Journal of Controlled Release 381 (2025) 113561

Contents lists available at ScienceDirect = journalof
@ controlled
I

Journal of Controlled Release

ELSEVIER journal homepage: www.elsevier.com/locate/jconrel

Check for

Automated manufacturing of cell therapies e

Alice Melocchi >, Brigitte Schmittlein b1 Sudeshna Sadhu ', Sunaina Nayak b
Angela Lares”, Marco Uboldi?, Lucia Zema“, Benedetta Nicolis di Robilant®,
Steven A. Feldman ¢, Jonathan H. Esensten ©

2 Sezione di Tecnologia e Legislazione Farmaceutiche “M. E. Sangalli”, Dipartimento di Scienze Farmaceutiche, Universita degli Studi di Milano, Milano, Italy
b Multiply Labs, San Francisco, CA, USA

¢ Dorian Therapeutics, San Francisco, CA, USA

d Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA

¢ Advanced Biotherapy Center (ABC), Sheba Medical Center, Tel Hashomer, Israel

ARTICLE INFO ABSTRACT
Keywords: Advanced therapy medicinal products (ATMPs), particularly genetically engineered cell-based therapies, are a
Robotics major class of drugs with several high-profile Food and Drug Administration (FDA) approvals in the past decade.
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Automation
High-throughput production
Autologous cell therapies

However, the high cost and limited production capacity of these drugs remain a barrier to access. These costs are
primarily due to the complex manufacturing processes (often a single batch for a single patient), which increases
personnel and facility expenses, and the challenges associated with tech-transfer from research and development
stages to clinical-stage production. In order to scale up and scale out in a cost-effective way, automated solutions
capable of multi-step manufacturing have been developed in academia and industry. The aim of the present
article is to summarize the design approaches and key features of current multi-step automated systems for cell
therapy manufacturing. For each system described in the literature, we will discuss different aspects in detail
such as cell specificity, modularity, processing models, manufacturing locations, and integrated quality control.
Our analysis highlights that developers need to balance competing needs in an environment where the biological,
business, and technological factors are constantly evolving. Thus, designing engineering solutions that align with
the pharmaceutical end-user is essential. Adopting a risk-based approach grounded in published data is the most
effective strategy to evaluate existing and emerging automated systems.

1. Introduction (HCT/Ps) in the United States, has grown both in academia and the
pharmaceutical industry [1-3]. These products leverage their biological,
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ATMPs consist of blood-derived cells for some therapies (e.g. T-lym-
phocytes, B-lymphocytes, Dendritic Cells (DCs) and Natural Killer Cells
(NKs)) and non-blood cells for some tissue engineering applications (e.g.
stem cells, induced pluripotent stem cells) [4-6]. Particularly impressive
results in terms of efficacy and patient compliance have been obtained
with effector T cell products, as they are characterized by high selec-
tivity and expansion potential. Treatment of cancer and autoimmune
diseases stand out as major areas of clinical success among the diverse
applications of effector T cells [7,8]. Due to many clinical successes over
the past decade novel gene- and cell-therapies are under intense devel-
opment [9-12]. After infusion, such living therapeutics can travel to the
site of disease, demonstrate specificity against a selected target, and
provide long-lived benefits by proliferating and persisting in the pa-
tient’s body. Examples of approved therapies include Tumor infiltrating-
lymphocytes (TILs), chimeric antigen receptor T-cells (CAR-T), and T
cell receptor-engineered T cells (TCR-T) [13-15]. Allogeneic and
autologous strategies are under investigation [16-19]. Allogeneic ther-
apies use cells derived from a qualified 3rd-party donor, whereas
autologous therapies use the patient’s own cells. Allogeneic treatments
have shown promise in some settings, but require a qualified donor for
obtaining starting material and are associated with higher risk of
rejection and graft-versus-host disease. In contrast, autologous therapies
pose lower rejection risks and do not cause graft-versus-host disease.
Since most currently approved therapies are autologous, they are the
focus of current research efforts [20,21].

Since 2017, when the first commercially successful cell-based ther-
apy was approved by the Food and Drug Administration (FDA), more
than 2,000 new clinical trials have been initiated to demonstrate po-
tential of these living therapeutics [21-27]. The success of these trials
have generated a high demand for cell therapies. More than 100,000
batches of CAR-T cell products are required for the European market
alone over the next decade [28]. However, cell therapy costs still
represent a challenge for widespread implementation into clinical
practice. Novartis priced one infusion of tisagenlecleucel (Kymriah), the
first approved B-cell precursor acute lymphoblastic leukemia CAR-T cell
therapy, at $475,000 [28-31]. Today, each CAR-T infusion ranges from
$373,000 to approximately $500,000 [32-36]. On top of that,
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additional costs for the patient include hospitalization, hospitalization
post-cell infusion, and follow-up care. These numbers are also driven by
the high average cost of developing cell therapies for the pharmaceutical
company, including research and development, manufacturing as well
as regulatory approval.

ATMPs are in general challenging to manufacture, formulate, char-
acterize, and test for quality [37]. This complexity affects the
manufacturing process, resulting in high expenses [38,39]. Current cell
therapy manufacturing relies on a number of ordered steps that are
generally performed by highly qualified operators (Fig. 1) [40,41]. The
complexity of the multi-step process, coupled with inherent biological
variability, leads to variable manufacturing outcomes, including poor
efficacy or non-sterility of the final products. Manufacturing failures are
still common for some commercial products. Approximately 4-7 % of
patients are unable to receive their CAR-T treatment due to
manufacturing issues [42].

In addition to process complexity, many pharmaceutical companies
are unprepared for the increase in scale when transitioning from clinical
trials to a commercial production process, especially if they rely heavily
on manual manufacturing methods [41]. Indeed, a large number of
personnel is needed to produce each therapy. Assuming a hypothetical
10-day manufacturing process, and up to 300 processes running in
parallel each day, the full-time employees including manufacturing and
support staff, technicians, quality assurance, quality control and logis-
tics would number approximately 1,700 for a single facility [43]. This
workforce would not only be hard to find, but also economically chal-
lenging to sustain. Labor-intensive and stressful bench-top manual
manufacturing also leads to operators’ high turnover rates up to 70 % in
18 months. This turnover slows production and contributes to high cost
because extensive training is required before new operators are ready to
work on the production floor [44,45]. At the same time, the instruments
used in smaller-scale experiments do not directly translate to larger
clinical-scale production, which further increases the costs related to
tech-transfer [46]. Finally, the expenses are very high for maintaining
complex equipment and highly classified facilities for aseptic processing
[47-54].

