVEF, left ventricular ejection fraction; LVESVi, left ventricular end-systolic volume index; MACE, major adverse cardiovascular event; MI, myocardial infarction; NLR, neutrophil-to-lymphocyte ratio; NSTEMI, non-ST-segment elevation myocardial infarction; NT-proBNP, amino-terminal pro-B-type natriuretic peptide; PCI, percutaneous coronary intervention; PLA2, phospholipase A2; PWV, pulse-wave velocity; RA, rheumatoid arthritis; SAA, serum amyloid A; STEMI, ST-segment elevation myocardial infarction; TIA, transient ischaemic attack; TG, triglycerides; TNF, tumour necrosis factor.

disease progression²³² and particularly synovial neutrophils show a more pro-inflammatory gene expression profile (such as increased expression of *TNF*, *IL6* and *IFNG*) than circulating neutrophils from healthy individuals²³³. In SLE, neutrophils can be activated by circulating autoantibodies and readily undergo cell death, which causes the release of NETs that can potently activate plasmacytoid dendritic cells and thereby trigger IFN α release^{103,234,235}, a process that has also been observed in experimental models of atherosclerosis²³⁶. Moreover, SLE is associated with the presence of a subset of neutrophils named low-density granulocytes (LDGs)¹⁰³. LDGs express IFN-stimulated target genes, produce high levels of cytokines (type I IFN, IFN γ and TNF), can activate T cells and have reduced phagocytic capacity and increased production of NETs^{103,237}, which are enriched in pro-inflammatory and oxidized mitochondrial DNA¹⁸². Importantly, LDGs promote endothelial cell death and impair endothelial progenitor cell differentiation in a type I IFN-dependent manner¹⁰³. LDG numbers were associated with the presence of non-calcified plaques in patients with SLE, who had increased vascular inflammation and arterial stiffness compared with healthy controls²⁵. However, the higher age and BMI of the patients with SLE might have contributed to this difference²⁵. Another study

demonstrated a positive correlation between LDG numbers and carotid IMT in patients with SLE²⁰⁸.

It will be interesting to investigate whether pro-inflammatory subtypes of neutrophils, such as LDGs, or an increased propensity to form NETs in neutrophils in patients with autoimmune diseases contribute to accelerated atherosclerosis, or whether plaques are more likely to undergo erosion in these patients.

Complement. The role of complement in atherosclerosis is multifaceted and dependent on disease stage²³⁸. The involvement of complement ranges from complement-dependent mechanisms of endothelial cell activation to the modulation of atherothrombotic events through a complex crosstalk between complement, platelets and coagulation factors²³⁹. Many complement products and their activated forms are present in atherosclerotic lesions and seem to be enriched in the intima compared with the plasma^{240,241}. All three complement pathways (classic, lectin and alternative) are active during atherogenesis, and several factors have been shown to trigger complement activation in this context, including immunoglobulins, CRP, modified lipoproteins and cholesterol crystals²³⁸. Several studies have documented

Fig. 5 | Shared innate immune pathways in autoimmunity and ASCVD and their potential effects on atherosclerosis and its complications.

Autoimmunity-associated monocytes express high levels of chemokines (such as CCL2) and chemokine receptors (such as CCR2, CCR5 and CX3CR1), which promotes their entry into the atherosclerotic plaque and the recruitment of more leukocytes. Monocytes can differentiate into macrophages with heightened lipid uptake capacity owing to the increased expression of scavenger receptor type A1 (SR-A1), or into interferon (IFN)-inducible cells (IFNIC) with a pro-inflammatory, IFN-stimulated gene (ISG) expression profile and potentially pro-atherogenic functions. Complement deficiency (owing to systemic

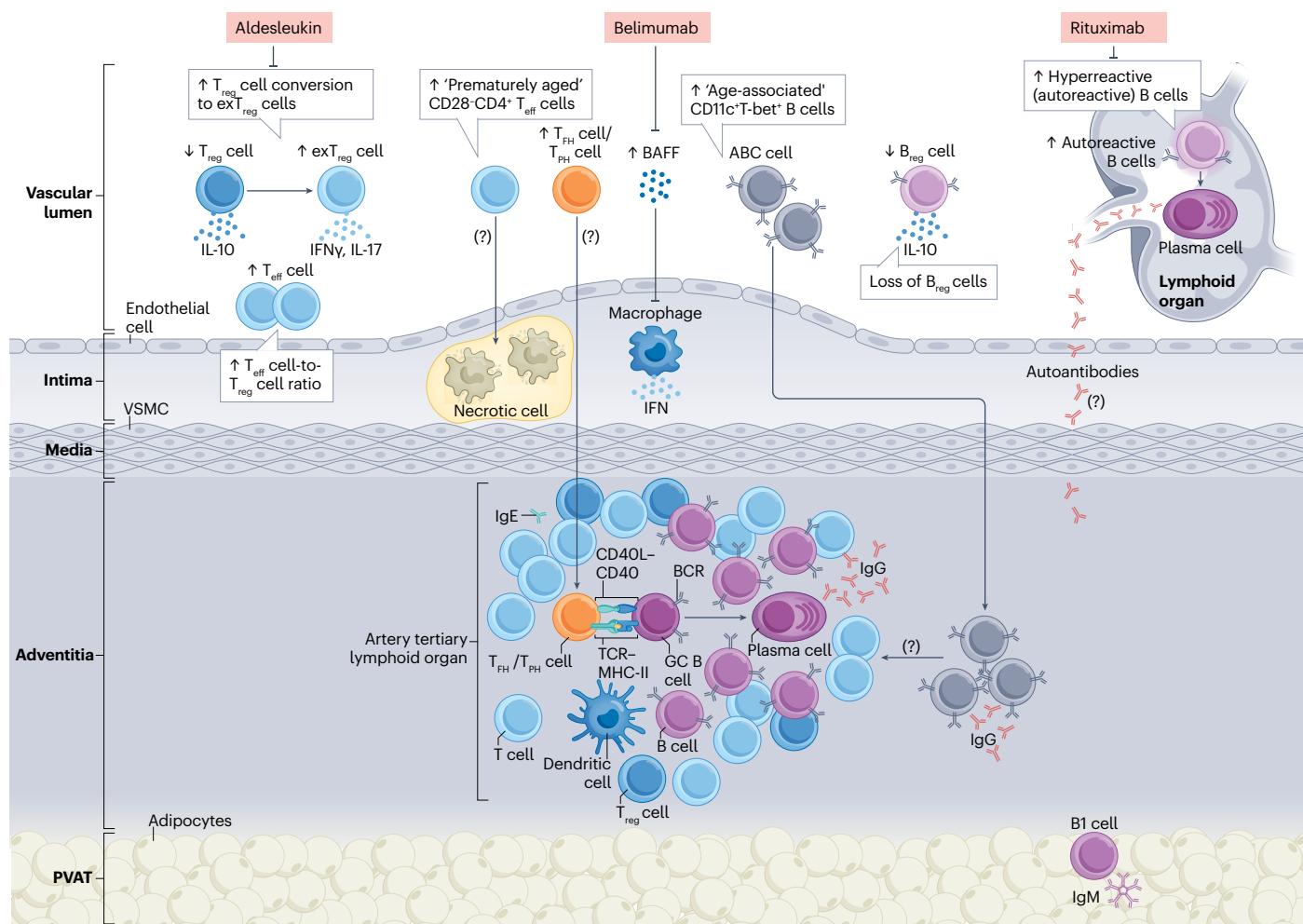
lupus erythematosus-associated gene variants, anti-C1q autoantibodies or complement factor consumption) and hyperactivation might also affect atherosclerosis by impairing efferocytosis. Neutrophils and the autoimmunity-associated low-density granulocytes (LDGs) are more pro-inflammatory than neutrophils from individuals without autoimmune disease, and readily undergo NETosis, which promotes endothelial dysfunction and possibly plaque erosion and the associated formation of platelet-rich 'white' thrombi. The question marks indicate mechanisms that so far have not been proven experimentally. ASCVD, atherosclerotic cardiovascular disease; NET, neutrophil extracellular trap; oxLDL, oxidized LDL; TNF, tumour necrosis factor.

an association between circulating levels of complement proteins and ASCVD, but the most compelling evidence for a causal role of complement in atherosclerosis comes from studies in mice. Certain factors, such as C1q and C3, have a protective role in experimental models of atherosclerosis (for example, by aiding in the clearance of apoptotic cells and cell debris²³⁸). By contrast, C5 activation and membrane attack complex formation can promote inflammation, plaque destabilization via complement-dependent cytotoxicity, and NETosis²³⁸. Moreover, emerging evidence demonstrates a role for intracellular complement factors and regulators in modulating atherosclerosis^{238,242}.

Complement is a strong driver of some autoimmune diseases, as evidenced by the observation that monogenic loss-of-function variants in *C1Q*, *C4* and *C2*, although very rare, are sufficient to cause severe SLE^{13,243}. Similarly, the presence of autoantibodies against C1q or C4 can result in SLE onset and flares^{244,245}. The profound autoimmune manifestations associated with complement deficiencies might be due to impaired clearance of cellular debris and immune complexes in the absence of functional classic complement pathway activity, which results in increased self-antigen availability, loss of tolerance and heightened inflammation, including IFN responses^{243,246,247}. Moreover, the abundance of inflammatory stimuli and autoantibody-containing immune complexes can trigger complement activation and its potential consumption and depletion in multiple autoimmune disorders, including SLE and RA, further exacerbating autoimmunity. Indeed, reduced levels of certain complement components (C3 and C4) are one of the diagnostic criteria for SLE, which can be particularly pronounced during disease flares²⁴⁸. Complement activation, particularly

the activation-associated C5 cleavage product C5a, has also been implicated in the development of ANCA-associated vasculitis²⁴⁹. Alternative pathway activation promoted by scaffolding provided by NETs has been suggested to contribute to endothelial damage in ANCA-associated vasculitis¹¹¹.

Thus, complement represents a multilayered mechanistic interface for autoimmunity-mediated ASCVD. Nevertheless, given the heightened complement activation in the pro-inflammatory milieu in autoimmune conditions, as well as the hypocomplementaemia observed with genetic deficiency of complement components, immune complex formation with anti-complement autoantibodies, or complement consumption, it is difficult to predict the exact contribution of complement to the modulation of atherosclerosis in the context of autoimmunity (Fig. 5). Similarly, whether systemic complement changes mirror local complement activity in the context of the atherosclerotic plaques is unknown. In addition, the relative contribution of systemic versus local complement activity in the context of autoimmune disease remains to be addressed.


Adaptive immunity

T cells. T cells are crucial modulators of chronic inflammatory conditions, including autoimmune diseases and atherosclerosis (Fig. 6). Single-cell RNA sequencing data indicate that T cells are among the most abundant leukocyte populations in human atherosclerotic plaques, and increased T cell numbers in the plaque are associated with symptomatic ASCVD²⁵⁰. Experimental studies support pro-atherogenic functions for different T cell subtypes, particularly T_{H1} cells, and protective functions for others, such as T_{reg} cells^{7,74,251,252}. CD8⁺ T cells can modulate

atherogenesis via cytotoxic and regulatory effects (as reviewed previously⁷). An imbalance of T cell effector and regulatory functions due to quantitative and qualitative differences in T cell subsets is found in both autoimmunity and atherosclerosis progression, during which T_{reg} cells decrease in number or function, whereas the largely pro-inflammatory T_{eff} cell functions are amplified^{7,253,254}.

Reduced numbers of, or functionally altered, T_{reg} cells are found in many patients with autoimmune diseases, including SLE, RA, Sjögren syndrome and systemic sclerosis²⁵⁵. IL-2, which is central to the survival of T_{reg} cells, is often dysfunctional in these patients²⁵⁵,

thus affecting T_{reg} cell fitness in these settings. Conversely, sustained T cell activation can promote T_{reg} cell instability via FOXP3 down-regulation²⁵⁶. Moreover, loss of T_{reg} cell function²⁵⁷ or pathogenic conversion of FOXP3⁺ T_{reg} cells into pro-inflammatory 'exT_{reg}' cells occurs during autoimmunity²⁵⁸. These exT_{reg} cells adopt a pathogenic ROR γ T_H17-like state, which is partially driven by IL-6 (ref. 258). T_{reg} cell-derived T_H17 cells are more pathogenic than bona fide T_H17 cells owing to their T_{reg}-associated self-reactive nature²⁵⁸. TNF also has a role in RA-associated T_{reg} cell dysfunction, which can be reversed by TNF inhibitor therapy²⁵⁷.

Fig. 6 | Shared adaptive immune pathways in autoimmunity and ASCVD and their potential effects on atherosclerosis and its complications. Autoimmune-associated adaptive immune features with potential effects on atherosclerotic cardiovascular disease (ASCVD) include hyperactivation of (auto)reactive B cells and autoantibodies against various known, and potentially unknown, atherosclerosis-associated antigens. Reduced numbers of immunosuppressive cell types, including IL10⁺ regulatory B (B_{reg}) cells and regulatory T (T_{reg}) cells, could lead to a reduced capacity to limit pathogenic T effector (T_{eff}) cell responses. Atheroprotective IgM-secreting B1 cells could be altered in autoimmunity (unknown). An increased T_{eff} cell to T_{reg} cell ratio, which is common in autoimmunity, could favour pro-atherogenic responses. T_{reg} cell conversion to pathogenic exT_{reg} cells that can secrete interferon- γ (IFN γ) or IL-17 could promote atherosclerosis. Increased numbers of potentially pathogenic cell populations,

such as CD11c⁺ T-bet⁺ age-associated B cells (ABC) and rheumatoid arthritis-associated and age-associated CD28⁺ CD4⁺ T cells, can accumulate in plaques. Follicular T helper (T_{FH}) cells or peripheral T_{FH} (T_{PH}) cells that are increased in autoimmunity could contribute to pathogenic B cell class switching, potentially in artery tertiary lymphoid organs. Increased levels of the cytokine B cell-activating factor (BAFF) could promote the expansion of pathogenic B cell subsets but could also repress pro-atherogenic IFN-associated macrophage responses. Therapeutic options include CD20-mediated B cell depletion (rituximab), BAFF depletion (belimumab) and promotion of T_{reg} cell subset expansion with the use of a low dose of the T cell survival factor IL-2 (aldesleukin). The question marks indicate mechanisms that so far have not been proven experimentally. BCR, B cell receptor; CD40L, CD40 ligand; GC, germinal centre; PVAT, perivascular adipose tissue; TCR, T cell receptor; VSMC, vascular smooth muscle cell.

