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BM-MSCs delay the senescence of naive CD8'T cells
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Abstract: Objective To verify the effect of bone marrow mesenchymal stem cells ( BM-MSCs) in alleviating
immune senescence, and to explore the main immune cell population improved by BM-MSCs. Methods Mouse
spleen lymphocytes were isolated and stimulated to proliferate for 7 days for constructing a replicative aging model.
Flow cytometry was used to detect the pl6ink4a(pl6) and p2lcipl (p21) expression by T cell subpopulation in the
young control group, the replicative senescence control group and the BM-MSCs co-cultured group. Results In the
replicative senescence model of T lymphocytes, it was observed that CD8"T cells senescent significantly as compared
with CD4"T cells after continuous proliferation. Among the naive cells and effector cell subsets of CD8'T cells, effec-
tor cell senescence was the most significant. BM-MSCs co-culture had no significant effect on senescent effector cells,
and mainly alleviated the senescence of CD8'T cells by delaying the senescence of naive T cells( P<0.01,P<0.001).
Conclusions BM-MSCs co-culture can alleviate the replicative senescence phenotype of T cells and has a more sig-
nificant anti-senescence effect on CD8"T cells by inhibiting the initial senescence of T cells as a major mechcanism.
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A. senescence marker expression in young splenic lymphocytes and replicative senescence model constructed after 7 days
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Fig 1 After 7 days of continuous proliferation, the T cells showed positive expression of p16 and p21(x+s, n=3)
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