Initial attempts to contain cell therapy costs and to increase

Wash Isolation Activation Genetic
Removi fose ities or Selecting cell types by Triggering functional Modification
“d;’:'z;’l::;“f 1'1"':{’ Zg;ﬂ'z; 104; 7 specific phenotype changes, like Editing cells to gain
“elizladly from a heterogeneous proliferation, in traits needed for
population isolated cells specific applications
REAGENT COLLECTION EXPANSION FORMULATION CRYOPRESERVATION
PREPARATION Harvesting cells from blood Increasing target cell Creating patient specific i s
— = = === Freezing cells to preserve
Formulating reagents and tissue for subseq population through in vitro doses of expanded target cell v ;ialilit P fl; bl
needed for process processing cultivation population vJjo s
Reprogramming Differentiation
Changing the identity ity ol

from one cell type to
another

unspecialized cell type
to a mature cell type
over time

QUALITY CONTROL

1
1 Sampling occurs throughout process, for cell count, viability assay, purityl identity testing, sterility testing, potency assay 1
|

Fig. 1. Outline of the most common manufacturing steps for cell therapies.
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throughput include novel in vivo gene transfer methods, engineering
alternative cell sources, development of allogeneic therapies, and
automation [55,56]. Automation offers key advantages in the
manufacturing process due to repeatability and accuracy of tasks,
traceability of completed operations, integration of sensing and controls,
and general reduction of human involvement [57-62]. These qualities of
automated systems provide reductions in product variability,
manufacturing errors, risk of contamination, operator exposure to haz-
ardous materials, and facility cleanroom requirements. Additionally, the
smaller footprint of automated systems compared with manual systems
increases productivity per unit area. A single employee can operate
many automated systems simultaneously, increasing the number of
tasks completed per unit time, supporting rapid process scalability
without the need to train staff in manual processing.

Technology developers have developed a variety of research- and
clinical-grade solutions to simplify and automate cell expansion. The G-
Rex® vessels were introduced to improve upon the use of flasks and of
static bags [28,63-69]. Taking advantage of a gas-permeable mem-
brane, the G-Rex® bioreactor enables continuous delivery of oxygen and
nutrients to cells, thus eliminating the need for manually changing the
media multiple times during the culturing days. As a step forward,
automated bioreactors were also developed, including hollow-fiber,
stirred-tank, and rocking motion bioreactors (e.g Ambrl5®,
Ambr250® bioreactors, Terumo Quantum Cell Expansion System, Xuri
Cell Expansion System®) [70-73]. Limula is working on a novel closed
bioreactor that serves as both a centrifuge and a culture vessel for T cells
[74]. Through cell monitoring, automated perfusion protocols, and
rocking motions to transfer oxygen and nutrients to cells, these devices
reduce operator involvement. Systems automating cell washing, isola-
tion/enrichment, genetic editing, and formulation have been developed.
For example, automated cell washing steps can be performed by Sepax
(BioSafe), PureCell Select™ (Pall Corporation) and RoboSep (Stem Cell
Technologies) [75-80]. MaxCyte’s GTx platform performs automated
gene editing steps using a clinically validated electroporator. Peer sys-
tems include the Thermofisher CTS Xenon™ Electroporation System,
Lonza’s Nucleofector®, and the Miltenyi CliniMACS® Electroporator
[81]. Miltenyi’s CliniMACS Plus® automates the isolation/enrichment
process, using a closed system and established MACS technology for
clinical grade cell separation [82]. Terumo’s FINIA Fill and Finish
equipment is used for automatically formulating cell suspensions with
cryo-media and aliquoting the product into cryovials [83,84]. In a
further development step, pharmaceutical companies, startups, and ac-
ademic laboratories have started to test more complex engineering ap-
proaches to automate multiple steps at a time [58,60,85,86]. The
literature describing the various automation approaches has dramati-
cally increased over the last few years, highlighting the urgent need to
improve the current manufacturing of cell therapies. The increasing
numbers of presentations and abstracts on manufacturing automation at
international conferences indicates that more articles on the topic are
expected to be published in the near future [87-103].

The aim of the present work is to summarize key quality attributes
and to compare characteristics and performance of manufacturing sys-
tems intended to automate multiple steps of the cell therapy production
process. We detail advantages and challenges of systems that are
currently commercially available, under development, or are expected
to reach the market in the next few years.

2. Multi-step cell manufacturing systems
2.1. Overview

The multi-step automation solutions described so far in the peer-
reviewed scientific literature are summarized in Tables 1 and 2 as well
as in Fig. 2. Of note, among the devices that can automate multiple steps
of the cell manufacturing process, only those that could perform the
expansion steps were included, as this is the most time- and labor-
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intensive task. Systems described in Tables 1, 2 and shown in Fig. 2
are only those with published results, either already in use for clinical
manufacturing of therapies (Chapter 2.1.1 and Table 1) or currently
under development (Chapter 2.1.2 and Table 2). In the former case,
many research articles describe commercially available solutions for
different cell types, focusing on evaluating the final cell output. For
automated solutions still in the research phase, the core focus was
describing the proof-of-concept automation features and their potential.

2.1.1. Clinical production

The AutoCulture® by Kawasaki Heavy Industries, CliniMACS Prod-
igy® by Miltenyi Biotec, Lonza Cocoon® and Cell X Precision Robotic
Cell Culture Platform are used for automating either commercial or
clinical trial production of cell therapies.

Kawasaki Heavy Industries completed development of AutoCulture®
in 2012 and published results in 2013 for automated culture of human
cardiac stem cells (CSCs) [104,154-156]. In 2016, the system was used
in clinical trials to culture MSCs for knee cartilage cell therapy. The
system consists of tube and flask de-cappers, media pumps, a pipette, a
centrifuge, a rotating plate, and a COy incubator. Flasks and other
consumables are robotically operated within an ISO 5 environment with
downward airflow through a high efficiency particulate air (HEPA) filter
system. It is designed for large-scale stem cell cultivation: notably, it
includes a consumable throughput analysis feature that predicts when
they will become short and provides alerts.