During atherogenesis, circulating and lesional T_{reg} cell numbers initially increase, but eventually decline, which is likely to be a key step in atherosclerosis progression⁷². As the disease progresses, T_{reg} cells can acquire T-bet expression and adopt a pro-atherogenic T_{H1} -type phenotype^{72,73,259,260}. Such T_{reg} cell conversion has been described for apoB-reactive T_{reg} cells, raising the possibility that these ex T_{reg} cells could be particularly pro-atherogenic given their reactivity with atherosclerosis-associated antigens, analogous to ex T_{reg} cells in experimentally induced arthritis²⁵⁸. Patients with subclinical atherosclerosis have decreased numbers of circulating FOXP3 $^+$ T_{reg} cells and increased numbers of ROR γ T $^+$ or T-bet $^+$ FOXP3 $^+$ T cells²⁶¹, which is consistent with the pro-atherogenic role of T_{reg} cell conversion.

T_{reg} cell impairment has been described in both autoimmunity and ASCVD and thus might be a key shared pathogenic mechanism. Therefore, it is not surprising that therapeutic approaches aimed at restoring the homeostatic balance between T_{reg} cells and T_{eff} cells are attractive strategies in both settings. Indeed, low-dose IL-2 treatment can correct T_{reg} cell defects in patients with SLE²⁶² and increase T_{reg} cell numbers in multiple autoimmune diseases^{263–266}. Low-dose IL-2 is currently being evaluated in patients with acute coronary syndrome in the IVORY trial²⁶⁷ (Table 2).

Autoimmunity is also associated with the presence of qualitatively altered T_{eff} cells. In SLE, T_{eff} cells can have a hyperactive phenotype^{268–270}, which can drive autoantibody production. Similarly, a central feature of progressive RA is an abnormal, RA-associated CD4 $^+$ T cell repertoire that is considered to be ‘prematurely aged’, with a reduced naive T cell repertoire and selectively expanded, probably autoreactive T cell clones^{271,272}. These RA-associated T cells are highly proliferative and pro-inflammatory, and readily undergo cell death and senescence^{253,272}. Moreover, these cells readily develop into pro-inflammatory, short-lived T_{eff} cells that enter tissues such as the synovium²⁷² and thus possibly also atherosclerotic plaques. The RA-associated T cells are largely similar to the CD28 $^-$ CD4 $^+$ T cells that are found in the context of ageing and declining immune function, as well as in CVD²⁷³, where the number of these cells is generally increased^{274–277}. A small study demonstrated that compared with age-matched individuals with osteoarthritis or fibromyalgia, patients with RA and elevated circulating levels of CD28 $^-$ CD4 $^+$ T cells had even more increased carotid IMT and reduced brachial FMV than patients with RA without CD28 $^-$ CD4 $^+$ T cell elevations²⁷⁸. Interestingly, human atherosclerotic plaques contain clonally expanded CD28 $^-$ T cells^{7,275}, which indicates a potential response to atherosclerosis-associated antigens. These data suggest pro-atherogenic functions for CD28 $^-$ T cells, but studying their functional role *in vivo* is challenging because these cells generally do not occur in mice²⁷³.

Other T_{eff} cells, such as ROR γ T $^+$ T_{H17} cells or IL-22-producing T_{H22} cells, have also been implicated in autoimmune disease and ASCVD^{7,279,280}. However, experimental data on the functions of these cells and the cytokines that they produce in atherosclerosis are conflicting⁷. The numbers of T follicular helper (T_{FH}) cells, which promote the differentiation of B cells to class-switched plasma cells, are expanded in patients with SLE or RA compared with the numbers in healthy individuals^{281,282}. In experimental models of atherosclerosis, T_{FH} cells have detrimental functions, probably by promoting B cell class switching and the production of pathogenic antibodies by plasma cells^{73,283,284}. Interestingly, increased levels of a subset of circulating follicular T peripheral helper-like (T_{PH}) cells that readily infiltrate tissues are found in patients with autoimmune diseases^{272,282,285}. T_{PH} cells could have a role in extrafollicular responses and in peripheral tissues,

including artery tertiary lymphoid organs that develop in the vicinity of advanced atherosclerotic plaques^{286,287}. However, whether quantitative and qualitative differences in T_{FH} cells are also a mechanism for autoimmunity-associated atherosclerosis is unknown.

Although clonal expansion of T cells has been described in both autoimmune diseases and atherosclerosis^{75,288,289}, the specific antigens that are recognized by the T cells are largely unknown. This knowledge gap is due to the technical difficulty of screening for antigens, which requires MHC tetramers customized to the individual and the use of antigenic peptides mixed with autologous antigen-presenting cells for restimulation assays. Novel high-throughput methods, such as single-cell T cell receptor sequencing, might help to establish whether similar T cell clones are expanded in both autoimmune diseases and ASCVD. This information would provide clues as to whether distinct antigen-specific T cell-mediated effects contribute to accelerated atherosclerosis in patients with autoimmune diseases.

B cells. Epidemiological and experimental data support key functions for B cells as modulators of ASCVD, as reviewed previously^{8,290}. Various effects of B cells and antibodies have been described, with largely atheroprotective functions ascribed to B1 cells and marginal zone B cells, whereas follicular B cells are generally considered to be pro-atherogenic. Therefore, aberrant B cell responses in autoimmunity might contribute to the increased risk of atherosclerosis in patients with ASCVD.

Autoreactive B cells and abnormal B cell responses are a hallmark of several autoimmune diseases. B cells in SLE are typically hyper-responsive to antigenic stimulation due to factors that modulate B cell receptor signalling and activity^{291,292} (such as TLR7 and TLR9 signalling^{293–296}). Immature early B cells are particularly prone to displaying self-reactivity²⁹⁷. Moreover, SLE is associated with an expansion in the number of memory B cells and plasma cells, with a concomitant reduction in the number of naive B cells in peripheral blood²⁹⁸. Surprisingly, the expansion of unswitched memory B cell subsets has been linked to reduced cardiovascular risk in patients with advanced atherosclerosis²⁹⁹. However, this effect might be driven by B cells of the B1 subset, which have been proposed to resemble memory B cells, although the nature of human B1 cells remains controversial. Indeed, substantial data in mice show a protective role for B1 cells in atherosclerosis²⁹⁰, but their role in SLE is less well established³⁰⁰. In RA, rheumatoid factor is thought to be derived from CD5 $^+$ B1 cells³⁰¹, but whether these are the same cells that are responsible for the production of atheroprotective IgM is unclear.

Autoreactive CD11c $^+$ T-bet $^+$ B cells are a hallmark of clinically manifest SLE, and the importance of T-bet in B cell-driven autoimmune pathologies has been established in several studies in mice^{302,303}. T-bet deficiency protects mice from atherosclerosis³⁰⁴, and although T-bet deficiency has been linked to reduced T_{H1} immunity, a role for T-bet-expressing B cells cannot be excluded. Interestingly, CD11c $^+$ T-bet $^+$ B cells have also been described as age-associated B cells (ABCs). Increased ABC numbers are linked to RA disease activity³⁰⁵, and ABCs can activate synoviocytes^{306,307}. ABCs have been found in the circulation and in carotid plaques from patients with ASCVD, where they contribute to 83% of B cells compared with 28% in the circulation³⁰⁸. This CD11b $^+$ CD11c $^+$ T-bet $^+$ ABC subset is expanded in the aorta of aged $Ldlr^{-/-}$ mice and is enriched in genes involved in plasma cell differentiation, co-stimulation, antigen presentation and inflammation, including those encoding TNF and IL-1 β ³⁰⁸. Although the functional role of ABCs in atherosclerosis is unknown,

these data suggest that with age, adaptive immune responses in ASCVD share features with autoimmunity.

B cells are important therapeutic targets in autoimmunity. For example, anti-CD20-mediated B cell depletion is effective for the treatment of patients with RA. Given that anti-CD20 antibodies have been shown to reduce lesion formation in atherosclerosis-prone mice^{309,310}, patients who receive the anti-CD20 antibody rituximab might also derive benefit from the reduction in cardiovascular risk. Indeed, rituximab is being investigated in an ongoing clinical trial examining myocardial remodelling after MI³¹¹ (Table 2). Whether patients with autoimmune diseases receiving B cell-targeted therapies derive an additional cardiovascular benefit remains to be shown, given that CD20-targeted therapies might also deplete atheroprotective B cell subsets³¹². Notably, CD20-targeted therapy is effective in both seropositive and some seronegative patients with RA, which could be explained by indirect effects of B cell depletion.

Several cytokines contribute to autoreactive B cell expansion and autoantibody production, including B cell-activating factor (BAFF) (formerly known as BLYS, which promotes B cell survival and class switching), IL-21 (which induces plasma cell differentiation) and IFNs (which favour extrafollicular responses)^{313,314}. The plasma levels of BAFF are increased in patients with SLE compared with the levels in healthy individuals^{315–318}. These high levels of BAFF promote the maturation of transitional B cells and allow autoreactive B cells to mature to immunocompetence and thus correlate with increased plasma cell numbers and autoantibody levels. BAFF inhibition is the only approved B cell-targeting therapy for SLE. However, targeting BAFF–BAFF receptor (BAFFR) signalling in atherosclerosis is more complex. BAFFR targeting depletes B2 cells and limits atherogenesis in mice^{319,320}. However, BAFF transgenic mice, which develop autoimmunity, have reduced atherosclerosis when crossed onto an *Apoe*^{−/−} background, although this effect is likely to be due to reductions in serum cholesterol levels³²¹. Notably, antibody-mediated depletion of BAFF aggravates atherosclerosis in mice, mediated by a BAFF-dependent reduction in TLR9–IFN regulatory factor 7 pro-inflammatory signalling in macrophages³²². Whether this mechanism is operative in SLE is unknown, but blocking BAFF might unintentionally promote type I IFN production and ASCVD. Of note, in the presence of hypercholesterolaemia, anti-BAFF treatment promoted lesion formation in lupus-prone *Apoe*^{−/−} D227K mice³²³.

Protective B cell responses can also be altered in the context of autoimmunity. For example, CD1d^{high}CD5⁺ regulatory B (B_{reg}) cells are implicated in autoimmunity³²⁴, and their frequencies are decreased in several rheumatoid diseases³²⁵. During hypoxia, IL-10-secreting B_{reg} cells exert important anti-inflammatory roles in RA lesions³²⁶. B_{reg} cell induction and the suppressive functions of B_{reg} cells are also altered in SLE³²⁷. Although the role of IL-10-secreting B_{reg} cells is less clear in atherosclerosis^{8,290}, impaired B_{reg} cell functions in autoimmune disease might be relevant for autoimmunity-induced atherosclerosis. A dysfunction of the anti-inflammatory Fcγ receptor IIb (FcγRIIB) on B cells can promote autoimmunity by controlling affinity maturation, memory B cell and plasma cell responses, and autoantibody production³²⁸. In experimental atherosclerosis, B cell-specific expression of FcγRIIB shows a robust sexual dimorphism, with protective effects in male but not female mice³²⁹. Given the strong sex-related bias of autoimmune conditions, which have a higher prevalence in female individuals³³⁰, it will be interesting to understand the contribution of B cell-specific FcγRIIB signalling in autoimmunity-associated ASCVD.

Glossary

Clonal haematopoiesis of indeterminate potential (CHIP). A common, age-related condition in which somatic mutations in some genes in haematopoietic progenitor cells result in the clonal expansion of leukocytes. The presence of CHIP is associated with a significantly increased risk of cardiovascular disease.

Endothelial-to-mesenchymal transition

A process in which endothelial cells change their molecular and cellular

phenotype to that of mesenchymal cells (such as myofibroblasts and smooth muscle cells). Endothelial-to-mesenchymal transition has been implicated in the development of atherosclerosis.

Lipoprotein(a)

An LDL particle that contains apolipoprotein(a). Lipoprotein(a) is one of the strongest genetically determined risk factors for atherosclerotic cardiovascular disease.

Antibodies. Humoral immunity has been implicated in ASCVD for a long time, because immunoglobulins are deposited in atherosclerotic plaques and some of them form immune complexes with oxidized LDL⁸. In particular, data from atherosclerosis-prone mice indicate a protective role for IgM^{331–333} and a pro-atherogenic role for germinal centre-derived IgG^{334,335}. The exact function of IgG subtypes in atherosclerosis remains to be examined. Transfer of purified IgG from atherosclerotic *Apoe*^{−/−} mice, but not from non-atherosclerotic wild-type mice, into *Ldlr*^{−/−} mice led to vascular IgG accumulation and increased atherosclerosis³³⁵. Although these studies did not define the antigen specificities of the transferred IgG, they indicate the emergence of pathogenic IgG during atherogenesis. Whether these IgG include similar specificities as those in autoimmune diseases (Box 2) and whether classic autoimmune disease-associated autoantibodies affect atherogenesis is unknown. Experimental studies using antibodies of defined reactivities and subclasses will help to address these knowledge gaps. Similarly, more detailed studies on the association between autoantibodies and antibody-independent features of autoimmunity with ASCVD are needed.

