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Interventions to induce lasting HIV remission are needed to obviate the requirement for 22 

lifelong antiretroviral therapy (ART). Durable post-intervention control (PIC) of viremia has 23 

been achieved in a subset of individuals following broadly neutralizing anti-HIV-1 antibody 24 

(bNAb) administration and analytical treatment interruption (ATI)1-4. Prior studies support 25 

a role for CD8+ T cells5-9 but the precise features of CD8+ T cells involved in PIC remain 26 

unclear. Here we mapped and functionally profiled CD8+ T cell responses to autologous 27 

HIV epitopes using longitudinal samples from four ATI trials in bNAb recipients. PIC was 28 

associated with superior pre-intervention HIV-specific CD8+ T cell proliferative capacity, 29 

stem cell-like memory phenotype, and recall cytotoxicity against autologous HIV peptide-30 

pulsed CD4+ T cells. CD8+ T cell stemness was further increased following bNAb 31 

administration without emergence of new clonotypes targeting defined HLA-optimal 32 

epitopes. Multimodal single-cell analyses revealed molecular features associated with PIC 33 

and HIV-specific CD8+ T cell stemness, including signatures of metabolic fitness and 34 

reduced T cell exhaustion. These results identify immune features that precede 35 

subsequent PIC to inform the development of combination immunotherapies that will elicit 36 

durable HIV remission. 37 

 38 

MAIN TEXT 39 

Approximately 40 million people worldwide are living with HIV, requiring lifelong antiretroviral 40 

therapy to prevent recrudescent viral replication, transmission, and disease progression10. To 41 

inform the development of a functional cure by which durable ART-free remission can be 42 

achieved, mechanisms underlying spontaneous control of HIV to undetectable levels without ART 43 

have been extensively studied11,12. The proliferative capacity of HIV-specific memory CD8+ T cells 44 

has been repeatedly linked to spontaneous control13-15, is associated with increased stemness16, 45 

and facilitates lytic granule loading for cytotoxic elimination of HIV-infected cells17. Moreover, loss 46 

of these functions precedes aborted spontaneous control of HIV18. 47 
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 48 

A small fraction of people with HIV (PWH) can maintain low or undetectable plasma viral loads 49 

for a variable period following discontinuation of ART19,20. Specifically, 4% of participants in 50 

noninterventional ATI trials achieved control of viremia for 84 days or more21. Such post-treatment 51 

control (PTC) has been associated with particular virologic and immunologic characteristics, such 52 

as smaller persistent HIV reservoirs, autologous virus neutralization, and reduced T cell 53 

activation22-24, while precise determinants remain under investigation. Efforts to achieve durable 54 

post-ART control in a larger proportion of PWH have combined ATI with interventions such as 55 

passive bNAb infusion1-4,25. Although post-intervention control (PIC) of viremia has been achieved 56 

following bNAb administration at higher rates than PTC in noninterventional trials, a majority of 57 

bNAb recipients still failed to control viremia, highlighting the need for a deeper understanding of 58 

immune responses that mediate PIC26. Control of viremia following bNAb administration in non-59 

human primates was lost upon depletion of CD8+ T cells5-7, demonstrating their importance in 60 

PIC. While modest augmentation of virus-specific CD8+ T cells has been observed in vivo 61 

following bNAb administration5-9, the precise CD8+ T cell features and functions associated with 62 

PIC and the extent to which their augmentation facilitates PIC remain unclear. 63 

 64 

Here we identify immune correlates preceding subsequent PIC by studying CD8+ T cell responses 65 

targeting autologous HIV epitopes in longitudinal specimens obtained from participants of four 66 

similar interventional trials. PIC was not associated with broadening of HIV-specific responses 67 

against autologous HLA-optimal epitopes following bNAb administration but was significantly 68 

associated with superior pre-intervention proliferative and cytolytic potential of HIV-specific stem 69 

cell-like memory CD8+ T cells. These responses were further enhanced following bNAb 70 

administration and were associated with changes in metabolic gene expression. These immune 71 

correlates of PIC may inform strategies to elicit ART-free control of viremia in a larger proportion 72 

of PWH. 73 
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 74 

PIC is not associated with broadening of CD8+ T cell responses 75 

We obtained longitudinal peripheral blood mononuclear cells (PBMCs) before and after passive 76 

infusion of bNAbs 3BNC117 and/or 10-1074 in twelve participants from four ATI trials1-4, including 77 

seven post-intervention controllers (PICs) and five post-intervention non-controllers (PINCs; Fig. 78 

1a, Table 1). We synthesized peptides matching class I HLA-optimal HIV epitopes encoded by 79 

autologous intact proviral DNA sequenced from each participant27 (Supplementary Data 1) and 80 

mapped epitope-specific CD8+ T cell responses by interferon-γ enzyme-linked immunospot (IFN-81 

γ ELISpot, Fig. 1b). A mean of 3.5 (range 1-8) HIV epitope-specific CD8+ T cell responses per 82 

participant was identified, and neither response breadth, induction of new responses against HLA-83 

optimal HIV epitopes reported to be presented by the expressed HLA class I alleles, nor 84 

magnitude of IFN-γ production was associated with PIC (Fig. 1c,d, Supplementary Data 1). These 85 

data indicate that the induction of de novo CD8+ T cell responses against known HLA-optimal HIV 86 

epitopes following bNAb administration is not a unique correlate of PIC. 87 

 88 

HIV-specific CD8+ T cell stemness precedes PIC 89 

Because proliferation is better correlated with cytotoxic function and spontaneous control of HIV 90 

viremia than IFN-γ production13,14,16-18, we next measured the ability of CD8+ T cells to proliferate 91 

upon stimulation with cognate HIV peptides corresponding to each response identified by IFN-γ 92 

ELISpot (Fig. 2a,b, Extended Data Fig. 1a). Pre-intervention proliferative capacity of CD8+ T cells 93 

against autologous HIV epitopes was on average more than tenfold higher in PICs relative to 94 