Miltenyi Biotec published initial findings comparing manual versus
CliniMACS Prodigy® automated CAR-T therapy production in 2016
[28,105-123,157]. Two years later, the system was approved by the
European Medicines Agency (EMA) for manufacturing MolMed’s allo-
geneic T cell therapy intended for patients suffering from high risk
leukemia (Zalmoxis) [158]. It has since demonstrated efficacy for
treating patients with chemotherapy refractory tumors [111,114].
Current research on the CliniMACs Prodigy® highlights its applications
for: i) clinical manufacturing, such as GSK’s pipeline of CAR- and TCR-T
products, ii) the culture of various cell types, including mesenchymal
stromal cells (MSCs), induced pluripotent stem cells (iPSCs), NKs and
DCs, as well as iii) the scalable production of large cell quantities, from 5
x 10 cells in the standard version to 1.5 x 10'° cells in the large scale
one [108,109,115,116,120]. The system consists of a closed, single-use
consumable set for aseptic processing, a temperature controlled centri-
fugation unit for cell culture and separation, a magnetic unit for target
cell enrichment, a peristaltic pump for fluid transfer, and pinch valves to
direct flow.

In 2020, Lonza entered into a partnership with Sheba Medical Center
in Israel to manufacture CD19 CAR-T cell immunotherapy using the
Cocoon® platform [28,124,125,159]. One year later, Leucid Bio agreed
to use the Cocoon® platform to manufacture CAR T cells for a forth-
coming Phase I clinical trial [160,161]. Lonza subsequently published its
first paper comparing viral versus non-viral gene editing of peripheral
blood mononuclear cells (PBMCs) using the Cocoon® in 2021, and a
study on manual versus automated Cocoon® production of CAR-T cells
in 2023. The Cocoon instrument contains a peristaltic pump and control
valves for fluid delivery, a heated chamber for culturing, and a cooled
chamber for preloading process reagents. It is compatible with cus-
tomizable cassettes, tailored to the specific needs of each product. The
recommended capacity for the system is approximately 2 x 10° viable
cells.

Cell X Technologies’ precision robotic cell culture platform pub-
lished results in 2023 for iPSC generation and expansion [126,127]. It
was selected in 2024 to automate Aspen Neuroscience, Inc.’s iPSC
manufacturing [162]. The Cell X system couples an off-the-shelf robotic
liquid handling unit with an in-house designed syringe pump and aspi-
ration pump, along with micropipettes, culture plates, peristaltic pumps,
and an automated microscope. The workstation was designed to be
placed within a laminar flow hood. The flow hood plus adjacent in-
cubators are then placed within the Cell X Biospherix Xvivo system to



Table 1

Key features of systems, in the clinical production stage, that automate multiple-steps of the cell manufacturing process.
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Table 1 (continued)

Cell Types Tested System Design Operator involvement Suitability for =~ References
R R , K . centralized and
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ensure an aseptic environment.

2.1.2. Research and development

Pre-commercial stage devices are either developed for cell therapy
process development, or currently undergoing testing to manufacture
commercial products.

Sartorius launched the CompacT SelecT CellBase in 2005 and pub-
lished data in 2008 for its implementation in support of cell-based assays
for Alzheimer’s drug discovery, comparing manual versus automated
Chinese hamster ovary cell (CHOs) cultures [128-140]. Since then,
published data demonstrates the feasibility of culturing a variety of cells,
including dermal fibroblasts, MSCs, and iPSCs, and automated large-
scale transient transfection of human cell lines. A laminar flow cham-
ber houses a robotic culturing system, where flasks are transferred be-
tween fluid pumping and incubation stations.

Researchers from Zurich University of Applied Sciences developed
an automated cell-culture platform, with results published in 2011,
designed for the isolation, expansion, and quality control of human
primary cells, particularly intervertebral disc cells, for regenerative
medicine [141]. The platform integrates novel features such as auto-
mated biopsy handling, tissue homogenization, confluence measure-
ment, and immunostaining for phenotype analysis, ensuring
reproducibility, safety, and high-quality cell production. The system
demonstrated comparable results to manual methods in terms of cell
yield, viability, and phenotype.

Fraunhofer built the AUTOSTEM platform in 2016 and published
research in 2017 for automated manufacturing of bone marrow derived
MSCs [142-145,163]. In 2022, scientists demonstrated its capability to
manufacture MSCs with similar yield and phenotype to those manually
produced. The device uses two chambers of different classification
levels, grade A and grade D. Each chamber contains a six-axis robot with
custom designed grippers. The grade A environment is used for formu-
lation, fill, and cell collection. It contains a centrifuge, cell counter, de-
capper, and pipetting device. The grade D area enables cell expansion
and media exchange, containing two 3 L single-use bioreactors and
—80 °C reagent storage.

In 2018, researchers from Osaka university in Japan developed and
tested the Tissue Factory for cultivating three ATMPs: multi-layered
skeletal myoblast sheets, human chondrocytes, and human iPSCs
[146]. The goal was to develop an open platform to connect multiple
single function apparatuses together and mediate exchange of materials
across them. The system consists of 9 hexagonal modules that can move
around via a robotic unit attached to the base. They can be connected
and detached using standardized connection interfaces to enable mate-
rial transport. Modules contain a mixture of custom-made and industry
standard cell culturing consumables and equipment to complete each
cell culture step. To ensure sterility, materials are aseptically introduced
to any of the cell processing modules through a material preparation
isolator.

Following a slightly different modular approach, several research
institutions in Germany built and tested the StemCellFactory, publishing
data in 2020 for automated generation and expansion of iPSCs
[147,148]. The system focuses only on the culture of iPSCs, demon-
strating reprogramming and clone derivation steps. Four modules are
equipped with laminar airflow and arranged according to process steps:
reprogramming, isolation, expansion, and quality control. Materials are
transported between modules via a robotic arm arranged on a horizontal
axis. Industry standard equipment incorporated includes a Hamilton
liquid handling system, a Sigma centrifuge, the CellCelector (for isola-
tion), and two automated LiCONIC incubators. Each of them worked
independently, with no central software in charge for overall control.

Microfluidic technologies have recently emerged as a novel approach
for the production of autologous cell therapies [149-152]. These chips
reduce the chances of contamination and allow for parallel processing.
In 2023, a small-volume microfluidic bioreactor, i.e. the Mobius Breez
microbioreactor was commercialized (Erbi Biosystems, MilliporeSigma)
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for cell culture-on-a-chip. Initially, it was tested for both microbial and
mammalian cell cultures and more recently for CAR-T manufacturing. It
integrates mixers, injectors, and sensors for real-time monitoring and
closed-loop control of perfusion flow rate, optical density, temperature,
CO», dissolved O and pH levels. It encompasses a base station controller
and a CO; controller supporting up to four pods, each with a micro-
fluidic chip linked to a bottle rack assembly, supplied as a sterile, single-
use consumable. The consumable can be aseptically connected via sterile
welding, producing cells for different patients in four separate cham-
bers. This chip harvests more than 60 x 10° viable T cells from patient
donors and more than 200 x 10° from healthy donors. In this way, the
Mobius Breez microbioreactor addresses a common drawback of
microfluidic devices by meeting the minimum cell dose of Tisa-cel
(Kymriah) and exceeding the maximum cell dose of Axi-cel (Yescarta).
Interestingly, CAR-T cells produced at high densities in the micro-
bioreactor were highly functional despite higher proportions of T cells
expressing differentiation and senescence markers.

