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Interventions to induce lasting HIV remission are needed to obviate the requirement for
lifelong antiretroviral therapy (ART). Durable post-intervention control (PIC) of viremia has
been achieved in a subset of individuals following broadly neutralizing anti-HIV-1 antibody
(bNADb) administration and analytical treatment interruption (ATI)". Prior studies support
a role for CD8" T cells®® but the precise features of CD8* T cells involved in PIC remain
unclear. Here we mapped and functionally profiled CD8* T cell responses to autologous
HIV epitopes using longitudinal samples from four ATI trials in bNAb recipients. PIC was
associated with superior pre-intervention HIV-specific CD8" T cell proliferative capacity,
stem cell-like memory phenotype, and recall cytotoxicity against autologous HIV peptide-
pulsed CD4* T cells. CD8" T cell stemness was further increased following bNAb
administration without emergence of new clonotypes targeting defined HLA-optimal
epitopes. Multimodal single-cell analyses revealed molecular features associated with PIC
and HIV-specific CD8" T cell stemness, including signatures of metabolic fithess and
reduced T cell exhaustion. These results identify immune features that precede
subsequent PIC to inform the development of combination immunotherapies that will elicit

durable HIV remission.

MAIN TEXT

Approximately. 40 million people worldwide are living with HIV, requiring lifelong antiretroviral
therapy to prevent recrudescent viral replication, transmission, and disease progression®. To
inform the development of a functional cure by which durable ART-free remission can be
achieved, mechanisms underlying spontaneous control of HIV to undetectable levels without ART
have been extensively studied''2. The proliferative capacity of HIV-specific memory CD8* T cells
has been repeatedly linked to spontaneous control'-15, is associated with increased stemness’®,
and facilitates lytic granule loading for cytotoxic elimination of HIV-infected cells'”. Moreover, loss

of these functions precedes aborted spontaneous control of HIV'&.
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A small fraction of people with HIV (PWH) can maintain low or undetectable plasma viral loads
for a variable period following discontinuation of ART'20. Specifically, 4% of participants in
noninterventional ATI trials achieved control of viremia for 84 days or more?'. Such post-treatment
control (PTC) has been associated with particular virologic and immunologic characteristics, such
as smaller persistent HIV reservoirs, autologous virus neutralization, and reduced T cell
activation??24, while precise determinants remain under investigation. Efforts to achieve durable
post-ART control in a larger proportion of PWH have combined ATI with interventions such as
passive bNAb infusion’#25. Although post-intervention control (PIC) of viremia has been achieved
following bNAb administration at higher rates than PTC in noninterventional trials, a majority of
bNAD recipients still failed to control viremia, highlighting the need for a deeper understanding of
immune responses that mediate PIC2¢. Control of viremia following bNAb administration in non-
human primates was lost upon depletion of CD8* T cells®7?, demonstrating their importance in
PIC. While modest augmentation of virus-specific CD8* T cells has been observed in vivo
following bNAb administration®?, the precise CD8* T cell features and functions associated with

PIC and the extent to which their augmentation facilitates PIC remain unclear.

Here we identify immune correlates preceding subsequent PIC by studying CD8"* T cell responses
targeting autologous HIV epitopes in longitudinal specimens obtained from participants of four
similar interventional trials. PIC was not associated with broadening of HIV-specific responses
against_autologous HLA-optimal epitopes following bNAb administration but was significantly
associated with superior pre-intervention proliferative and cytolytic potential of HIV-specific stem
cell-like memory CD8* T cells. These responses were further enhanced following bNAb
administration and were associated with changes in metabolic gene expression. These immune
correlates of PIC may inform strategies to elicit ART-free control of viremia in a larger proportion

of PWH.
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PIC is not associated with broadening of CD8* T cell responses

We obtained longitudinal peripheral blood mononuclear cells (PBMCs) before and after passive
infusion of bNAbs 3BNC117 and/or 10-1074 in twelve participants from four AT trials'-, including
seven post-intervention controllers (PICs) and five post-intervention non-controllers (PINCs; Fig.
1a, Table 1). We synthesized peptides matching class | HLA-optimal HIV epitopes encoded by
autologous intact proviral DNA sequenced from each participant?” (Supplementary Data 1) and
mapped epitope-specific CD8* T cell responses by interferon-y enzyme-linked immunospot (IFN-
vy ELISpot, Fig. 1b). A mean of 3.5 (range 1-8) HIV epitope-specific CD8* T cell responses per
participant was identified, and neither response breadth, induction of new responses against HLA-
optimal HIV epitopes reported to be presented by the expressed HLA class | alleles, nor
magnitude of IFN-y production was associated with PIC (Fig. 1c,d, Supplementary Data 1). These
data indicate that the induction of de novo CD8* T cell responses against known HLA-optimal HIV

epitopes following bNAb administration is not a unique correlate of PIC.

HIV-specific CD8" T cell stemness precedes PIC

Because proliferation is better correlated with cytotoxic function and spontaneous control of HIV
viremia than IFN-y production314.16-18 ' we next measured the ability of CD8* T cells to proliferate
upon stimulation with cognate HIV peptides corresponding to each response identified by IFN-y
ELISpot (Fig. 2a,b, Extended Data Fig. 1a). Pre-intervention proliferative capacity of CD8* T cells
against_autologous HIV epitopes was on average more than tenfold higher in PICs relative to
PINCs (mean 9.7% vs. 0.9%, median 3.6% vs. 0.3% CFSE-low, p<0.001, Fig. 2c). Notably,
participant 314 had especially strong proliferative responses (range 16.0 — 49.7% CFSE-low)
against 5 distinct epitopes (Fig. 2¢) and was the only participant whose intact HIV DNA reservoir
was below the assay detection limit (Table 1), suggesting a potential role for highly functional HIV

epitope-specific CD8* T cells in limiting HIV persistence in this participant. Proliferative capacity
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remained significantly higher in PICs than PINCs even when responses from this participant were
excluded from analysis. Following bNAb administration, proliferative capacity of responses from
both participant groups modestly but significantly increased (median 1.3-fold, p<0.01 PICs,
p<0.05 PINCs, Fig. 2c) and remained significantly higher in PICs than PINCs following
intervention (mean 10.6% vs. 1.3%, median 3.8% vs. 0.4% CFSE-low, p<0.001, Fig. 2c). This
modest increase was consistent with previous observations attributed to a potential bNAb-induced
vaccinal effect>® but was not unique to participants who controlled viremia. Instead, control of
viremia was associated with HIV-specific CD8* T cell proliferative capacity that was higher before

and further enhanced following intervention.

