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摘要：目的 验证骨髓间充质干细胞（ＢＭ⁃ＭＳＣｓ）缓解免疫衰老的作用，探究其衰老改善的主要免疫细胞群体。 方

法 分离获得小鼠脾淋巴细胞，刺激增殖 ７ｄ 构建复制性衰老细胞模型。 利用流式细胞测量术检测年轻对照组、复
制性衰老对照组和 ＢＭ⁃ＭＳＣｓ 共培养组 Ｔ 细胞亚群衰老标志物 ｐ１６ｉｎｋ４ａ（ｐ１６）和 ｐ２１ｃｉｐ１（ｐ２１）的表达水平。 结果

Ｔ 淋巴细胞复制性衰老模型中观察到持续增殖后 ＣＤ８＋Ｔ 细胞较 ＣＤ４＋Ｔ 细胞衰老显著，在 ＣＤ８＋Ｔ 细胞的初始细胞、
效应细胞亚群中，效应细胞衰老最显著；ＢＭ⁃ＭＳＣｓ 共培养对衰老的效应细胞没有明显影响，主要通过延缓初始 Ｔ 细

胞的衰老，达到缓解 ＣＤ８＋Ｔ 细胞衰老的作用（Ｐ＜０􀆰 ０１，Ｐ＜０􀆰 ００１）。 结论 与 ＢＭ⁃ＭＳＣｓ 共培养可以缓解 Ｔ 细胞的复

制性衰老表型，对 ＣＤ８＋Ｔ 细胞的抗衰作用更显著，主要通过抑制初始 Ｔ 细胞的衰老实现。
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ｒｅｐｌｉｃａｔｉｖｅ ｓｅｎｅｓｃｅｎｃｅ ｍｏｄｅｌ ｏｆ Ｔ ｌｙｍｐｈｏｃｙｔｅｓ， ｉｔ ｗａｓ ｏｂｓｅｒｖｅｄ ｔｈａｔ ＣＤ８＋Ｔ ｃｅｌｌｓ ｓｅｎｅｓｃｅｎｔ ｓｉｇｎｉｆｉｃａｎｔｌｙ ａｓ ｃｏｍｐａｒｅｄ
ｗｉｔｈ ＣＤ４＋Ｔ ｃｅｌｌｓ ａｆｔｅｒ ｃｏｎｔｉｎｕｏｕｓ ｐｒｏｌｉｆｅｒａｔｉｏｎ． Ａｍｏｎｇ ｔｈｅ ｎａｉｖｅ ｃｅｌｌｓ ａｎｄ ｅｆｆｅｃｔｏｒ ｃｅｌｌ ｓｕｂｓｅｔｓ ｏｆ ＣＤ８＋Ｔ ｃｅｌｌｓ， ｅｆｆｅｃ⁃
ｔｏｒ ｃｅｌｌ ｓｅｎｅｓｃｅｎｃｅ ｗａｓ ｔｈｅ ｍｏｓｔ ｓｉｇｎｉｆｉｃａｎｔ． ＢＭ⁃ＭＳＣｓ ｃｏ⁃ｃｕｌｔｕｒｅ ｈａｄ ｎｏ ｓｉｇｎｉｆｉｃａｎｔ ｅｆｆｅｃｔ ｏｎ ｓｅｎｅｓｃｅｎｔ ｅｆｆｅｃｔｏｒ ｃｅｌｌｓ，
ａｎｄ ｍａｉｎｌｙ ａｌｌｅｖｉａｔｅｄ ｔｈｅ ｓｅｎｅｓｃｅｎｃｅ ｏｆ ＣＤ８＋Ｔ ｃｅｌｌｓ ｂｙ ｄｅｌａｙｉｎｇ ｔｈｅ ｓｅｎｅｓｃｅｎｃｅ ｏｆ ｎａｉｖｅ Ｔ ｃｅｌｌｓ（Ｐ＜０􀆰 ０１，Ｐ＜０􀆰 ００１）．
Ｃｏｎｃｌｕｓｉｏｎｓ　 ＢＭ⁃ＭＳＣｓ ｃｏ⁃ｃｕｌｔｕｒｅ ｃａｎ ａｌｌｅｖｉａｔｅ ｔｈｅ ｒｅｐｌｉｃａｔｉｖｅ ｓｅｎｅｓｃｅｎｃｅ ｐｈｅｎｏｔｙｐｅ ｏｆ Ｔ ｃｅｌｌｓ ａｎｄ ｈａｓ ａ ｍｏｒｅ ｓｉｇ⁃
ｎｉｆｉｃａｎｔ ａｎｔｉ⁃ｓｅｎｅｓｃｅｎｃｅ ｅｆｆｅｃｔ ｏｎ ＣＤ８＋Ｔ ｃｅｌｌｓ ｂｙ ｉｎｈｉｂｉｔｉｎｇ ｔｈｅ ｉｎｉｔｉａｌ ｓｅｎｅｓｃｅｎｃｅ ｏｆ Ｔ ｃｅｌｌｓ ａｓ ａ ｍａｊｏｒ ｍｅｃｈｃａｎｉｓｍ．
Ｋｅｙ ｗｏｒｄｓ： ｂｏｎｅ ｍａｒｒｏｗ ｍｅｓｅｎｃｈｙｍａｌ ｓｔｅｍ ｃｅｌｌｓ （ＢＭ⁃ＭＳＣｓ）； Ｔ ｃｅｌｌ ｓｅｎｅｓｃｅｎｃｅ； ａｎｔｉ⁃ａｇｉｎｇ
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　 　 随着年龄的增长，外部与内部压力的累积导致