Proof-of-concept results for automated T cell expansion performed
by the Multiply Labs robotic cluster were published in early 2024 [153].
This self-contained system employs industry-standard cell therapy
manufacturing equipment and has the potential to automate small- and
large-scale expansion for multiple products in parallel. A robotic arm on
a rail moves consumables between robotic modules. Purpose-built ro-
botic cartridges interact with cell processing equipment. The system
works with single-use consumables outfitted with functionally closed
connectors to facilitate aseptic cell transfer. Reagent addition is per-
formed using an integrated bag, pump, and weighing apparatus. Sam-
pling from bioreactors is performed via syringe. After demonstrating
that the robotic cluster could produce cells with similar proliferation,
viability, genetic expression to a manual culture, the company is
currently undergoing pilot studies for end-to-end automated production
of cell therapies.

2.2. Feature analysis

Here we analyze the core features representing the focus of each
column of Tables 1 and 2. The critical discussion will be focused on i)
cell agnostic versus cell specific, ii) all-in-one versus modular, iii) serial
versus parallel, iv) centralized versus decentralized manufacturing
compatibility. In addition, insights on operator involvement, controls (i.
e. closed versus open loop control, real-time versus off-line, sterility) and
quality assessment will be provided.

2.2.1. Cell specificity

A range of cell types, both adherent and suspension, can be cultured
on automated systems for therapeutic applications: immune cells (e.g.
NK cells, tumor infiltrating leukocytes, blood and monocyte-derived
dendritic cells (Mo-DCs), and regulatory T cells), gene modified cells
(e.g. CAR-T, CAR-NK), and stem cells (e.g. pluripotent stem cells (PSCs)
including induced hematopoietic stem cells (HSCs), MSCs and cancer
stem cells). There are two common approaches to ensure cell type
compatibility: developing cell-agnostic equipment designed to automate
the production of different cell types (e.g CliniMACS Prodigy®), or
developing equipment tailored for a specific cell type (e.g Autostem,
AutoCulture). For the latter, the configuration of the equipment is
dependent on the target products and the unique steps needed for their
production (Fig. 1). Non-adherent or suspension cell types (e.g. T cells,
NK cells) often undergo expansion with genetic modification. On the
other hand, adherent cell types (e.g. iPSCs, MSCs) are less likely to have
genetic modification. While equipment designed for a specific cell type
is clearly optimized for the intended manufacturing process, they often
lack versatility, a key quality of cell-agnostic solutions. In any case, both
cell-agnostic and cell-specific equipment need to accommodate the
inherent variability of living systems. For example, in autologous cell
therapy products, there is considerable variability in starting material
quality and quantity [164]. This variability can have critical effects on
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Table 2 (continued)
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Clinical Production

AutoCulture®

Miltenyi CliniMACS Prodigy®

Cell X precision robotic
cell culture platform

Research and Development

CompacT SelecT CellBase Zurich University System

- e SR

Fig. 2. Images of systems automating multiple steps of the cell manufacturing
process described in the literature (included with permission: AutoCulture®
from [104]; Lonza Cocoon® from [124]; Cell X precision robotic cell culture
platform from [126]; CompacT SelecT CellBase from [140]; Zurich University
System from [141]; AUTOSTEM from [144]; Tissue Factory from [146];
StemCellFactory from [148]; Mobius Breez microbioreactor from [150];
Multiply Labs robotic cluster from [153]).

manufacturing outcomes. Therefore, automated systems must be able to
dynamically adapt to a wide range of cell behaviors. An automated
system will need to be able to adjust the number of cells and culture
conditions to prevent either overgrowth of cells or addition of a small
number of cells to an overly large culture vessel. Some of these decisions
may require human or Al-based judgement and intervention.
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2.2.2. All-in-one versus modular systems

Two automation strategies, all-in-one versus modular, are evident
from our literature review [28,43,59,165]. The former is based on all-in-
one instruments, in which multiple steps are performed by a single de-
vice in-house developed by a specific company (e.g. CliniMACS Prod-
igy®, Lonza Cocoon®). On the other hand, the latter relies on
integrating equipment already in use for clinical manufacturing of cell
therapies from multiple vendors, each performing a specific set of sub-
processes (e.g. AUTOSTEM, StemCellFactory).

All-in-one systems benefit from standardization of set-up, ease of use,
and convenient data acquisition [43,60]. However, it may happen that
these solutions do not appropriately fit the peculiarities of a given
manufacturing process, and other devices are required for specific unit
operations. This can necessitate additional manual steps. For example,
the Lonza Cocoon® has an integrated magnet for cell enrichment that is
compatible with the use of Dynabeads (a Thermofisher enrichment re-
agent commonly used in industry). Since all-in-one instruments may
lack standardized interfaces for connectivity and data exchange, their
use in combination with instruments from other providers could be
limited. Recognizing the versatility issue, companies started developing
additional proprietary systems to be coupled with their all-in-one de-
vices for specific process steps (e.g. Miltenyi CliniMACS Prodigy® direct
compatibility with the CliniMACS® Electroporator for closed system
electroporation). Although the all-in-one approach could be considered
less flexible, and advantage is that the complexity of hardware and
software is hidden from the operator.

The 2023 International Consortium for Advanced Medicine
Manufacturing (ICAMM) meeting, involving experts from academia,
industry, regulatory authorities and policy makers, explored new ways
to accelerate adoption of manufacturing approaches for advanced
medicines and specifically for cell therapies. This meeting highlighted
the importance of pursuing modularity in view of its adaptability and
versatility [166]. The modular approach is similar to modern assembly
lines that can be found in different industries [55]. Modularity repre-
sents an evolution of manual production-line based manufacturing used
in cell therapy (e.g. BioSpherix Xvivo modular laminar). In modular
systems, the item being processed moves from one station to the next,
with each station dedicated to a specific step.

The modular approach involves additional complexity because
hardware and software integration between different devices is needed
[42,59,167]. To simplify this task, a mind-set change is required among
equipment suppliers, who need incentives to improve the compatibility
of their device with automated processes. An overall modular archi-
tecture offers major customization possibilities: for instance, keeping the
system continuously updated by adding newly-developed equipment or
including instruments used in specific cell processes. In addition, by
allowing the integration of different equipment for the same cell
manufacturing step, dependence on a single supplier could be reduced.
Indeed, in the early development stage, it is important to assess equip-
ment interchangeability within the same process by demonstrating that
analogous products can be produced without significantly altering
relevant characteristics (Dutch Innovation program NXTGEN-
HIGHTECH) [37,168].