Several studies in mice indicate potential pro-atherogenic functions for arthritis-promoting anti-glucose-6-phosphoisomerase (anti-GPI) IgG antibodies^{40,48–50} (Table 1). RA-associated autoantibodies against post-translational modifications might also be important, given that structural components of the vasculature (such as proteoglycans and collagens) can become modified in atherosclerosis. However, in a large study, the increased cardiovascular risk in patients with RA was found not to be associated with levels of anti-citrullinated protein autoantibodies³³⁶.

The role of anti-phospholipid antibodies in atherogenesis seems to be complex, given that studies in mice have conflicting findings (Table 1). The phospholipid cardiolipin is present in cell membranes and lipoproteins; therefore, anti-phospholipid antibodies could have a role in ASCVD by binding to these structures in atherosclerotic plaques. Notably, many anti-phospholipid antibodies bind to oxidized rather than native cardiolipin³³⁷, in analogy to the antibodies against oxidation-specific epitopes (OSEs) that have been implicated in atherosclerosis⁸ (Box 1). Although many studies have demonstrated an inverse association between plasma levels of OSE-specific IgM and ASCVD risk, the association with OSE-specific IgG is less clear⁸. Protective mechanisms of OSE-specific IgM include blocking foam cell formation, neutralizing

pro-inflammatory oxidized phospholipids and OSE-carrying extracellular vesicles, and promoting apoptotic cell clearance³³⁸. Therefore, OSE-specific IgM could also have beneficial effects in preventing autoimmune manifestations and reducing the cardiovascular risk associated with autoimmunity. Notably, high titres of phosphocholine-specific IgM are associated with reduced ASCVD in patients with SLE^{339–341}. Low concentrations of OSE-specific IgM, such as anti-phosphocholine IgM, are also found in other autoimmune diseases and correlate with the potential to generate T_{reg} cells *ex vivo*³⁴⁰. Thus, anti-phosphocholine IgM might have additional immunoregulatory functions. Indeed, the prototypic atheroprotective IgM T15/E06, which binds to the phosphocholine of oxidized phospholipids^{342,343}, can suppress the activation of various TLRs in dendritic cells, thereby limiting the expression of pro-inflammatory cytokines³⁴⁴. Interestingly, T15/E06 infusion in mice has been shown to reduce vein graft atherosclerosis³⁴⁵ and joint inflammation in collagen-induced and anti-collagen II antibody-mediated arthritis³⁴⁴. Therefore, anti-OSE IgMs have the potential capacity to limit autoimmunity as well as atherosclerosis.

Conclusions

Patients with autoimmune diseases, including SLE and RA, present with an increased and premature risk of ASCVD and cardiovascular death¹¹. Immune mechanisms are responsible for a large part of this risk, and traditional risk factors are not sufficient for risk classification. Modified risk scores that include autoimmune-associated parameters such as autoimmune disease activity scores, or circulating inflammatory cytokines or autoantibodies, have been proposed, but are not widely adopted, and their effect on cardiovascular outcomes remains to be further investigated^{346–351}. Thus, the presence of ASCVD in these patients needs to be assessed early on and monitored rigorously using suitable biomarkers, including imaging and laboratory parameters. Conventional biomarkers such as CRP and IL-6 might not be sufficient for this task, highlighting the need to identify novel, more specific markers. Patients with autoimmunity require earlier intervention and efficient control of traditional risk factors, including dyslipidaemia and hypertension, and need to pay particular attention to lifestyle-associated risk, which is recommended in current EULAR guidelines^{352,353}. Considering the abundant evidence showing that inflammation and immune-mediated pathways contribute to an increased risk of ASCVD, patients with autoimmune diseases might benefit the most from our growing toolbox of anti-inflammatory therapies. Notably, the potential limitations of some drugs such as colchicine in patients with impaired kidney function, including lupus nephritis, need to be taken into consideration³⁵⁴. Overall, we still need to deepen our understanding of the precise pathophysiological mechanisms responsible for autoimmunity-mediated accelerated atherosclerosis and its clinical manifestations to enable a more personalized approach to treatment.

Published online: 27 June 2024

References

1. Ridker, P. M. et al. Inflammation and cholesterol as predictors of cardiovascular events among patients receiving statin therapy: a collaborative analysis of three randomised trials. *Lancet* **401**, 1293–1301 (2023).
2. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. *N. Engl. J. Med.* **377**, 1119–1131 (2017).
3. Fiolet, A. T. L. et al. Efficacy and safety of low-dose colchicine in patients with coronary disease: a systematic review and meta-analysis of randomized trials. *Eur. Heart J.* **42**, 2765–2775 (2021).
4. Libby, P. The changing landscape of atherosclerosis. *Nature* **592**, 524–533 (2021).
5. Byrne, R. A. et al. 2023 ESC guidelines for the management of acute coronary syndromes. *Eur. Heart J. Acute Cardiovasc* **44**, 3720–3826 (2023).
6. Ridker, P. M. From C-reactive protein to interleukin-6 to interleukin-1: moving upstream to identify novel targets for atheroprotection. *Circ. Res.* **118**, 145–156 (2016).
7. Saigusa, R., Winkels, H. & Ley, K. T cell subsets and functions in atherosclerosis. *Nat. Rev. Cardiol.* **17**, 387–401 (2020).
8. Porsch, F., Mallat, Z. & Binder, C. J. Humoral immunity in atherosclerosis and myocardial infarction: from B cells to antibodies. *Cardiovasc. Res.* **117**, 2544–2562 (2021).
9. Roy, P., Orecchioni, M. & Ley, K. How the immune system shapes atherosclerosis: roles of innate and adaptive immunity. *Nat. Rev. Immunol.* **22**, 251–265 (2022).
10. Mallat, Z. & Binder, C. J. The why and how of adaptive immune responses in ischemic cardiovascular disease. *Nat. Cardiovasc. Res.* **1**, 431–444 (2022).
11. Conrad, N. et al. Autoimmune diseases and cardiovascular risk: a population-based study on 19 autoimmune diseases and 12 cardiovascular diseases in 22 million individuals in the UK. *Lancet* **400**, 733–743 (2022).
12. Smolen, J. S. et al. Rheumatoid arthritis. *Nat. Rev. Dis. Prim.* **4**, 18001 (2018).
13. Kaul, A. et al. Systemic lupus erythematosus. *Nat. Rev. Dis. Prim.* **2**, 16039 (2016).
14. Skaggs, B. J., Hahn, B. H. & McMahon, M. Accelerated atherosclerosis in patients with SLE – mechanisms and management. *Nat. Rev. Rheumatol.* **8**, 214–223 (2012).
15. Ambler, W. G. & Kaplan, M. J. Vascular damage in systemic lupus erythematosus. *Nat. Rev. Nephrol.* **20**, 251–265 (2024).
16. Weber, B. N., Giles, J. T. & Liao, K. P. Shared inflammatory pathways of rheumatoid arthritis and atherosclerotic cardiovascular disease. *Nat. Rev. Rheumatol.* **19**, 417–428 (2023).
17. Forte, F. et al. Association of systemic lupus erythematosus with peripheral arterial disease: a meta-analysis of literature studies. *Rheumatology* **59**, 3181–3192 (2020).
18. Restivo, V. et al. Systematic review and meta-analysis of cardiovascular risk in rheumatological disease: symptomatic and non-symptomatic events in rheumatoid arthritis and systemic lupus erythematosus. *Autoimmun. Rev.* **21**, 102925 (2022).
19. Yafasova, A. et al. Long-term cardiovascular outcomes in systemic lupus erythematosus. *J. Am. Coll. Cardiol.* **77**, 1717–1727 (2021).
20. Manzi, S. et al. Age-specific incidence rates of myocardial infarction and angina in women with systemic lupus erythematosus: comparison with the Framingham Study. *Am. J. Epidemiol.* **145**, 408–415 (1997).
21. Sparks, J. A. et al. Rheumatoid arthritis and mortality among women during 36 years of prospective follow-up: results from the Nurses' Health Study. *Arthritis Care Res.* **68**, 753–762 (2016).
22. Bartoloni, E. et al. Cardiovascular disease risk burden in primary Sjögren's syndrome: results of a population-based multicentre cohort study. *J. Intern. Med.* **278**, 185–192 (2015).
23. Butt, S. A. et al. Cardiovascular manifestations of systemic sclerosis: a Danish nationwide cohort study. *J. Am. Heart Assoc.* **8**, e013405 (2019).
24. Kiani, A. N. Coronary calcification in SLE: comparison with the Multi-Ethnic Study of Atherosclerosis. *Rheumatology* **54**, 1976–1981 (2015).
25. Carlucci, P. M. et al. Neutrophil subsets and their gene signature associate with vascular inflammation and coronary atherosclerosis in lupus. *JCI Insight* **3**, e99276 (2018).
26. Agca, R. et al. Arterial wall inflammation is increased in rheumatoid arthritis compared with osteoarthritis, as a marker of early atherosclerosis. *Rheumatology* **60**, 3360–3368 (2021).
27. Geraldino-Pardilla, L. et al. Arterial inflammation detected with ¹⁸F-fluorodeoxyglucose positron emission tomography in rheumatoid arthritis. *Arthritis Rheumatol.* **70**, 30–39 (2018).
28. Hansen, P. R., Feineis, M. & Abdulla, J. Rheumatoid arthritis patients have higher prevalence and burden of asymptomatic coronary artery disease assessed by coronary computed tomography: a systematic literature review and meta-analysis. *Eur. J. Intern. Med.* **62**, 72–79 (2019).
29. Tyrrell, P. N. et al. Rheumatic disease and carotid intima-media thickness: a systematic review and meta-analysis. *Arterioscler. Thromb. Vasc. Biol.* **30**, 1014–1026 (2010).
30. Willeit, P. et al. Carotid intima-media thickness progression as surrogate marker for cardiovascular risk: meta-analysis of 119 clinical trials involving 100 667 patients. *Circulation* **142**, 621–642 (2020).
31. Gautier, E. L. et al. Enhanced immune system activation and arterial inflammation accelerates atherosclerosis in lupus-prone mice. *Arterioscler. Thromb. Vasc. Biol.* **27**, 1625–1631 (2007).
32. Aprahamian, T. et al. Impaired clearance of apoptotic cells promotes synergy between atherogenesis and autoimmune disease. *J. Exp. Med.* **199**, 1121–1131 (2004).
33. Ma, Z. et al. Accelerated atherosclerosis in ApoE deficient lupus mouse models. *Clin. Immunol.* **127**, 168–175 (2008).
34. Feng, X. et al. ApoE^{−/−}Fas^{−/−} C57BL/6 mice: a novel murine model simultaneously exhibits lupus nephritis, atherosclerosis, and osteopenia. *J. Lipid Res.* **48**, 794–805 (2007).
35. Lewis, M. J. et al. Distinct roles for complement in glomerulonephritis and atherosclerosis revealed in mice with a combination of lupus and hyperlipidemia. *Arthritis Rheum.* **64**, 2707–2718 (2012).
36. Stanic, A. K. et al. Immune dysregulation accelerates atherosclerosis and modulates plaque composition in systemic lupus erythematosus. *Proc. Natl. Acad. Sci. USA* **103**, 7018–7023 (2006).
37. Braun, N. A., Wade, N. S., Wakeland, E. K. & Major, A. S. Accelerated atherosclerosis is independent of feeding a high fat diet in systemic lupus erythematosus-susceptible LDLR^{−/−} mice. *Lupus* **17**, 1070–1078 (2008).
38. Wilhelm, A. J., Rhoads, J. P., Wade, N. S. & Major, A. S. Dysregulated CD4⁺T cells from SLE-susceptible mice are sufficient to accelerate atherosclerosis in LDLR^{−/−} mice. *Ann. Rheum. Dis.* **74**, 778–785 (2015).

39. Postigo, J. et al. Exacerbation of type II collagen-induced arthritis in apolipoprotein E-deficient mice in association with the expansion of Th1 and Th17 cells. *Arthritis Rheum.* **63**, 971–980 (2011).

40. Shi, N. et al. Protective effect of hydroxychloroquine on rheumatoid arthritis-associated atherosclerosis. *Anim. Models Exp. Med.* **2**, 98–106 (2019).

41. Santiago-Raber, M.-L. et al. Atherosclerotic plaque vulnerability is increased in mouse model of lupus. *Sci. Rep.* **10**, 18324 (2020).

42. Centa, M. et al. Acute loss of apolipoprotein E triggers an autoimmune response that accelerates atherosclerosis. *Arterioscler. Thromb. Vasc. Biol.* **38**, e145–e158 (2018).

43. Hutchinson, M. A. et al. Auto-antibody production during experimental atherosclerosis in *ApoE*^{-/-} mice. *Front. Immunol.* **12**, 695220 (2021).

44. Ryu, H. et al. Atherogenic dyslipidemia promotes autoimmune follicular helper T cell responses via IL-27. *Nat. Immunol.* **19**, 583–593 (2018).

45. Afek, A. et al. Enhancement of atherosclerosis in beta-2-glycoprotein I-immunized apolipoprotein E-deficient mice. *Pathobiology* **67**, 19–25 (1999).

46. Wang, X. et al. Anti-β₂GPI antibodies enhance atherosclerosis in *ApoE*-deficient mice. *Biochem. Biophys. Res. Commun.* **512**, 72–78 (2019).

47. Nicolo, D., Goldman, B. I. & Monestier, M. Reduction of atherosclerosis in low-density lipoprotein receptor-deficient mice by passive administration of antiphospholipid antibody. *Arthritis Rheum.* **48**, 2974–2978 (2003).

48. Rose, S. et al. A novel mouse model that develops spontaneous arthritis and is predisposed towards atherosclerosis. *Ann. Rheum. Dis.* **72**, 89–95 (2013).

49. Archer, A. M. et al. *ApoE* deficiency exacerbates the development and sustainment of a semi-chronic K/BxN serum transfer-induced arthritis model. *J. Transl. Med.* **14**, 170 (2016).