PINCs (mean 9.7% vs. 0.9%, median 3.6% vs. 0.3% CFSE-low, p<0.001, Fig. 2c). Notably, 95 

participant 314 had especially strong proliferative responses (range 16.0 – 49.7% CFSE-low) 96 

against 5 distinct epitopes (Fig. 2c) and was the only participant whose intact HIV DNA reservoir 97 

was below the assay detection limit (Table 1), suggesting a potential role for highly functional HIV 98 

epitope-specific CD8+ T cells in limiting HIV persistence in this participant. Proliferative capacity 99 
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remained significantly higher in PICs than PINCs even when responses from this participant were 100 

excluded from analysis. Following bNAb administration, proliferative capacity of responses from 101 

both participant groups modestly but significantly increased (median 1.3-fold, p<0.01 PICs, 102 

p<0.05 PINCs, Fig. 2c) and remained significantly higher in PICs than PINCs following 103 

intervention (mean 10.6% vs. 1.3%, median 3.8% vs. 0.4% CFSE-low, p<0.001, Fig. 2c). This 104 

modest increase was consistent with previous observations attributed to a potential bNAb-induced 105 

vaccinal effect5-9 but was not unique to participants who controlled viremia. Instead, control of 106 

viremia was associated with HIV-specific CD8+ T cell proliferative capacity that was higher before 107 

and further enhanced following intervention. 108 

 109 

To assess the ability of HIV epitope-specific CD8+ T cells to mount cytotoxic recall responses 110 

against autologous CD4+ T cells pulsed with cognate HIV peptides, we performed expanded 111 

antigen-specific elimination assays28 on immunodominant responses from participants with 112 

sufficient specimen availability (Fig. 2d,e, Extended Data Fig. 1b). Recall cytotoxicity was strongly 113 

associated with proliferative capacity (Spearman ρ=0.80, p<0.0001, Fig. 2f), consistent with prior 114 

data from spontaneous HIV controllers17,18,28 and further supporting a role for highly functional 115 

HIV-specific CD8+ T cells in PIC. 116 

 117 

To further characterize functional HIV-specific CD8+ T cells in PIC, we next assessed their ex vivo 118 

phenotypes by measuring surface expression of differentiation markers on unstimulated peptide-119 

HLA (pHLA) multimer-stained CD8+ T cells (Fig. 2g, Extended Data Fig. 1c, Supplementary Data 120 

1). HIV epitope-specific CD8+ T cells in PICs had a higher proportion of CD45RA+CD62L+ stem 121 

cell-like memory (TSCM, p<0.05, Fig. 2h) whereas those from PINCs had a higher proportion of 122 

CD45RA–CD62L– effector-memory (TEM) prior to intervention (p<0.01, Fig. 2i). In comparison, 123 

CD8+ T cell responses to cytomegalovirus (CMV) or influenza virus had a higher proportion of 124 

CD45RA+CD62L- terminally-differentiated TEMRA cells (Extended Data Fig. 1d). The frequency of 125 

ACCELE
RATED ARTIC

LE
 PREVIEW



TSCM cells among HIV epitope-specific CD8+ T cells in PICs modestly (median 1.2-fold) but 126 

significantly (p<0.01) increased among PICs following bNAb administration and remained 127 

significantly higher post-intervention than in PINCs (p<0.01, Fig. 2h). Moreover, TSCM frequency 128 

was proportional to proliferative capacity (Spearman ρ=0.64, p<0.01, Fig. 2j). Together, these 129 

results implicate HIV epitope-specific CD8+ T cell stemness in PIC. 130 

 131 

Molecular signatures of CD8+ T cell stemness in PIC 132 

To determine molecular signatures underlying the superior functional capacity of HIV-specific 133 

CD8+ T cells in PICs, we next assessed differential expression of genes and surface proteins 134 

among HIV and CMV epitope-specific CD8+ T cells at single-cell resolution via CITE-seq analyses 135 

of 15,466 pHLA multimer-stained cells from PICs and PINCs (Fig. 3a, Supplementary Data 1). 136 

Multimodal clustering of all samples based upon differential gene expression and surface markers 137 

revealed eight clusters, which were manually annotated based upon differentially expressed 138 

genes, gene sets, and surface markers (Fig. 3b; Extended Data Figs. 2, 3a-b). Cluster 0 was 139 

elevated among HIV-specific cells in PINCs, whereas cluster 1 was comparable between groups 140 

and clusters 2-7 were elevated among HIV-specific cells in PICs (Fig. 3c). PINC-associated 141 

cluster 0 expressed canonical effector-memory (TEM) and exhaustion (TEX) markers including 142 

CD45RO, PD-1, TIGIT, and TOX (Fig. 3d), indicating a potential role for T cell exhaustion in 143 

decreased functionality of HIV-specific CD8+ T cells among PINCs. In contrast, PIC-associated 144 

cluster 6 expressed canonical TSCM genes and surface proteins associated with stemness, 145 

including CD45RA, CD62L, CCR7, CD27, and TCF7 (Fig. 3d)29, consistent with our flow 146 

cytometric analyses (Fig. 2h-i). This TSCM-like cluster exhibited low inhibitory receptor expression, 147 

elevated oxidative phosphorylation gene signatures, and increased surface expression of CD73 148 

(Fig. 3d). T cells expressing CD73, an ectonucleotidase with previously reported roles in 149 

regulating metabolism via nicotinamide adenine dinucleotide modulation30, have previously been 150 

associated with spontaneous HIV control and reduced exhaustion31,32. PIC was also associated 151 
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with TEM-like cells expressing interferon response genes (cluster 5) and TSCM-like cells co-152 

expressing signatures of glycolysis that share features of transitory cells derived from stem-like 153 

precursors (cluster 4; Fig. 3d-g, Extended Data Fig. 2, Supplementary Data 2)33. Unlike TEX cells, 154 

which express effector-like signatures but are impaired for glycolysis, oxidative phosphorylation, 155 

and proliferative potential34, metabolic signatures elevated in T cells from PICs have been 156 

previously proposed to prime them for rapid signaling in response to antigen35. These data 157 

indicate HIV-specific CD8+ T cells in PICs are characterized by molecular signatures of stemness, 158 

reduced exhaustion, and metabolic fitness.    159 

 160 

Augmented stemness is associated with pre-existing clonotypes 161 

We next investigated longitudinal changes following bNAb administration to define molecular 162 

signatures associated with the modest but significant augmentation of CD8+ T cell stemness and 163 

proliferative capacity observed (Fig. 2c,i). As broadening of response specificities was not 164 

associated with PIC (Fig. 1c), we evaluated longitudinal changes within HIV epitope-specific 165 

responses targeted prior to intervention. PIC was not uniquely associated with diversification or 166 

expansion of T cell receptor (TCR) clonotypes following intervention (Fig. 4a, Supplementary Data 167 

