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SUMMARY

Background: Translating aging rejuvenation strategies into clinical
practice has the potential to address the unmet needs of the global ag-
ing population. However, to successfully do so requires precise quanti-
fication of aging and its reversal in a way that encompasses the
complexity and variation of aging.

Methods: Here, in a cohort of 113 healthy women, tiled in age from
young to old, we identified a repertoire of known and previously un-
known markers associated with age based on multimodal measure-
ments, including transcripts, proteins, metabolites, microbes, and clin-
ical laboratory values, based on which an integrative aging clock and a
suite of customized aging clocks were developed.

Findings: A unified analysis of aging-associated traits defined four ag-
ing modalities with distinct biological functions (chronic inflammation,
lipid metabolism, hormone regulation, and tissue fitness), and depicted
waves of changes in distinct biological pathways peak around the third
and fifth decades of life. We also demonstrated that the developed
aging clocks could measure biological age and assess partial aging
deceleration by hormone replacement therapy, a prevalent treatment
designed to correct hormonal imbalances.

Conclusions: We established aging metrics that capture systemic phys-
iological dysregulation, a valuable framework for monitoring the aging
process and informing clinical development of aging rejuvenation stra-
tegies.

Funding: This work was supported by the National Natural Science
Foundation of China (32121001), the National Key Research and Devel-
opment Program of China (2022YFA1103700 and 2020YFA0804000), the
National Natural Science Foundation of China (81502304), and the Quz-
hou Technology Projects (2022K46).

INTRODUCTION

Human aging is a complex multifactorial process affected by genetic and environ-
mental factors.'™ Given that aging is recognized as a root cause of many chronic dis-
eases, identifying individuals at risk of functional deterioration and predicting the
prognosis of health outcomes could be facilitated if aging rates could be quanti-
fied.”” However, biological aging of the human body is a heterogeneous process
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CONTEXT AND SIGNIFICANCE
Our actual biological age does
not always align with
chronological age because of the
complexity of aging, making it
important to develop tools for
accurately assessing aging. Here,
researchers established aging
clocks encompassing age-related
traits from multiomics levels
relevant to immune, lipid
metabolism, hormone regulation,
and tissue fitness. In addition, they
demonstrated that age-related
alterations peak in the third and
fifth decades of life, indicating
them as important periods to
monitor aging. The researchers
also found that hormone
replacement therapy can partially
delay the pace of several aging
clocks and alleviate multiple
aging-related markers. This study
provides a framework for
measuring aging using omics data
and sheds light on how aging
clocks can be applied to
translational aging studies.
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not absolutely correlated with chronological age.”®? Moreover, aging trajectories
can be slowed down by aging intervention strategies, such as dietary restriction

and exercise.'%"* To successfully apply geroprotective and rejuvenation strategies,

developing a reliable framework for assessing biological age is a prerequisite.s'w’17

Previous efforts to quantify “biological age” have included assessment of biological

age scores based on facial morphology,m’20

21,22

established indicators during physical
examination, and molecular changes that appear to be coordinated with chro-
nological age, such as telomere length?® and DNA methylation.?*?® Reported
more recently, molecular aging clocks based on profiling of RNA expression®’ "
3233 are also promising approaches for assessing biological aging.

However, aging is a process that affects almost all tissues and organs at multiple

or serum protein

physiological levels; thus, it is urgent for the aging research field to move beyond
approaches that evaluate limited aspects of aging. Moreover, systemic studies
that calibrate aging clocks based on different aspects in the same set of individuals
are rare,” leaving the performance of different aging clocks incomparable and hin-
dering the development of integrative and accurate aging clocks.

Women are physiologically different from men, and sex-specific features of aging and
longevity are widespread.***¢ However, previous aging cohort studies frequently mix
datasets of both sexes, and aging clocks that specifically quantify the aging of women,
therefore, remain outstanding. Here, we recruited a cohort of Chinese women, tiling
from the second to the sixth decade of life, in which we applied analysis of multidimen-
sional biomarkers across phenomics, transcriptomics (at the bulk and single-cell levels),
proteomics, and metabolomics. Thus, our biological aging survey covers different health
aspects that allow quantification of the pace of multisystem physiological deterioration.
We applied this framework to score the variance of biological age between individuals
and systematically evaluate the geroprotective effect of hormone replacement therapy
(HRT) in an additional cohort. Therefore, our study represents a paradigm to measure
biological age and intervention strategies using omics data.

RESULTS

Project design, cohort characteristics, and summary of multiomics data

We recruited a cohort of 113 healthy female volunteers of 20-66 years old residing in
Quzhou, a city located in southern China (Figure 1A; Table S1; STAR Methods),
ensuring that the cohort compromised similar numbers of individuals across
different age stratifications (Figure S1A; Table S1). For each volunteer, we collected
medical examination results, blood, and fecal specimens for multiomics data
profiling (Figure 1A). On the same day as the physical examination, we also collected
facial images of the volunteers to obtain their facialAge (Figure 1A).

All volunteers were requested to eat the uniformly provided food the day before the
physical examination (Figure S1B). Subsequently, clinical measurements included
175 parameters, from anthropometric data (such as body mass index [BMI], waist
and hip circumference, and muscle mass) to blood pressure, and measurements re-
flecting tissue fitness (such as forced expiratory volume in 1's [FEV1], forced vital ca-
pacity [FVC], FEV1/FVC of the lungs, mineral density of bone, and electrocardio-
gram [ECG] parameters of the heart) were surveyed for each volunteer (Table S2).
The volunteers were also asked to perform five action competence tests, such as
the Purdue pegboard test, 30-s chair stand test, and grip strength test, to assess co-
ordination, finger flexibility,>” and muscular endurance (Table 52; STAR Methods).
All volunteers donated blood for complete blood cell count and blood biochemistry
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Figure 1. Characterization of age-related phenotypic measurements from clinical examination

(A) Schematic of this study. The icons used in the figures of this study were obtained from BioRender.com and Flaticon.com.

(B) Classification of phenotypic measurements. The number of measurements from each class is indicated.

(C) Correlation of values of phenotypic measurements with age. FEV 1, forced expiratory volume in 1's; VC MAX, maximum vital capacity; FVC, forced
vital capacity; MEF 25, maximum expiratory flow at 25% of forced vital capacity.

(D) Pairwise correlation of all age-related phenotypic measurements. Each row or column indicates a measurement. ALT, alanine transaminase; AST,
aspartate aminotransferase; LDL, low-density lipoprotein; AP, alkaline phosphatase; FSH, follicle-stimulating hormone; LH, luteinizing hormone.

(E) The proportion of measurements from different classes in the five bins. The age-related measurements are first ordered by averaged feature-wise
correlation (as shown in Figure S1D), and every 20 measurements are merged into one bin.

(F) Age-related change score of different classes. The size of the dot indicates the number of age-related measurements.