To assess the ability of HIV epitope-specific CD8* T cells to mount cytotoxic recall responses
against autologous CD4* T cells pulsed with cognate HIV: peptides, we performed expanded
antigen-specific elimination assays?® on immunodominant responses from participants with
sufficient specimen availability (Fig. 2d,e, Extended Data Fig. 1b). Recall cytotoxicity was strongly
associated with proliferative capacity (Spearman p=0.80, p<0.0001, Fig. 2f), consistent with prior
data from spontaneous HIV controllers'1828 and further supporting a role for highly functional

HIV-specific CD8* T cells‘in PIC.

To further characterize functional HIV-specific CD8* T cells in PIC, we next assessed their ex vivo
phenotypes by measuring surface expression of differentiation markers on unstimulated peptide-
HLA (pHLA) multimer-stained CD8* T cells (Fig. 2g, Extended Data Fig. 1c, Supplementary Data
1). HIV epitope-specific CD8* T cells in PICs had a higher proportion of CD45RA*CD62L* stem
cell-like memory (Tscm, p<0.05, Fig. 2h) whereas those from PINCs had a higher proportion of
CD45RA-CD62L- effector-memory (Tewm) prior to intervention (p<0.01, Fig. 2i). In comparison,
CD8* T cell responses to cytomegalovirus (CMV) or influenza virus had a higher proportion of

CD45RA*CD62L" terminally-differentiated Temra cells (Extended Data Fig. 1d). The frequency of
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Tscm cells among HIV epitope-specific CD8* T cells in PICs modestly (median 1.2-fold) but
significantly (p<0.01) increased among PICs following bNAb administration and remained
significantly higher post-intervention than in PINCs (p<0.01, Fig. 2h). Moreover, Tscm frequency
was proportional to proliferative capacity (Spearman p=0.64, p<0.01, Fig. 2j). Together, these

results implicate HIV epitope-specific CD8* T cell stemness in PIC.

Molecular signatures of CD8* T cell stemness in PIC

To determine molecular signatures underlying the superior functional capacity of HIV-specific
CD8* T cells in PICs, we next assessed differential expression of genes and surface proteins
among HIV and CMV epitope-specific CD8* T cells at single-cell resolution via CITE-seq analyses
of 15,466 pHLA multimer-stained cells from PICs and PINCs (Fig. 3a, Supplementary Data 1).
Multimodal clustering of all samples based upon differential gene expression and surface markers
revealed eight clusters, which were manually annotated based upon differentially expressed
genes, gene sets, and surface markers (Fig. 3b; Extended Data Figs. 2, 3a-b). Cluster 0 was
elevated among HIV-specific cells in PINCs, whereas cluster 1 was comparable between groups
and clusters 2-7 were elevated among HIV-specific cells in PICs (Fig. 3c). PINC-associated
cluster 0 expressed canonical effector-memory (Tem) and exhaustion (Tex) markers including
CD45R0O, PD-1, TIGIT, and- TOX (Fig. 3d), indicating a potential role for T cell exhaustion in
decreased functionality of HIV-specific CD8* T cells among PINCs. In contrast, PIC-associated
cluster 6 expressed canonical Tscu genes and surface proteins associated with stemness,
including CD45RA, CD62L, CCR7, CD27, and TCF7 (Fig. 3d)?°, consistent with our flow
cytometric analyses (Fig. 2h-i). This Tscu-like cluster exhibited low inhibitory receptor expression,
elevated oxidative phosphorylation gene signatures, and increased surface expression of CD73
(Fig. 3d). T cells expressing CD73, an ectonucleotidase with previously reported roles in
regulating metabolism via nicotinamide adenine dinucleotide modulation®, have previously been

associated with spontaneous HIV control and reduced exhaustion3'-32, PIC was also associated
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with Tem-like cells expressing interferon response genes (cluster 5) and Tscm-like cells co-
expressing signatures of glycolysis that share features of transitory cells derived from stem-like
precursors (cluster 4; Fig. 3d-g, Extended Data Fig. 2, Supplementary Data 2)33. Unlike Tex cells,
which express effector-like signatures but are impaired for glycolysis, oxidative phosphorylation,
and proliferative potential®*, metabolic signatures elevated in T cells from PICs have been
previously proposed to prime them for rapid signaling in response to antigen3®. These data
indicate HIV-specific CD8* T cells in PICs are characterized by molecular signatures of stemness,

reduced exhaustion, and metabolic fithess.

Augmented stemness is associated with pre-existing clonotypes

We next investigated longitudinal changes following bNAb administration to define molecular
signatures associated with the modest but significant augmentation of CD8* T cell stemness and
proliferative capacity observed (Fig. 2c,i). As broadening of response specificities was not
associated with PIC (Fig. 1c), we evaluated longitudinal changes within HIV epitope-specific
responses targeted prior to intervention. PIC was not uniquely associated with diversification or
expansion of T cell receptor (TCR) clonotypes following intervention (Fig. 4a, Supplementary Data
3). Epitope-specific responses were oligoclonal, with more than half of each response comprising
one or two dominant clonotypes and without substantial emergence of new clonotypes following

bNAb administration (Fig. 4b, Extended Data Fig. 3c,d).

By flow cytometry, we observed no significant increases in frequencies of HIV epitope-specific
CD8* T cells (Fig. 4c), their activation measured by CD38 and HLA-DR co-expression (Fig. 4d),
their in vivo proliferation marked by Ki67 expression (Fig. 4e), or their cytotoxic differentiation
measured by perforin and granzyme B co-expression (Fig. 4f). These results indicate a lack of
peripheral response to antigen at the time points studied, which preceded waning of bNAb

concentrations to subtherapeutic levels and detectable HIV recrudescence. By multimodal single-
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cell analyses, we observed modest but significant upregulation of both CD45RA and CD62L
surface marker expression following bNAb administration, consistent with increases in Tscwu
frequencies observed by flow cytometry (Fig. 2i), and an increase in gene signatures of oxidative
metabolism (Fig. 4g-i, Supplementary Data 4), which has previously been associated with
spontaneous control of HIV. Following bNAb administration, we also observed small increases
in the frequencies of Tscm and CD127*CD73* cell clusters, which have previously been associated
with proliferative long-lived memory®”2® and share gene signatures with follicular CD8* T cells in
lymphoid tissues (Fig. 4j-k)%°. Although pre-existing differences in stemness better distinguished
PICs from PINCs than longitudinal changes (Fig. 2c, 3d, 4j), our results suggest that augmentation
of CD8* T cell stemness in peripheral circulation following bNAb administration may involve CD8*
T cell recirculation from lymphoid tissue sites of early bNAb-suppressed virus re-emergence,

consistent with previous results in non-human primates®.