50. Dragoljevic, D. et al. Defective cholesterol metabolism in haematopoietic stem cells promotes monocyte-driven atherosclerosis in rheumatoid arthritis. *Eur. Heart J.* **39**, 2158–2167 (2018).

51. Timmis, A. et al. European Society of Cardiology: cardiovascular disease statistics 2021. *Eur. Heart J.* **43**, 716–799 (2022).

52. Hermansen, M.-L. et al. Atherosclerosis and renal disease involvement in patients with systemic lupus erythematosus: a cross-sectional cohort study. *Rheumatology* **57**, 1964–1971 (2018).

53. Robinson, G., Pineda-Torra, I., Ciurton, C. & Jury, E. C. Lipid metabolism in autoimmune rheumatic disease: implications for modern and conventional therapies. *J. Clin. Invest.* **132**, e148552 (2022).

54. Takvorian, S. U., Merola, J. F. & Costenbader, K. H. Cigarette smoking, alcohol consumption and risk of systemic lupus erythematosus. *Lupus* **23**, 537–544 (2014).

55. Maisha, J. A., El-Gabalawy, H. S. & O’Neil, L. J. Modifiable risk factors linked to the development of rheumatoid arthritis: evidence, immunological mechanisms and prevention. *Front. Immunol.* **14**, 1221125 (2023).

56. Szabó, M. Z., Szodoray, P. & Kiss, E. Dyslipidemia in systemic lupus erythematosus. *Immunol. Res.* **65**, 543–550 (2017).

57. Purmalek, M. M. et al. Association of lipoprotein subfractions and glycoprotein acetylation with coronary plaque burden in SLE. *Lupus Sci. Med.* **6**, e000332 (2019).

58. Ramos-Casals, M. et al. High prevalence of serum metabolic alterations in primary Sjögren’s syndrome: influence on clinical and immunological expression. *J. Rheumatol.* **34**, 754–761 (2007).

59. Kronbichler, A., Leierer, J., Gauckler, P. & Shin, J. I. Comorbidities in ANCA-associated vasculitis. *Rheumatology* **59**, iii79–iii83 (2020).

60. McMahon, M. et al. Proinflammatory high-density lipoprotein as a biomarker for atherosclerosis in patients with systemic lupus erythematosus and rheumatoid arthritis. *Arthritis Rheum.* **54**, 2541–2549 (2006).

61. Charles-Schoeman, C. et al. Abnormal function of high-density lipoprotein is associated with poor disease control and an altered protein cargo in rheumatoid arthritis. *Arthritis Rheum.* **60**, 2870–2879 (2009).

62. Smith, C. K. et al. Neutrophil extracellular trap-derived enzymes oxidize high-density lipoprotein: an additional proatherogenic mechanism in systemic lupus erythematosus. *Arthritis Rheumatol.* **66**, 2532–2544 (2014).

63. Charles-Schoeman, C. et al. Effects of tofacitinib and other DMARDs on lipid profiles in rheumatoid arthritis: implications for the rheumatologist. *Semin. Arthritis Rheum.* **46**, 71–80 (2016).

64. Yan, J. et al. Dyslipidemia in rheumatoid arthritis: the possible mechanisms. *Front. Immunol.* **14**, 1254753 (2023).

65. Turesson, C., Bergström, U., Pikwer, M., Nilsson, J.-Å. & Jacobsson, L. T. High serum cholesterol predicts rheumatoid arthritis in women, but not in men: a prospective study. *Arthritis Res. Ther.* **17**, 284 (2015).

66. Wang, M. et al. The causal relationship between blood lipids and systemic lupus erythematosus risk: a bidirectional two-sample Mendelian randomization study. *Front. Genet.* **13**, 858653 (2022).

67. Kawai, V. K. et al. Pleiotropy of systemic lupus erythematosus risk alleles and cardiometabolic disorders: a genome-wide association study and inverse-variance weighted meta-analysis. *Lupus* **30**, 1264–1272 (2021).

68. Schloss, M. J., Swirski, F. K. & Nahrendorf, M. Modifiable cardiovascular risk, hematopoiesis and innate immunity. *Circ. Res.* **126**, 1242–1259 (2020).

69. Jury, E. C., Isenberg, D. A., Mauri, C. & Ehrenstein, M. R. Atorvastatin restores Lck expression and lipid raft-associated signaling in T cells from patients with systemic lupus erythematosus. *J. Immunol.* **177**, 7416–7422 (2006).

70. Krishnan, S. et al. Alterations in lipid raft composition and dynamics contribute to abnormal T cell responses in systemic lupus erythematosus. *J. Immunol.* **172**, 7821–7831 (2004).

71. Baardman, J. & Lutgens, E. Regulatory T cell metabolism in atherosclerosis. *Metabolites* **10**, 279 (2020).

72. Maganto-García, E., Tarrio, M. L., Grabie, N., Bu, D. & Lichtman, A. H. Dynamic changes in regulatory T cells are linked to levels of diet-induced hypercholesterolemia. *Circulation* **124**, 185–195 (2011).

73. Gaddis, D. E. et al. Apolipoprotein AI prevents regulatory to follicular helper T cell switching during atherosclerosis. *Nat. Commun.* **9**, 1095 (2018).

74. Klingenberg, R. et al. Depletion of FOXP3⁺ regulatory T cells promotes hypercholesterolemia and atherosclerosis. *J. Clin. Invest.* **123**, 1323–1334 (2013).

75. Wang, Z. et al. Pairing of single-cell RNA analysis and T cell antigen receptor profiling indicates breakdown of T cell tolerance checkpoints in atherosclerosis. *Nat. Cardiovasc. Res.* **2**, 290–306 (2023).

76. Khan, A., Roy, P. & Ley, K. Breaking tolerance: the autoimmune aspect of atherosclerosis. *Nat. Rev. Immunol.* <https://doi.org/10.1038/s41577-024-01010-y> (2024).

77. Ito, A. et al. Cholesterol accumulation in CD11c⁺ immune cells is a causal and targetable factor in autoimmune disease. *Immunity* **45**, 1311–1326 (2016).

78. Westerterp, M. et al. Cholesterol accumulation in dendritic cells links the inflammasome to acquired immunity. *Cell Metab.* **25**, 1294–1304.e6 (2017).

79. Rahman, P., Aguero, S., Gladman, D. D., Hallett, D. & Urowitz, M. B. Vascular events in hypertensive patients with systemic lupus erythematosus. *Lupus* **9**, 672–675 (2000).

80. Bartoloni, E., Alunno, A. & Gerli, R. Hypertension as a cardiovascular risk factor in autoimmune rheumatic diseases. *Nat. Rev. Cardiol.* **15**, 33–44 (2018).

81. Costello, R. E., Yimer, B. B., Roads, P., Jani, M. & Dixon, W. G. Glucocorticoid use is associated with an increased risk of hypertension. *Rheumatology* **60**, 132–139 (2021).

82. Mathis, K. W. et al. Preventing autoimmunity protects against the development of hypertension and renal injury. *Hypertension* **64**, 792–800 (2014).

83. McClung, D. M., Kalusche, W. J., Jones, K. E., Ryan, M. J. & Taylor, E. B. Hypertension and endothelial dysfunction in the pristane model of systemic lupus erythematosus. *Physiol. Rep.* **9**, e14734 (2021).

84. Zhang, K. et al. Rheumatoid arthritis and the risk of major cardiometabolic diseases: a Mendelian randomization study. *Scand. J. Rheumatol.* **52**, 335–341 (2023).

85. Rohm, T. V., Meier, D. T., Olefsky, J. M. & Donath, M. Y. Inflammation in obesity, diabetes, and related disorders. *Immunity* **55**, 31–55 (2022).

86. Haase, C. L., Tybjærg-Hansen, A., Nordenstgaard, B. G. & Frikke-Schmidt, R. HDL cholesterol and risk of type 2 diabetes: a Mendelian randomization study. *Diabetes* **64**, 3328–3333 (2015).

87. Mellor, D. D. et al. Association between lipids and apolipoproteins on type 2 diabetes risk: moderating effects of gender and polymorphisms; the ATTICA study. *Nutr. Metab. Cardiovasc. Dis.* **30**, 788–795 (2020).

88. Peng, J. et al. Association between dyslipidemia and risk of type 2 diabetes mellitus in middle-aged and older Chinese adults: a secondary analysis of a nationwide cohort. *BMJ Open* **11**, e042821 (2021).

89. de Resende Guimarães, M. F. B. et al. High prevalence of obesity in rheumatoid arthritis patients: association with disease activity, hypertension, dyslipidemia and diabetes, a multi-center study. *Adv. Rheumatol.* **59**, 44 (2019).

90. Tamargo, I. A., Baek, K. I., Kim, Y., Park, C. & Jo, H. Flow-induced reprogramming of endothelial cells in atherosclerosis. *Nat. Rev. Cardiol.* **20**, 738–753 (2023).

91. Gimbrone, M. A. & Garcia-Cardeña, G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. *Circ. Res.* **118**, 620–636 (2016).

92. Bordy, R. et al. Microvascular endothelial dysfunction in rheumatoid arthritis. *Nat. Rev. Rheumatol.* **14**, 404–420 (2018).

93. Matucci-Cerinic, M., Kahaleh, B. & Wigley, F. M. Review: evidence that systemic sclerosis is a vascular disease. *Arthritis Rheum.* **65**, 1953–1962 (2013).

94. Weber, B. N. et al. Coronary microvascular dysfunction in systemic lupus erythematosus. *J. Am. Heart Assoc.* **10**, e018555 (2021).

95. Conrad, N. et al. Incidence, prevalence, and co-occurrence of autoimmune disorders over time and by age, sex, and socioeconomic status: a population-based cohort study of 22 million individuals in the UK. *Lancet* **401**, 1878–1890 (2023).

96. Allanore, Y. et al. Systemic sclerosis. *Nat. Rev. Dis. Prim.* **1**, 15002 (2015).

97. Libby, P. Interleukin-1 beta as a target for atherosclerosis therapy: biological basis of CANTOS and beyond. *J. Am. Coll. Cardiol.* **70**, 2278–2289 (2017).

98. Chen, H.-J., Tas, S. W. & de Winther, M. P. J. Type-I interferons in atherosclerosis. *J. Exp. Med.* **217**, e20190459 (2020).

99. Urschel, K. & Cicha, I. TNF-α in the cardiovascular system: from physiology to therapy. *Int. J. Interferon Cytokine Mediat. Res.* **7**, 9–25 (2015).

100. Buie, J. J., Renaud, L. L., Muise-Helmericks, R. & Oates, J. C. IFN-α negatively regulates the expression of endothelial nitric oxide synthase and nitric oxide production: implications for systemic lupus erythematosus. *J. Immunol.* **199**, 1979–1988 (2017).

101. Akhmedov, A. et al. TNFα induces endothelial dysfunction in rheumatoid arthritis via LOX-1 and arginase 2: reversal by monoclonal TNFα antibodies. *Cardiovasc. Res.* **118**, 254–266 (2022).

102. Mak, A. et al. Endothelial dysfunction in systemic lupus erythematosus – a case-control study and an updated meta-analysis and meta-regression. *Sci. Rep.* **7**, 7320 (2017).

103. Denny, M. F. et al. A distinct subset of proinflammatory neutrophils isolated from patients with systemic lupus erythematosus induces vascular damage and synthesizes type I IFNs. *J. Immunol.* **184**, 3284–3297 (2010).

104. Denny, M. F. et al. Interferon-α promotes abnormal vasculogenesis in lupus: a potential pathway for premature atherosclerosis. *Blood* **110**, 2907–2915 (2007).

105. Villanueva, E. et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. *J. Immunol.* **187**, 538–552 (2011).

106. Carmona-Rivera, C., Zhao, W., Yalavarthi, S. & Kaplan, M. J. Neutrophil extracellular traps induce endothelial dysfunction in systemic lupus erythematosus through the activation of matrix metalloproteinase-2. *Ann. Rheum. Dis.* **74**, 1417–1424 (2015).

107. Rajagopalan, S. et al. Endothelial cell apoptosis in systemic lupus erythematosus: a common pathway for abnormal vascular function and thrombosis propensity. *Blood* **103**, 3677–3683 (2004).

108. Lee, P. Y. et al. Type I interferon as a novel risk factor for endothelial progenitor cell depletion and endothelial dysfunction in systemic lupus erythematosus. *Arthritis Rheum.* **56**, 3759–3769 (2007).

109. Pieterse, E. et al. Neutrophil extracellular traps drive endothelial-to-mesenchymal transition. *Arterioscler. Thromb. Vasc. Biol.* **37**, 1371–1379 (2017).

110. Kessenbrock, K. et al. Netting neutrophils in autoimmune small-vessel vasculitis. *Nat. Med.* **15**, 623–625 (2009).

111. Schreiber, A. et al. Necroptosis controls NET generation and mediates complement activation, endothelial damage, and autoimmune vasculitis. *Proc. Natl. Acad. Sci. USA* **114**, E9618–E9625 (2017).

112. Nakazawa, D., Masuda, S., Tomaru, U. & Ishizu, A. Pathogenesis and therapeutic interventions for ANCA-associated vasculitis. *Nat. Rev. Rheumatol.* **15**, 91–101 (2019).

113. Lood, C. et al. Platelet transcriptional profile and protein expression in patients with systemic lupus erythematosus: up-regulation of the type I interferon system is strongly associated with vascular disease. *Blood* **116**, 1951–1957 (2010).

114. Nhek, S. et al. Activated platelets induce endothelial cell activation via an interleukin-1 β pathway in systemic lupus erythematosus. *Arterioscler. Thromb. Vasc. Biol.* **37**, 707–716 (2017).

115. Maugeri, N. et al. Platelet microparticles sustain autophagy-associated activation of neutrophils in systemic sclerosis. *Sci. Transl. Med.* **10**, eaao3089 (2018).