(G) The value of the indicated age-related measurements and their linear relationship with age (n = 109-112 individuals). RLE, right lower extremity. The
units of measured values for each examination can be found in Table S2. AMH, Anti-Mullerian hormone; AP, alkaline phosphatase; FEF 75/85, forced
expiratory flow at 75% and 85% of forced vital capacity; RUE, right upper extremity.

See also Figure S1 and Tables S1 and S2.

examination, such as blood lipid fraction, hormone measurement, and elements
related to liver function (e.g., alkaline phosphatase, alanine transaminase, and
cholinesterase) (Table S2).

Foreach volunteer’s blood sample, we obtained peripheral blood mononuclear cells
(PBMCs) and plasma and measured the telomere length with the whole blood. As for
multiomics data profiling, we applied bulk RNA sequencing (RNA-seq) and mass
spectrometry analysis for quantification of plasma proteomics and metabolomics
signatures. PBMC samples of three young and three old individuals were also
randomly selected to be subjected to single-cell RNA-seq. We also employed 16S
rDNA sequencing for all volunteers to inspect the gut microbiota composition.

A systemic medical survey identifies multifaceted age-related phenotypic
measurements

We first annotated the measurements into seven classes (action competence,
anthropometry, lipid, hormone, blood content, blood cell, as well as tissue function)
(Figure 1B) and subsequently calculated the correlation between age and these
measurements. Among them, 32 were positively correlated with age, and 54 were
negatively associated with age (Pearson’s correlation, Benjamini-Hochberg [BH]-
adjusted p < 0.05, corrected with BMI) (Figures 1C and 1D; Table S2). Of note, vol-
unteers with advanced age tended to achieve lower scores on all five action compe-
tence tests (Figure S1C; Table S2), implying that these tests well indicate age-related
physical competence decline. By further analyzing the physiological implication of
aging-associated clinical parameters, we identified three major modalities that
markedly changed with aging: lipid metabolism, circulating hormones, and tissue
functions (Figures 1D-1F). First, we observed that a panel of lipid metabolic vari-
ables, such as blood cholesterol, low-density lipoprotein (LDL), and Apolipoprotein
Alevels, increased with age (Figures 1C and S1C). Accordingly, anthropometric fea-
tures related to fat distribution, such as body fat percentage, visceral fat level, and
waist-hip rate, were positively correlated with age (Figures 1C and S1C). Second,
levels of four of the seven sex hormones are highly correlated with age and rank
top on the list, with follicle-stimulating hormone (FSH) and luteinizing hormone
(LH) the most positively correlated measurements with age and Anti-Mullerian hor-
mone (AMH) as the most downregulated one (Figure 1C). More importantly, indica-
tors related to tissue functions of liver, lung, bone, and muscle were strongly asso-
ciated with aging (Figures 1D-1G). For example, FEV1, an indicator for chronic
obstructive pulmonary disease, and bone density decreased with age, whereas
the serum alkaline phosphatase level (a marker associated with liver damage) grad-
ually increased with age,”® suggesting functional decline of multiple tissues
(Figure 1G).
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Figure 2. Transcriptomics analysis reveals regulation of age-associated gene expression changes and

CTL CD8T

"

immunotypes” during aging

(A) Locally estimated scatterplot smoothing (LOESS) fitting plots showing the scaled expression levels of the age-increased (left, red) and age-

decreased (right, blue) genes along the age trajectory. The most correlated genes are denoted beside the plot.
B) Enriched pathways of age-increased (left, red) and age-decreased (right, blue) genes.

C) Relative expression levels of the indicated age-related genes, measured by qRT-PCR, and their linear relationship with age (n = 97 individuals).

E) The proportion of the indicated cell types in young and old groups. n = 3 individuals per group.

(
(
(D) Distribution of PBMCs captured by scRNA-seq, points are colored by cell type (left) and age (right). n = 3 individuals per group.
(
(

F) The proportion of the indicated cell types (deconvoluted from bulk RNA-seq) and their linear relationship with age (n = 111 individuals).
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Figure 2. Continued

(G) Left: scaled cell proportion of different cell types. Each row represents an individual, and each column represents a cell type. Right: averaged cell
proportion of different cell types from the three clusters.

(H) The ages of individuals from the three groups (n = 41, 31, and 39 individuals for groups 1, 2, and 3, respectively).

(1) Schematic showing the cell abundance change of PBMCs during aging.

Linear fitting is indicated by a red/blue line, with confidence intervals represented in gray shading in (C) and (F). Correlation coefficients and p values
were calculated with Pearson’s correlation analysis (corrected with BMI). See also Figure S2 and Tables S3 and S4.

The transcriptomic landscape highlights T cell perturbation as a major feature
of immunosenescence

To gain molecular insight into aging-associated changes, we analyzed the PBMC
transcriptomes at the bulk and single-cell levels. We identified 356 genes positively
associated and 1,372 genes negatively correlated with age (Pearson’s correlation,
BH-adjusted p < 0.05, corrected with BMI) (Figures 2A and S2A; Table S3). Many
of these were known aging-associated genes noted in the Aging Atlas,*” such as
increased cellular senescence genes (CDKN2A, IGFBP3, and CLU) and decreased
mitochondrial function-related genes (COQ7, DLAT, and HSPD1) (Figure S2B), indi-
cating the reliability of our transcriptomic dataset.

The most negatively age-correlated gene was LRRN3, which is highly expressed in
naive T cells”® and whose reduced expression is associated with T cell senescence.”’
Another top negatively age-correlated gene was CACHD1, which is also enriched in
naive T cells*? (Figure 2A). Consistent with this, we found more downregulated
genes involved in maintenance of naive T cell repositories, such as SATBIT,
CD248, and TCF7%34° (Figure 2A; Table S3). Additionally, age-decreased genes
were enriched in biomolecule synthesis-related pathways (Figure 2B), indicating a
decline in the anabolism capacity of aging immune cells. For example, NT5E, which
encodes the 5’ nucleotidase that mediates adenosine production in CD8" T cells,*
was decreased with age (Figure 2A). Particularly, the age-dependent decline in RNA
expression levels of LRRN3, CACHD1, SATB1, and NT5E was confirmed in human
PBMCs by gRT-PCR (Figure 2C), highlighting these genes as sensitive markers for
evaluating the functional attrition of T cells, a typical feature of immunosenes-
cence.?’ Accordingly, genes involved in immunosenescence were upregulated,
such as CD70, a marker of aged T cells susceptible to apoptosis and expressing
high levels of inflammatory cytokines*® (Figure 2A). We also revealed that pathways
related to elevated inflammation, such as “regulation of leukocyte activation” (e.g.,
CD70, CLCF1, and TNFSF9) and “cytolysis” (e.g., GZMH, GZMB, and C8G) (Fig-
ure 2B), were upregulated in aging.