Discussion

In this study, we explored HIV-specific CD8* T cell responses in PWH on ART who received bNAbs
and underwent concurrent or.subsequent ATI. Examination of PICs who have remained mostly
aviremic without ART for up to 7 years from four similar interventional trials enabled us to
investigate immune correlates of durable PIC at greater sensitivity than was feasible from
individual trials. By evaluating cellular immunity at epitope-specific resolution using reagents
matching autologous virus, our study additionally avoided potential confounding effects of immune
escape. Our results indicate that HIV-specific CD8* T cells are more functional both prior to and
following intervention in people who subsequently control viremia without ART relative to those
who receive the same intervention but experience viral rebound. HIV-specific CD8* T cells in PICs
were characterized by molecular and functional hallmarks of stemness, including the ability to
proliferate, differentiate, and mount cytotoxic recall responses against HIV antigens matched to

autologous virus.
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CD8* T cell stemness has been previously associated with spontaneous control of HIV viremia,
but its role in control of viremia following treatment interruption is not well established. Class | HLA
alleles associated with spontaneous HIV control do not appear to be associated with PTC9:22:40,
Although HIV-specific CD8* T cell responses are dysfunctional in the majority of PWH_and their
functionality is not typically restored by ART#!, CD8* T cell functionality has been associated with
case reports of PTC**43, and preservation of HIV-specific CD8* T cell functionality**45 may
contribute to higher rates of PTC observed among early-treated PWH'920, In-addition, enhanced
CD8* T cell functionality and stemness in some individuals following prolonged ART*64” may also
contribute to PTC in PWH treated during chronic infection. However, as CD8* T cell responses to
recrudescent viremia typically lag HIV replication, they are likely insufficient to prevent rebound
viremia in most noninterventional ATI settings. Consistent with this, CD8* T cell responses are not
associated with time-to-rebound but rather are associated with setpoint viral loads*®. As ART is
re-initiated upon viral rebound in most ATI trials, the impact of CD8* T cells on viral load setpoint
is not typically measured and PTC in noninterventional studies has more frequently been

associated with autologous neutralization and innate immunity?22-23:40,

As HIV frequently escapes from autologous neutralizing antibodies, passive infusion of
exogenous bNAbs, especially in combination, has enabled prolonged suppression of
viremia?#%50. CD8* T cells have been implicated in durable PIC among bNAb recipients due to a
proposed vaccinal effect by which antigen-antibody complexes lead to the stimulation of cellular
immunity’°. While modest augmentation of CD8* T cell proliferative capacity following bNAb
administration was consistently observed in our study, this effect was neither unique to PIC nor
associated with new responses or TCR clonotypes against known HLA-optimal epitopes. Instead,
our results implicate precise features of HIV-specific CD8* T cells prior to intervention that are

further enhanced by bNAb administration and are associated with subsequent PIC, including their
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stemness, proliferative capacity, recall cytotoxicity, and metabolic fitness. Indeed, these features
have previously been associated with superior HIV-specific CD8* T cell functionality in
spontaneous HIV controllers'13.16-18.36 - from whom CD8* T cells and exogenous bNAbs can
synergize to elicit in vitro HIV suppression®'. We hypothesize that by limiting the rate and
magnitude of HIV recrudescence, bNAbs allow functional CD8* T cell responses a better chance
to contain early virus rebound in lymphoid tissues, mediating PIC after bNAbs wane below

therapeutic concentrations.

Despite including participants from four trials, our study remained limited by sample availability in
multiple aspects, including scope and statistical power. As it was not feasible to screen CD8* T
cell responses using overlapping peptides spanning the entire HIV-1 proteome, we focused on
known HLA-optimal epitopes matching autologous provirus sequence to facilitate downstream
analyses using pHLA multimers. It is possible that our approach may have missed responses
against as-yet undefined epitopes or those below our detection limit. Due to limitations in
specimen and pHLA multimer availability, we were able to profile only one-third of detected HIV-
specific responses by cytometry and multiomics. As our study focused on HIV-specific CD8* T
cell responses, we did not evaluate other immune parameters that may contribute to PIC.
Sampling of peripheral blood at a single post-intervention time point limited our ability to observe
in vivo proliferative and cytotoxic responses to recrudescent viremia. Due to the retrospective
nature of our study, prospective studies will be required to determine the predictive capacity of
HIV-specific CD8* T cell features preceding PIC. Studies investigating epitope-specific CD8* T
cell responses in lymphoid tissues, the primary sites of HIV persistence and recrudescence®?53,
and measurement of additional immune parameters such as autologous neutralization, innate
immunity, and HIV-specific CD4* T cell responses, will be important to further delineate

mechanisms of PIC.
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Ongoing trials aim to elicit PIC in a larger proportion of PWH via improved or combinatorial

interventions, including long-acting bNAbs®*, therapeutic vaccination®%, and agonists of cytokines

such as IL-15%, which can rewire cellular metabolism of dysfunctional HIV-specific CD8* T cells®’

and promote their migration to B cell follicles in lymphoid tissues®. Complementary new data

emerging from two independent interventional trials further support a role for CD8* T cell

proliferation in PIC5%59, QOur results suggest that immunotherapies capable of enhancing virus-

specific CD8* T cell stemness, proliferative capacity, and recall cytotoxicity may dramatically

enhance the ability to elicit durable HIV remission elicited by bNAb administration.
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Table 1: Participant clinical and demographic characteristics. Participant ID (PID) and key

for symbol-color combinations used to represent data from each participant; parent study;

intervention (RMD, romidepsin); phenotype (PIC, post-intervention controller; PINC, post-

intervention noncontroller); longitudinal sampling; age (years; NR, not reported); biological sex

(M, male; F, female); race and ethnicity (Al, American Indian; B, Black; H, Hispanic; W, White);

duration of HIV infection and ART before ATI (y, years); pre-intervention CD4 count (cells/um?

peripheral blood); intact HIV per 108 PBMCs reported previously as measured by Q?VOA (IUPM,

MCA-906"), Q4PCR (MCA-9652), or IPDA (eCLEARS?, TITAN#); class | HLA alleles (protective

alleles underlined); and total number of HLA-optimal HIV epitopes screened (A, autologous; C,




463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488

clade B consensus). Plasma viral loads were undetectable (<20 HIV RNA copies/ml) at all sample

time points. NA, not available.