116. Legendre, P., Régert, A., Thiebault, M. & Mouthon, L. Anti-endothelial cell antibodies in vasculitis: a systematic review. *Autoimmun. Rev.* **16**, 146–153 (2017).

117. Truchetet, M. E., Brembilla, N. C. & Chizzolini, C. Current concepts on the pathogenesis of systemic sclerosis. *Clin. Rev. Allergy Immunol.* **64**, 262–283 (2023).

118. Almanzar, G. et al. Autoreactive HSP60 epitope-specific T-cells in early human atherosclerotic lesions. *J. Autoimmun.* **39**, 441–450 (2012).

119. Crane, E. D. et al. Anti-GRP78 autoantibodies induce endothelial cell activation and accelerate the development of atherosclerotic lesions. *JCI Insight* **3**, e99363 (2018).

120. Ait-Oufella, H., Taleb, S., Mallat, Z. & Tedgui, A. Recent advances on the role of cytokines in atherosclerosis. *Arterioscler. Thromb. Vasc. Biol.* **31**, 969–979 (2011).

121. Ait-Oufella, H., Libby, P. & Tedgui, A. Anticytokine immune therapy and atherothrombotic cardiovascular risk. *Arterioscler. Thromb. Vasc. Biol.* **39**, 1510–1519 (2019).

122. Shin, J. I. et al. Inflammosomes and autoimmune and rheumatic diseases: a comprehensive review. *J. Autoimmun.* **103**, 102299 (2019).

123. Fuster, J. J. et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. *Science* **355**, 842–847 (2017).

124. Fidler, T. P. et al. The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis. *Nature* **592**, 296–301 (2021).

125. Svensson, E. C. et al. TET2-driven clonal hematopoiesis and response to canakinumab: an exploratory analysis of the CANTOS randomized clinical trial. *JAMA Cardiol.* **7**, 521–528 (2022).

126. David, C. et al. Clonal haematopoiesis of indeterminate potential and cardiovascular events in systemic lupus erythematosus (HEMATOPLUS study). *Rheumatology* **61**, 4355–4363 (2022).

127. Broderick, L. & Hoffman, H. M. IL-1 and autoinflammatory disease: biology, pathogenesis and therapeutic targeting. *Nat. Rev. Rheumatol.* **18**, 448–463 (2022).

128. Clark, W., Jobanputra, P., Barton, P. & Burls, A. The clinical and cost-effectiveness of anakinra for the treatment of rheumatoid arthritis in adults: a systematic review and economic analysis. *Health Technol. Assess.* **8**, 18 (2004).

129. Schiff, M. H. Role of interleukin 1 and interleukin 1 receptor antagonist in the mediation of rheumatoid arthritis. *Ann. Rheum. Dis.* **59**, i103–i108 (2000).

130. Eastgate, J. A. et al. Correlation of plasma interleukin 1 levels with disease activity in rheumatoid arthritis. *Lancet* **2**, 706–709 (1988).

131. McGeachy, M. J. et al. TGF- β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell-mediated pathology. *Nat. Immunol.* **8**, 1390–1397 (2007).

132. Zhou, L. et al. IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. *Nat. Immunol.* **8**, 967–974 (2007).

133. Ridker, P. M. & Rane, M. Interleukin-6 signalling and anti-interleukin-6 therapeutics in cardiovascular disease. *Circ. Res.* **128**, 1728–1746 (2021).

134. van der Harst, P. & Verweij, N. Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease. *Circ. Res.* **122**, 433–443 (2018).

135. Interleukin-6 Receptor Mendelian Randomisation Analysis (IL6R MR) Consortium. et al. The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis. *Lancet* **379**, 1214–1224 (2012).

136. Sarwar, N. et al. Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies. *Lancet* **379**, 1205–1213 (2012).

137. Rosa, M. et al. A Mendelian randomization study of IL6 signalling in cardiovascular diseases, immune-related disorders and longevity. *NPJ Genom. Med.* **4**, 23 (2019).

138. Bick, A. G. et al. Genetic interleukin 6 signaling deficiency attenuates cardiovascular risk in clonal hematopoiesis. *Circulation* **141**, 124–131 (2020).

139. Ridker, P. M. et al. Modulation of the interleukin-6 signalling pathway and incidence rates of atherosclerotic events and all-cause mortality: analyses from the Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS). *Eur. Heart J.* **39**, 3499–3507 (2018).

140. Romano, M. et al. Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. *Immunity* **6**, 315–325 (1997).

141. Alsaifar, H., Martino, N., Garrett, J. P. & Adam, A. P. Interleukin-6 promotes a sustained loss of endothelial barrier function via Janus kinase-mediated STAT3 phosphorylation and de novo protein synthesis. *Am. J. Physiol. Cell Physiol.* **314**, C589–C602 (2018).

142. Neumann, F.-J. et al. Effect of human recombinant interleukin-6 and interleukin-8 on monocyte procoagulant activity. *Arterioscler. Thromb. Vasc. Biol.* **17**, 3399–3405 (1997).

143. Holt, I., Cooper, R. G. & Hopkins, S. J. Relationships between local inflammation, interleukin-6 concentration and the acute phase protein response in arthritis patients. *Eur. J. Clin. Invest.* **21**, 479–484 (1991).

144. Marczynski, P. et al. Vascular inflammation and dysfunction in lupus-prone mice-IL-6 as mediator of disease initiation. *Int. J. Mol. Sci.* **22**, 2291 (2021).

145. Weber, B. et al. Relationship between risk of atherosclerotic cardiovascular disease, inflammation, and coronary microvascular dysfunction in rheumatoid arthritis. *J. Am. Heart Assoc.* **11**, e025467 (2022).

146. Baccichiega, B. C. et al. Interleukin 6 inhibition and coronary artery disease in a high-risk population: a prospective community-based clinical study. *J. Am. Heart Assoc.* **6**, e005038 (2017).

147. Protoporou, A. D. et al. A pilot study of endothelial dysfunction and aortic stiffness after interleukin-6 receptor inhibition in rheumatoid arthritis. *Atherosclerosis* **219**, 734–736 (2011).

148. Souto, A. et al. Lipid profile changes in patients with chronic inflammatory arthritis treated with biologic agents and tofacitinib in randomized clinical trials: a systematic review and meta-analysis. *Arthritis Rheumatol.* **67**, 117–127 (2015).

149. McInnes, I. B. et al. Effect of interleukin-6 receptor blockade on surrogates of vascular risk in rheumatoid arthritis: MEASURE, a randomised, placebo-controlled study. *Ann. Rheum. Dis.* **74**, 694–702 (2015).

150. Pierini, F. S. et al. Effect of tocilizumab on LDL and HDL characteristics in patients with rheumatoid arthritis: an observational study. *Rheumatol. Ther.* **8**, 803–815 (2021).

151. Giles, J. T. et al. Cardiovascular safety of tocilizumab versus etanercept in rheumatoid arthritis: a randomized controlled trial. *Arthritis Rheumatol.* **72**, 31–40 (2020).

152. Ridker, P. M. et al. IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk (RESCUE): a double-blind, randomised, placebo-controlled, phase 2 trial. *Lancet* **397**, 2060–2069 (2021).

153. US National Library of Medicine. *ClinicalTrials.gov* www.clinicaltrials.gov/ct2/show/NCT05021835 (2024).

154. van Loo, G. & Bertrand, M. J. M. Death by TNF: a road to inflammation. *Nat. Rev. Immunol.* **23**, 289–303 (2023).

155. Siegmund, D. & Wajant, H. TNF and TNF receptors as therapeutic targets for rheumatic diseases and beyond. *Nat. Rev. Rheumatol.* **19**, 576–591 (2023).

156. Weckerle, C. E. et al. Large scale analysis of tumor necrosis factor α levels in systemic lupus erythematosus. *Arthritis Rheum.* **64**, 2947–2952 (2012).

157. Rho, Y. H. et al. Inflammatory mediators and premature coronary atherosclerosis in rheumatoid arthritis. *Arthritis Rheum.* **61**, 1580–1585 (2009).

158. Del Porto, F. et al. Response to anti-tumour necrosis factor alpha blockade is associated with reduction of carotid intima-media thickness in patients with active rheumatoid arthritis. *Rheumatology* **46**, 1111–1115 (2007).

159. Papamichail, G. V. et al. The effects of biologic agents on cardiovascular risk factors and atherosclerosis in rheumatoid arthritis patients: a prospective observational study. *Heart Vessels* **37**, 2128–2136 (2022).

160. Jacobsson, L. T. H. et al. Treatment with tumor necrosis factor blockers is associated with a lower incidence of first cardiovascular events in patients with rheumatoid arthritis. *J. Rheumatol.* **32**, 1213–1218 (2005).

161. Dixon, W. G. et al. Reduction in the incidence of myocardial infarction in patients with rheumatoid arthritis who respond to anti-tumor necrosis factor α therapy: results from the British Society for Rheumatology Biologics Register. *Arthritis Rheum.* **56**, 2905–2912 (2007).

162. Barnabe, C., Martin, B.-J. & Ghali, W. A. Systematic review and meta-analysis: anti-tumor necrosis factor α therapy and cardiovascular events in rheumatoid arthritis. *Arthritis Care Res.* **63**, 522–529 (2011).

163. Roubille, C. et al. The effects of tumour necrosis factor inhibitors, methotrexate, non-steroidal anti-inflammatory drugs and corticosteroids on cardiovascular events in rheumatoid arthritis, psoriasis and psoriatic arthritis: a systematic review and meta-analysis. *Ann. Rheum. Dis.* **74**, 480–489 (2015).

164. McKellar, G. E., McCarey, D. W., Sattar, N. & McInnes, I. B. Role for TNF in atherosclerosis? Lessons from autoimmune disease. *Nat. Rev. Cardiol.* **6**, 410–417 (2009).

165. Ridker, P. M. et al. Elevation of tumor necrosis factor- α and increased risk of recurrent coronary events after myocardial infarction. *Circulation* **101**, 2149–2153 (2000).

166. Chung, E. S. et al. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor- α , in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. *Circulation* **107**, 3133–3140 (2003).

167. Mann, D. L. et al. Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). *Circulation* **109**, 1594–1602 (2004).

168. Solomon, D. H. et al. Reducing cardiovascular risk with immunomodulators: a randomised active comparator trial among patients with rheumatoid arthritis. *Ann. Rheum. Dis.* **82**, 324–330 (2023).

Review article

169. Goossens, P. et al. Myeloid type I interferon signaling promotes atherosclerosis by stimulating macrophage recruitment to lesions. *Cell Metab.* **12**, 142–153 (2010).

170. Li, J. et al. Interferon- α priming promotes lipid uptake and macrophage-derived foam cell formation: a novel link between interferon- α and atherosclerosis in lupus. *Arthritis Rheum.* **63**, 492–502 (2011).

171. Boshuizen, M. C. S. et al. Interferon- β promotes macrophage foam cell formation by altering both cholesterol influx and efflux mechanisms. *Cytokine* **77**, 220–226 (2016).

172. Pulliam, L., Calosog, C., Sun, B., Grunfeld, C. & Rempel, H. Monocyte activation from interferon- α in HIV infection increases acetylated LDL uptake and ROS production. *J. Interferon Cytokine Res.* **34**, 822–828 (2014).

173. Spann, N. J. et al. Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses. *Cell* **151**, 138–152 (2012).

174. Kim, K. et al. Transcriptome analysis reveals nonfoamy rather than foamy plaque macrophages are proinflammatory in atherosclerotic murine models. *Circ. Res.* **123**, 1127–1142 (2018).

175. Zernecke, A. et al. Integrated single-cell analysis-based classification of vascular mononuclear phagocytes in mouse and human atherosclerosis. *Cardiovasc. Res.* **119**, 1676–1689 (2023).

176. King, K. R. et al. IRF3 and type I interferons fuel a fatal response to myocardial infarction. *Nat. Med.* **23**, 1481–1487 (2017).

177. Lin, J.-D. et al. Single-cell analysis of fate-mapped macrophages reveals heterogeneity, including stem-like properties, during atherosclerosis progression and regression. *JCI Insight* **4**, e124574 (2019).

178. Park, S. H. et al. Type I interferons and the cytokine TNF cooperatively reprogram the macrophage epigenome to promote inflammatory activation. *Nat. Immunol.* **18**, 1104–1116 (2017).

179. Guarda, G. et al. Type I interferon inhibits interleukin-1 production and inflammasome activation. *Immunity* **34**, 213–223 (2011).

180. Reboldi, A. et al. Inflammation. 25-Hydroxycholesterol suppresses interleukin-1-driven inflammation downstream of type I interferon. *Science* **345**, 679–684 (2014).

181. Barrat, F. J., Crow, M. K. & Ivashkiv, L. B. Interferon target-gene expression and epigenomic signatures in health and disease. *Nat. Immunol.* **20**, 1574–1583 (2019).

182. Lood, C. et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. *Nat. Med.* **22**, 146–153 (2016).

183. Lövgren, T., Eloranta, M.-L., Bäve, U., Alm, G. V. & Rönnblom, L. Induction of interferon- α production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG. *Arthritis Rheum.* **50**, 1861–1872 (2004).

184. Barrat, F. J., Meeker, T., Chan, J. H., Guiducci, C. & Coffman, R. L. Treatment of lupus-prone mice with a dual inhibitor of TLR7 and TLR9 leads to reduction of autoantibody production and amelioration of disease symptoms. *Eur. J. Immunol.* **37**, 3582–3586 (2007).

185. Sisirak, V. et al. Digestion of chromatin in apoptotic cell microparticles prevents autoimmunity. *Cell* **166**, 88–101 (2016).

186. Caielli, S. et al. Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus. *J. Exp. Med.* **213**, 697–713 (2016).

187. Blanco, L. P. et al. RNA externalized by neutrophil extracellular traps promotes inflammatory pathways in endothelial cells. *Arthritis Rheumatol.* **73**, 2282–2292 (2021).