For the physical integration of various equipment necessary for the
modular approach, one of the solutions described is the use of robotic
arms equipped with custom-made interfaces (e.g. AUTOSTEM, Multiply
Labs robotic cluster) [144,153]. Collaborative robots, designed to work
alongside humans, are generally preferred, because they are less
expensive, easy to deploy and program, safer, and more consistent than
their industrial counterparts when dealing with relatively light items.
Since the robot generally mimics human hand motions for transferring
cells between processing units, this type of automation has considerably
low comparability risk [60]. However, recreating human motion may
not always be the most effective way of performing an action. Robotic
arm operations could also be optimized further, for instance in terms of
speed, precision, reliability. To this end, major efforts are also required
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from the software perspective, not only to program the robotic arm but
also to save and import data and facilitate communication between
devices [85]. Indeed, many equipment manufacturers have not yet
recognized the need for open interfaces and currently offer either no or
only limited connectivity to software or devices from other suppliers.

Finally, custom-made software could be used to ensure cross-
compatibility between modular system devices by extracting data via
generic and self-contained interfaces. Software with service-oriented
architecture is often advantageous to meet the demand for flexibility,
while giving maximum control over data and devices. This approach is
particularly promising because it lays the basis for a generic system that
can also manage additional devices. Moreover, the development of
novel software creates an opportunity to automatically generate elec-
tronic batch records to avoid laborious manual documentation and to
ensure an automated flow of information for traceability purposes.
However, building custom software could be challenging, as it requires
extracting encrypted data from different devices and major capital
investment.

2.2.3. Serial versus parallel manufacturing approach

Serial versus parallel production is another key aspect of automated
equipment design [43]. For serial manufacturing, different steps are
performed sequentially, whereas parallel involves completing several
batches at a time. Equipment for stem cell therapy production is usually
designed for parallel cell expansion (e.g. StemCellFactory, CompacT
SelecT CellBase), while those for T cells (e.g CliniMACS Prodigy®,
Lonza Cocoon®) usually utilize serial expansion. While serial systems
are more traceable and present less cross-contamination risk, they rely
on the one-device-per-patient approach, making them potentially less
scalable than parallel systems [59]. Indeed, multiple batches can be
manufactured only with several all-in-one devices working at the same
time, which would require major upfront investment, not only for pur-
chasing the equipment but also for ensuring enough facility space to run
the various processes. Also, a single all-in-one system may be tied up for
weeks just for cell expansion, whereby the majority of the instrument is
not used, and cannot be utilized for another batch. This provides an
inefficient manufacturing workload.

On the other hand, parallel systems have the potential to scale up and
to make autologous cell therapy manufacturing economically more
attractive by culturing multiple patients’ cells within the same frame-
work. For this reason, parallel processing is proposed as a key strategy to
achieve scalability in automation while still allowing for flexibility, to
meet individual patient or therapy needs. For example, the Mobius Breez
device incorporates four separate temperature-controlled chambers,
each with a unique cell product [149-152]. To achieve parallel pro-
duction of multiple therapies and considering that cell expansion is
probably the longest step, some authorities also propose increasing the
number of bioreactor cartridges within a centralized incubator
[133,143,145]. This would be done using closed tubing kits that are
replaced before the respective process step, so cells from several patients
may be processed in parallel without the risk of cross-contamination.
However, further data needs to become available to ultimately demon-
strate the suitability of this approach that is still at the research and
development stage (e.g. AIDPATH project funded by the European
union, Multiply Labs robotic cluster) [153,164,167-170].

Another aspect is scalability versus customization, particularly for
cell agnostic, modular automated manufacturing platforms. While all-
in-one systems have limited customization options post-
commercialization, modular systems could favor process custom-
ization even after marketing, for instance allowing modifications on
specific subtasks without the need to stop the process completely. To
manufacture products in parallel on a single modular system, advanced
process planning software can be used to optimize daily or weekly
production schedules and manage multiple custom processes at once.
This software would minimize system downtime and maximize
throughput. Furthermore, reinforcement learning and adaptive
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scheduling algorithms can be utilized to address resource allocation
problems, process uncertainties, and prevent the need for frequent re-
planning. Ultimately, these planning tools aim to enable scalable pro-
duction of patient- or therapy- specific products, independent of pre-
determined process parameters.

Both all-in-one and modular automated systems can enhance scal-
ability over current manual manufacturing of cell therapy by monitoring
the process in real-time and collecting extensive data for multiple pa-
tient batches running concurrently. Many systems discussed in this re-
view capture such data: batch/identification number, possible
contamination, and equipment parameters (e.g. calibration, alerts).
Logging this data improves scalability by limiting the labor force
involved and by avoiding errors or mix-ups that could cause process
failures. This would reduce costs and support more efficient operations.

2.2.4. System design towards aseptic processing

To ensure sterility of the final product, different approaches are
pursued, including: i) enclosing the entire unit or having the high-risk
area encased in a classified cleanroom or biosafety cabinet (e.g.
AUTOSTEM, StemCellFactory, CompacT SelecT CellBases), often
coupled with sterilization of the items to be introduced (e.g. hydrogen
peroxide for Tissue Factory), ii) utilizing single-use consumables
compatible with sterile welding to achieve a closed system (e.g. Clin-
iMACS Prodigy®, Lonza Cocoon®), and iii) employing functionally
closed aseptic connections made on demand (e.g Multiply Labs robotic
cluster) [167,171,172]. Functionally closed systems keep the product
isolated from the environment, but can connect and disconnect different
output and input materials as required by the processing operation.
Besides reducing the chance of contamination, closed systems are
generally preferred because they allow the manufacturing to be per-
formed in a non-classified environment, without compromising safety of
the final cell products. However, classified cleanrooms are often used
even for closed systems [173]. In general, the use of closed systems
likely reduces the costs associated with the construction/maintenance of
highly classified facilities. However, single-use consumables are
expensive and sterile welding is error-prone. Functionally closed con-
nections enable a system to maintain its closed state after connection.
This allows for lowering of cleanroom classification requirements and
ability to connect different consumables in a convenient/standardized
way. One of the issues that has to be addressed, is that key reagents for
cell therapy (e.g. viral vectors, media, growth factors) are typically
supplied in non-closed-system compatible containers such as screw top
tubes. Therefore, a feasible strategy would be to partner with raw ma-
terials suppliers to develop interfaces compliant with closed/function-
ally closed technologies. The same challenges need to be addressed for
sampling, which in many cases requires system opening [153].