FIGURE LEGENDS

Fig. 1: Autologous HIV epitope-specific CD8" T cell responses in post-intervention
controllers. (a) Study cohort overview. Longitudinal PBMCs were included from 7 post-
intervention controller (PIC) and 5 post-intervention noncontroller (PINC) participants pre- and
post-infusion of bNAbs 3BNC117 and 10-1074 from the MCA-906, MCA-965, TITAN and eCLEAR
trials. Representative diagrams were modified from Mendoza et al.' with permission. (b)
Schematic overview of autologous HIV-specific CD8* T cell response mapping and representative
interferon-y (IFN-y) ELISpot results. (c-d) Summary of longitudinal and between-group
differences in breadth (c, n=6, 7, 5, 5 samples) and - magnitude (d, n=23, 26, 22, 22 responses) of
HIV epitope-specific responses. Center lines represent medians, ticks represent means, boxes
represent first and third quartiles, and whiskers represent ranges. Color-symbol combinations
represent participants (key in Table 1). P-values reported above plots from two-sided paired

(longitudinal) or unpaired (between-group) t-tests.

Fig. 2: HIV-specific CD8* T cell stemness precedes post-intervention control. (a-b)
Schematic overview of HIV-specific CD8" T cell proliferation assay (a) and representative
longitudinal epitope-specific proliferation from one PIC (PID 5120) and one PINC (PID 9243; b).
(e) Summary of longitudinal and between-group differences in proliferative capacity of CD8* T cell
responses against each autologous HIV-1 epitope for which responses were detected by IFN-y
ELISpot. Each data point represents the mean of triplicate wells for each response (n=23, 26, 22,
22 responses). (d-e) Schematic overview of expanded antigen-specific elimination assay to
measure recall cytotoxicity (d) and representative results at increasing effector:target (E:T) ratios

from one PIC (PID 142; blue) and one PINC (PID 109; red), including area under the curve (AUC)
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summaries (e). (f) Correlation of proliferation and recall cytotoxicity, as measured in d-e, across
responses from both pre- and post-intervention samples in PICs (blue) and PINCs (red).
Correlation (p) and p-values calculated by Spearman correlation (n=41 responses). (g)
Representative flow cytometric staining of memory subset markers CD45RA and CD62L on HIV
peptide-HLA (pHLA) tetramer* CD8* T cells. (h-i) Summary of longitudinal and between-group
differences in stem cell-like memory (Tscw, h) and effector-memory (Tewm, i) subset frequencies
among HIV pHLA tetramer* (Tet*) CD8* T cell responses from PICs (n=9) and PINCs (n=7), and
among CMV/flu Tet* CD8* T cells from both groups (n=8). (j) Correlation (p) and p-values
calculated by Spearman correlation between proliferative capacity and percent Tscm among Tet*
CD8* T cells in PICs (blue) and PINCs (red), n = 16 responses. Center lines represent medians,
boxes represent first and third quartiles, and whiskers represent ranges. Color-symbol
combinations represent participants (key in Table.1). P-values reported above plots from two-
sided Wilcoxon signed rank (between-group) or matched-pairs signed rank (longitudinal) tests (c),
two-sided unpaired (between-group) or paired (longitudinal) t-tests (h-i), or Spearman correlation

tests (f, j).

Fig. 3: Molecular signatures associated with post-intervention control. (a) Schematic
overview of processing, isolation, and multiomics sequencing of HIV and CMV epitope-specific
CD8* T cells. (b) Multimodal clustering by weighted nearest-neighbors plotted using uniform
manifold approximation and projection (UMAP) for dimension reduction. (¢) Cluster frequencies
among HIV-specific CD8* T cells from both pre- and post-intervention samples in PICs and PINCs
and among CMV-specific CD8* T cells and with cluster annotations based on differential
expression of genes, gene sets, and surface markers shown in d (left); Breakdown of participant
phenotype (PIC, PINC) and pathogen specificities (HIV, CMV) on UMAP plot as shown in b (right).
P-values reported above plots from x? tests. (d) Bubble plot comparing z-scaled mean normalized

expression and detection rates for curated surface markers, transcripts (italics), and gene
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signatures supporting cluster annotations, as detailed in Methods. (e-f) Volcano plots
summarizing differentially expressed genes (e) and surface proteins (f) among HIV-specific
CD8* T cells from PICs (blue) and PINCs (red). (g) Summary of top ten most significantly
upregulated and downregulated gene set subnets from GSNA of HIV-specific CD8* T cells from

PICs versus PINCs.

Fig. 4: Augmented CD8" T cell stemness following bNAb administration is associated with
pre-existing clonotypes. (a) Longitudinal T-cell receptor (TCR) clonal diversification
summarized as one minus Morisita-Horn Similarity Index (MHSI) among HIV-specific responses
from PICs (blue, n=6) and PINCs (red, n=7) or CMV-specific responses (violet, n=4). (b)
Longitudinal TCRB CDR3 clonotypic frequencies and MHSI of HIV (n=13) and CMV (n=4) epitope-
specific CD8* T cell responses (paired columns) at pre- and post-bNAb time points from sorted
pHLA tetramer* cells, ordered and colored by within-response rank for all responses with 210 cells
and longitudinal sampling and all clonotypes that occurred more than once in the data set; full
data in Supplementary Data 3. (c-f) Summaries of epitope-specific frequencies measured by
pHLA tetramer (tet) staining among total CD8* T cells (c), activation measured by surface CD38
and HLA-DR co-expression (d), proliferation measured by intranuclear Ki-67 (e), and cytotoxic
effector differentiation measured by intracellular perforin and granzyme B co-expression (f)
among HIV pHLA tet* CD8* T cell responses from PICs (n=9) and PINCs (n=7), and among
CMV/lu tet* CD8* T cell responses (n=8). (g-h) Volcano plots summarizing longitudinal changes
among HIV-specific CD8* T cell responses from all participants with longitudinal sampling in gene
(g) and surface protein (h) expression before (pre, gold) and after (post, magenta) intervention.
(i) Summary of top ten most significantly upregulated and downregulated gene set subnets from
GSNA among HIV-specific CD8* T cells from post- versus pre-intervention. (j) Longitudinal cluster
frequencies among HIV- and CMV-specific CD8* T cells from PIC and PINC. (k) Violin plot of