人体的生理完整性（ ｐｈｙｓｉｏｌｏｇｉｃａｌ ｉｎｔｅｇｒｉｔｙ） 逐渐受

损，同时组织从压力中恢复的能力日渐衰弱，致使机

体功能受损和死亡风险的增加。 临床数据表明，老
年人自身免疫疾病、感染、肿瘤等发病率的上升与免

疫系统老化具有密切联系［１⁃２］。 免疫系统功能减弱

导致衰老细胞无法即时被清除，便会利用衰老相关

分泌表型（ｓｅｎｅｓｃｅｎｃｅ⁃ａｓｓｏｃｉａｔｅｄ ｓｅｃｒｅｔｏｒｙ ｐｈｅｎｏｔｙｐｅ，
ＳＡＳＰ）帮助衰老细胞对抗免疫系统的清除，导致衰

老细胞积累，加速机体衰老［３⁃４］。 免疫早衰模型小

鼠的各器官呈现衰老相关损伤并伴随机体早衰及寿

命缩短，而补充年轻的免疫细胞可以减缓衰老进

程［５⁃６］，证明免疫细胞的衰老及功能减退在机体衰

老过程中扮演重要的角色。
Ｔ 细胞老化可能是“免疫衰老”的主要表现之

一，即免疫系统活力的时间依赖性丧失，损害了有害

元素（如微生物或恶性细胞）的清除［７］，同时增加了

导致炎症和自身免疫疾病等不必要的过度反应。 探

究免疫细胞，特别是 Ｔ 细胞的衰老过程及其机制，
是缓解与衰老相关的免疫失衡和应激信号反应能力

丧失的重要途径。 Ｔ 淋巴细胞的年龄依赖性变化，
主要包括初始细胞的免疫多样性下降和衰老 Ｔ 细

胞数量的增加等［８］。
前期研究表明，移植年轻来源的骨髓间充质干细

胞（ｂｏｎｅ ｍａｒｒｏｗ ｍｅｓｅｎｃｈｙｍａｌ ｓｔｅｍ ｃｅｌｌｓ， ＢＭ⁃ＭＳＣｓ）
可以下调衰老小鼠的衰老标志物表达和 ＳＡＳＰ 的分

泌，缓解胸腺、脾脏、卵巢等组织的衰老，延长小

鼠［９］和大鼠［１０］的健康寿命。 但是，关于 ＭＳＣｓ 延缓

细胞、组织衰老的探索较为宏观，其中关键细胞类型

变化的研究尚存在较多空缺。 因此，本文拟验证

ＢＭ⁃ＭＳＣｓ 缓解免疫衰老的作用，并探究其主要改善

的免疫细胞群体。

１　 材料与方法