3). Epitope-specific responses were oligoclonal, with more than half of each response comprising 168 

one or two dominant clonotypes and without substantial emergence of new clonotypes following 169 

bNAb administration (Fig. 4b, Extended Data Fig. 3c,d).  170 

 171 

By flow cytometry, we observed no significant increases in frequencies of HIV epitope-specific 172 

CD8+ T cells (Fig. 4c), their activation measured by CD38 and HLA-DR co-expression (Fig. 4d), 173 

their in vivo proliferation marked by Ki67 expression (Fig. 4e), or their cytotoxic differentiation 174 

measured by perforin and granzyme B co-expression (Fig. 4f). These results indicate a lack of 175 

peripheral response to antigen at the time points studied, which preceded waning of bNAb 176 

concentrations to subtherapeutic levels and detectable HIV recrudescence. By multimodal single-177 
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cell analyses, we observed modest but significant upregulation of both CD45RA and CD62L 178 

surface marker expression following bNAb administration, consistent with increases in TSCM 179 

frequencies observed by flow cytometry (Fig. 2i), and an increase in gene signatures of oxidative 180 

metabolism (Fig. 4g-i, Supplementary Data 4), which has previously been associated with 181 

spontaneous control of HIV36. Following bNAb administration, we also observed small increases 182 

in the frequencies of TSCM and CD127+CD73+ cell clusters, which have previously been associated 183 

with proliferative long-lived memory37,38 and share gene signatures with follicular CD8+ T cells in 184 

lymphoid tissues (Fig. 4j-k)39. Although pre-existing differences in stemness better distinguished 185 

PICs from PINCs than longitudinal changes (Fig. 2c, 3d, 4j), our results suggest that augmentation 186 

of CD8+ T cell stemness in peripheral circulation following bNAb administration may involve CD8+ 187 

T cell recirculation from lymphoid tissue sites of early bNAb-suppressed virus re-emergence, 188 

consistent with previous results in non-human primates6. 189 

 190 

Discussion 191 

In this study, we explored HIV-specific CD8+ T cell responses in PWH on ART who received bNAbs 192 

and underwent concurrent or subsequent ATI. Examination of PICs who have remained mostly 193 

aviremic without ART for up to 7 years from four similar interventional trials enabled us to 194 

investigate immune correlates of durable PIC at greater sensitivity than was feasible from 195 

individual trials. By evaluating cellular immunity at epitope-specific resolution using reagents 196 

matching autologous virus, our study additionally avoided potential confounding effects of immune 197 

escape. Our results indicate that HIV-specific CD8+ T cells are more functional both prior to and 198 

following intervention in people who subsequently control viremia without ART relative to those 199 

who receive the same intervention but experience viral rebound. HIV-specific CD8+ T cells in PICs 200 

were characterized by molecular and functional hallmarks of stemness, including the ability to 201 

proliferate, differentiate, and mount cytotoxic recall responses against HIV antigens matched to 202 

autologous virus. 203 
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 204 

CD8+ T cell stemness has been previously associated with spontaneous control of HIV viremia, 205 

but its role in control of viremia following treatment interruption is not well established. Class I HLA 206 

alleles associated with spontaneous HIV control do not appear to be associated with PTC19,22,40. 207 

Although HIV-specific CD8+ T cell responses are dysfunctional in the majority of PWH and their 208 

functionality is not typically restored by ART41, CD8+ T cell functionality has been associated with 209 

case reports of PTC42,43, and preservation of HIV-specific CD8+ T cell functionality44,45 may 210 

contribute to higher rates of PTC observed among early-treated PWH19,20. In addition, enhanced 211 

CD8+ T cell functionality and stemness in some individuals following prolonged ART46,47 may also 212 

contribute to PTC in PWH treated during chronic infection. However, as CD8+ T cell responses to 213 

recrudescent viremia typically lag HIV replication, they are likely insufficient to prevent rebound 214 

viremia in most noninterventional ATI settings. Consistent with this, CD8+ T cell responses are not 215 

associated with time-to-rebound but rather are associated with setpoint viral loads48. As ART is 216 

re-initiated upon viral rebound in most ATI trials, the impact of CD8+ T cells on viral load setpoint 217 

is not typically measured and PTC in noninterventional studies has more frequently been 218 

associated with autologous neutralization and innate immunity22,23,40. 219 

 220 

As HIV frequently escapes from autologous neutralizing antibodies, passive infusion of 221 

exogenous bNAbs, especially in combination, has enabled prolonged suppression of 222 

viremia2,49,50. CD8+ T cells have been implicated in durable PIC among bNAb recipients due to a 223 

proposed vaccinal effect by which antigen-antibody complexes lead to the stimulation of cellular 224 

immunity1-9. While modest augmentation of CD8+ T cell proliferative capacity following bNAb 225 

administration was consistently observed in our study, this effect was neither unique to PIC nor 226 

associated with new responses or TCR clonotypes against known HLA-optimal epitopes. Instead, 227 

our results implicate precise features of HIV-specific CD8+ T cells prior to intervention that are 228 

further enhanced by bNAb administration and are associated with subsequent PIC, including their 229 
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stemness, proliferative capacity, recall cytotoxicity, and metabolic fitness. Indeed, these features 230 

have previously been associated with superior HIV-specific CD8+ T cell functionality in 231 

spontaneous HIV controllers11,13,16-18,36, from whom CD8+ T cells and exogenous bNAbs can 232 

synergize to elicit in vitro HIV suppression51. We hypothesize that by limiting the rate and 233 

magnitude of HIV recrudescence, bNAbs allow functional CD8+ T cell responses a better chance 234 

to contain early virus rebound in lymphoid tissues, mediating PIC after bNAbs wane below 235 

therapeutic concentrations.  236 

 237 

Despite including participants from four trials, our study remained limited by sample availability in 238 

multiple aspects, including scope and statistical power. As it was not feasible to screen CD8+ T 239 

cell responses using overlapping peptides spanning the entire HIV-1 proteome, we focused on 240 

known HLA-optimal epitopes matching autologous provirus sequence to facilitate downstream 241 

analyses using pHLA multimers. It is possible that our approach may have missed responses 242 

against as-yet undefined epitopes or those below our detection limit. Due to limitations in 243 

specimen and pHLA multimer availability, we were able to profile only one-third of detected HIV-244 

specific responses by cytometry and multiomics. As our study focused on HIV-specific CD8+ T 245 

cell responses, we did not evaluate other immune parameters that may contribute to PIC. 246 