single-cell AUCell expression levels of a gene signature associated with lymph node follicular
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CD8* T cells® across clusters. Center lines represent medians, boxes first and third quartiles, and
whiskers ranges. Color-symbol combinations represent participants (key in Table 1). P-values
reported above plots from two-sided Wilcoxon signed rank (a,k), two-sided paired (longitudinal)

or unpaired (between-group) t-tests (b-e), x? tests (j).

METHODS

Study participants

We obtained approximately 40-80 million cryopreserved PBMCs from participants of the
previously reported MCA-906 (NCT02825797), MCA-965 (NCT03526848), eCLEAR
(NCT03041012), and TITAN (NCT03837756) trials™, including 7 PICs who maintained
undetectable or very low plasma viral loads for more than 30 weeks (up to seven years, and in
some cases still ongoing) and 5 PINCs who experienced rebound viremia following investigational
infusion of bNAbs 3BNC-117 and/or 10-1074 (Table 1). Longitudinal samples were included for
11 of 12 participants based on specimen availability at time points immediately preceding (pre) or
6-12 weeks following (post) bNAb administration in the context of ATl. eCLEAR participant 107,
from whom we only included a post-intervention sample, was excluded from all pre-intervention
and longitudinal analyses and its inclusion/exclusion did not impact our conclusions. To avoid
potentially confounding effects of viremia, samples were selected such that viremia was
undetectable in all participants at the time points sampled, with rebound viremia in PINCs
occurring several weeks after collection of the post-intervention samples evaluated. Secondary
use of biological specimens was approved by the Mass General Brigham Human Research
Committee following informed consent obtained during the primary studies in accordance with all

applicable regulations and guidelines.

Peptides
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Peptides matching autologous, HLA class |-optimal HIV epitopes were synthesized to a purity of
at least 80% at the Mass General Brigham Peptide Research Core using automated solid-phase

Fmoc/tBu chemistry followed by HPLC and MALDI-MS analysis®°.

Autologous HIV epitope-specific CD8* T cell mapping

Cryopreserved PBMCs were thawed at 37°C, recovered in RPMI media (Sigma-Aldrich)
supplemented with 10% fetal bovine serum (FBS, Sigma), 10 mM HEPES, 100 U/ml penicillin,
100 pg/mL streptomycin, and 292 ug/mL L-glutamine (Fisher Scientific; R10) overnight,
resuspended at 1x108 cells/mL in R10, and plated at 200 uL per well in Immobilon-P 96-well
microtiter plates (Millipore) pre-coated with 2 ug/mL anti-IFN-y (clone DK1, Mabtech). Individual
HLA-optimal HIV-1 peptides matched to each subject’s HLA genotype and autologous provirus
sequence?’, where available, or for Clade B consensus sequence where unavailable
(Supplementary Data 1), were added at 1 yM and incubated at 37°C overnight. Triplicate negative
control wells did not receive peptide and positive control wells were treated with 1 ug/ml anti-CD3
(clone OKT3, Biolegend) and 1 ug/ml anti-CD28 (clone CD28.8, Biolegend) antibodies. ELISpot
assays were performed following manufacturer’s protocol via biotinylated anti-IFN-y (clone B6-1,
Mabtech) detection, streptavidin-ALP (Mabtech) and AP-conjugated substrate (BioRad) followed
by disinfection with 0.05% Tween-20 (Thermo Fisher) and analysis using CTL ImmunoSpot
Analyzer Pro version 7.0.38.16. Responses greater than 10 spots per well (50 spots per 108

PBMCs) and 3-fold above negative controls were scored as positive.

Proliferation

Cryopreserved PBMCs were thawed at 37°C, recovered in R10 media overnight, then stained at
37°C for 20 minutes with 0.5 uM CellTrace CFSE (Thermo Fisher) as per manufacturer’s protocol.
Cells were then quenched and washed twice with R10 media, resuspended at 1x108 cells/mL in

R10, and plated at 200 pL per well in 96-well round-bottom polystyrene plates (Corning). Individual
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HLA-optimal HIV-1 peptides matching each response previously detected by IFN-y ELISpot were
added at 1 pyM to triplicate wells and incubated at 37°C for 6 days before flow cytometric
assessment. Triplicate negative control wells did not receive peptide and positive control wells
received 1 pg/ml anti-CD3 (clone OKT3, Biolegend) and 1 pg/ml anti-CD28 (clone CD28.8,
Biolegend) antibodies. On day 6, cells were stained using Live/Dead Violet viability dye (Thermo
Fisher, 10- dilution), AlexaFluor700-anti-CD3 (clone SK7, Biolegend, 102 dilution), and APC-anti-
CD8 (clone RPA-T8, Biolegend, 102 dilution), then analyzed by flow cytometry. Reported values

for each epitope-specific response represent means of background-subtracted triplicates.