１􀆰 １　 材料

１􀆰 １􀆰 １　 主要试剂：抗 ＣＤ２８ 抗体、抗 ＣＤ３ 抗体和

ＩＬ⁃２（北京科昕生物科技有限公司）；ＲＰＭＩ⁃１６４０（北
京协和细胞资源中心）；胎牛血清 （Ｇｉｂｃｏ 公司）；
ＬＩＶＥ ／ ＤＥＡＤＴＭ可固定近红外死细胞染色剂试剂盒、
ｅＢｉｏｓｃｉｅｎｃｅＴＭ 流式胞内固定破膜缓冲液 （ Ｔｈｅｒｍｏ
Ｆｉｓｈｅｒ Ｓｃｉｅｎｔｉｆｉｃ 公 司 ）； ＣＤ３⁃ＰｅｒＣＰ ／ Ｃｙａｎｉｎｅ５􀆰 ５、

ＣＤ４５⁃ＰＥ、ＣＤ６２Ｌ⁃ＰＥ ／ Ｃｙａｎｉｎｅ７、ＣＤ４４⁃Ｂｒｉｌｌｉａｎｔ Ｖｉｏｌｅｔ
５１０ （ ＢｉｏＬｅｇｅｎｄ 公司）； ＣＤ８α⁃ＡＰＣ、 ＣＤ４⁃ＡＰＣ （ Ｃｅｌｌ
Ｓｉｇｎａｌｉｎｇ Ｔｅｃｈｎｏｌｏｇｙ 公 司 ）； ｐ１６ＩＮＫ４ａ 抗 体、
ｐ２１Ｃｉｐ１ 抗体（Ａｂｃａｍ 公司）；山羊抗兔荧光二抗（金
普来生物科技有限公司）；４０ μｍ 细胞过滤器（ＢＤ
Ｆａｌｃｏｎ 公司）。
１􀆰 １􀆰 ２ 　 小鼠： ６ 周龄， ＳＰＦ 级， 野生型 Ｃ５７ＢＬ ／ ６
（Ｈ⁃２ｂ）小鼠（北京维通利华实验动物科技有限公

司）。 所有动物均饲养在特定无病原体设施的隔离

笼中。 所有程序和方案均经动物研究所实验动物使

用与管理委员会批准。
１􀆰 ２　 方法

１􀆰 ２􀆰 １　 细胞分离与培养：从 ６ 周龄 Ｃ５７ 小鼠的后腿

分离 ＢＭ⁃ＭＳＣｓ，具体提取与培养方法参见文献［１１］。
１􀆰 ２􀆰 ２　 构建体外复制性衰老模型：从 ６ 周龄 Ｃ５７ 小

鼠的脾脏分离脾淋巴细胞，以 ２×１０６ 个细胞每孔接

种于 ２４ 孔板中，以 ａｎｔｉ⁃ＣＤ２８ （ ２􀆰 ５ μｇ ／ ｍＬ）、 ａｎｔｉ⁃
ＣＤ３（１ μｇ ／ ｍＬ）、ＩＬ⁃２（１００ Ｕ ／ ｍＬ）刺激增殖 ７ ｄ。
１􀆰 ２􀆰 ３　 小鼠脾脏细胞与 ＢＭ⁃ＭＳＣｓ 共培养：丝裂霉素