Sampling of peripheral blood at a single post-intervention time point limited our ability to observe 247 

in vivo proliferative and cytotoxic responses to recrudescent viremia. Due to the retrospective 248 

nature of our study, prospective studies will be required to determine the predictive capacity of 249 

HIV-specific CD8+ T cell features preceding PIC. Studies investigating epitope-specific CD8+ T 250 

cell responses in lymphoid tissues, the primary sites of HIV persistence and recrudescence52,53, 251 

and measurement of additional immune parameters such as autologous neutralization, innate 252 

immunity, and HIV-specific CD4+ T cell responses, will be important to further delineate 253 

mechanisms of PIC.  254 

 255 
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Ongoing trials aim to elicit PIC in a larger proportion of PWH via improved or combinatorial 256 

interventions, including long-acting bNAbs54, therapeutic vaccination55, and agonists of cytokines 257 

such as IL-1556, which can rewire cellular metabolism of dysfunctional HIV-specific CD8+ T cells57 258 

and promote their migration to B cell follicles in lymphoid tissues58. Complementary new data 259 

emerging from two independent interventional trials further support a role for CD8+ T cell 260 

proliferation in PIC55,59. Our results suggest that immunotherapies capable of enhancing virus-261 

specific CD8+ T cell stemness, proliferative capacity, and recall cytotoxicity may dramatically 262 

enhance the ability to elicit durable HIV remission elicited by bNAb administration. 263 

 264 
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TABLES 452 

 453 

Table 1: Participant clinical and demographic characteristics. Participant ID (PID) and key 454 

for symbol-color combinations used to represent data from each participant; parent study; 455 

intervention (RMD, romidepsin); phenotype (PIC, post-intervention controller; PINC, post-456 

intervention noncontroller); longitudinal sampling; age (years; NR, not reported); biological sex 457 

(M, male; F, female); race and ethnicity (AI, American Indian; B, Black; H, Hispanic; W, White); 458 

duration of HIV infection and ART before ATI (y, years); pre-intervention CD4 count (cells/µm3 459 

peripheral blood); intact HIV per 106 PBMCs reported previously as measured by Q2VOA (IUPM, 460 

MCA-9061), Q4PCR (MCA-9652), or IPDA (eCLEAR3, TITAN4); class I HLA alleles (protective 461 

alleles underlined); and total number of HLA-optimal HIV epitopes screened (A, autologous; C, 462 

PID Study Intervention Phenotype Samples Age Sex Race 
HIV/ART  
Duration 

CD4 
Count 

Intact 
HIV DNA 

HLA 
HIV 

Epitopes 

9243 
▼ 

MCA-906 3x 3BNC117+ 
10-1074 during ATI PINC ATI start; 12w 

post-ATI 29 M AI, H 5y/5y 583 0.17 
A24,30 
B15,31 
C02,15 

49 A 

9252 
▲ 

MCA-906 3x 3BNC117+ 
10-1074 during ATI PINC ATI start; 12w 

post-ATI 51 F B 11y/11y 598 1.71 
A02,66 
B39,78 
C12,16 

37 A 

9254 

♦ 
MCA-906 3x 3BNC117+ 

10-1074 during ATI PIC ATI start; 12w 
post-ATI 48 M W 21y/21y 860 NA 

A01,29 
B38,44 
C12,16 

22 A 

9255 
▲ 

MCA-906 3x 3BNC117+ 
10-1074 during ATI PIC ATI start; 12w 

post-ATI 30 M W 5y/4y 1360 1.89 
A03,25 
B18,44 
C07,12 

41 A 

5106 
■ 

MCA-965 7x 3BNC117+ 
10-1074 during ATI PIC ATI start; 12w 

post-ATI 31 M B 6y/6y 671 7.3 
A03,03 
B18,57 
C12,18 

61 A 

5111 
■ 

MCA-965 7x 3BNC117+ 
10-1074 during ATI PINC ATI start; 12w 

post-ATI 55 M W 20y/16y 760 2.5 
A11,32 
B35,44 
C05,12 

38 A 

5114 

● 
MCA-965 7x 3BNC117+ 

10-1074 during ATI PINC ATI start; 12w 
post-ATI 54 M B 15y/15y 545 6.1 

A03,68 
B07,15 
C07,07 

53 A 

5120 

● 
MCA-965 7x 3BNC117+ 

10-1074 during ATI PIC ATI start; 12w 
post-ATI 50 M W 19y/19y 1189 0.8 

A02,29 
B14,44 
C01,03 

42 A 

107 

○ 
eCLEAR 

2x 3BNC117+ 
3xRMD at ART 

initiation 
PIC post-bNAb 

(pre-ATI) 45 M W 1.2y/1y 650 50.2 
A02,25 
B15,44 
C03,05 

43 A 

109 

♦ 
TITAN 2x 3BNC117+ 

10-1074 during ATI PINC ATI start; 6w 
post-ATI 57 M W 5y/5y 1250 93.5 

A02,02 
B07,51 
C04,07 

53 C 

142 

★ 
TITAN 2x 3BNC117+ 

10-1074 during ATI PIC ATI start; 6w 
post-ATI 57 M W 5y/5y 1210 220.2 

A01,02 
B08,44 
C05,07 

48 A 

314 
▼ 

TITAN 2x 3BNC117+ 
10-1074 during ATI PIC ATI start; 6w 

post-ATI 55 F W 2y/2y 1030 <1.2 
A30,32 
B13,51 
C06,14 

31 C 
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clade B consensus). Plasma viral loads were undetectable (<20 HIV RNA copies/ml) at all sample 463 

time points. NA, not available. 464 

 465 

FIGURE LEGENDS 466 

Fig. 1: Autologous HIV epitope-specific CD8+ T cell responses in post-intervention 467 

controllers. (a) Study cohort overview. Longitudinal PBMCs were included from 7 post-468 

intervention controller (PIC) and 5 post-intervention noncontroller (PINC) participants pre- and 469 

post-infusion of bNAbs 3BNC117 and 10-1074 from the MCA-906, MCA-965, TITAN and eCLEAR 470 

trials. Representative diagrams were modified from Mendoza et al.1 with permission. (b) 471 

Schematic overview of autologous HIV-specific CD8+ T cell response mapping and representative 472 

interferon-γ (IFN-γ) ELISpot results. (c-d) Summary of longitudinal and between-group 473 

differences in breadth (c, n=6, 7, 5, 5 samples) and magnitude (d, n=23, 26, 22, 22 responses) of 474 