Recall cytotoxicity

Recall cytotoxicity of HIV-1 epitope-specific memory CD8* T cell responses was measured using
the expanded antigen-specific elimination assay (EASEA) as per our published protocol?8. Briefly,
PBMCs were rested overnight in R10 then incubated with 100 ng/ml individual HLA-optimal HIV-
1 peptide for six days to expand antigen-specific effector cells. Target CD4* T cells were isolated
from PBMC by negative magnetic separation (StemCell Technologies), activated in 24-well non-
treated polystyrene plates (Corning) pre-coated with 2 mg/ml anti-CD3 (clone OKT3, Biolegend)
at 1-2 million cells/ml in R10 with 2 mg/ml anti-CD28 (clone CD28.2, Biolegend) and 50 U/ml IL-
2 (Peprotech) at 37°C overnight, then expanded in tissue culture-treated 24-well plates (Corning)
at 2 million cells/mlin R10 with 50 U/mL IL-2 at 37°C for five days. 50% of target cells were pulsed
for 30 minutes at 37°C with 10 yM peptide and labeled with CellTrace Far Red dye (Thermo
Fisher, 102 dilution) and mixed with unpulsed target cells 1:1, then labeled with CellTrace Violet
dye (Thermo Fisher, 10-3 dilution). After six days of expansion, CFSE-labeled effector CD8+ T
cells were isolated from pooled mononuclear cells by negative magnetic separation (StemCell
Technologies) and co-cultured with target cells at effector:target (E:T) ratios of 0:1, 1:1, 2:1, 4:1,
and 8:1 with 50,000 target cells/well in a treated 96-well polystyrene plate (Corning) for 4 hours.

Effector-only populations were stained with APC-conjugated pHLA tetramers (1:50 dilution) and
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all samples were stained with BV605-anti-CD3 (clone UCHT1, Biolegend, 102 dilution), BUV395-
anti-CD8 (clone RPA-T8, BD Biosciences, 102 dilution), BV711-anti-CD4 (clone RPA-T4,
Biolegend, 102 dilution) and Live/Dead Near-IR (Thermo Fisher, 10-3 dilution) then analyzed by
flow cytometry. Results were gated as described previously and percent elimination and area-

under-curve values were calculated as described previously'®28.

Phenotypic cytometry

Peptide-HLA monomers for immunodominant responses (listed in Supplementary Data 1) were
purchased from ImmunAware (Copenhagen, Denmark) as feasible. pHLA combinations were first
validated for predicted binding using netMHCpan-4.0%" and successful complex folding was
experimentally validated by the manufacturer at the time of production. Tetramers were produced
by multimerization with APC-conjugated streptavidin (Biolegend) as per manufacturer’s protocol.
Staining was performed using 4 nM individual APC-conjugated pHLA tetramers at 4°C for 30
minutes after 30-minute pre-treatment with 50 nM dasatinib to prevent in vitro cell activation and
activation-induced cell death. Cells were then stained with Live/Dead Near-IR viability dye
(Thermo Fisher, 10 dilution), RB705-anti-CD3 (clone UCHT1, BD Biosciences, 102 dilution),
BV711-anti-CD8 (clone RPA-T8, Biolegend, 10-? dilution), BUV395-anti-CD45RA (clone HI100,
BD Biosciences, 10 dilution), RB780-anti-CD62L (clone DREG-56, BD Biosciences, 107
dilution), PE-Dazzle 594-anti-CD38 (clone HB7, Biolegend, 102 dilution), and BUV805-anti-HLA-
DR (clone G46-6, BD Biosciences, 102 dilution) for 30 minutes at 4°C before fixation and
permeabilization with eBiosciences Foxp3 transcription factor staining kit (Thermo) as per
manufacturer’'s protocol, followed by intracellular staining for PE-anti-perforin (clone B-D48,
Biolegend, 1:50 dilution), FITC-anti-granzyme B (clone GB11, Biolegend, 1:50 dilution), and
intranuclear staining for BV421-anti-Ki-67 (clone Ki-67, Biolegend, 1:50 dilution). Data were
acquired using a FACSSymphony A5 cytometer and FACSDiva version 9.2 (BD) and analyzed

using FlowJo.
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Single-cell multiomics

Cryopreserved PBMCs were thawed and rested overnight before negative-selection magnetic
CD8* T cell isolation (StemCell Technologies), pre-treated for 30 minutes with 50 nM dasatinib
(Selleck Chemicals), then stained with 4 nM APC, PE, or BV421-conjugated pHLA tetramers
[prepared using Total-Seq C barcode-conjugated streptavidin (Biolegend) and pHLA monomers
described and validated above (Immunaware), listed in Supplementary Data 1], Total-Seq C
Human Universal Cocktail v2.0 (Biolegend) as per manufacturer's protocol, BV711-anti-CD8
(clone RPA-T8, Biolegend, 102 dilution) and unique Total-Seq C hashing antibodies (Biolegend,
1:200 dilution). CD8* T cells from an HLA-mismatched individual were included for estimation of
nonspecific barcoded tetramer binding and sorting gates were set above this level. Cells were
washed using a HT2000 laminar cell washer (Curiox) then resuspended in 2% FBS in PBS with
Sytox Green viability dye (Thermo Fisher). Viable pHLA* CD8* T cells were isolated by
fluorescence-activated cell sorting (FACS, counts in Supplementary Data 1) into a single pool
then encapsulated after splitting across four GEM-wells using Chromium GEM-X (10X
Genomics). Gene expression (GEX), surface protein expression (antibody-derived tags, ADT),
and TCR (VDJ) libraries were generated using the 10X Chromium GEM-X Single Cell 5’ v3 Dual
Index kit with feature barcode technology (10X Genomics) following the manufacturer’s protocol.
Libraries were pooled at a 5:1:1 GEX:ADT:VDJ ratio and sequenced via paired-end reads on a

NextSeq 2000 instrument with a 100-cycle P3 kit (lllumina).

Base-calling was performed using bcl2fastq and initial data-processing was performed using the
Cell Ranger multi-analysis pipeline version 9.0.0 using refdata-gex-GRCh38-2020-A as a
transcriptome reference and refdata-cellranger-vdj-GRCh38-alts-ensembl-5.0.0 as a VDJ
reference. Gene expression (GEX), antibody capture (ADT), and TCR (VDJ) libraries were

specified in the multi-analysis config file. Surface protein barcodes and hashtag barcodes
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corresponding to samples were designated as “Antibody Capture” in the feature-reference file.
After processing by Cell Ranger, the count matrix in sample_filtered_feature_bc_matrix was
analyzed using Seurat version 5.3.0 in R version 4.3.1. Hashtag and pHLA specificity-level sample
demultiplexing was performed using the HTOdemux() function of Seurat, and cells were removed
for which HTO_classification.global was not "Singlet", hence removing cells with multiple or no
hashtags. Cells for which pHLA barcodes were not detected were also removed, unless their
corresponding TCR sequence matched expanded clones (>5 cells) from the data set, in which
case they were reassigned to their matching specificity (1,757 total reassigned cells). 25,866 HIV-
specific and CMV-specific cells were recovered, of which 15,466 passed filtering (Supplementary
Data 1). The GEX library yielded 239 mean variable unique genes per cell, and 751 mean UMIs
per cell. The ADT library yielded 522 mean UMIs per cell. To avoid clustering driven by clonotype-
specific TCR gene expression, gene features for which the symbols matched the regular
expression ""TR[ABDG][VJC]" were removed from the data set prior to clustering®?. Using the
Seurat function FindVariableFeatures(), 4,000 variable genes were selected for dimensionality
reduction and differential expression analysis. Counts were log normalized, scaled and centered
prior to dimensionality reductionand clustering. Clustering was performed using weighted
nearest-neighbors (WNN) clustering via Seurat’s FindNeighbors() and FindClusters() functions

with the argument resolution = 0.35.