188. Bellini, R., Bonacina, F. & Norata, G. D. Crosstalk between dendritic cells and T lymphocytes during atherogenesis: focus on antigen presentation and break of tolerance. *Front. Cardiovasc. Med.* **9**, 934314 (2022).

189. Nagahama, M. et al. Platelet activation markers and soluble adhesion molecules in patients with systemic lupus erythematosus. *Autoimmunity* **33**, 85–94 (2001).

190. Duffau, P. et al. Platelet CD154 potentiates interferon- α secretion by plasmacytoid dendritic cells in systemic lupus erythematosus. *Sci. Transl. Med.* **2**, 47ra63 (2010).

191. Massberg, S. et al. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. *J. Exp. Med.* **196**, 887–896 (2002).

192. Huo, Y. et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. *Nat. Med.* **9**, 61–67 (2003).

193. Barrett, T. J. et al. Platelet regulation of myeloid suppressor of cytokine signaling 3 accelerates atherosclerosis. *Sci. Transl. Med.* **11**, eaax0481 (2019).

194. Crow, M. K. & Wohlgemuth, J. Microarray analysis of gene expression in lupus. *Arthritis Res Ther.* **5**, 279 (2003).

195. Arazi, A. et al. The immune cell landscape in kidneys of patients with lupus nephritis. *Nat. Immunol.* **20**, 902–914 (2019).

196. Eloranta, M.-L. et al. Type I interferon system activation and association with disease manifestations in systemic sclerosis. *Ann. Rheum. Dis.* **69**, 1396–1402 (2010).

197. van Bon, L. et al. Proteome-wide analysis and CXCL4 as a biomarker in systemic sclerosis. *N. Engl. J. Med.* **370**, 433–443 (2014).

198. Gottenberg, J.-E. et al. Activation of IFN pathways and plasmacytoid dendritic cell recruitment in target organs of primary Sjögren's syndrome. *Proc. Natl. Acad. Sci. USA* **103**, 2770–2775 (2006).

199. Muskardin, T. L. W. & Niewold, T. B. Type I interferon in rheumatic diseases. *Nat. Rev. Rheumatol.* **14**, 214–228 (2018).

200. Somers, E. C. et al. Type I interferons are associated with subclinical markers of cardiovascular disease in a cohort of systemic lupus erythematosus patients. *PLoS ONE* **7**, e37000 (2012).

201. Rogacev, K. S. et al. CD14++CD16+ monocytes independently predict cardiovascular events: a cohort study of 951 patients referred for elective coronary angiography. *J. Am. Coll. Cardiol.* **60**, 1512–1520 (2012).

202. Liotti, F., Boval-Boizard, B., Weill, D., Kuntz, D. & Wautier, J. L. Blood monocyte activation in rheumatoid arthritis: increased monocyte adhesiveness, integrin expression, and cytokine release. *Clin. Exp. Immunol.* **106**, 13–19 (1996).

203. Rossol, M., Kraus, S., Pierer, M., Baerwald, C. & Wagner, U. The CD14^{bright}CD16+ monocyte subset is expanded in rheumatoid arthritis and promotes expansion of the Th17 cell population. *Arthritis Rheum.* **64**, 671–677 (2012).

204. Korman, B. D. et al. Inflammatory expression profiles in monocyte-to-macrophage differentiation in patients with systemic lupus erythematosus and relationship with atherosclerosis. *Arthritis Res. Ther.* **16**, R147 (2014).

205. O'Gorman, W. E. et al. Single-cell systems-level analysis of human Toll-like receptor activation defines a chemokine signature in patients with systemic lupus erythematosus. *J. Allergy Clin. Immunol.* **136**, 1326–1336 (2015).

206. Shi, L. et al. Monocyte enhancers are highly altered in systemic lupus erythematosus. *Epigenomics* **7**, 921–935 (2015).

207. Mikotaćzyk, T. P. et al. Heterogeneity of peripheral blood monocytes, endothelial dysfunction and subclinical atherosclerosis in patients with systemic lupus erythematosus. *Lupus* **25**, 18–27 (2016).

208. López, P. et al. Low-density granulocytes and monocytes as biomarkers of cardiovascular risk in systemic lupus erythematosus. *Rheumatology* **59**, 1752–1764 (2020).

209. Tacke, F. et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. *J. Clin. Invest.* **117**, 185–194 (2007).

210. Combadière, C. et al. Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6 C^{hi} and Ly6 C^{lo} monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. *Circulation* **117**, 1649–1657 (2008).

211. Adamstein, N. H. et al. The neutrophil-lymphocyte ratio and incident atherosclerotic events: analyses from five contemporary randomized trials. *Eur. Heart J.* **42**, 896–903 (2021).

212. Nurmohamed, N. S. et al. Targeted proteomics improves cardiovascular risk prediction in secondary prevention. *Eur. Heart J.* **43**, 1569–1577 (2022).

213. Luo, J., Thomassen, J. Q., Nordestgaard, B. G., Tybjærg-Hansen, A. & Frikke-Schmidt, R. Neutrophil counts and cardiovascular disease. *Eur. Heart J.* **44**, 4953–4964 (2023).

214. Zernecke, A. et al. Protective role of CXC receptor 4/CXC ligand 12 unveils the importance of neutrophils in atherosclerosis. *Circ. Res.* **102**, 209–217 (2008).

215. Drexhler, M., Megens, R. T. A., van Zandvoort, M., Weber, C. & Soehlein, O. Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis. *Circulation* **122**, 1837–1845 (2010).

216. Delporte, C. et al. Impact of myeloperoxidase-LDL interactions on enzyme activity and subsequent posttranslational oxidative modifications of apoB-100. *J. Lipid Res.* **55**, 747–757 (2014).

217. Döring, Y. et al. Lack of neutrophil-derived CRAMP reduces atherosclerosis in mice. *Circ. Res.* **110**, 1052–1056 (2012).

218. Nakamura, Y. et al. Increased LL37 in psoriasis and other inflammatory disorders promotes LDL uptake and atherosclerosis. *J. Clin. Invest.* **134**, e172578 (2024).

219. Knight, J. S. et al. Peptidylarginine deiminase inhibition reduces vascular damage and modulates innate immune responses in murine models of atherosclerosis. *Circ. Res.* **114**, 947–956 (2014).

220. Quillard, T. et al. TLR2 and neutrophils potentiate endothelial stress, apoptosis and detachment: implications for superficial erosion. *Eur. Heart J.* **36**, 1394–1404 (2015).

221. Silvestre-Roig, C. et al. Externalized histone H4 orchestrates chronic inflammation by inducing lytic cell death. *Nature* **569**, 236–240 (2019).

222. Mangold, A. et al. Coronary neutrophil extracellular trap burden and deoxyribonuclease activity in ST-elevation acute coronary syndrome are predictors of ST-segment resolution and infarct size. *Circ. Res.* **116**, 1182–1192 (2015).

223. Libby, P., Pasterkamp, G., Crea, F. & Jang, I.-K. Reassessing the mechanisms of acute coronary syndromes. *Circ. Res.* **124**, 150–160 (2019).

224. Gómez-Moreno, D., Adrover, J. M. & Hidalgo, A. Neutrophils as effectors of vascular inflammation. *Eur. J. Clin. Invest.* **48**, e12940 (2018).

225. Franck, G. et al. Flow perturbation mediates neutrophil recruitment and potentiates endothelial injury via TLR2 in mice. *Circ. Res.* **121**, 31–42 (2017).

226. Franck, G. et al. Roles of PAD4 and NETosis in experimental atherosclerosis and arterial injury. *Circ. Res.* **123**, 33–42 (2018).

227. Fuchs, T. A. et al. Extracellular DNA traps promote thrombosis. *Proc. Natl. Acad. Sci. USA* **107**, 15880–15885 (2010).

228. Folco, E. J. et al. Neutrophil extracellular traps induce endothelial cell activation and tissue factor production through interleukin-1 α and cathepsin G. *Arterioscler. Thromb. Vasc. Biol.* **38**, 1901–1912 (2018).

229. Ferrante, G. et al. High levels of systemic myeloperoxidase are associated with coronary plaque erosion in patients with acute coronary syndromes. *Circulation* **122**, 2505–2513 (2010).

230. Apel, F., Zychlinsky, A. & Kenny, E. F. The role of neutrophil extracellular traps in rheumatic diseases. *Nat. Rev. Rheumatol.* **14**, 467–475 (2018).

231. Wigerblad, G. & Kaplan, M. J. Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases. *Nat. Rev. Immunol.* **23**, 274–288 (2023).

232. Wipke, B. T. & Allen, P. M. Essential role of neutrophils in the initiation and progression of a murine model of rheumatoid arthritis. *J. Immunol.* **167**, 1601–1608 (2001).

233. Grieshaber-Bouyer, R. et al. Ageing and interferon gamma response drive the phenotype of neutrophils in the inflamed joint. *Ann. Rheum. Dis.* **81**, 805–814 (2022).

234. Garcia-Romo, G. S. et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. *Sci. Transl. Med.* **3**, 73ra20 (2011).

235. Lande, R. et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. *Sci. Transl. Med.* **3**, 73ra19 (2011).

236. Döring, Y. et al. Auto-antigenic protein-DNA complexes stimulate plasmacytoid dendritic cells to promote atherosclerosis. *Circulation* **125**, 1673–1683 (2012).

237. Rahman, S. et al. Low-density granulocytes activate T cells and demonstrate a non-suppressive role in systemic lupus erythematosus. *Ann. Rheum. Dis.* **78**, 957–966 (2019).

238. Kiss, M. G. & Binder, C. J. The multifaceted impact of complement on atherosclerosis. *Atherosclerosis* **351**, 29–40 (2022).

239. Stark, K. & Massberg, S. Interplay between inflammation and thrombosis in cardiovascular pathology. *Nat. Rev. Cardiol.* **18**, 666–682 (2021).

240. Seifert, P. S., Hugo, F., Hansson, G. K. & Bhakdi, S. Prelesional complement activation in experimental atherosclerosis. Terminal C5b-9 complement deposition coincides with cholesterol accumulation in the aortic intima of hypercholesterolemic rabbits. *Lab. Invest.* **60**, 747–754 (1989).

241. Vlaicu, R., Rus, H. G., Niculescu, F. & Crăstea, A. Immunoglobulins and complement components in human aortic atherosclerotic intima. *Atherosclerosis* **55**, 35–50 (1985).

242. Kiss, M. G. et al. Cell-autonomous regulation of complement C3 by factor H limits macrophage efferocytosis and exacerbates atherosclerosis. *Immunity* **56**, 1809–1824.e10 (2023).

243. Truedsson, L., Bengtsson, A. A. & Sturfelt, G. Complement deficiencies and systemic lupus erythematosus. *Autoimmunity* **40**, 560–566 (2007).

244. Stojan, G. & Petri, M. Anti-C1q in systemic lupus erythematosus. *Lupus* **25**, 873–877 (2016).

245. Dragon-Durey, M.-A., Blanc, C., Marrazzo, M. C., van Schaarenburg, R. A. & Trouw, L. A. Autoantibodies against complement components and functional consequences. *Mol. Immunol.* **56**, 213–221 (2013).

246. Santer, D. M. et al. C1q deficiency leads to the defective suppression of IFN- α in response to nucleoprotein containing immune complexes. *J. Immunol.* **185**, 4738–4749 (2010).

247. Coss, S. L. et al. The complement system and human autoimmune diseases. *J. Autoimmun.* **137**, 102979 (2023).

248. Aringer, M. et al. 2019 EULAR/ACR classification criteria for systemic lupus erythematosus. *Arthritis Rheumatol.* **71**, 1400–1412 (2019).

249. Chen, M., Jayne, D. R. W. & Zhao, M.-H. Complement in ANCA-associated vasculitis: mechanisms and implications for management. *Nat. Rev. Nephrol.* **13**, 359–367 (2017).

250. Fernandez, D. M. et al. Single-cell immune landscape of human atherosclerotic plaques. *Nat. Med.* **25**, 1576–1588 (2019).

251. Ait-Oufella, H. et al. Natural regulatory T cells control the development of atherosclerosis in mice. *Nat. Med.* **12**, 178–180 (2006).

252. Sharma, M. et al. Regulatory T cells license macrophage pro-resolving functions during atherosclerosis regression. *Circ. Res.* **127**, 335–353 (2020).

253. Rosetti, F., Madera-Salcedo, I. K., Rodriguez-Rodriguez, N. & Crispin, J. C. Regulation of activated T cell survival in rheumatic autoimmune diseases. *Nat. Rev. Rheumatol.* **18**, 232–244 (2022).

254. Sumida, T. S., Cheru, N. T. & Hafler, D. A. The regulation and differentiation of regulatory T cells and their dysfunction in autoimmune diseases. *Nat. Rev. Immunol.* <https://doi.org/10.1038/s41577-024-00994-x> (2024).

255. Kolios, A. G. A., Tsokos, G. C. & Klatzmann, D. Interleukin-2 and regulatory T cells in rheumatic diseases. *Nat. Rev. Rheumatol.* **17**, 749–766 (2021).

256. Bailey-Bucktrout, S. L. et al. Self-antigen-driven activation induces instability of regulatory T cells during an inflammatory autoimmune response. *Immunity* **39**, 949–962 (2013).

257. Ehrenstein, M. R. et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNF α therapy. *J. Exp. Med.* **200**, 277–285 (2004).

258. Komatsu, N. et al. Pathogenic conversion of Foxp3 $^{+}$ T cells into T_H17 cells in autoimmune arthritis. *Nat. Med.* **20**, 62–68 (2014).

259. Li, J. et al. CCR5-T-bet $^{+}$ FoxP3 $^{+}$ effector CD4 T cells drive atherosclerosis. *Circ. Res.* **118**, 1540–1552 (2016).