（１０ ｍｇ ／ ｍＬ）２ 小时预处理 ＢＭ⁃ＭＳＣｓ 抑制其增殖，以
２×１０５ 个细胞每孔接种于 ２４ 孔板中，过夜贴壁，脾淋

巴细胞以 ２×１０６ 个每孔接种于 ＢＭ⁃ＭＳＣｓ 预铺孔中。
１􀆰 ２􀆰 ４　 流式细胞测量术检测细胞衰老表型：以

１ ｍＬ ＰＢＳ 重悬细胞，ＰＢＳ 洗涤 ２ 次；用 ＬＩＶＥ ／ ＤＥＡＤ⁃
ＡＰＣ⁃Ｃｙ７ 染色，４ ℃孵育 ３０ ｍｉｎ，洗涤 ２ 次；用 ＣＤ４５⁃
ＰＥ、ＣＤ３⁃ＰＣ５􀆰 ５、ＣＤ８⁃ＡＰＣ、ＣＤ４４⁃Ｂｖ５１０、ＣＤ６２Ｌ⁃ＰＥ⁃
Ｃｙ７ 抗体混合染色，４ ℃孵育 ３０ ｍｉｎ，洗涤 ２ 次；分别

用固定缓冲液和渗透缓冲液 ４ ℃孵育 １０ ｍｉｎ，加入

ｐ１６ ／ ｐ２１ 抗体，４ ℃孵育 ４０ ｍｉｎ，洗涤 ３ 次；加入荧光

二抗，４ ℃孵育 ４０ ｍｉｎ，洗涤 ３ 次。 样品通过 ４０ μｍ
细胞过滤器，使用 Ｃｙｔｏｆｌｅｘ 流式细胞仪分析，ＦｌｏｗＪｏ
软件分析数据。
１􀆰 ３　 统计学分析

数据使用均数±标准差（ｘ±ｓ）表示，两组间比较

采用独立分组 ｔ 检验，三组间比较采用单因素方差

分析，实验均重复 ３ 次以上，单次实验至少 ３ 个复

孔，使用 ＧｒａｐｈＰａｄ Ｐｒｉｓｍ ８􀆰 ０ 软件分析数据。

２　 结果

２􀆰 １　 体外复制性衰老细胞模型的构建

分离原代小鼠脾脏细胞，体外用 ＣＤ３ 抗体刺激 Ｔ
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细胞增殖，持续刺激 ７ｄ，构建复制性衰老细胞模型。
持续刺激 ７ ｄ 进行 ｑＰＣＲ 定量分析，结果显示相比于

年轻对照，衰老模型的典型衰老标记（ｐ１６、ｐ２１）、衰老

相关分泌表型（ｓｅｎｅｓｃｅｎｃｅ⁃ａｓｓｏｃｉａｔｅｄ ｓｅｃｒｅｔｏｒｙ ｐｈｅｎｏ⁃
ｔｙｐｅ， ＳＡＳＰ）（ＩＬ６、ＩＬ８）和炎性衰老标记（Ｇｒａｎｚｙｍｅ Ｋ，
ＧＺＭＫ）上调，Ｔ 细胞功能相关的 ＣＤ２８ 下调，指示 Ｔ
细胞呈现衰老表型且功能受损。 进一步流式细胞测

量术揭示， ＣＤ４５＋ＣＤ３＋ Ｔ 淋巴细胞（图 １Ａ） ｐ１６、ｐ２１
高表达的衰老细胞分别占 ３３􀆰 ２２％±３􀆰 ９％和 ４１􀆰 ７８％±
２􀆰 ３％，显著高于年轻对照组的 ８􀆰 ３７％ ± １􀆰 ７％ 和