Differential expression was performed using Seurat’'s FindMarkers() function using default
parameters, including Wilcoxon tests for statistical significance. Pathway analysis was performed
using the tmodCERNOtest() from the tmod R package version 0.46.2%3 using a subset of MSigDB
version v7.5.1% that included hallmark, gene ontology, reactome, KEGG, biocarta, and
wikipathways gene sets. Primary cluster annotations as effector-memory (Tem), central memory
(Tcm), stem cell-like memory (Tscm), and terminally differentiated memory (Temra) were defined

using CD45RA/RO and CD62L expression for comparability to flow cytometry results. Primary
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and secondary cluster annotations were additionally supported by differentially expressed surface
ADTs corresponding to CCR7, CD127, CD226, PD-1, TIGIT, CX3CR1, CD73; differentially
expressed transcripts corresponding to TCF7, TOX, GZMB, GZMK, GAPDH, ENO1, IFITM1; and
differentially expressed gene sets corresponding to aerobic glycolysis (WP4628), oxidative
phosphorylation (M12919), interferon alpha response (M5911), lymph node follicular CD8* T cells
(CXCR5, SLAMF6, SELL, TCF7,1D3, CD200, ICOS, IL7R, BCL6)%*, and T cell activation (M2810),
which were quantified via AUCell®> and plotted as bubble and/or violin plots in R. Gene set network
analysis was performed using the GSNA R package, version 0.1.4.9, as previously described'>18,
Longitudinal differential expression analyses were performed across HIV-specific responses from

all participants with longitudinal sampling.

TCR clonotypes were assigned based on TRB CDR3 sequences and those appearing only once
in the data set were excluded from clonotypic analysis. Diversity of clonotypes within a sample
was quantified using Simpson diversity index and similarity of clonotypic composition between
longitudinal samples was quantified using Morisita-Horn Similarity Index (MHSI)®, whereas its
inverse (1-MHSI) was used to assess longitudinal clonotypic divergence. MHSI measures overlap
of clonotype proportions between two samples on a scale from 0 (no similarity) to 1 (identical)
and is relatively robust to differences in sample size. Extended analyses are reported in

Supplementary Data 3.

Statistical analyses, reproducibility, and figure preparation

Statistical analyses were performed using GraphPad Prism version 10.4 and R. Normality was
estimated using Shapiro-Wilk tests. Normally distributed data were compared using f-tests and
non-normally distributed data were compared using Wilcoxon signed rank tests and Spearman
correlations. All replicate measurements reflect distinct biological samples or epitope-specific

responses. All representative data shown is accompanied by summary data encompassing the
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entire data set, with the precise number of biological replicates specified in each figure legend.
All statistical tests were two-tailed. Wherever box-and-whisker diagrams are depicted, center lines
represent medians, ticks represent means, boxes represent first and third quartiles, and whiskers
represent ranges. Figures were prepared using Adobe lllustrator version 29.8.2, GraphPad Prism,

R, and BioRender.com.

Data availability

Full single-cell multiomics data are available from the NCBI Gene Expression Omnibus (GEO:
GSE294440). The GRCh38 reference genome is available ~from NCBI GenBank
(GCA_000001405.15). MSigDB gene set references. can be obtained from
https://data.broadinstitute.org/gsea-msigdb/msigdb/release/7.5.1/. The remaining data are

included within the manuscript and supplemental materials.
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EXTENDED DATA

Extended Data Fig. 1: Flow cytometric CD8" T cell profiling. (a-c) Representative gating
schema for measurement of epitope-specific proliferation (a), elimination of peptide-pulsed
(CellTrace Far Red*) CD4* T cell targets by peptide-expanded CD8* T cell effectors (b), and
phenotypic profiling of pHLA tetramer* (Tet*) cells (c) by flow cytometry. Panel a also includes
representative proliferation histogram overlays for HIV epitope-specific responses from PIC
5120 (blue) and PINC 9243 (red) relative to unstimulated controls (gray). (d) Memory subset
frequencies among HIV Tet* CD8* T cell responses from PICs (n=9) and PINCs (n=7), and
among CMV/flu Tet* CD8* T cell responses from both groups (n=8). Center lines represent
medians, ticks represent means, boxes represent first and third quartiles, and whiskers
represent ranges. Color-symbol combinations represent participants (key in Table 1). P-values

reported above plots from two-sided paired (longitudinal) or unpaired (between-group) t-tests.

Extended Data Fig. 2: Differential expression between clusters. (a) Feature plots of
expression levels of selected differentially expressed surface proteins and transcripts (italics)
projected onto UMAP plots, supporting cluster annotations in Fig. 3. (b) Bubble plots of z-scaled
mean normalized expression and detection rates for top differentially expressed transcripts (left)

and surface proteins (right) upregulated in each cluster, ranked by adjusted p value.

Extended Data Fig. 3: Multimodal clustering and TCR clonotypes. (a-d) UMAP of HIV and
CMV epitope-specific CD8* T cells colored by WNN cluster (a), participant (b), TRB CDR3
clonotype (c), or TRB CDR3 clonotype separated by participant and response (d). Gray points

represent singlets, whereas colored points are clonally expanded.
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IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
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|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  IFNG elispot data collection was performed using CTL ImmunoSpot Analyzer Pro version 7.0.38.16. Flow cytometric data collection and FACS
were performed using BD FACSDiva version 9.2.