2.2.5. Quality control

In-process and final product testing play a fundamental role in cell
therapy manufacturing [6,174]. For releasing a batch, regulatory
agencies require characterizing the final product with validated analytic
assays to confirm it meets relevant release criteria including identity,
purity, and potency. Limited sample volumes are required to avoid
wasting product [6,44].

To reduce testing delays and accelerate product release, there are
efforts to improve in-process quality control [43,60,165]. Indeed, there
is a clear trend towards the use of process analytical technologies
(PATs), to avoid open manipulation of samples for quality control pur-
poses [175,176]. Current manufacturing processes mainly rely on pre-
defined schedules and open off-line measurements, which are associ-
ated with high operator involvement, increased chances of errors, and
contamination. To ensure proper cell evaluation, additional character-
ization equipment is necessary, requiring larger space in the
manufacturing facility, and highly skilled employees to operate them
and to analyze results. Development of smart manufacturing platforms
taking advantage of PATs could lead to important efficiency gains.
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Indeed, PAT integration may enable more robust processes that would
also be more flexible and faster to adapt towards cells’ biological vari-
ability [165-167]. First attempts towards this type of integration have
been described, mainly for culture condition optimization. The moni-
tored parameters often include gas levels (e.g. CO3, Oy, No), pH, dis-
solved oxygen, metabolites (e.g. glucose, lactate), perfusion flow rate,
and temperature. For example, the Mobius Breez bioreactor continu-
ously monitors dissolved oxygen and pH, using a pneumatic optical
digital controller to quickly regulate the O, and CO,, thereby improving
conditions for cell growth [149-151]. Non-invasive online sensors are
preferred because they provide real-time data without disturbing the
cell culture [139]. However, most integrated sensors can only perform
bulk indirect measurements of the cells’ environment and thus rely on
comparison to an earlier time point [171]. Therefore, they require
proper calibration, especially in the case of cell culture changes.

Depending on the cell type, access to image-based measurements is
advantageous for biologists. Thus, a few systems have started to
implement these sensors for both evaluation of morphological features
of growing cells and as a quality check. For example, the StemCellFac-
tory takes advantage of microscopic image-based confluence data to
determine the dilution ratio, whereas Autoculture® and Cell X precision
robotic cell culture platform uses imaging technology for cell
morphology and characterization [104,149]. Furthermore, certain
modular systems implement industry standard cell analysis technolo-
gies. The CompacT SelecT CellBase integrates with the Incucyte and the
Vi-CELL XR Cell Viability Analyzer, while the AUTOSTEM uses an
incorporated NC3000 cell counter for sampling and analysis
[128-140,142-145]. Therefore, there is an opportunity for modular
systems to also integrate analytic instruments in the manufacturing
platform. To this end, the most efficient option is to select equipment
already designed to be automation friendly, such as the Accelix flow
cytometer, which can give real-time immunophenotyping results using
pre-loaded cartridges [177].

Automated, easy-to-use and integrated PATs would provide data
monitoring capabilities required for supporting the Quality by Design
(QbD) approach, which could help improve final cell product quality
and handle manufacturing complexity, as highlighted by A-CELL STUDY
[6,174,177-181]. QbD initially requires the description of the desired
product quality characteristics (i.e. quality target product profile) and
the identification of attributes that directly affect safety and efficacy of
the product (i.e. critical quality attributes). Parameters impacting these
attributes (i.e. critical process parameters) are selected to develop a
design space that quantifies how parameter variability affects the crit-
ical quality attributes. Then, a control strategy must be validated to
maintain processing conditions within an acceptable range and to
ensure continuous improvement.

The use of PATs will also lay the basis for the development of a
feedback-driven manufacturing platform with automated decision
making, i.e. able to modify the process in real-time based on the results
[43,60,165,169]. By collecting a large amount of data, PATs could be
combined with artificial intelligence and machine learning. In the long
term, this approach could allow better design of the manufacturing
process and correlation of cell characteristics with patient clinical re-
sponses. In preliminary findings, artificial intelligence was used to
interpret findings collected from the CliniMACS Prodigy® to drive de-
cisions that optimized manufacturing parameters and to provide valu-
able process insights [44]. Moreover, the digital twin approach,
consisting of a virtual representation of a cell culture process using data
and complex models, has been employed at the research level
[169,180]. Scientists can simulate and predict cell behavior, enabling
optimization of the manufacturing process by identifying potential is-
sues and adjusting parameters before anything occurs in the real-world.
This way, it would be possible to improve consistency of the final
product quality and to ultimately ensure its efficacy (e.g T2EVOLVE and
ImSavar projects) [165]. Characterization of cellular products (e.g
viability, apoptosis profile, single-cell ribonucleic acid (RNA)
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transcriptomics, metabolomics, single-cell mass cytometry, performance
in cell-based immunosuppression assays) has been tested for facilitating
product and process design through data-driven modeling [44]. More-
over, various data analysis approaches (e.g. linear/nonlinear regression,
canonical correlation analysis, machine learning algorithms) have been
proposed for developing predictive models linking multi-omics charac-
terization findings (resulting from mass cytometry, transcriptomics,
metabolomics, lipidomics, and secretomics) and clinical outcomes.

Although online measurements and PATs implementation have the
potential to reduce and to speed up testing for final product release,
some tests are more challenging to automate. Assessment of sterility,
endotoxin levels, and mycoplasma contamination still represent a major
challenge [28]. The introduction of colorimetric and fluorescence-based
CO2 measurements of metabolic activity (e.g. BacT/Alert 3D and BD
BACTEC systems) or adenosine triphosphate detection by biolumines-
cence (Rapid Milliflex Detection System) has allowed for faster evalua-
tion of microbiological contamination. However, current guidelines for
ensuring product sterility require a 14 day test for bacteria, and in some
cases 28 day test for fungus. As the time-to-vein is a major constraint for
cell therapies, various companies are working on rapid testing methods
(e.g. Microsart ATMP Sterile Release kit by Sartorius) [28]. To further
improve production, modular systems tried to implement such controls.
For instance, the StemCellFactory benefits from a plate reader using an
absorption-based method to detect contamination via regular turbidity
measurements [147,148].

2.2.6. Operator involvement

All the various automated systems here still require a certain degree
of human involvement. Depending on the equipment considered, the
operators might need to perform either initial cell collection and
thawing; or the last process steps, such as formulation and cryopreser-
vation (Fig. 1).