We next analyzed PBMC single-cell RNA-seq (scRNA-seq) data for randomly
selected young and old volunteers (n = 3 individuals per group). We identified 18
different cell types encompassing naive and cytotoxic CD4¥/CD8" T cells (CTL
CD4/CD8T), CD56°"9"t and CD56%™ natural killer (NK) cells, naive and memory B
cells, plasmocytes, classical and non-classical monocytes (cMCs and nMCs, respec-
tively), plasmacytoid and conventional dendritic cells (pDCs and cDCs, respectively),
and megakaryocytes (Figures 2D and S2C; Table S3). In an integrative analysis of
age-related genes at the bulk and single-cell levels, we found that these genes
were highly enriched in T and NK cells (Figure S2D; Table S3), highlighting the
importance of these specific cell types in contributing to the aging of the whole
PBMC population. We also found dramatic aging-related changes in T cell clusters,
as reflected by shrinkage of naive T cells and accumulation of cytotoxic T cells
(Figures 2D, 2E, and S2E). Concomitantly, an age-related decrease of naive CD4"/
CD8" T cells and accumulation of cytotoxic CD4*/CD8" T cells were observed in
more volunteers by deconvoluting the bulk RNA-seq data (Figures 2F and S2F;
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Figure 3. Plasma proteomics analysis characterizes age-related proteins and their tissue origins

(A) Age-related plasma proteins. The age of each individual is annotated as bar plots above. Tissue specificity and secretome type are annotated by
color on the right according to the Human Protein Atlas.

(B) Enriched pathways of age-accumulated (left, red) and age-reduced (right, blue) proteins.

(C) The abundance of the indicated age-related proteins, measured by mass spectrometry (MS) (top, n = 112, 112, 99, and 81 individuals for APOC4,
APOE, LILRA2, and CHIT1, respectively) and ELISA (bottom, n = 74,71, 75, and 75 randomly selected individuals for APOC4, APOE, LILRA2, and CHIT1,
respectively), and their linear relationship with age. Correlation coefficients and p values were calculated with Pearson’s correlation analysis.

(D) Tissue origin annotation of age-accumulated (top) and age-reduced (bottom) plasma proteins. Left: schematics showing the numbers and
percentages of proteins annotated as originating from different tissues. Center: scaled transcripts per million reads (TPM) of genes encoding the age-
related proteins among different tissues. Right: enriched pathways of proteins that are annotated as originating from different tissues.

See also Figure S3 and Tables S5 and Sé.

Table S4). We also found a decline in CD56P"9" NK cells, which function as innate
immunoregulators, and an increase in CD56%™ NK cells, which exhibit greater cyto-
toxic activity, segregated with aging (Figure 2F). Further, based on the pattern of
PBMC compositional status, termed “immunotypes,” we divided all volunteers
into three groups from young to old, characterized by exuberant naive CD4"/
CD8* and CD56P"9" NK cells; abnormally increased nMC, pDC, and cDC popula-
tions; and, eventually, accumulation of cytotoxic immune cells, respectively
(Figures 2G=2l).

The plasma secretome indicates lipid metabolism dysregulation,
inflammation, and tissue aging

We then characterized the aging patterns of plasma proteins based on chronological
age and identified 119 and 148 proteins that were accumulated and reduced with
age, respectively (Pearson’s correlation, BH-adjusted p < 0.05, corrected with
BMI) (Figures 3A, S3A, and S3B; Table S5). Besides circulatory aging biomarkers
identified previously in larger cohorts,* such as glycoprotein NMB (GPNMB) and
C-reactive protein (CRP) (Figure S3C), we identified several proteins that gradually
increased with aging, including CCL16, SPP1, and CTSB, known to be included in
the senescence-associated secretory phenotype (SASP)* (Figure S3D).

Age-accumulated proteins converge on plasma lipoproteins (e.g., APOF, APOC4,
APOA4, APOB, and APOC3), which are associated with elevated LDL and choles-
terol concentrations, as well as terms related to chronic inflammation, such as the
complement system, a fundamental constituent of the innate immune system
(e.g., C1R, C2, C4BPA, and C5), and inflammation and immune processes (e.g.,
CHIT1, LILRA2, LILRB1, CCL16, and CCL18) (Figure 3B; Table S5). Notably, using
enzyme-linked immunosorbent assay (ELISA)-based measurements of each volun-
teer serum, we verified that chitotriosidase (CHIT1) and leukocyte immunoglob-
ulin-like receptor subfamily A member 2 (LILRA2), two of the proteins most accumu-
lated in the elderly and closely associated with chronic inflammation, increased
during aging (Figure 3C).

Notably, we inferred that one-third of age-accumulated proteins originated from
the liver, while one-fifth of aging-reduced proteins were secreted by muscle (Fig-
ure 3D; Table S6; STAR Methods). The liver-derived proteins positively associated
with aging included apolipoproteins, complement and inflammatory proteins, and
well-known indicators of liver damage, such as PCSK9 and ANGPTL3%0! (Fig-
ure 3D). Of note, we used ELISA to verify age-dependent accumulation of
APOC4 in aged plasma as well as APOE (Figure 3C), a risk factor for aging-related
diseases in the elderly (i.e., Alzheimer's disease and cardiovascular diseases),”*>°
and, as a proof of concept, showed that APOE also accumulated in aged primate

liver (Figures S3E and S3F). In addition, muscle-derived proteins inversely
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Figure 4. Age-related plasma metabolomics analysis identifies metabolites attenuating human endothelial cell senescence

A) Percentages of metabolites from different classes in the total identified metabolites (left) and age-related ones (right).

B) Age-related plasma metabolites. The age of each individual is annotated as a bar plot above. Metabolite classes are annotated in the right column.
C) Age-related change score of different metabolite classes. The size of the dot indicates the number of age-related metabolites. MH, methylhistidine.

(
(
(
(D and E) The abundance of the indicated metabolites and their linear relationship with age (n = 113 individuals).

(F)Representative images (left) and quantification (right) of SA-B-gal staining of HAECs with treatment of vehicle, and valeric acid (soluble in medium,
10 ng/mlL), myristic acid (soluble in DMSO, 0.2 pM), piperine (soluble in DMSO, 5 pM) (n = 4 biological replicates per group).

(G)Representative images (left) and quantification (right) of the cell migration assay of HAECs with treatment with vehicle (n = 4 biological replicates)
and the indicated metabolites (n = 4 biological replicates). Images taken at the time of scratching and 8 h later are displayed. The dotted line represents
the boundary of cells on both sides of the scratch.

(H)Representative images (left) and quantification (right) of the tube formation assay of HAECs with treatment with vehicle (n = 4 biological replicates)
and the indicated metabolites (n = 4 biological replicates). The bar plots show the quantification of the number and the total length of tubes for each
group.

Scale bars: 50 um (F), 100 pm (G), and 200 pm (H). Data are shown as the means + SEM. See also Figure S3 and Table S5.

associated with aging included factors related to the ATP metabolic and autopha-
gic process, dysregulation of which has been reported to trigger sarcopenia®*>*
(Figure 3D). Proteins that should be released by other tissues, such as tissues of
the immune and nervous systems (Figure 3D), as well as pan-tissue sources were
also characterized, which might help us narrow down more tissue-specific and sys-

temic biomarkers of aging.