Data analysis Flow cytometric data analyses were performed using FlowJo version 10.10.0. Statistical analyses were performed using GraphPad Prism
version 10.4 and R version 4.3.1. Single-cell multiomics data analyses were performed using R version 4.3.1, cellranger version 9.0.0, bcl2fastq
version 2.20, seurat version 5.3.0, tmod version 0.46.2, and GSNA version 0.1.4.9. Data visualizations were prepared using ggplot2 version
3.5.2 and Adobe lllustrator version 29.8.2.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Full single-cell multiomics data are available via the NCBI Gene Expression Omnibus (GEO) via accession number GSE294440. The GRCh38 reference genome is
available at NCBI GenBank via accession number GCA_000001405.15. MSigDB gene set references can be obtained from https://data.broadinstitute.org/gsea-
msigdb/msigdb/release/7.5.1/. The remaining data are included within the manuscript and supplemental materials.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Biological sex of each participant is reported in Table 1 as previously published for each parent trial.

Reporting on race, ethnicity, or ' Race (American Indian, Black, or White) and ethnicity (Hispanic or not Hispanic) of each participant are reported in Table 1 as

other socially relevant previously published for each parent trial.
groupings
Population characteristics Age, class-I HLA genotypes, and clinical histories related to HIV are reported for each participant in Table 1 as previously

published for each parent trial.
Recruitment This study includes only secondary use of previously collected samples.

Ethics oversight Secondary use protocols were approved by the Mass General Brigham Human Research Committee

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes were constrained by specimen and reagent availability.

Data exclusions  Only participants who received intervention were included in the analyses. Participants/responses for which only one longitudinal sample was
measured were excluded from longitudinal statistical comparisons. Doublets were excluded from multimodal single-cell analyses based on
hashing and tetramer oligonucleotides. Cells with TCRs that occurred only once and cells for which TCR sequences were not detected were
excluded from TCR clonotypic analyses.

Replication Proliferation assays were confirmed in triplicate and averaged. Metrics were also repeated across longitudinal samples for each participant.
The precise number of biological replicates is specified for each experiment in the figure legends and each data point is displayed in the
figures. Representative data are only shown adjacent to the corresponding full data set for illustrative purposes. Further replication beyond
those listed here were prohibited by limited specimen availability.

Randomization  This manuscript reports secondary analyses of specimens from previous trials. Experimental groups (PIC, PINC) were determined based on the
presence or absence of prolonged virologic control without resumption of ART, as previously reported by each parent trial. Longitidinal
samples (pre, post) were pre-determined based on which samples were collected prior to or following intervention in the parent trials.
Viremia as a potential covariate was controlled by inclusion only of samples without detectable HIV viremia. Demographics are summarized in
Table 1. Due to limited participant numbers, covariate modeling or controlling for additional potential covariates was not feasible.

Blinding As this manuscript reports secondary analyses of specimens from previous trials, formal blinding was not part of the study design.
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies [] chip-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Clinical data
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Plants

Antibodies

Antibodies used anti-IFN-g, clone DK1, Mabtech, cat# 3420-2A, lot# 161; anti-CD3, clone OKT3, Biolegend, cat# 317326, lot# B407799; anti-CD28,
clone CD28.2, Biolegend, cat# 302934, lot# B374639; anti-IFN-g, clone B6-1, Mabtech, cat# 3420-2A, lot#161; AlexaFluor700-anti-
CD3, clone SK7, Biolegend, cat# 344822, lot# B420037; APC-anti-CD8, clone RPA-TS, Biolegend, cat# 301014, lot# B386144; BV605-
anti-CD3, clone UCHT1, Biolegend, cat# 300460, lot# B430690; BUV395-anti-CD8, clone RPA-T8, BD Biosciences, cat# 563795, lot#
4292914; BV711-anti-CD4, clone RPA-T4, Biolegend, cat# 300558, lot# B420968; RB705-anti-CD3, clone UCHT1, BD Biosciences, cat#
570237, lot# 3229245; BV711-anti-CDS, clone RPA-T8, Biolegend, cat# 301044, lot# B425053; BUV395-anti-CD45RA, clone HI100, BD
Biosciences, cat# 740298, lot# 5091519; RB780-anti-CD62L, clone DREG-56, BD Biosciences, cat# 569211, lot# 4200635; PE-
Dazzle594-anti-CD38, clone HB-7, Biolegend, cat# 356630, lot# B406413; BUV805-anti-HLA-DR, clone G46-6, BD Biosciences, cat#
568335, lot# 4178322; PE-anti-perforin, clone B-D48, Biolegend, cat# 353304, lot# B397495; FITC-anti-granzyme B, clone GB11,
Biolegend, cat# 515403, lot# B397296; BV421-anti-Ki-67, clone Ki-67, Biolegend, cat# 350506, lot# B356738; BV711-anti-CDS, clone
RPA-T8, Biolegend, cat# 301044, lot# B425053; Total-Seq C Human Universal Cocktail v2.0, Biolegend, cat# 399910, lot# B408342;
Total-Seq C anti-human hashtags 1-18, clone LNH-94/2M2, Biolegend, cat# 394661-394693, lot# B344497

Validation Species reactivity and suitability for each application were validated by the commercial suppliers (Biolegend, BD Biosciences,
Mabtech) for each antibody, with quality control certification provided for each lot.

Plants

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

was applied-
Authentication Describe-any-atithentication-procedures foreach seed stock-tised-or-novel-genotype-generated—Describe-any-experiments-tused-to

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.

Flow Cytometry

Plots
Confirm that:
The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|Z| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|Z| All plots are contour plots with outliers or pseudocolor plots.

|Z| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology
Sample preparation Cryopreserved PBMCs were thawed at 37 C and rested overnight in RPMI + 10% FBS prior to each assay.
Instrument Data were collected using BD FACSSymphony A5, LSR-II, and FACSAria instruments.

Software Collection was performed using BD FACSDiva. Analysis was performed using FlowJo.
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Cell population abundance Abundances of each cell population/subpopulation are reported for all flow cytometry and multiomics data as frequencies in
the figures, extended figures, and supplementary data.

Gating strategy Intact live CD8+ cells were gated on forward and side scatter, viability dye, and CD8. Elimination assay data were pre-gated
on intact, live, CTV+ target cells. Gates are represented in manuscript figures.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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