260. Butcher, M. J. et al. Atherosclerosis-driven treg plasticity results in formation of a dysfunctional subset of plastic IFN γ Th1/Tregs. *Circ. Res.* **119**, 1190–1203 (2016).

261. Kimura, T. et al. Regulatory CD4 $^{+}$ T cells recognize major histocompatibility complex class II molecule-restricted peptide epitopes of apolipoprotein B. *Circulation* **138**, 1130–1143 (2018).

262. Spee-Mayer et al. Low-dose interleukin-2 selectively corrects regulatory T cell defects in patients with systemic lupus erythematosus. *Ann. Rheum. Dis.* **75**, 1407–1415 (2016).

263. He, J. et al. Low-dose interleukin-2 treatment selectively modulates CD4 $^{+}$ T cell subsets in patients with systemic lupus erythematosus. *Nat. Med.* **22**, 991–993 (2016).

264. Rosenzwajg, M. et al. Immunological and clinical effects of low-dose interleukin-2 across 11 autoimmune diseases in a single, open clinical trial. *Ann. Rheum. Dis.* **78**, 209–217 (2019).

265. He, J. et al. Efficacy and safety of low-dose IL-2 in the treatment of systemic lupus erythematosus: a randomised, double-blind, placebo-controlled trial. *Ann. Rheum. Dis.* **79**, 141–149 (2020).

266. Akbarzadeh, R., Riemekasten, G. & Humrich, J. Y. Low-dose interleukin-2 therapy: a promising targeted therapeutic approach for systemic lupus erythematosus. *Curr. Opin. Rheumatol.* **35**, 98–106 (2023).

267. Srirajan, R. et al. Low-dose interleukin 2 for the reduction of vascular inflammation in acute coronary syndromes (IVORY): protocol and study rationale for a randomised, double-blind, placebo-controlled, phase II clinical trial. *BMJ Open* **12**, e062602 (2022).

268. Koshy, M., Berger, D. & Crow, M. K. Increased expression of CD40 ligand on systemic lupus erythematosus lymphocytes. *J. Clin. Invest.* **98**, 826–837 (1996).

269. Liossi, S. N., Ding, X. Z., Dennis, G. J. & Tsokos, G. C. Altered pattern of TCR/CD3-mediated protein-tyrosyl phosphorylation in T cells from patients with systemic lupus erythematosus. Deficient expression of the T cell receptor zeta chain. *J. Clin. Invest.* **101**, 1448–1457 (1998).

270. Enyedy, E. J. et al. Fc ϵ receptor type I γ chain replaces the deficient T cell receptor ζ chain in T cells of patients with systemic lupus erythematosus. *Arthritis Rheum.* **44**, 1114–1121 (2001).

271. Wagner, U. G., Koetz, K., Weyand, C. M. & Goronzy, J. J. Perturbation of the T cell repertoire in rheumatoid arthritis. *Proc. Natl. Acad. Sci. USA* **95**, 14447–14452 (1998).

272. Weyand, C. M. & Goronzy, J. J. The immunology of rheumatoid arthritis. *Nat. Immunol.* **22**, 10–18 (2021).

273. Weng, N., Akbar, A. N. & Goronzy, J. J. CD28 $^{+}$ T cells: their role in the age-associated decline of immune function. *Trends Immunol.* **30**, 306–312 (2009).

274. Dumitriu, I. E. et al. High levels of costimulatory receptors OX40 and 4-1BB characterize CD4 $^{+}$ CD28 null T cells in patients with acute coronary syndrome. *Circ. Res.* **110**, 857–869 (2012).

275. Liuzzo, G. et al. Monoclonal T-cell proliferation and plaque instability in acute coronary syndromes. *Circulation* **101**, 2883–2888 (2000).

276. Téo, F. H. et al. Characterization of CD4 $^{+}$ CD28 null T cells in patients with coronary artery disease and individuals with risk factors for atherosclerosis. *Cell. Immunol.* **281**, 11–19 (2013).

277. Okba, A. M. et al. Expanded peripheral CD4 $^{+}$ CD28 null T cells and its association with atherosclerotic changes in patients with end stage renal disease on hemodialysis. *Hum. Immunol.* **80**, 748–754 (2019).

278. Gerli, R. et al. CD4 $^{+}$ CD28 $^{+}$ T lymphocytes contribute to early atherosclerotic damage in rheumatoid arthritis patients. *Circulation* **109**, 2744–2748 (2004).

279. Jiang, Q. et al. Role of Th22 cells in the pathogenesis of autoimmune diseases. *Front. Immunol.* **12**, 688066 (2021).

280. Schnell, A., Littman, D. R. & Kuchroo, V. K. TH17 cell heterogeneity and its role in tissue inflammation. *Nat. Immunol.* **24**, 19–29 (2023).

281. Simpson, N. et al. Expansion of circulating T cells resembling follicular helper T cells is a fixed phenotype that identifies a subset of severe systemic lupus erythematosus. *Arthritis Rheum.* **62**, 234–244 (2010).

282. Rao, D. A. et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. *Nature* **542**, 110–114 (2017).

283. Nus, M. et al. Marginal zone B cells control the response of follicular helper T cells to a high-cholesterol diet. *Nat. Med.* **23**, 601–610 (2017).

284. Clement, M. et al. Control of the T follicular helper-germinal center B-cell axis by CD8 $^{+}$ regulatory T cells limits atherosclerosis and tertiary lymphoid organ development. *Circulation* **131**, 560–570 (2015).

285. Bocharnikov, A. V. et al. PD-1 hi CXCR5 $^{+}$ T peripheral helper cells promote B cell responses in lupus via MAF and IL-21. *JCI Insight* **4**, e130062 (2019).

286. Hu, D. et al. Artery tertiary lymphoid organs control aorta immunity and protect against atherosclerosis via vascular smooth muscle cell lymphotxin β receptors. *Immunity* **42**, 1100–1115 (2015).

287. Srikanthapu, G. et al. Artery tertiary lymphoid organs control multilayered territorialized atherosclerosis B-cell responses in aged ApoE $^{-/-}$ mice. *Arterioscler. Thromb. Vasc. Biol.* **36**, 1174–1185 (2016).

288. Paulsson, G., Zhou, X., Törnquist, E. & Hansson, G. K. Oligoclonal T cell expansions in atherosclerotic lesions of apolipoprotein E-deficient mice. *Arterioscler. Thromb. Vasc. Biol.* **20**, 10–17 (2000).

289. Lin, Z. et al. Deep sequencing of the T cell receptor β repertoire reveals signature patterns and clonal drift in atherosclerotic plaques and patients. *Oncotarget* **8**, 99312–99322 (2017).

290. Sage, A. P., Tsiantoulas, D., Binder, C. J. & Mallat, Z. The role of B cells in atherosclerosis. *Nat. Rev. Cardiol.* **16**, 180–196 (2019).

291. Chaturvedi, A., Dorward, D. & Pierce, S. K. The B cell receptor governs the subcellular location of Toll-like receptor 9 leading to hyperresponses to DNA-containing antigens. *Immunity* **28**, 799–809 (2008).

292. Groom, J. R. et al. BAFF and MyD88 signals promote a lupuslike disease independent of T cells. *J. Exp. Med.* **204**, 1959–1971 (2007).

293. Rubtsov, A. V. et al. Toll-like receptor 7 (TLR7)-driven accumulation of a novel CD11c $^{+}$ B-cell population is important for the development of autoimmunity. *Blood* **118**, 1305–1315 (2011).

294. Naradikian, M. S. et al. Cutting edge: IL-4, IL-21, and IFN- γ interact to govern T-bet and CD11c expression in TLR-activated B cells. *J. Immunol.* **197**, 1023–1028 (2016).

295. Brown, G. J. et al. TLR7 gain-of-function genetic variation causes human lupus. *Nature* **605**, 349–356 (2022).

296. Guerrier, T., Youinou, P., Pers, J.-O. & Jamin, C. TLR9 drives the development of transitional B cells towards the marginal zone pathway and promotes autoimmunity. *J. Autoimmun.* **39**, 173–179 (2012).

297. Wardemann, H. et al. Predominant autoantibody production by early human B cell precursors. *Science* **301**, 1374–1377 (2003).

298. Dörner, T., Jacobi, A. M., Lee, J. & Lipsky, P. E. Abnormalities of B cell subsets in patients with systemic lupus erythematosus. *J. Immunol. Methods* **363**, 187–197 (2011).

299. Meeuwsen, J. A. L. et al. High levels of (un)switched memory B cells are associated with better outcome in patients with advanced atherosclerotic disease. *J. Am. Heart Assoc.* **6**, e005747 (2017).

300. She, Z. et al. The role of B1 cells in systemic lupus erythematosus. *Front. Immunol.* **13**, 814857 (2022).

Review article

301. Mantovani, L., Wilder, R. L. & Casali, P. Human rheumatoid B-1a (CD5⁺ B) cells make somatically hypermutated high affinity IgM rheumatoid factors. *J. Immunol.* **151**, 473–488 (1993).

302. Peng, S. L., Szabo, S. J. & Glimcher, L. H. T-bet regulates IgG class switching and pathogenic autoantibody production. *Proc. Natl Acad. Sci. USA* **99**, 5545–5550 (2002).

303. Rubtsova, K. et al. B cells expressing the transcription factor T-bet drive lupus-like autoimmunity. *J. Clin. Invest.* **127**, 1392–1404 (2017).

304. Buono, C. et al. T-bet specificity reduces atherosclerosis and alters plaque antigen-specific immune responses. *Proc. Natl Acad. Sci. USA* **102**, 1596–1601 (2005).

305. Li, Z.-Y., Cai, M.-L., Qin, Y. & Chen, Z. Age/autoimmunity-associated B cells in inflammatory arthritis: an emerging therapeutic target. *Front. Immunol.* **14**, 1103307 (2023).

306. Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. *Nat. Immunol.* **20**, 928–942 (2019).

307. Qin, Y. et al. Age-associated B cells contribute to the pathogenesis of rheumatoid arthritis by inducing activation of fibroblast-like synoviocytes via TNF- α -mediated ERK1/2 and JAK-STAT1 pathways. *Ann. Rheum. Dis.* **81**, 1504–1514 (2022).

308. Smit, V. et al. Single-cell profiling reveals age-associated immunity in atherosclerosis. *Cardiovasc. Res.* **119**, 2508–2521 (2023).

309. Ait-Oufella, H. et al. B cell depletion reduces the development of atherosclerosis in mice. *J. Exp. Med.* **207**, 1579–1587 (2010).

310. Kyaw, T. et al. Conventional B2 B cell depletion ameliorates whereas its adoptive transfer aggravates atherosclerosis. *J. Immunol.* **185**, 4410–4419 (2010).

311. US National Library of Medicine. *ClinicalTrials.gov* www.clinicaltrials.gov/ct2/show/NCT05211401 (2023).

312. Giordano, D. et al. B cell-activating factor (BAFF) from dendritic cells, monocytes and neutrophils is required for B cell maturation and autoantibody production in SLE-like autoimmune disease. *Front. Immunol.* **14**, 1050528 (2023).

313. Thien, M. et al. Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches. *Immunity* **20**, 785–798 (2004).

314. Hamilton, J. A., Hsu, H.-C. & Mountz, J. D. Autoreactive B cells in SLE, villains or innocent bystanders? *Immunol. Rev.* **292**, 120–138 (2019).

315. Zhang, J. et al. Cutting edge: a role for B lymphocyte stimulator in systemic lupus erythematosus. *J. Immunol.* **166**, 6–10 (2001).

316. Salazar-Camarena, D. C. et al. Association of BAFF, APRIL serum levels, BAFF-R, TACI and BCMA expression on peripheral B-cell subsets with clinical manifestations in systemic lupus erythematosus. *Lupus* **25**, 582–592 (2016).

317. Stohl, W. et al. B lymphocyte stimulator overexpression in patients with systemic lupus erythematosus: longitudinal observations. *Arthritis Rheum.* **48**, 3475–3486 (2003).

318. Landolt-Marticorena, C. et al. Increased expression of B cell activation factor supports the abnormal expansion of transitional B cells in systemic lupus erythematosus. *J. Rheumatol.* **38**, 642–651 (2011).

319. Sage, A. P. et al. BAFF receptor deficiency reduces the development of atherosclerosis in mice – brief report. *Arterioscler. Thromb. Vasc. Biol.* **32**, 1573–1576 (2012).

320. Kyaw, T. et al. Depletion of B2 but not B1a B cells in BAFF receptor-deficient ApoE mice attenuates atherosclerosis by potently ameliorating arterial inflammation. *PLoS ONE* **7**, e29371 (2012).

321. Jackson, S. W. et al. Cutting edge: BAFF overexpression reduces atherosclerosis via TACI-dependent B cell activation. *J. Immunol.* **197**, 4529–4534 (2016).

322. Tsiantoulas, D. et al. B cell-activating factor neutralization aggravates atherosclerosis. *Circulation* **138**, 2263–2273 (2018).

323. Saidoune, F. et al. Effects of BAFF neutralization on atherosclerosis associated with systemic lupus erythematosus. *Arthritis Rheumatol.* **73**, 255–264 (2021).

324. Mauri, C. & Blair, P. A. Regulatory B cells in autoimmunity: developments and controversies. *Nat. Rev. Rheumatol.* **6**, 636–643 (2010).

325. Sakkas, L. I., Daoussis, D., Mavropoulos, A., Liossis, S.-N. & Bogdanas, D. P. Regulatory B cells: new players in inflammatory and autoimmune rheumatic diseases. *Semin. Arthritis Rheum.* **48**, 1133–1141 (2019).

326. Meng, X. et al. Hypoxia-inducible factor-1 α is a critical transcription factor for IL-10-producing B cells in autoimmune disease. *Nat. Commun.* **9**, 251 (2018).