HIV epitope-specific responses. Center lines represent medians, ticks represent means, boxes 475 

represent first and third quartiles, and whiskers represent ranges. Color-symbol combinations 476 

represent participants (key in Table 1). P-values reported above plots from two-sided paired 477 

(longitudinal) or unpaired (between-group) t-tests. 478 

 479 

Fig. 2: HIV-specific CD8+ T cell stemness precedes post-intervention control. (a-b) 480 

Schematic overview of HIV-specific CD8+ T cell proliferation assay (a) and representative 481 

longitudinal epitope-specific proliferation from one PIC (PID 5120) and one PINC (PID 9243; b). 482 

(c) Summary of longitudinal and between-group differences in proliferative capacity of CD8+ T cell 483 

responses against each autologous HIV-1 epitope for which responses were detected by IFN-γ 484 

ELISpot. Each data point represents the mean of triplicate wells for each response (n=23, 26, 22, 485 

22 responses). (d-e) Schematic overview of expanded antigen-specific elimination assay to 486 

measure recall cytotoxicity (d) and representative results at increasing effector:target (E:T) ratios 487 

from one PIC (PID 142; blue) and one PINC (PID 109; red), including area under the curve (AUC) 488 
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summaries (e). (f) Correlation of proliferation and recall cytotoxicity, as measured in d-e, across 489 

responses from both pre- and post-intervention samples in PICs (blue) and PINCs (red). 490 

Correlation (ρ) and p-values calculated by Spearman correlation (n=41 responses). (g) 491 

Representative flow cytometric staining of memory subset markers CD45RA and CD62L on HIV 492 

peptide-HLA (pHLA) tetramer+ CD8+ T cells. (h-i) Summary of longitudinal and between-group 493 

differences in stem cell-like memory (TSCM, h) and effector-memory (TEM, i) subset frequencies 494 

among HIV pHLA tetramer+ (Tet+) CD8+ T cell responses from PICs (n=9) and PINCs (n=7), and 495 

among CMV/flu Tet+ CD8+ T cells from both groups (n=8). (j) Correlation (ρ) and p-values 496 

calculated by Spearman correlation between proliferative capacity and percent TSCM among Tet+ 497 

CD8+ T cells in PICs (blue) and PINCs (red), n = 16 responses. Center lines represent medians, 498 

boxes represent first and third quartiles, and whiskers represent ranges. Color-symbol 499 

combinations represent participants (key in Table 1). P-values reported above plots from two-500 

sided Wilcoxon signed rank (between-group) or matched-pairs signed rank (longitudinal) tests (c), 501 

two-sided unpaired (between-group) or paired (longitudinal) t-tests (h-i), or Spearman correlation 502 

tests (f, j). 503 

 504 

Fig. 3: Molecular signatures associated with post-intervention control. (a) Schematic 505 

overview of processing, isolation, and multiomics sequencing of HIV and CMV epitope-specific 506 

CD8+ T cells. (b) Multimodal clustering by weighted nearest-neighbors plotted using uniform 507 

manifold approximation and projection (UMAP) for dimension reduction. (c) Cluster frequencies 508 

among HIV-specific CD8+ T cells from both pre- and post-intervention samples in PICs and PINCs 509 

and among CMV-specific CD8+ T cells and with cluster annotations based on differential 510 

expression of genes, gene sets, and surface markers shown in d (left); Breakdown of participant 511 

phenotype (PIC, PINC) and pathogen specificities (HIV, CMV) on UMAP plot as shown in b (right). 512 

P-values reported above plots from χ2 tests. (d) Bubble plot comparing z-scaled mean normalized 513 

expression and detection rates for curated surface markers, transcripts (italics), and gene 514 
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signatures supporting cluster annotations, as detailed in Methods. (e-f) Volcano plots 515 

summarizing differentially expressed genes (e) and surface proteins (f) among HIV-specific 516 

CD8+ T cells from PICs (blue) and PINCs (red). (g) Summary of top ten most significantly 517 

upregulated and downregulated gene set subnets from GSNA of HIV-specific CD8+ T cells from 518 

PICs versus PINCs. 519 

 520 

Fig. 4: Augmented CD8+ T cell stemness following bNAb administration is associated with 521 

pre-existing clonotypes. (a) Longitudinal T-cell receptor (TCR) clonal diversification 522 

summarized as one minus Morisita-Horn Similarity Index (MHSI) among HIV-specific responses 523 

from PICs (blue, n=6) and PINCs (red, n=7) or CMV-specific responses (violet, n=4). (b) 524 

Longitudinal TCRβ CDR3 clonotypic frequencies and MHSI of HIV (n=13) and CMV (n=4) epitope-525 

specific CD8+ T cell responses (paired columns) at pre- and post-bNAb time points from sorted 526 

pHLA tetramer+ cells, ordered and colored by within-response rank for all responses with ≥10 cells 527 

and longitudinal sampling and all clonotypes that occurred more than once in the data set; full 528 

data in Supplementary Data 3. (c-f) Summaries of epitope-specific frequencies measured by 529 

pHLA tetramer (tet) staining among total CD8+ T cells (c), activation measured by surface CD38 530 

and HLA-DR co-expression (d), proliferation measured by intranuclear Ki-67 (e), and cytotoxic 531 

effector differentiation measured by intracellular perforin and granzyme B co-expression (f) 532 

among HIV pHLA tet+ CD8+ T cell responses from PICs (n=9) and PINCs (n=7), and among 533 

CMV/flu tet+ CD8+ T cell responses (n=8). (g-h) Volcano plots summarizing longitudinal changes 534 

among HIV-specific CD8+ T cell responses from all participants with longitudinal sampling in gene 535 

(g) and surface protein (h) expression before (pre, gold) and after (post, magenta) intervention. 536 

(i) Summary of top ten most significantly upregulated and downregulated gene set subnets from 537 