３􀆰 ０４％±０􀆰 ４％（图 １Ｂ，Ｃ）。 因此后续实验以刺激 １ｄ
的细胞为年轻对照（ｙｏｕｎｇ⁃Ｃｔｒｌ），持续刺激 ７ ｄ 的细胞

为衰老对照（ａｇｉｎｇ⁃Ｃｔｒｌ）。
２􀆰 ２　 ＣＤ８＋Ｔ 细胞衰老更显著

进一步探究 Ｔ 细胞不同群体的复制性衰老表

型，在 Ｔ 细胞的基础上采用流式细胞测量术划分

ＣＤ４＋ Ｔ 细胞 （ ＣＤ３＋ ＣＤ４＋ ） 和 ＣＤ８＋ Ｔ 细胞 （ ＣＤ３＋

ＣＤ８＋）（图 ２Ａ），分别检测 ｐ１６、ｐ２１ 的表达情况。 结

果显示，对于体外复制性衰老模型来说，ＣＤ８＋ Ｔ 细

胞 ｐ１６、ｐ２１ 高表达的衰老群体比例分别为 ６４􀆰 １４％
±１０􀆰 ３％和 ７１􀆰 ８５％±３􀆰 ０％，显著高于 ＣＤ４＋Ｔ 细胞的

１７􀆰 ６５％±０􀆰 ８％和 ３６􀆰 ２３％±１􀆰 ６％（图 ２Ｂ）。
２􀆰 ３　 ＢＭ⁃ＭＳＣｓ 共培养对 ＣＤ８＋Ｔ 细胞抗衰效果更

为明显

为探究 ＢＭ⁃ＭＳＣｓ 对脾脏 Ｔ 淋巴细胞的作用，将
ＢＭ⁃ＭＳＣｓ 与复制性 Ｔ 细胞衰老模型共培养（ ａｇｉｎｇ⁃
Ｍｓｃ），观察其对衰老 Ｔ 细胞的影响。 发现与 ＢＭ⁃
ＭＳＣｓ 共培养后，脾来源 Ｔ 淋巴细胞的 ｐ１６ 阳性比例

从 ３４􀆰 ２２％±４􀆰 ４％下调至 ２４􀆰 １５％±１􀆰 ４％（图 ３Ａ）、
ｐ２１ 阳性比例从 ４１􀆰 １４％ ± ２􀆰 ２％下调至 ２７􀆰 ０５％ ±
４􀆰 ３％（图 ３Ｂ），均具有显著差异，其中 ＣＤ８＋ Ｔ 细胞

的 ｐ１６、 ｐ２１ 阳性细胞比例下调的均值分别为

１９􀆰 ７５％和 ２７􀆰 ９１％ 高于 ＣＤ４＋ Ｔ 细胞的 ４􀆰 ５５％ 和

７􀆰 ９２％（图 ３Ａ， ３Ｂ）。 这部分结果提示复制性衰老

模型中， ＣＤ８＋ Ｔ 细胞是衰老最显著的，也是 ＢＭ⁃
ＭＳＣｓ 延缓衰老表型最显著的细胞群体。
２􀆰 ４　 ＢＭ⁃ＭＳＣｓ 通过维持 ＣＤ８＋初始 Ｔ 细胞的比例