For adherent cell culture, particularly of induced pluripotent stem
cells, the expansion process is more complex than for suspension cul-
tures, often requiring media exchanges, splitting cells, analyzing cell
morphology, picking healthy clones and discarding unhealthy ones. For
this reason, the AUTOSTEM, StemCellFactory, CompacT SelecT Cell-
Base, Autoculture, Tissue Factory, and Cell X Precision systems all
automate primarily the expansion step, as it is the most complex, long,
and labor-intensive of the adherent cell culture process. A few of these
technologies additionally automate collection, isolation, washing,
reprogramming, differentiation, and genetic modification. Preliminary
efforts were also directed towards automating quality control (e.g. cell
counting and imaging) as this is essential for assessing stem cell
morphology and confluence level.

For the systems that primarily are used for culturing suspension cells,
like the CliniMACS Prodigy®, Lonza Cocoon® and Mobius Breez
bioreactor, the manufacturing steps are relatively standard across cell
products. These systems primarily perform isolation of cell apheresis,
washing and buffer exchange, genetic engineering (using vector or
electroporation), expansion (including reagent addition), and formula-
tion. For cell agnostic systems (e.g CliniMACS Prodigy®), culturing
adherent cells as well as suspension cells may require manual coating of
the culture chamber as well as microbeads and enzymatic dissociation
methods for cell removal. Quality control testing is often done manually
in an adjacent facility or cleanroom; and currently, there is minimal
automated cell counting or imaging.

Overall, reagent and vector preparation are manual steps, together
with sampling for quality control testing. This is mainly due to design
constraints requiring open manipulation in a highly controlled envi-
ronment. However, there are a few automated systems in which these
issues started to be addressed by developing closed, pre-made consum-
ables and pre-formulated reagents.

2.2.7. Suitability for centralized and decentralized manufacturing
Automation would have a major impact on the balance of centralized
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versus decentralized point-of-care manufacturing of cell therapies. For
centralized manufacturing, all production steps occur at a single loca-
tion separate from the patient’s place of care. In the decentralized
approach, also known as the point-of-care strategy, products are man-
ufactured by local facilities, allowing for proximity to the patient. The
dominant model is centralized plants operating a rigid and structured
manual process, with almost no room for modifications [180-183]. Such
a process can take anywhere from 3 to 6 weeks for product delivery. In
the centralized approach, transporting patients’ starting material to and
from manufacturing facilities may challenge product sterility, stability
and cell viability. The duration of transportation, temperature fluctua-
tions, and potential for mechanical stress further exacerbate concerns
about cell quality. Applying proper cryopreservation techniques to
prevent microbial contamination and maximize cell yield while allow-
ing for long-term storage is crucial to the overall manufacturing process
[184]. Developing robust technologies for the safe and efficient pro-
cessing, transportation, and cryopreservation of these living therapies is
essential. Point-of-care decentralized manufacturing can be performed
within hospital settings. Decentralized manufacturing would likely have
initial start-up costs, as hospitals or health systems will need to invest in
building and maintaining a compliant manufacturing facility. However,
besides favoring patients’ access to cell therapies, onsite facilities would
facilitate transport, limiting the time between production and adminis-
tration. Currently, most point of care manufacturing uses all-in-one
systems. However, modular manufacturing systems might be suitable,
as long as their footprint is reasonable. Overall, use of automated sys-
tems can help standardize manufacturing and minimize product varia-
tion, improving intra- and inter-batch comparability, across different
distributed locations. Examples of equipment that claim suitability for
this approach include the CliniMACS Prodigy® and other systems in
development, such as the Cell Shuttle by Cellares [121].

3. Challenges and prospects of automation

Despite the many advantages provided by implementation of auto-
mated systems in cell therapy, as discussed above, there are also a few
challenges and open questions [60].

First, automation can reduce process visibility, which is often
considered essential from the operator’s perspective. This is often
referred to as the black-box-issue and novel ways to address it should be
pursued, such as software with better monitoring capabilities. This
provides the operators with more details on what is happening in the
process.

Moreover, although automation reduces risk of error, completely
eliminating failures is impossible. While automation decreases opera-
tional complexity, it often increases system complexity and risk poten-
tial. Failure mode effects analysis (FMEA) can identify potential
problems and address them by design improvements. Thus, a key miti-
gation strategy is performing de-risking comparability studies prior to
manufacturing patient/donor-derived material. In addition, during
process validation, intentional simulation of failure modes can verify the
capability of the automated device to detect the failure, put the process
into a stable state until intervention, and recover.

There are also regulatory challenges to the implementation of
automation [185,186]. Compliance with Good Manufacturing Practice
(GMP) is mandatory for all medicinal products, including cell therapies.
GMP standards require trained personnel, proper equipment, written
protocols, and traceability of starting materials and finished products.
The current regulatory guidelines for ATMP manufacturing, including
those released by EMA and FDA, provide only limited discussion on the
application of GMP principles to automated systems [187,188]. For
instance, the EMA guidance states briefly that automated equipment
must be suitable for its intended purpose, adequately qualified, and
should not be used outside of the recommendations of its manufacturer.
FDA has recently released a guidance on the Advanced Manufacturing
Technologies Designation Program (December 2024) [189,190]. Once a
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technology developer is accepted to this program, the FDA provides
early regulatory advice. The criteria for advanced manufacturing tech-
nology designation are broad: reducing development time or increasing
supply of a drug. There is no detailed discussion of unique regulatory
considerations for such technologies. Thus, it is critical that developers
take advantage of early, nonbinding regulatory meetings with the FDA
to discuss non-clinical studies, manufacturing, and clinical development
plans. These meetings provide valuable feedback and allow the FDA to
assess new technologies. Importantly, current regulations and guidances
were developed with the assumption that human hands are touching
most if not all parts of the manufacturing process of cell and gene
therapy. As advanced automation technologies become available, these
assumptions and relevant guidances will need to be revised. For
example, the elaborate classification systems for cleanrooms are based
upon the assumption that humans will be present in those spaces, and
those humans will generate both viable and non-viable particles that
could contaminate a drug product. However, automated and robotic
systems present totally different risks when in operation compared to
humans. Finally, other regulators outside of Europe and the United
States may have their own approach to implementation of automation.
Regulators widely considered to be more conservative, such as in
Switzerland and Japan, may wield outsized influence on the pace and
extent of the adoption of automated manufacturing technologies
[191,192]. Given such differences, a globally harmonized approach to
regulation of automation technology would be highly beneficial to
support rapid development.