GSNA among HIV-specific CD8+ T cells from post- versus pre-intervention. (j) Longitudinal cluster 538 

frequencies among HIV- and CMV-specific CD8+ T cells from PIC and PINC. (k) Violin plot of 539 

single-cell AUCell expression levels of a gene signature associated with lymph node follicular 540 
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CD8+ T cells39 across clusters. Center lines represent medians, boxes first and third quartiles, and 541 

whiskers ranges. Color-symbol combinations represent participants (key in Table 1). P-values 542 

reported above plots from two-sided Wilcoxon signed rank (a,k), two-sided paired (longitudinal) 543 

or unpaired (between-group) t-tests (b-e), χ2 tests (j). 544 

 545 

METHODS 546 

Study participants 547 

We obtained approximately 40-80 million cryopreserved PBMCs from participants of the 548 

previously reported MCA-906 (NCT02825797), MCA-965 (NCT03526848), eCLEAR 549 

(NCT03041012), and TITAN (NCT03837756) trials1-4, including 7 PICs who maintained 550 

undetectable or very low plasma viral loads for more than 30 weeks (up to seven years, and in 551 

some cases still ongoing) and 5 PINCs who experienced rebound viremia following investigational 552 

infusion of bNAbs 3BNC-117 and/or 10-1074 (Table 1). Longitudinal samples were included for 553 

11 of 12 participants based on specimen availability at time points immediately preceding (pre) or 554 

6-12 weeks following (post) bNAb administration in the context of ATI. eCLEAR participant 107, 555 

from whom we only included a post-intervention sample, was excluded from all pre-intervention 556 

and longitudinal analyses and its inclusion/exclusion did not impact our conclusions. To avoid 557 

potentially confounding effects of viremia, samples were selected such that viremia was 558 

undetectable in all participants at the time points sampled, with rebound viremia in PINCs 559 

occurring several weeks after collection of the post-intervention samples evaluated. Secondary 560 

use of biological specimens was approved by the Mass General Brigham Human Research 561 

Committee following informed consent obtained during the primary studies in accordance with all 562 

applicable regulations and guidelines. 563 
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Peptides matching autologous, HLA class I-optimal HIV epitopes were synthesized to a purity of 566 

at least 80% at the Mass General Brigham Peptide Research Core using automated solid-phase 567 

Fmoc/tBu chemistry followed by HPLC and MALDI-MS analysis60. 568 

 569 

Autologous HIV epitope-specific CD8+ T cell mapping 570 

Cryopreserved PBMCs were thawed at 37°C, recovered in RPMI media (Sigma-Aldrich) 571 

supplemented with 10% fetal bovine serum (FBS, Sigma), 10 mM HEPES, 100 U/ml penicillin, 572 

100 µg/mL streptomycin, and 292 µg/mL L-glutamine (Fisher Scientific; R10) overnight, 573 

resuspended at 1x106 cells/mL in R10, and plated at 200 µL per well in Immobilon-P 96-well 574 

microtiter plates (Millipore) pre-coated with 2 µg/mL anti-IFN-γ (clone DK1, Mabtech). Individual 575 

HLA-optimal HIV-1 peptides matched to each subject’s HLA genotype and autologous provirus 576 

sequence27, where available, or for Clade B consensus sequence where unavailable 577 

(Supplementary Data 1), were added at 1 µM and incubated at 37°C overnight. Triplicate negative 578 

control wells did not receive peptide and positive control wells were treated with 1 µg/ml anti-CD3 579 

(clone OKT3, Biolegend) and 1 µg/ml anti-CD28 (clone CD28.8, Biolegend) antibodies. ELISpot 580 

assays were performed following manufacturer’s protocol via biotinylated anti-IFN-γ (clone B6-1, 581 

Mabtech) detection, streptavidin-ALP (Mabtech) and AP-conjugated substrate (BioRad) followed 582 

by disinfection with 0.05% Tween-20 (Thermo Fisher) and analysis using CTL ImmunoSpot 583 

Analyzer Pro version 7.0.38.16. Responses greater than 10 spots per well (50 spots per 106 584 

PBMCs) and 3-fold above negative controls were scored as positive. 585 

 586 

Proliferation 587 

Cryopreserved PBMCs were thawed at 37°C, recovered in R10 media overnight, then stained at 588 

37°C for 20 minutes with 0.5 µM CellTrace CFSE (Thermo Fisher) as per manufacturer’s protocol. 589 

Cells were then quenched and washed twice with R10 media, resuspended at 1x106 cells/mL in 590 

R10, and plated at 200 µL per well in 96-well round-bottom polystyrene plates (Corning). Individual 591 
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HLA-optimal HIV-1 peptides matching each response previously detected by IFN-γ ELISpot were 592 

added at 1 µM to triplicate wells and incubated at 37°C for 6 days before flow cytometric 593 

assessment. Triplicate negative control wells did not receive peptide and positive control wells 594 

received 1 µg/ml anti-CD3 (clone OKT3, Biolegend) and 1 µg/ml anti-CD28 (clone CD28.8, 595 

Biolegend) antibodies. On day 6, cells were stained using Live/Dead Violet viability dye (Thermo 596 

Fisher, 10-3 dilution), AlexaFluor700-anti-CD3 (clone SK7, Biolegend, 10-2 dilution), and APC-anti-597 

CD8 (clone RPA-T8, Biolegend, 10-2 dilution), then analyzed by flow cytometry. Reported values 598 

for each epitope-specific response represent means of background-subtracted triplicates. 599 

 600 

Recall cytotoxicity 601 

Recall cytotoxicity of HIV-1 epitope-specific memory CD8+ T cell responses was measured using 602 

the expanded antigen-specific elimination assay (EASEA) as per our published protocol28. Briefly, 603 

PBMCs were rested overnight in R10 then incubated with 100 ng/ml individual HLA-optimal HIV-604 

1 peptide for six days to expand antigen-specific effector cells. Target CD4+ T cells were isolated 605 

from PBMC by negative magnetic separation (StemCell Technologies), activated in 24-well non-606 

treated polystyrene plates (Corning) pre-coated with 2 mg/ml anti-CD3 (clone OKT3, Biolegend) 607 

at 1-2 million cells/ml in R10 with 2 mg/ml anti-CD28 (clone CD28.2, Biolegend) and 50 U/ml IL-608 

2 (Peprotech) at 37°C overnight, then expanded in tissue culture-treated 24-well plates (Corning) 609 

at 2 million cells/ml in R10 with 50 U/mL IL-2 at 37°C for five days. 50% of target cells were pulsed 610 

for 30 minutes at 37°C with 10 µM peptide and labeled with CellTrace Far Red dye (Thermo 611 

Fisher, 10-3 dilution) and mixed with unpulsed target cells 1:1, then labeled with CellTrace Violet 612 

dye (Thermo Fisher, 10-3 dilution). After six days of expansion, CFSE-labeled effector CD8+ T 613 

cells were isolated from pooled mononuclear cells by negative magnetic separation (StemCell 614 