和状态延缓衰老

深入分析发现 ＣＤ８＋Ｔ 细胞的衰老并不同步，而
是存在较易衰老的细胞群体（图 ４Ａ）。 为探究 ＣＤ８＋

Ｔ 细胞主要衰老和共培养后延缓衰老的亚群，本文

划分了初始（ＣＤ６２Ｌ＋ＣＤ４４－）、效应（ＣＤ６２Ｌ－ＣＤ４４＋）
和记忆细胞（ＣＤ６２Ｌ＋ＣＤ４４＋）（图 ４Ｂ）。 分析各细胞

亚群占比发现，年轻对照组初始细胞占 ８６􀆰 ５３％、效
应细胞占 １３􀆰 ４４％和记忆细胞占 ０􀆰 ０３％，衰老对照

组分别占 ６２􀆰 ５５％、３７􀆰 ３４％和 ０􀆰 １１％，ＢＭ⁃ＭＳＣｓ 共

培养后分别占 ８８􀆰 ６２％、１０􀆰 ７４％和 ０􀆰 ６４％。 体外持

续刺激的复制性衰老导致效应 Ｔ 细胞比例上调，对
应的初始 Ｔ 细胞比例下调，共培养后初始 Ｔ 细胞亚

群的比例得到恢复（图 ４Ｃ）。 由于记忆细胞绝对细

胞数量太少，后续衰老标志比例分析只对效应细胞

和初始细胞进行比较分析。
ＣＤ８＋Ｔ 细胞各亚群的 ｐ２１ 表达都随增殖时间的

延长而上调，效应细胞 ｐ２１ 阳性细胞比例从年轻组

的 ３􀆰 ３６％±２􀆰 ５％上调至 ８３􀆰 ６５％±１１􀆰 ４％，初始细胞

从 ０􀆰 ０１％ ± ０􀆰 ０２％上调至 ２􀆰 ６３％ ± ０􀆰 ４％ （图 ４Ｄ）。
ＢＭ⁃ＭＳＣｓ 共培养后效应细胞 ｐ２１ 阳性比例无明显

变化，而初始细胞的 ｐ２１ 阳性细胞比例在共培养后

从 ２􀆰 ６３％ ± ０􀆰 ４％下调至 １􀆰 ５９％ ± ０􀆰 ２％，（图 ４Ｅ）。
结合前述细胞亚群比例的变化（图 ４Ｃ），得出效应细

胞衰老占比升高是 ＣＤ８＋Ｔ 细胞 ｐ２１ 上调的主要原

因；共培养后初始细胞 ｐ２１ 表达的下调及其比例的

保持是 ＣＤ８＋Ｔ 细胞 ｐ２１ 表达回落的主要原因。

３　 讨论

如何防治衰老相关疾病从而实现健康长寿是衰

老研究中长期存在的问题。 作为驱动机体衰老的重

要因素，免疫系统的功能减退导致了机体感染率增

加、癌症易感性增加以及疫苗效力的降低［７］。 有充分

的证据表明，Ｔ 淋巴细胞经历了主要的年龄依赖性变

化，其质与量的变化是导致衰老时体液免疫和细胞免

疫应答异常的主要原因［６］。 此前，本课题组发现

ＭＳＣｓ 对 Ｔ 细胞的免疫功能起支持作用［１２］。 那么

ＭＳＣｓ 是否可以起到延缓 Ｔ 细胞衰老的作用？ 如果可

以，其主要作用于哪些靶细胞群体？ 基于此，本文构

建了体外复制性衰老模型，借助流式细胞术划分不同