Another critical question is the timing of automation implementation
during drug development, especially because current commercial sys-
tems are not designed for early process development. In early develop-
ment, manual processing is advantageous to delay costs associated with
automation and to maintain a high degree of flexibility in monitoring,
controlling, and modifying a process that is not optimized. For example,
the CliniMACS Prodigy® is equipped with pre-programed and validated
application-specific processes and is only compatible with Miltenyi re-
agents, so it can be relatively inflexible if extensive process development
is required.

During process development, all-in-one systems are more chal-
lenging and expensive, due to limited modularity. Therefore, one
approach is to defer automation until the process is fully understood and
locked. A different strategy is to implement automation only for a few
key process steps that significantly impact product quality attributes,
where the manual process would present unacceptable variability and/
or error rate. Finally, companies could employ step-wise implementa-
tion, where unit operations are automated when the corresponding
bioprocess step is sufficiently developed. This approach, more easily
adapted to a modular automation approach, is associated with lower
time-dependent costs and risks, but could result in low end-stage cost
efficiency.

To identify the proper automation solution to be implemented, and
the best time, a comprehensive approach to determine cost of goods
(COGs) is essential. The analysis should consider direct costs including
labor, materials, transport of patient/donor starting material, and in-
process as well as final product testing. Then, indirect costs should be
considered such as quality systems and facility maintenance costs.
Additionally, there is amortization of non-recurring investment,
including development costs, capital expenditures for facilities, and
equipment.

Taking into account the significant time, cost, and validation effort
associated with developing a new manufacturing system, it is difficult to
justify bringing novel, custom-made automated solutions to the market
[58]. Various cell therapy companies are thus using off-the-shelf auto-
mation. Indeed, already-available equipment provides ready-to-use so-
lutions and has the benefit of a much broader experience base, often
resulting in more refined equipment that has been extensively tested in
numerous research and clinical settings. Because what is already avail-
able on the market does not fit all the needs of cell therapy
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manufacturing, many pharmaceutical companies are partnering with
startups and manufacturing companies to design novel systems. For
instance, Argos and Invetech have entered into an agreement under
which Invetech will develop manufacturing systems to support pro-
duction needs for fully personalized immunotherapies based on Argos’
Arcelis® technology platform, in order to fully automate RNA isolation
and amplification from tumor homogenate in a single use format [193].
In addition, Charles River Laboratories partnered with Ori Biotech,
Bristol Myers Squibb with Cellares, and Legend with Multiply Labs to
collaborate on the development of novel automated platforms, either
focusing on all-in-one or modular systems [193-197]. Partnerships can
also involve companies developing analytical tools. For instance, Lonza
has recently partnered with Agilent Technologies to define critical
quality attributes and implement analytical packages into the current
Cocoon® system [198]. The above examples demonstrate that collabo-
ration between automation companies and pharmaceutical companies is
necessary for progress.

4. Evaluation frameworks

Various evaluation frameworks have been developed to compare
novel manufacturing solutions to those already on the market. These
evaluation frameworks de-risk implementation of new systems and in-
crease standardization [59,199-203].

In one of these frameworks, researchers attributed specific scores to
hardware, consumables, and software features, and pre-clinical or
clinical trial data [203]. Hardware should be designed for sterile
manipulation and cleanroom compatibility, using materials like stain-
less steel for cleanability and avoiding difficult-to-reach crevices and
sharp corners. It should minimize particle generation by motors, pumps
and other repetitive actions. It should also have uninterrupted power
supply, backup generators, and validated filtered lines to process gasses
(e.g. 0.2 pm, nonfiber-releasing filters). Single-use consumables, besides
meeting regulatory expectations for particulates/extractables/leachable
components, should have a consistent supply chain with additional
vendor alternatives to avoid potential shortages. Supply chains should
be carefully evaluated in case of proprietary consumables. Software
represents another scoring feature for the framework. It must be
compliant with 21 Code of Federal Regulations Part 11 for data integrity
and security of electronic records and signatures. For visibility and
convenience, software should enable user-level access to record process
interactions and, if possible, remote monitoring. Finally, for data
transfer and back-up, ethernet ports and connectivity to a validated
server are a priority, limiting the use of any transfer devices. This feature
could represent a challenge for modular systems, as they need to
communicate with equipment from a variety of vendors. Finally, ready-
to-implement systems should be provided with appropriate supporting
documentation for both software and hardware: protocols for installa-
tion, operational and performance qualification, cleaning, and preven-
tative maintenance. Availability of pre-clinical and clinical data is a
plus. New equipment may score lower due to a limited product history.

Another evaluation framework proposes specific improvements for a
few key areas of regenerative cell therapy manufacturing [200]. In order
to enable fully end-to-end manufacturing, the authors suggest the use of
existing technologies in a modular fashion to accomplish specific steps,
utilizing modern robotics to combine them. For non-destructive quality
control, they recommend in-line biosensors that are either therapy
agnostic but universally used, or sensors that are most useful for a spe-
cific product. To enable sterile, patient-specific processes, closed, semi-
universal disposable consumables are preferred, coupled with in-line or
single-use sensors for microbial contamination detection. A decentral-
ized manufacturing approach is proposed to reduce time from tissue
collection to reinfusion, which could be aided by advancements in non-
cryogenic storage methods, for example by developing novel stabiliza-
tion media.

Complementing the above frameworks, the present analysis benefits
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from a broader perspective that compares the critical features of multi-
step systems described in the literature.

5. Conclusions

Systems automating multiple steps of cell therapy manufacturing
processes were critically reviewed in this work, comparing their unique
features and challenges. Overall, automation should be considered a
long-term asset that would provide major savings over years as demand
for products increases [42,204]. The rapid pace of new scientific dis-
coveries and treatment modalities requires developers of automated
systems to balance between current and future needs [55,205]. There is
no guarantee that the robust manual manufacturing strategies devel-
oped for the cell therapy industry today will be sufficient for future
products.

Currently, detailed evaluation of equipment is difficult, mostly due
to limited available data for systems in the pre-commercial stage. To
make it feasible and to justify replacement of existing automated devices
with others under development, a mindset change is required [58].
Following the open science approach, companies should publish find-
ings regarding the performance of systems under development without
compromising intellectual property. Indeed, generating data justifies the
value of new technologies to all stake holders: scientists with concerns
surrounding the applicability of automation in cell therapy
manufacturing, regulators responsible for protecting public health, and
investors looking for cost-effective strategies to ensure compliance while
maximizing financial returns. For the various automated systems that
will come to market in the next few years, it is important to highlight
that there is not a unique answer, or solution, that is suitable for all cell
therapies. A risk-based approach must be taken, in order to identify
which would be most beneficial for the intended use.
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