Technologies) and co-cultured with target cells at effector:target (E:T) ratios of 0:1, 1:1, 2:1, 4:1, 615 

and 8:1 with 50,000 target cells/well in a treated 96-well polystyrene plate (Corning) for 4 hours. 616 

Effector-only populations were stained with APC-conjugated pHLA tetramers (1:50 dilution) and 617 
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all samples were stained with BV605-anti-CD3 (clone UCHT1, Biolegend, 10-2 dilution), BUV395-618 

anti-CD8 (clone RPA-T8, BD Biosciences, 10-2 dilution), BV711-anti-CD4 (clone RPA-T4, 619 

Biolegend, 10-2 dilution) and Live/Dead Near-IR (Thermo Fisher, 10-3 dilution) then analyzed by 620 

flow cytometry. Results were gated as described previously and percent elimination and area-621 

under-curve values were calculated as described previously18,28. 622 

 623 

Phenotypic cytometry 624 

Peptide-HLA monomers for immunodominant responses (listed in Supplementary Data 1) were 625 

purchased from ImmunAware (Copenhagen, Denmark) as feasible. pHLA combinations were first 626 

validated for predicted binding using netMHCpan-4.061 and successful complex folding was 627 

experimentally validated by the manufacturer at the time of production. Tetramers were produced 628 

by multimerization with APC-conjugated streptavidin (Biolegend) as per manufacturer’s protocol. 629 

Staining was performed using 4 nM individual APC-conjugated pHLA tetramers at 4°C for 30 630 

minutes after 30-minute pre-treatment with 50 nM dasatinib to prevent in vitro cell activation and 631 

activation-induced cell death. Cells were then stained with Live/Dead Near-IR viability dye 632 

(Thermo Fisher, 10-3 dilution), RB705-anti-CD3 (clone UCHT1, BD Biosciences, 10-2 dilution), 633 

BV711-anti-CD8 (clone RPA-T8, Biolegend, 10-2 dilution), BUV395-anti-CD45RA (clone HI100, 634 

BD Biosciences, 10-2 dilution), RB780-anti-CD62L (clone DREG-56, BD Biosciences, 10-2 635 

dilution), PE-Dazzle 594-anti-CD38 (clone HB7, Biolegend, 10-2 dilution), and BUV805-anti-HLA-636 

DR (clone G46-6, BD Biosciences, 10-2 dilution) for 30 minutes at 4°C before fixation and 637 

permeabilization with eBiosciences Foxp3 transcription factor staining kit (Thermo) as per 638 

manufacturer’s protocol, followed by intracellular staining for PE-anti-perforin (clone B-D48, 639 

Biolegend, 1:50 dilution), FITC-anti-granzyme B (clone GB11, Biolegend, 1:50 dilution), and 640 

intranuclear staining for BV421-anti-Ki-67 (clone Ki-67, Biolegend, 1:50 dilution). Data were 641 

acquired using a FACSSymphony A5 cytometer and FACSDiva version 9.2 (BD) and analyzed 642 

using FlowJo. 643 
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 644 

Single-cell multiomics 645 

Cryopreserved PBMCs were thawed and rested overnight before negative-selection magnetic 646 

CD8+
 T cell isolation (StemCell Technologies), pre-treated for 30 minutes with 50 nM dasatinib 647 

(Selleck Chemicals), then stained with 4 nM APC, PE, or BV421-conjugated pHLA tetramers 648 

[prepared using Total-Seq C barcode-conjugated streptavidin (Biolegend) and pHLA monomers 649 

described and validated above (Immunaware), listed in Supplementary Data 1], Total-Seq C 650 

Human Universal Cocktail v2.0 (Biolegend) as per manufacturer’s protocol, BV711-anti-CD8 651 

(clone RPA-T8, Biolegend, 10-2 dilution) and unique Total-Seq C hashing antibodies (Biolegend, 652 

1:200 dilution). CD8+ T cells from an HLA-mismatched individual were included for estimation of 653 

nonspecific barcoded tetramer binding and sorting gates were set above this level. Cells were 654 

washed using a HT2000 laminar cell washer (Curiox) then resuspended in 2% FBS in PBS with 655 

Sytox Green viability dye (Thermo Fisher). Viable pHLA+ CD8+ T cells were isolated by 656 

fluorescence-activated cell sorting (FACS, counts in Supplementary Data 1) into a single pool 657 

then encapsulated after splitting across four GEM-wells using Chromium GEM-X (10X 658 

Genomics). Gene expression (GEX), surface protein expression (antibody-derived tags, ADT), 659 

and TCR (VDJ) libraries were generated using the 10X Chromium GEM-X Single Cell 5’ v3 Dual 660 

Index kit with feature barcode technology (10X Genomics) following the manufacturer’s protocol. 661 

Libraries were pooled at a 5:1:1 GEX:ADT:VDJ ratio and sequenced via paired-end reads on a 662 

NextSeq 2000 instrument with a 100-cycle P3 kit (Illumina). 663 

 664 

Base-calling was performed using bcl2fastq and initial data-processing was performed using the 665 

Cell Ranger multi-analysis pipeline version 9.0.0 using refdata-gex-GRCh38-2020-A as a 666 

transcriptome reference and refdata-cellranger-vdj-GRCh38-alts-ensembl-5.0.0 as a VDJ 667 

reference. Gene expression (GEX), antibody capture (ADT), and TCR (VDJ) libraries were 668 

specified in the multi-analysis config file. Surface protein barcodes and hashtag barcodes 669 
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corresponding to samples were designated as “Antibody Capture” in the feature-reference file. 670 

After processing by Cell Ranger, the count matrix in sample_filtered_feature_bc_matrix was 671 

analyzed using Seurat version 5.3.0 in R version 4.3.1. Hashtag and pHLA specificity-level sample 672 

demultiplexing was performed using the HTOdemux() function of Seurat, and cells were removed 673 

for which HTO_classification.global was not "Singlet", hence removing cells with multiple or no 674 

hashtags. Cells for which pHLA barcodes were not detected were also removed, unless their 675 

corresponding TCR sequence matched expanded clones (>5 cells) from the data set, in which 676 

case they were reassigned to their matching specificity (1,757 total reassigned cells). 25,866 HIV-677 

specific and CMV-specific cells were recovered, of which 15,466 passed filtering (Supplementary 678 