细胞群体，并以 ｐ１６ 和 ｐ２１ 的高表达指示细胞衰老。
与刺激增殖 １ ｄ 的对照组相比，持续增殖 ７ ｄ 的

Ｔ 细胞出现了 ｐ１６、ｐ２１ 高表达的衰老细胞群体。 进

行亚群间比较发现，ＣＤ８＋Ｔ 细胞的衰老表型更为显

著。 已经有研究表明，与 ＣＤ４＋ Ｔ 细胞相比，ＣＤ８＋ Ｔ
细胞在衰老过程中可能对表型和功能的变化更敏感，
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Ａ􀆰 ｓｅｎｅｓｃｅｎｃｅ ｍａｒｋｅｒ ｅｘｐｒｅｓｓｉｏｎ ｉｎ ｙｏｕｎｇ ｓｐｌｅｎｉｃ ｌｙｍｐｈｏｃｙｔｅｓ ａｎｄ ｒｅｐｌｉｃａｔｉｖｅ ｓｅｎｅｓｃｅｎｃｅ ｍｏｄｅｌ ｃｏｎｓｔｒｕｃｔｅｄ ａｆｔｅｒ ７ ｄａｙｓ
ｏｆ ｓｔｉｍｕｌａｔｅｄ ｐｒｏｌｉｆｅｒａｔｉｏｎ ｉｎ ｖｉｔｒｏ； Ｂ􀆰 ｇａｔｉｎｇ ｓｔｒａｔｅｇｙ ｆｏｒ ｍｏｕｓｅ ｓｐｌｅｎｉｃ Ｔ ｃｅｌｌｓ； Ｃ􀆰 ｆｌｏｗ ｃｙｔｏｍｅｔｒｙ ａｎａｌｙｓｉｓ ｏｆ ｓｐｌｅｎｉｃ Ｔ
ｃｅｌｌｓ （ＣＤ４５＋ＣＤ３＋） ｉｎ ｙｏｕｎｇ⁃Ｃｔｒｌ ａｎｄ ａｇｉｎｇ⁃Ｃｔｒｌ；∗Ｐ＜０􀆰 ０５， ∗∗Ｐ＜０􀆰 ００１ ｃｏｍｐａｒｅｄ ｗｉｔｈ ｙｏｕｎｇ⁃Ｃｔｒｌ．

图 １　 持续增殖 ７ ｄ 后 Ｔ 细胞出现 ｐ１６、ｐ２１ 表达阳性的衰老细胞群

Ｆｉｇ １　 Ａｆｔｅｒ ７ ｄａｙｓ ｏｆ ｃｏｎｔｉｎｕｏｕｓ ｐｒｏｌｉｆｅｒａｔｉｏｎ， ｔｈｅ Ｔ ｃｅｌｌｓ ｓｈｏｗｅｄ ｐｏｓｉｔｉｖｅ ｅｘｐｒｅｓｓｉｏｎ ｏｆ ｐ１６ ａｎｄ ｐ２１（ｘ±ｓ， ｎ＝３）
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Ａ􀆰 ｇａｔｉｎｇ ｓｔｒａｔｅｇｙ ｆｏｒ ｓｐｌｅｎｉｃ ＣＤ８＋ Ｔ ｃｅｌｌｓ ａｎｄ ＣＤ４＋ Ｔ ｃｅｌｌｓ； Ｂ􀆰 ｆｌｏｗ ｃｙｔｏｍｅｔｒｙ ａｎａｌｙｓｉｓ ｏｆ ｓｐｌｅｎｉｃ ＣＤ８＋（ＣＤ４５＋ ＣＤ３＋

ＣＤ８＋） ａｎｄ ＣＤ４＋（ＣＤ４５＋ＣＤ３＋ＣＤ４＋） Ｔ ｃｅｌｌｓ．
图 ２　 Ｔ 细胞复制性衰老模型中 ＣＤ８＋Ｔ 细胞衰老比 ＣＤ４＋Ｔ 细胞更显著

Ｆｉｇ ２　 ＣＤ８＋Ｔ ｃｅｌｌ ｓｅｎｅｓｃｅｎｃｅ ｗａｓ ｓｉｇｎｉｆｉｃａｎｔ ｍｏｒｅ ｔｈａｎ ＣＤ４＋Ｔ ｃｅｌｌ ｉｎ ｒｅｐｌｉｃａｔｉｖｅ ｓｅｎｅｓｃｅｎｃｅ ｍｏｄｅｌ （ｘ±ｓ， ｎ＝３）