The plasma metabolome reveals abnormal hormone and lipid metabolism
during aging

Given that metabolism-related changes were observed at phenotypic, transcrip-
tomic, and proteomic levels, we were inspired to investigate the metabolism status
of volunteers of different ages. We identified 99 and 46 metabolites that were posi-
tively and negatively correlated with age, respectively (Pearson’s correlation, BH-
adjusted p < 0.05, corrected with BMI) (Figures 4A-4C and S3G; Table S5). Notably,
almost half of these age-related metabolites were lipids and lipid-like molecules,
including molecules belonging to glycerophospholipids, fatty acyls, and steroids
and steroid derivatives (Figures 4A-4C).

In particular, glycerophospholipids (e.g., phosphocholine [PC] (18:0/18:1) and
PC(18:0/22:6)), important lipid constituents of lipoproteins, were markedly
increased with age (Figure 4B), in accordance with the accumulation of protein con-
stituents of lipoproteins and elevated LDL and cholesterol concentrations we
observed. Additionally, pathway enrichment analysis revealed upregulation of histi-
dine metabolism with an accumulation of 1-methylhistidine (1-MH) and 3-MH
(Figures 4D and S3H), biomarkers of muscle degradation and frailty,”® respectively,
consistent with the decreased muscle mass in older people (Figure 1G).

In contrast, natural steroid hormones, such as dehydroepiandrosterone (DHEA) and
its sulfated form DHEA sulfate (DHEA-S), along with pregnenolone sulfate, allopreg-
nanolone sulfate, and estrone sulfate, were ranked as the top category of metabo-
lites that markedly decreased with age (Figures 4B and 4D). Notably, DHEA and
DHEA-S have been previously recognized as important biomarkers of aging,”’

5859 the inner-

with their supplementation inhibiting dysfunction of endothelial cells,
most layer of blood vessels that is in direct contact with blood flow. Thus, we spec-
ulated that supplementation of other age-reduced metabolites could potentially
attenuate the aging phenotypes. To test this hypothesis, we treated human aortic
endothelial cells (HAECs) with three top age-reduced metabolites (Figures 4E and
S3l). Treatments with valeric acid and myristic acid, both of which are short-chain
fatty acids, and piperine delayed cellular senescence of HAECs, as evidenced by

decreased senescence-associated (SA)-B-Galactosidase (B-Gal) levels and improved
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Figure 5. Establishment of multilayered aging clocks

(A) Scaled values of all age-related features from different omics. The age of each
annotated in the right column.

(B) Joint pathway annotation of age-related molecules from different omics.
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individual is annotated as a bar plot above, and the feature type is
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Figure 5. Continued

(C) Predicted age of the indicated age estimators and their linear relationship with chronological age. Correlation coefficients (Pearson’s correlation,
corrected with BMI) and mean absolute error (MAE) are denoted.

(D) Left: schematic showing establishment of the facialAge prediction model. Right: predicted facialAge and its linear relationship with chronological
age. The numbers of individuals analyzed in aging clock models are shown in Figure S4E. Correlation coefficients (Pearson’s correlation, corrected with
BMI) and MAE are denoted.

(E) Prediction accuracy and Nteature included in different aging clocks. The proportion of features of different types is denoted by the color of each dot.
(F) Correlation between different aging clocks. The colors and widths of the edges indicate the correlation between different clocks. CA,
chronological age.

See also Figures S4-S6 and Tables S6 and S7.

capability of migration and formation of capillary-like structures (Figures 4E-4H and
S3J). These findings raise the exciting possibility that metabolites diminished in
aged plasma may inform the development of new aging intervening strategies.*’

Compared with other layers, gut microbiota composition seems to be less corre-
lated with age (Figure S3K). We only discovered that Paraburkholderia fungorum, re-
ported to be associated with infection in humans,®" was positively correlated with
age, and Ruminococcus bicirculans, which plays a role in degradation of cellulose

and xylan,®” was inversely correlated with age (Figure S3L).

Paralleling comparison of aging clocks built from different omics levels

Next, we used the matched datasets to build a suite of comparable clocks in our Chi-
nese women cohort. We first performed k-means clustering on all age-related omics
features and identified two clusters in which features were increased or reduced
with age and with relatively low variation (Figures 5A and S4A). To improve biological
interpretability, we performed a joint pathway annotation of molecular features from
these two clusters. The results uncovered that these age-related features from
different “omes” converged on pathways associated with inflammation (e.g., comple-
ment, infection and cytokine signaling pathways), lipid metabolism (e.g., cholesterol,
phospholipid, and sphingolipid metabolism), and hormone regulation (e.g., steroido-
genesis and hormone synthesis, secretion, and action) (Figure 5B; Table Sé).

We then applied the ElasticNet model to obtain phenoAge (based on phenome), tran-
scriptAge (based on transcriptome), proteinAge (based on proteome), metabAge
(based on metabolome), and compositeAge (based on all “omes”) for each volunteer
(Figures 5C and S4B-S4G; Table S7). Because of their importance in aging, we also
builtimmuneAge, lipidAge, and hormoneAge, which can be seen as specialized com-
positeAge (Figure 5C). We then tried to measure tissue aging with plasma proteins
according to the tissue origin annotation (Figure 3D) to obtain proteinAge for liver,
muscle, and the immune/nervous/hematopoietic systems (Figure S4F). The age-
related features highlighted above were included in the prediction models. For
example, AMH levels contributed to prediction of compositeAge and hormoneAge
(Figure S5A; Table S7). Interestingly, the three metabolites tested for age-attenuating
effects on HAECs (valeric acid, myristic acid, and piperine) were included in the meta-
bAge model (Figure S5A; Table S7). As a complementary approach, we also trained a
facialAge model with public datasets via a convolutional neural network (CNN)-based
approach to predict facialAge (Figure 5D) and calculated the correlation between age
and telomere length of PBMCs (Figure S4B). All resultant aging clocks achieve accept-
able prediction accuracy with or without correction of the locally estimated scatterplot
smoothing (LOESS) model (Figures 5C, 5D, and S4C).