327. Gao, N. et al. Impaired suppressive capacity of activation-induced regulatory B cells in systemic lupus erythematosus. *Arthritis Rheumatol.* **66**, 2849–2861 (2014).

328. Smith, K. G. C. & Clatworthy, M. R. FcγRIIB in autoimmunity and infection: evolutionary and therapeutic implications. *Nat. Rev. Immunol.* **10**, 328–343 (2010).

329. Bagchi-Chakraborty, J. et al. B cell Fcγ receptor IIb modulates atherosclerosis in male and female mice by controlling adaptive germinal center and innate B-1-cell responses. *Arterioscler. Thromb. Vasc. Biol.* **39**, 1379–1389 (2019).

330. Pisetsky, D. S. Pathogenesis of autoimmune disease. *Nat. Rev. Nephrol.* **19**, 509–524 (2023).

331. Lewis, M. J. et al. Immunoglobulin M is required for protection against atherosclerosis in low-density lipoprotein receptor-deficient mice. *Circulation* **120**, 417–426 (2009).

332. Tsiantoulas, D. et al. Increased plasma IgE accelerates atherosclerosis in secreted IgM deficiency. *Circ. Res.* **120**, 78–84 (2017).

333. Ebrahimian, T. et al. B cell-specific knockout of AID protects against atherosclerosis. *Sci. Rep.* **13**, 8723 (2023).

334. Centa, M. et al. Germinal center-derived antibodies promote atherosclerosis plaque size and stability. *Circulation* **139**, 2466–2482 (2019).

335. Tay, C. et al. Follicular B cells promote atherosclerosis via T cell-mediated differentiation into plasma cells and secreting pathogenic immunoglobulin G. *Arterioscler. Thromb. Vasc. Biol.* **38**, e71–e84 (2018).

336. Mackey, R. H. et al. Rheumatoid arthritis, anti-cyclic citrullinated peptide positivity, and cardiovascular disease risk in the Women's Health Initiative. *Arthritis Rheumatol.* **67**, 2311–2322 (2015).

337. Hörrkö, S. et al. Antiphospholipid antibodies are directed against epitopes of oxidized phospholipids. Recognition of cardiolipin by monoclonal antibodies to epitopes of oxidized low density lipoprotein. *J. Clin. Invest.* **98**, 815–825 (1996).

338. Deroissart, J. & Binder, C. J. Mapping the functions of IgM antibodies in atherosclerotic cardiovascular disease. *Nat. Rev. Cardiol.* **20**, 433–434 (2023).

339. Grönwall, C. et al. IgM autoantibodies to distinct apoptosis-associated antigens correlate with protection from cardiovascular events and renal disease in patients with SLE. *Clin. Immunol.* **142**, 390–398 (2012).

340. Thiagarajan, D. et al. IgM antibodies against malondialdehyde and phosphorylcholine in different systemic rheumatic diseases. *Sci. Rep.* **10**, 11010 (2020).

341. Anania, C. et al. Increased prevalence of vulnerable atherosclerotic plaques and low levels of natural IgM antibodies against phosphorylcholine in patients with systemic lupus erythematosus. *Arthritis Res. Ther.* **12**, R214 (2010).

342. Shaw, P. X. et al. Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. *J. Clin. Invest.* **105**, 1731–1740 (2000).

343. Binder, C. J. et al. Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between *Streptococcus pneumoniae* and oxidized LDL. *Nat. Med.* **9**, 736–743 (2003).

344. Chen, Y. et al. Regulation of dendritic cells and macrophages by an anti-apoptotic cell natural antibody that suppresses TLR responses and inhibits inflammatory arthritis. *J. Immunol.* **183**, 1346–1359 (2009).

345. Faria-Neto, J. R. et al. Passive immunization with monoclonal IgM antibodies against phosphorylcholine reduces accelerated vein graft atherosclerosis in apolipoprotein E-null mice. *Atherosclerosis* **189**, 83–90 (2006).

346. Urowitz, M. B., Ibañez, D., Su, J. & Gladman, D. D. Modified Framingham Risk Factor Score for systemic lupus erythematosus. *J. Rheumatol.* **43**, 875–879 (2016).

347. Hippisley-Cox, J., Coupland, C. & Brindle, P. Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study. *BMJ* **357**, j2099 (2017).

348. Petri, M. A., Barr, E. & Magder, L. S. Development of a systemic lupus erythematosus cardiovascular risk equation. *Lupus Sci. Med.* **6**, e000346 (2019).

349. McMahon, M. et al. A panel of biomarkers is associated with increased risk of the presence and progression of atherosclerosis in women with systemic lupus erythematosus. *Arthritis Rheumatol.* **66**, 130–139 (2014).

350. Skaggs, B. J. et al. A panel of biomarkers associates with increased risk for cardiovascular events in women with systemic lupus erythematosus. *ACR Open Rheumatol.* **3**, 209–220 (2021).

351. Sivakumaran, J. et al. Assessment of cardiovascular risk tools as predictors of cardiovascular disease events in systemic lupus erythematosus. *Lupus Sci. Med.* **8**, e000448 (2021).

352. Agca, R. et al. EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update. *Ann. Rheum. Dis.* **76**, 17–28 (2017).

353. Drosos, G. C. et al. EULAR recommendations for cardiovascular risk management in rheumatic and musculoskeletal diseases, including systemic lupus erythematosus and antiphospholipid syndrome. *Ann. Rheum. Dis.* **81**, 768–779 (2022).

354. Buckley, L. F. & Libby, P. Colchicine's role in cardiovascular disease management. *Arterioscler. Thromb. Vasc. Biol.* **44**, 1031–1041 (2024).

355. Wade, N. S., Stevenson, B. G., Dunlap, D. S. & Major, A. S. The lupus susceptibility locus Sle3 is not sufficient to accelerate atherosclerosis in lupus-susceptible low density lipoprotein receptor-deficient mice. *Lupus* **19**, 34–42 (2010).

356. Asquith, D. L. et al. Apolipoprotein E-deficient mice are resistant to the development of collagen-induced arthritis. *Arthritis Rheum.* **62**, 472–477 (2010).

357. Blackler, G. et al. The effect of HLA-DRB1*04:01 on a mouse model of atherosclerosis. *J. Transl. Autoimmun.* **7**, 100203 (2023).

358. Ridker, P. M. et al. Low-dose methotrexate for the prevention of atherosclerotic events. *N. Engl. J. Med.* **380**, 752–762 (2019).

359. Tardif, J.-C. et al. Efficacy and safety of low-dose colchicine after myocardial infarction. *N. Engl. J. Med.* **381**, 2497–2505 (2019).

360. Nidorf, S. M., Eikelboom, J. W., Budgeon, C. A. & Thompson, P. L. Low-dose colchicine for secondary prevention of cardiovascular disease. *J. Am. Coll. Cardiol.* **61**, 404–410 (2013).

361. Nidorf, S. M. et al. Colchicine in patients with chronic coronary disease. *N. Engl. J. Med.* **383**, 1838–1847 (2020).

362. US National Library of Medicine. *ClinicalTrials.gov* www.clinicaltrials.gov/ct2/show/NCT03048825 (2024).

363. Kelly, P. et al. Long-term colchicine for the prevention of vascular recurrent events in non-cardioembolic stroke (CONVINCE): a randomised controlled trial. *Lancet* [https://doi.org/10.1016/S0140-6736\(24\)00968-1](https://doi.org/10.1016/S0140-6736(24)00968-1) (2024).

364. Morton, A. C. et al. The effect of interleukin-1 receptor antagonist therapy on markers of inflammation in non-ST elevation acute coronary syndromes: the MRC-ILA Heart Study. *Eur. Heart J.* **36**, 377–384 (2015).

365. Abbate, A. et al. Interleukin-1 blockade with anakinra to prevent adverse cardiac remodeling after acute myocardial infarction (Virginia Commonwealth University Anakinra Remodeling Trial [VCU-ART] Pilot Study). *Am. J. Cardiol.* **105**, 1371–1377.e1 (2010).

366. Abbate, A. et al. Effects of interleukin-1 blockade with anakinra on adverse cardiac remodeling and heart failure after acute myocardial infarction [from the Virginia Commonwealth University–Anakinra Remodeling Trial (2) (VCU-ART2) pilot study]. *Am. J. Cardiol.* **111**, 1394–1400 (2013).

367. Abbate, A. et al. Interleukin-1 blockade inhibits the acute inflammatory response in patients with ST-segment-elevation myocardial infarction. *J. Am. Heart Assoc.* **9**, e014941 (2020).

368. Kleveland, O. et al. Effect of a single dose of the interleukin-6 receptor antagonist tocilizumab on inflammation and troponin T release in patients with non-ST-elevation myocardial infarction: a double-blind, randomized, placebo-controlled phase 2 trial. *Eur. Heart J.* **37**, 2406–2413 (2016).

369. Kleveland, O. et al. Interleukin-6 receptor inhibition with tocilizumab induces a selective and substantial increase in plasma IP-10 and MIP-1 β in non-ST-elevation myocardial infarction. *Int. J. Cardiol.* **271**, 1–7 (2018).

370. Carroll, M. B., Haller, C. & Smith, C. Short-term application of tocilizumab during myocardial infarction (STAT-MI). *Rheumatol. Int.* **38**, 59–66 (2018).

371. Broch, K. et al. Randomized trial of interleukin-6 receptor inhibition in patients with acute ST-segment elevation myocardial infarction. *J. Am. Coll. Cardiol.* **77**, 1845–1855 (2021).

372. Kunkel, J. B. et al. Low-dose dobutamine infusion and single-dose tocilizumab in acute myocardial infarction patients with high risk of cardiogenic shock development – rationale and design of the DOBERMANN trial [abstract zuad036.131]. *Eur. Heart J. Acute Cardiovasc. Care* **12** (Suppl. 1), i193–i194 (2023).

373. US National Library of Medicine. *ClinicalTrials.gov* www.clinicaltrials.gov/ct2/show/NCT05350592 (2024).

374. Ridker, P. M. From RESCUE to ZEUS: will interleukin-6 inhibition with ziltivekimab prove effective for cardiovascular event reduction? *Cardiovasc. Res.* **117**, e138–e140 (2021).

375. US National Library of Medicine. *ClinicalTrials.gov* www.clinicaltrials.gov/ct2/show/NCT06118281 (2024).

376. Zhao, T. X. et al. Rituximab in patients with acute ST-elevation myocardial infarction: an experimental medicine safety study. *Cardiovasc. Res.* **118**, 872–882 (2022).

377. Zhao, T. X. et al. Regulatory T-cell response to low-dose interleukin-2 in ischemic heart disease. *NEJM Evid.* **1**, EV100009 (2022).

378. US National Library of Medicine. *ClinicalTrials.gov* www.clinicaltrials.gov/ct2/show/NCT04241601 (2024).

379. Borén, J. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. *Eur. Heart J.* **41**, 2313–2330 (2020).

380. Moore, K. J., Sheedy, F. J. & Fisher, E. A. Macrophages in atherosclerosis: a dynamic balance. *Nat. Rev. Immunol.* **13**, 709–721 (2013).

381. Binder, C. J., Papac-Milicevic, N. & Witttum, J. L. Innate sensing of oxidation-specific epitopes in health and disease. *Nat. Rev. Immunol.* **16**, 485–497 (2016).

382. Arbuckle, M. R. et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. *N. Engl. J. Med.* **349**, 1526–1533 (2003).

383. Hung, T. et al. The Ro60 autoantigen binds endogenous retroelements and regulates inflammatory gene expression. *Science* **350**, 455–459 (2015).

384. Kudo, T. et al. Regulation of NETosis and inflammation by cyclophilin D in myeloperoxidase-positive antineutrophil cytoplasmic antibody-associated vasculitis. *Arthritis Rheumatol.* **75**, 71–83 (2023).

385. Müller-Calleja, N. et al. Lipid presentation by the protein C receptor links coagulation with autoimmunity. *Science* **371**, eabc0956 (2021).

386. Schreiber, K. et al. Antiphospholipid syndrome. *Nat. Rev. Dis. Prim.* **4**, 17103 (2018).

387. Pagano, S. et al. Anti-apolipoprotein A-1 IgG in patients with myocardial infarction promotes inflammation through TLR2/CD14 complex. *J. Intern. Med.* **272**, 344–357 (2012).

388. Kitching, A. R. et al. ANCA-associated vasculitis. *Nat. Rev. Dis. Prim.* **6**, 71 (2020).

389. van Delft, M. A. M. & Huizinga, T. W. J. An overview of autoantibodies in rheumatoid arthritis. *J. Autoimmun.* **110**, 102392 (2020).

390. Vander Cruyssen, B. et al. Anti-citrullinated protein/peptide antibodies (ACPA) in rheumatoid arthritis: specificity and relation with rheumatoid factor. *Autoimmun. Rev.* **4**, 468–474 (2005).

391. Anquetil, F., Clavel, C., Offer, G., Serre, G. & Sebag, M. IgM and IgA rheumatoid factors purified from rheumatoid arthritis sera boost the Fc receptor- and complement-dependent effector functions of the disease-specific anti-citrullinated protein autoantibodies. *J. Immunol.* **194**, 3664–3674 (2015).

392. Suurmond, J. & Diamond, B. Autoantibodies in systemic autoimmune diseases: specificity and pathogenicity. *J. Clin. Invest.* **125**, 2194–2202 (2015).

Acknowledgements

C.J.B. was supported by grants from the Vienna Science and Technology Fund (LS18-090), by the Leducq Foundation (Transatlantic Network of Excellence; TNE-20CVD03) and the EU Horizon Europe (TillT; 101080897).

Author contributions

The authors contributed substantially to all aspects of the article.

Competing interests

The authors declare no competing interests.

Additional information

Peer review information *Nature Reviews Cardiology* thanks Jan Nilsson, Michael Nurmohamed and Marten Tredelenburg for their contribution to the peer review of this work.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

© Springer Nature Limited 2024