Data 1). The GEX library yielded 239 mean variable unique genes per cell, and 751 mean UMIs 679 

per cell. The ADT library yielded 522 mean UMIs per cell. To avoid clustering driven by clonotype-680 

specific TCR gene expression, gene features for which the symbols matched the regular 681 

expression "^TR[ABDG][VJC]" were removed from the data set prior to clustering62. Using the 682 

Seurat function FindVariableFeatures(), 4,000 variable genes were selected for dimensionality 683 

reduction and differential expression analysis. Counts were log normalized, scaled and centered 684 

prior to dimensionality reduction and clustering. Clustering was performed using weighted 685 

nearest-neighbors (WNN) clustering via Seurat’s FindNeighbors() and FindClusters() functions 686 

with the argument resolution = 0.35.  687 

 688 

Differential expression was performed using Seurat’s FindMarkers() function using default 689 

parameters, including Wilcoxon tests for statistical significance. Pathway analysis was performed 690 

using the tmodCERNOtest() from the tmod R package version 0.46.263 using a subset of MSigDB 691 

version v7.5.164 that included hallmark, gene ontology, reactome, KEGG, biocarta, and 692 

wikipathways gene sets. Primary cluster annotations as effector-memory (TEM), central memory 693 

(TCM), stem cell-like memory (TSCM), and terminally differentiated memory (TEMRA) were defined 694 

using CD45RA/RO and CD62L expression for comparability to flow cytometry results. Primary 695 
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and secondary cluster annotations were additionally supported by differentially expressed surface 696 

ADTs corresponding to CCR7, CD127, CD226, PD-1, TIGIT, CX3CR1, CD73; differentially 697 

expressed transcripts corresponding to TCF7, TOX, GZMB, GZMK, GAPDH, ENO1, IFITM1; and 698 

differentially expressed gene sets corresponding to aerobic glycolysis (WP4628), oxidative 699 

phosphorylation (M12919), interferon alpha response (M5911), lymph node follicular CD8+ T cells 700 

(CXCR5, SLAMF6, SELL, TCF7, ID3, CD200, ICOS, IL7R, BCL6)39, and T cell activation (M2810), 701 

which were quantified via AUCell65 and plotted as bubble and/or violin plots in R. Gene set network 702 

analysis was performed using the GSNA R package, version 0.1.4.9, as previously described15,18. 703 

Longitudinal differential expression analyses were performed across HIV-specific responses from 704 

all participants with longitudinal sampling. 705 

 706 

TCR clonotypes were assigned based on TRB CDR3 sequences and those appearing only once 707 

in the data set were excluded from clonotypic analysis. Diversity of clonotypes within a sample 708 

was quantified using Simpson diversity index and similarity of clonotypic composition between 709 

longitudinal samples was quantified using Morisita-Horn Similarity Index (MHSI)66, whereas its 710 

inverse (1-MHSI) was used to assess longitudinal clonotypic divergence. MHSI measures overlap 711 

of clonotype proportions between two samples on a scale from 0 (no similarity) to 1 (identical) 712 

and is relatively robust to differences in sample size. Extended analyses are reported in 713 

Supplementary Data 3. 714 

 715 

Statistical analyses, reproducibility, and figure preparation 716 

Statistical analyses were performed using GraphPad Prism version 10.4 and R. Normality was 717 

estimated using Shapiro-Wilk tests. Normally distributed data were compared using t-tests and 718 

non-normally distributed data were compared using Wilcoxon signed rank tests and Spearman 719 

correlations. All replicate measurements reflect distinct biological samples or epitope-specific 720 

responses. All representative data shown is accompanied by summary data encompassing the 721 
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entire data set, with the precise number of biological replicates specified in each figure legend. 722 

All statistical tests were two-tailed. Wherever box-and-whisker diagrams are depicted, center lines 723 

represent medians, ticks represent means, boxes represent first and third quartiles, and whiskers 724 

represent ranges. Figures were prepared using Adobe Illustrator version 29.8.2, GraphPad Prism, 725 

R, and BioRender.com. 726 

 727 

Data availability 728 

Full single-cell multiomics data are available from the NCBI Gene Expression Omnibus (GEO: 729 

GSE294440). The GRCh38 reference genome is available from NCBI GenBank 730 

(GCA_000001405.15). MSigDB gene set references can be obtained from 731 

https://data.broadinstitute.org/gsea-msigdb/msigdb/release/7.5.1/. The remaining data are 732 

included within the manuscript and supplemental materials. 733 
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EXTENDED DATA 778 

Extended Data Fig. 1: Flow cytometric CD8+ T cell profiling. (a-c) Representative gating 779 

schema for measurement of epitope-specific proliferation (a), elimination of peptide-pulsed 780 

(CellTrace Far Red+) CD4+ T cell targets by peptide-expanded CD8+ T cell effectors (b), and 781 

phenotypic profiling of pHLA tetramer+ (Tet+) cells (c) by flow cytometry. Panel a also includes 782 

representative proliferation histogram overlays for HIV epitope-specific responses from PIC 783 

5120 (blue) and PINC 9243 (red) relative to unstimulated controls (gray). (d) Memory subset 784 

frequencies among HIV Tet+ CD8+ T cell responses from PICs (n=9) and PINCs (n=7), and 785 

among CMV/flu Tet+ CD8+ T cell responses from both groups (n=8). Center lines represent 786 

medians, ticks represent means, boxes represent first and third quartiles, and whiskers 787 

represent ranges. Color-symbol combinations represent participants (key in Table 1). P-values 788 

reported above plots from two-sided paired (longitudinal) or unpaired (between-group) t-tests. 789 

 790 

Extended Data Fig. 2: Differential expression between clusters. (a) Feature plots of 791 

expression levels of selected differentially expressed surface proteins and transcripts (italics) 792 

projected onto UMAP plots, supporting cluster annotations in Fig. 3. (b) Bubble plots of z-scaled 793 

mean normalized expression and detection rates for top differentially expressed transcripts (left) 794 

and surface proteins (right) upregulated in each cluster, ranked by adjusted p value. 795 

 796 

Extended Data Fig. 3: Multimodal clustering and TCR clonotypes. (a-d) UMAP of HIV and 797 

CMV epitope-specific CD8+ T cells colored by WNN cluster (a), participant (b), TRB CDR3 798 

clonotype (c), or TRB CDR3 clonotype separated by participant and response (d). Gray points 799 

represent singlets, whereas colored points are clonally expanded. 800 ACCELE
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Extended Data Fig. 1

ACCELE
RATED ARTIC

LE
 PREVIEW



Extended Data Fig. 2
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Extended Data Fig. 3
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