When comparing all aging clocks, the best performance in predicting calendar age
was achieved by compositeAge (R = 0.93, MAE [mean absolute error] = 4.00, Nfeature
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[number of features] = 88) and facialAge (R = 0.93, MAE = 4.35) (Figures 5C and 5D).
The three molecular aging clocks have similar power in predicting chronological
age, with transcriptAge having the lowest MAE (R = 0.89, MAE = 4.52, Nfeatyre =
123) and those for proteinAge (R = 0.88, Nfeature = 34) and metabAge (R = 0.87,
Nfeature = 38) being 5.09 and 5.14, respectively (Figure 5C), which is comparable
with the performance of those obtained in larger cohorts (Figure S5B).7%21-33:63-¢7
However, telomere length has a low correlation with chronological age (R = 0.07,
p = 0.61) as observed in previous study®® (Figure S4B), suggesting a limited ability
of telomere length to act as a sensitive age estimator. In contrast, hormoneAge
(R=0.87, MAE = 4.82, Nteature = 20), immuneAge (R = 0.72, MAE = 7.04, Nteature =
28), and lipidAge (R = 0.67, MAE = 7.53, Nfeature = 29) exhibit good age prediction
power (Figure 5C). In consideration of prediction accuracy and Nfeature, phenoAge,
hormoneAge, proteinAge, and metabAge seem to outperform the other clocks,
which use fewer features to achieve a high prediction power (Figure 5E).

Pairwise comparison of age estimators shows that compositeAge is highly corre-
lated with all clocks, indicating its ability to reflect the heterogeneous aging process
(Figures 5F and S6A). Although both levels are profiling the plasma composition,
metabAge has a relatively low correlation with proteinAge, suggesting that prote-
ome and metabolome aging might have distinct patterns even within one individual
(Figures 5F and S6A). Regarding the specialized aging clocks, hormoneAge has the
overall highest correlation with the other clocks (Figures 5F and S6A). As expected,
immuneAge and proteinAge of the immune system are highly correlated (Figures 5F
and S6A).

Biological aging clocks are associated with lifestyle factors

To identify genetic, environmental, and lifestyle factors that might influence the
aging pace, we jointly analyzed the aging metrics with traits obtained from the ques-
tionnaire, such as eating habits, lifestyle, reproductive aging symptoms, and self-
reported health status (Table S7). First, we calculated the "aging pace” of all age
estimators for each volunteer (STAR Methods). The results (corrected with chrono-
logical age) show that the aging pace of different age estimators is positively asso-
ciated with the degrees of hot flushing and reproductive aging symptoms and nega-
tively associated with healthy eating habits (e.g., fruits and grains) (Figures S6B and
S6C). In addition, the immuneAge pace is negatively correlated with the times of
drinking tea per week (Figure S6B). We also observed that the aging pace of nervous
and muscle proteinAge is positively correlated with body pain (Figure S6B).

Multilayered features display different waves of alterations with aging

To uncover whether aging affects the organism equally throughout the lifetime, we
performed a sliding window analysis (with increment date by 5 years) on the age-
related multilayered features.>® This approach pinpointed peaks of differentially
presented features along the aging trajectory (Figure 6A). Notably, the wave pat-
terns varied across distinct data modalities, together forming two crests at around
ages of 30 and 50, respectively (Figure 6A). Two peaks only share a small proportion
of changes, indicating that humans age differently at distinct ages (Figure S7A).
Interestingly, these two crests are also the time points that generally split the volun-
teers into two groups according to their history of giving birth and menopause status
(Figure S7B).

At age 30, stage-specific changes were observed at transcriptomic and metabolo-

mic levels (Figure 6B). The abundance of three glycerophospholipids (PC(18:1e/
8-HEPE [hydroxyeicosapentaenoic acid]), PC(38:4), and PC(40:6)) and enniatin A, a
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(A) Sliding window analysis showing the number of differentially presented features at different ages.
(B) Characterization of the changed features at two ages (top, age 30; bottom, age 50). Left: scale values of features with change at the two ages. Right:
summary and representative altered features of different omics types.
(C) Schematic summarizing the changes of different omics at ages around 30 and 50.

See also Figure S7.

common mycotoxin present in food that has been recently reported to inhibit ste-
roidogenesis,®? increases at this stage (Figures 6B and 6C). Accordantly, three me-
tabolites belonging to steroids and steroid derivatives (pregnenolone sulfate,
DHEA-S, and 4-pregnen-17a, 20B-diol-3-one-20-sulfate) decrease (Figure 6B).
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Figure 7. HRT effects on female aging at multiomics levels
(A) Left: predicted age of individuals from the Young, Old, and Old-HRT groups and their linear relationship with chronological age. Blue lines indicate

the linear fitting for values of individuals from the Young and Old groups, while red lines indicate that of individuals from the Young and Old-HRT

groups. Right: paces of different predicted ages of individuals from the Old and Old-HRT groups.
(B) Age-related metabolites that are reversed in the Old-HRT group.
(C) Bar plots showing the values of markers related to liver damage. n = 23, 24, and 24 for the Young, Old, and OId-HRT groups, respectively. Data are

shown as the means + SEM.

(D) Paces of proteinAge of liver and the immune and nervous systems of individuals from the Old and Old-HRT groups.
(E) Bar plots showing the cell proportion of naive CD8" T cells and nMCs (deconvoluted from bulk RNA-seq). n = 22, 24, and 22 for the Young, Old, and

OId-HRT groups, respectively. Data are shown as the means

+ SEM.
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Figure 7. Continued

(F) Relative expression levels of the indicated genes. n = 15, 17, and 20 for the Young, Old, and Old-HRT groups, respectively. Data are shown as the
means + SEM.

(G) Relative abundance of CD163 and LILRB1 in human plasma of different groups. For CD163, n = 23, 24, and 24 for the Young, Old, and Old-HRT
groups, respectively. For LILRB1, n = 21, 23, and 20 for the Young, Old, and Old-HRT groups, respectively. Data are shown as the means + SEM.
(H) Schematic summarizing HRT effects on female aging at multiomics levels. The red and blue arrows indicate the features are increased and decreased
with age, respectively. The blue and red triangle indicate the features are decreased and increased in HRT-Old group, respectively.

The numbers of individuals from different groups that were used to compare the pace across different biological ages are shown in Figure S7E.

See also Figure S7.

Consistent with this, genes involved in response to hormones (AR, NTRK3, and
PPARG,) are also decreased at this stage (Figure 6B).

Compared with age 30, stage-specific changes were more pronounced around age
50 (Figure 6A). For the phenotypic measurements, Apolipoprotein A increases, while
tissue fitness indicators undergo a rapid transition, with bone density and lung func-
tion diminished around age 50 (Figures 6B and 6C), in line with their reported asso-
ciation with altered hormone levels,”® which display an earlier reduction at the age
axis (Figure S7C). Consistently, muscle tissue proteins also sharply diminished
around age 50 (Figures 6B and S7D). Regarding the transcriptomic levels, we
observed upregulation in genes involved in myeloid cell differentiation (MAF,
TSPAN2, and GAB3) (Figure 6B), in agreement with the immunotypes that charac-
terize increased myeloid cell proportion around age 50 (Figures 2G-2l).

Multiomics implications of HRT as an aging-intervention strategy

Given that circulatory hormone levels are highly correlated with female aging, and
hormoneAge is highly correlated with various age estimators (Figures 1C and 5F),
we asked whether HRT, a widely used medical treatment that replaces declining
or deficient circulating hormones, could mitigate aging-related changes. To answer
this question, we recruited an additional cohort of 24 volunteers who had received
HRT for a 4-year median duration, aged 45-62 years (Old-HRT group), and
compared them with the age- and geographical feature-matched volunteers without
HRT (Old group).