更快地表现出衰老状态［１３］，这与本实验结果一致，
也反应了复制性衰老模型可一定程度上模拟 Ｔ 细

胞自然衰老的在体状态。 ＢＭ⁃ＭＳＣｓ 共培养可以延

缓衰老 Ｔ 细胞 ｐ１６、ｐ２１ 的上调，对 ＣＤ８＋Ｔ 细胞效果

最佳，这可能与 ＣＤ８＋Ｔ 细胞本身比 ＣＤ４＋Ｔ 细胞衰老

更为显著有关。 继续对 ＣＤ８＋ Ｔ 细胞进行亚群细

分，三个亚群中，效应细胞的衰老最为显著。 但

ＢＭ⁃ＭＳＣｓ共培养对衰老的效应细胞没有明显的影

响，反而显著抑制初始细胞的衰老。 结合已经报道

的 Ｔ 淋巴细胞的衰老主要表现为初始细胞的免疫

多样性下降［１４］，提示 ＢＭ⁃ＭＳＣｓ 移植可能通过抑制

初始 Ｔ 细胞衰老，达到缓解免疫衰老的目的。
本研究目前还存在很多问题有待进一步研究。

比如目前的数据仅以体外复制性衰老模型模拟小鼠

的免疫衰老，缺少体内证据，需要进一步完成体内验

证，才能对 ＢＭ⁃ＭＳＣｓ 的抗免疫衰老得出可靠的结

论。 此外本研究仅探究了 ＭＳＣｓ 发挥抗衰作用的主

要靶细胞，具体分子机制还有待阐述。 免疫衰老是

７８６
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Ａ，Ｂ􀆰 ｆｌｏｗ ｃｙｔｏｍｅｔｒｙ ａｎａｌｙｓｉｓ ｏｆ ｓｐｌｅｎｔｉｃ Ｔ ｃｅｌｌｓ， ＣＤ８＋Ｔ ｃｅｌｌｓ ａｎｄ ＣＤ４＋Ｔ ｃｅｌｌｓ， ｓｔａｉｎｅｄ ｗｉｔｈ ｐ１６（Ａ） ｏｒ ｐ２１（Ｂ）； Ｔｈｅ
ｃｏｒｒｅｓｐｏｎｄｉｎｇ ｓｔａｔｉｓｔｉｃｓ ｗｅｒｅ ｓｈｏｗｎ ｏｎ ｔｈｅ ｒｉｇｈｔ；∗Ｐ＜０􀆰 ０５， ∗∗Ｐ＜０􀆰 ０１， ∗∗∗Ｐ＜０􀆰 ００１ ｃｏｍｐａｒｅｄ ｗｉｔｈ ｙｏｕｎｇ⁃Ｃｔｒｌ．

图 ３　 ＢＭ⁃ＭＳＣｓ 共培养显著地下调 ＣＤ８＋Ｔ 细胞衰老

Ｆｉｇ ３　 ＢＭ⁃ＭＳＣｓ ｃｏ⁃ｃｕｌｔｕｒｅ ｓｉｇｎｉｆｉｃａｎｔｌｙ ｄｏｗｎ⁃ｒｅｇｕｌａｔｅｄ ＣＤ８＋Ｔ ｃｅｌｌ ｓｅｎｅｓｃｅｎｃｅ （ｘ±ｓ， ｎ＝３）

多种细胞和微环境共同作用的结果，为还原在体状

态，本研究与 ＢＭ⁃ＭＳＣｓ 共培养时并未分选出 ＣＤ８＋Ｔ
细胞，因此可能存在中间细胞参与 ＢＭ⁃ＭＳＣｓ 对

ＣＤ８＋Ｔ 细胞的抗衰作用。
综上所述，本实验构建了 Ｔ 细胞体外复制性

衰老细胞模型，证明了其中 ＣＤ８＋Ｔ 细胞衰老表现

最显著。 ＢＭ⁃ＭＳＣｓ 共培养可以缓解 Ｔ 细胞衰老，
对于 ＣＤ８＋Ｔ 细胞的抗衰作用更显著，主要作用于

抑制了 ＣＤ８＋初始 Ｔ 细胞的衰老。 本文为 Ｔ 细胞衰

老的机制研究提供了体外模型，为理解 Ｔ 细胞的

衰老过程和 ＭＳＣｓ 对其的延缓作用提供更细化的

视角。
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