We first calculated biological ages for the OId-HRT volunteers based on the aging
clock models built in the control cohort (Figures 7A, S7E, and S7F). As expected,
we observed retardation in hormoneAge and that HRT was associated with allevia-
tion of aging-related deficiency of steroid metabolites (Figures 7A, 7B, and S7G). For
example, three age-reduced steroid derivatives were elevated in the cohort treated
with HRT, including estrone sulfate and pregnenolone sulfate (Figure 7B). Although
no significant decelerating effects at phenoAge and facialAge were associated with
HRT (Figure 7A), several age-related measurements were slowed down in the Old-
HRT group compared with the control counterpart (Figures 7C and S7F). Especially
aging-associated liver degeneration, as assessed by levels of alkaline phosphatase
(ALP), alanine transaminase (ALT), aspartate aminotransferase (AST), and cholines-
terase (ChE), was less pronounced in the HRT-Old group (Figure 7C).

At the molecular level, HRT was associated with retardation in the proteinAge and
metabAge aging clocks (Figure 7A). In particular, the pace of liver and nervous sys-
tem aging indicated by the proteinAge clocks was delayed in the HRT-Old group
(Figures 7D, S7H, and S71). As for the metabolome, three of the five age-accumu-
lated metabolites belonging to acylcarnitine and its derivatives (stearoylcarnitine,
L-arachidonoylcarnitine, and 3-dehydrocarnitine), which are linked with a higher

71,72

risk of aging-related conditions, such as cardiovascular diseases, type 2
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diabetes,”?”*

group (Figure 7B).

and polycystic ovary syndrome,’” were all repressed in the Old-HRT

Moreover, at the immune system level, levels of naive CD8™ T cells (decreased in ag-
ing) and nMCs (increased in aging) appeared to be less impacted by aging in the
HRT group (Figure 7E). Consistent with this, expression of aging-decreased
STAB1, RCAN3, and CACHD1 and the most negatively age-correlated gene,
LRNN3, appeared to be partially restored in HRT volunteers, as assessed by qRT-
PCR (Figure 7F). The aging pace of the HRT-Old volunteers using the composite im-
muneAge and proteinAge of the immune system was also delayed, and, consistent
with this, the abundance of inflammatory proteins (CD163 and LILRB1) were
decreased relative to the Old group (Figures 7A, 7D, and 7G). These data support
the notion that HRT is associated with more robust maintenance of the T cell pool
and alleviation of aging-associated immunosenescence (Figure 7H). In all, our find-
ings imply that HRT, to some extent, decelerates aging in women at the phenotypic
and molecular levels.

DISCUSSION

In this study, we conducted detailed multiomics profiling of healthy individuals of
20-66 years old, which allowed us to systematically identify different types of aging
biomarkers at molecular, cellular, and organ levels; based on our comprehensive da-
tasets, a hierarchical combination of aging clocks was generated. We proposed that
the integrated clock system can serve as a valuable reference for assessing aging
rates and for dissecting population-level physiological states associated with sys-
temic chronic inflammation, hormonal and metabolic dysfunction, and tissue degen-
eration. As a proof of concept, we leveraged the aging clocks to measure to what
extent and in which aspects HRT is associated with deceleration of female aging,
and we also identified metabolites that are enriched in young blood and with the ca-
pacity to attenuate senescence of human vascular endothelial cells.

A strength of our study is that we use a single information source for different types
of “omics” measurements. Although previous related work has evaluated age-asso-
ciated clinical and molecular traits,”®”’? here, we integrated multiple bioinformatics
tools to investigate aging from macro- to microlevels. In addition, we applied mul-
tiple independent experiments to investigate gene expression, protein abundance,
and metabolite function that consistently verified the reliability of our clocks.

Importantly, we pinpointed that dramatic physiological changes occur around 30
and 50 years of age in women. The 30-year-old stage could be referred to as an ag-
ing onset time point characterized by lipid and hormone metabolism changes. The
50-year-old state coincides with the menopausal transition.?>®' Changes in this
period are much more dramatic, not only in hormone levels but also in immunity
and tissue function. Recently, whole-genome sequencing of single-cell-derived he-
matopoietic colonies spanning the human lifespan revealed an abrupt loss of clonal
diversity around 70 years.?” Waves of changes at the proteomic level were also iden-
tified at the ages of 40, 70, and 80.>° These studies, together with our results,
demonstrate that aging does not proceed evenly across the lifespan.

The aging clocks presented here also open up possibilities for a multifaceted assess-
ment of aging interventions. A reduction of hormonal activity is a hallmark of female
aging, known to accelerate biological aging and manifesting as bone loss, decline in
muscle mass and strength, and increased fat mass.®*"** We found that HRT might be
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able to lower aging clock scores, although the effects might be limited in aspects of
hormones, metabolism, and immunity. However, it should be noted that HRT might
also increase the risk of diseases such as cancer and thromboembolism,®>~%¢ sug-
gesting a necessity to determine the best strategy for HRT in aging intervention in

future work.

In sum, we established a metric of aging clocks to monitor various aspects of aging,
spanning contributions of hormone signaling, lipid metabolism, chronic inflamma-
tion, and systemic manifestations. Therefore, they have strong translational poten-
tial to define inter-individual variations of aging patterns, for potential use as a diag-
nostic tool to identify those at risk for aging-related disorders, and to inform
precision medicine for aging intervention. With the continuous development of
the multicenter composite aging clock system, our vision of establishing an index
of Chinese aging score (iCAS) may no longer be far off.

Limitations of the study

Several limitations of this study should be noted. First, the results of the study are
generated from a single-centered and cross-sectional cohort with a relatively small
size. Although the cohort was established with stringent standards, further validation
on larger independent and multicentered cohorts and follow-up studies should be
conducted. Second, we characterized the age-related multi-omics feature characteris-
tics of women and built a set of aging clocks for female aging. However, the sex-asso-
ciated variations might potentially lead to sex-specific disparities in aging clocks (e.g.,
metaAge, lipidAge, phenoAge, and immuneAge).sg’91 Therefore, a comparable male
cohort should be established to reveal aging differences between sexes. Last, a well-
designed clinical trial for HRT is required to better determine its effects on aging.
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Antibodies

Mouse monoclonal anti-GAPDH
apolipoprotein E/apoE Antibody

Santa Cruz Biotechnology
Santa Cruz Biotechnology

Cat# sc-365062; RRID: AB_10847862
Cat# sc-13521; RRID: AB_626691

Chemicals, peptides, and recombinant proteins

Piperine Solarbio P7460-5g
Valeric acid Macklin V820439-5mL
Myristic acid Sigma M3128-10G
X-gal Amresco 0428

Critical commercial assays

HiScript® Il 1st Strand cDNA Synthesis Kit Vazyme R312-02
TIANamp Genomic DNA Kit TIANGEN DP304-03
APOC4 ELISA Kit CUSABIO CSB- EL001934HU
APOE ELISA Kit Abcam Ab108813
LILRA2 ELISA Kit XYBiotechnology XY9H2451
CHIT1 ELISA Kit Biomatik EKF57345
DRG DHEA-S ELISA Kit DRG EIA-1562
lodine [1251] Aldosterone Beijing North Institute of Biotechnology KIP128000

Radioimmunoassay Kit
VAHTS Universal V6 RNA-seq Library Prep Kit

Vazyme

NR604-01/02

BCA quantification Kit Dingguo Changsheng Biotechnology N/A
Co., Ltd. (Beijing, China)

KAPA Library Quantification Kit Roche 07960140001

Chromium Single-Cell 3' Gel Bead 10x Genomics PN-1000075

and Library V3 Kit

Pierce™ Top 14 Abundant Protein ThermoFisher Scientific A36369

Depletion Spin Columns Kit

Qubit™ dsDNA HS and BR Assay Kits ThermoFisher Scientific Q32851

Deposited data

Raw data for RNA-seq This study HRA003766

Raw data for proteomics analysis This study PXD041432

Raw data for metabolomics analysis This study OMIX003055

Raw data for 16s rDNA-seq This study CRA009498

Experimental models: Cell lines

Human aortic endothelial cells (HAECs) Lonza CC-2535

APOE""* and APOE "~ hESCs Zhao et al., 20227 N/A

Experimental models: Organisms/strains

Human blood sample Quzhou People’s Hospital, N/A
Quzhou, Zhejiang, China

Human stool sample Quzhou People’s Hospital, N/A
Quzhou, Zhejiang, China

Human urine sample Quzhou People’s Hospital, N/A
Quzhou, Zhejiang, China

Monkey liver tissue sample Institute of Zoology, Chinese N/A
Academy of Sciences, Beijing, China

Oligonucleotides

Primer: LRRN3 Forward (5'-3') PrimerBank” 153792226¢1

AAGCCTCTTATCAATCTTCGCAG

Primer: LRRN3 Reverse (5'-3') PrimerBank”® 153792226¢1

CCAGTCCAACCAAGGCGTTA

(Continued on next page)
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Primer: CACHD1 Forward (5'-3') PrimerBank” 110578648c1
CATGCAGCGGATATTCAACTCC

Primer: CACHD1 Reverse (5'-3') PrimerBank” 110578648c1
TGCTTGTTCCGATTGACCACA

Primer: NT5E Forward (5'-3') PrimerBank” 325651882c1
GCCTGGGAGCTTACGATTTTG

Primer: NT5E Reverse (5'-3) PrimerBank” 325651882c1
TAGTGCCCTGGTACTGGTCG

Primer: RCAN3 Forward (5'-3) PrimerBank”™ 354623075c¢1
CTTCACGCGGGAACAGAGTC

Primer: RCAN3 Reverse (5'-3') PrimerBank”™ 354623075c¢1
GCCTCGTCTGGGCAATTTT

Primer: SATB1 Forward (5'-3') PrimerBank”® 306518683c1
GATCATTTGAACGAGGCAACTCA

Primer: SATB1 Reverse (5'-3') PrimerBank” 306518683c1
TGGACCCTTCGGATCACTCA

Primer: beta actin Forward (5'-3') PrimerBank”® 4501885a1
CATGTACGTTGCTATCCAGGC

Primer: beta actin Reverse (5'-3') PrimerBank”™® 4501885a1
CTCCTTAATGTCACGCACGAT

Primer: Tel Forward (5'-3’) Zhang et al.,”* N/A
GGTTTTTGAGGGTGAGGGTG

AGGGTGAGGGTGAGGGT

Primer: Tel Reverse (5'-3') Zhang et al.,” N/A
TCCCGACTATCCCTATCCCT

ATCCCTATCCCTATCCCTA

Primer: 36B4 Forward (5-3') Zhang et el N/A
CAGCAAGTGGGAAGGTGTAATCC

Primer: 36B4 Reverse (5'-3) Zhang et al.,”* N/A

CCCATTCTATCATCAACGGGTACAA

Software and algorithms

ImageJ (version 1.48v)
GraphPadPrism 8.0
incucyte s3

TrimGalore (version 0.4.5)
HISAT2 (version 2.0.4)
HTSeq (version 0.11.0)
Cell Ranger (version 4.0.0)

MSFragger (version 3.4)

DIA-NN (version 1.8)

ProteoWizard MSConvert (version 3.0.6428)
CAMERA (version 3.6)

XCMS (version 3.14.1)

Trimmomatic (version 0.35)

FLASH (version 1.2.11)

QIIME (version 1.8.0)
Vsearch (version 2.4.2)
ppcor (version 1.1)
MaAsLin2 (version 1.10.0)
MetaboAnalyst (version 5.0)
DoubletFinder (version 2.0.2)

Seurat (version 3.2.3)

DESeq?2 (version 1.36.0)
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Schneider et al.,””

GraphPad Software Inc.

Essen Bioscience
Felix Krueger
Kim et al.,”
Anders et al.,”’

10x Genomics

Kong et al.,”®
Demichev et al.,””

Chambers et al., '

Kuhl et al.,"®"

Benton et al.,'%?

Bolger et al.,'”?

Reyon et al.,'®*

Caporaso et all,, "
Rognes et al.,'%¢
Kim, 7

Mallick et al.,"®
Pang et al.,'"”

McGinnis et al.,""°
Butleretal.,'"”

Love etal.,'"?

https://imagej.net/Welcome
https://www.graphpad.com/
https://www.essenbioscience.com/
https://github.com/FelixKrueger/TrimGalore
http://daehwankimlab.github.io/hisat2/
https://htseq.readthedocs.io/en/master/

https://support.10xgenomics.com/single-cell-
gene-expression/software/downloads/4.0/

https://msfragger.nesvilab.org/
https://github.com/vdemichev/DiaNN
https://proteowizard.sourceforge.io/
https://github.com/sneumann/CAMERA
https://github.com/sneumann/xcms
http://www.usadellab.org/cms/?
page=trimmomatic
http://www.talengineering.org/platforms-
flash.htm

http://qgiime.org/
https://github.com/torognes/vsearch
https://rdrr.io/cran/ppcor/
https://github.com/biobakery/Maaslin2
https://www.metaboanalyst.ca/

https://github.com/chris-mcginnis-ucsf/
DoubletFinder

https://satijalab.org/seurat/articles/install.
html

https://bioconductor.org/packages/release/
bioc/html/DESeq2.html

(Continued on next page)
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Metascape Zhou etal.,'"” http://metascape.org/

CIBERSORTx Newman et al.,""® https://cibersortx.stanford.edu

ComplexHeatmap (version 2.13.1) Guetal,'"™ https://github.com/jokergoo/
ComplexHeatmap

Cytoscape (version 3.8.2) Shannon et al.,'"® https://cytoscape.org/

glmnet (version 4.1.4) Simon etal.,'"” https://glmnet.stanford.edu/

mxnet-cu101 (version 1.5.0) Chen etal.,'"® https://github.com/apache/mxnet

DEswan (version 0.0.0.9001) Lehallier et al.,** https://lehallib.github.io/DEswan

ggpubr (version 0.4.0) Hadley Wickham https://rpkgs.datanovia.com/ggpubr

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to
and will be fulfilled by the lead contact, Dr. Weiqi Zhang (zhangwq@big.ac.cn).

Materials availability
This study did not generate new unique reagents.

Data and code availability

All RNA-seq raw data can be accessed in the GSA-Human database (https://ngdc.
cncb.ac.cn/gsa-human/) : HRA003766. Raw data for proteomics analysis were
deposited in the iProx (https://www.iprox.cn/) database: PXD041432. Raw data for
metabolomics analysis were deposited in the OMIX database (https://ngdc.cncb.
ac.cn/omix/): OMIX003055. Raw data for 16s rDNA-seq were deposited in the
GSA database (https://ngdc.cncb.ac.cn/gsa): CRA009498.

This paper does not report original code. Any additional information required to re-
analyze the data reported in this paper is available from the lead contact upon
request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human participants

The Quzhou cohort study was established in Quzhou, Zhejiang Province of
China and conducted under the approval of the Research Ethics Committee of
the Quzhou People’s Hospital (2020-12-001) and Beijing Institute of Genomics,
Chinese Academy of Sciences (China National Center for Bioinformation)
(2023H001) with informed consent from volunteers. The collection of biological
samples and data in this study was compiled with the guidance of the Human
Genetic Resource Administration, Ministry of Science and Technology of the
People’s Republic of China. Volunteer information (e.g., age, sex, BMI) is docu-
mented in Table S1.

Animal samples

The utilization of cynomolgus monkeys in this study received approval from the Insti-
tutional Animal Care and Use Committee of the Institute of Zoology (I0Z18048-A),
Chinese Academy of Sciences, and was carried out in accordance with the guidelines
for the Ethical Treatment of Non-Human Primates."' """ Liver samples of 16 mon-
keys were used for Western blot assay, which included eight young (four males
and four females, 4-6 years old) and eight old (four males and four females, 18-21

years old) monkeys.'%?
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Cell lines

The HAECs lines were purchased from Lonza (CC-2535). HAECs were maintained on
collagen (Advanced BioMatrix, 5005) in EGM-2 medium (Lonza, CC-3162), providing
1% penicillin-streptomycin (GIBCO, Cat# 15140-163) and 0.01% plasmocin (Invivo-
gen, ant-mpt). The APOE** and APOE~'~ human ESCs (embryonic stem cells) were
generated in a previous study.”?

METHOD DETAILS

Volunteer recruitment and data collections

The recruitment and data collection for every volunteer in the cohort were conduct-
ed under strict procedures. A pre-test questionnaire was initially distributed to
collect basic information about potential volunteers. Referring to published

research,®>123-12¢

the following criteria were applied for recruiting eligible volun-
teers: (1) healthy adult aged over 18 years old; (2) local birth or long-term (over 10
years) local residence history; (3) without severe diseases (such as cancer, severe car-
diovascular diseases, diabetes mellitus, autoimmunity/inflammation, severe gyne-
cological disease); (4) without persistent drug or alcohol abuse; (5) without taking
chemotherapy drugs, anti-platelet drugs, or cholinesterase inhibitor of Alzheimer’s
disease; (6) no other clinical trials participation within recent three months. For HRT
evaluation, women aged 45-65 years who had been taking hormone medication for
more than three years were enrolled in the HRT Intervention Observational Study. To
avoid the potential confounding effects of diseases, only volunteers under 66 years
old were recruited for that older individuals might suffer from chronological dis-
eases. We collected the same multi-level data and biospecimens for the HRT volun-
teers under the same procedure as the non-HRT volunteers. In addition to providing
the same questionnaire as the non-HRT cohort, we also recorded the type of hor-
mone medication they took, together with the dosage, frequency, and duration
information.

Eligible volunteers were asked to fill up a more detailed questionnaire that was de-
signed based on previous studies,'?’""?% including questions from the 36-Item Short-
Form Survey (SF-36) to measure the self-assessment of health status.'?” All volun-
teers were asked to follow their normal schedule, but avoid extremely strenuous
exercise, acute injury, or other abnormal actions in the one month before the clinical
examination. Volunteers were also asked to have uniformly provided food the day
before the examination to obtain controllable dietary variables. For young volun-
teers with regular menstrual cycles, the physical examination and biological sample
collection were conducted within one week after menstruation except for samples
for sex hormone levels analysis. For elderly volunteers with irregular menstrual cycles
or those after menopause, the examinations and sample collection were performed
without special request. In addition, the volunteers received comprehensive phys-
ical examinations at the hospital, such as anthropometric measurements, blood tests
(blood content, blood cells, hormone assessment), routine urine tests, electrocar-
diogram (ECG) tests, bone density tests, pulmonary function tests, and Doppler Ul-
trasonography (Table S2). Features with similar functional implications were not
excluded for redundancy to avoid bring more artificial effects. The face images
were captured under well-controlled circumstances with the same equipment to
assess facial aging. To include a more comprehensive characterization of aging,
the volunteers were asked to have action competence tests, including bench step-
ping test (VO, max), single-legged balance, grip strength test, 30 s chair—stand
test, and Purdue Pegboard test. All these tests were performed according to pub-

lished studies, *°'°2 and the detailed requirements for these tests are as follows.
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Single-legged balance Volunteers stand on level ground with eyes
closed and arms outstretched to maintain
balance. Timing begins when one leg is raised.
Timing stops when the supporting foot moves
or the other leg touches the ground. The test
was repeated three times on the same leg (left
or right, depending on the volunteers’ habit)
and the best score was recorded.

Grip strength test Volunteers are given the test twice using their
dominant hand with a grip dynamometer. The
best scores were recorded. Volunteers should
keep their elbows at 90° and upper arms
drooping naturally and stand steadily.

30 s chair-stand test Volunteers were asked to repeat sit-and-stand
on a chair within 30 s. The number of times that
they repeated was recorded. The chair should
be stable, with a backrest and no armrest.
Volunteers should put their hands across their
shoulders throughout the test.

Purdue Pegboard test Volunteers used the pegboard to complete
four sets of tasks, including a left-handed
assembly task (30 s), a right-handed assembly
task (30 s), a two-handed assembly task (30 s),
and a complex assembly task (60 s). Volunteers
can practice 2-3 times before the test, but it is
forbidden to interrupt or restart after the
official start. The final scores were the sum of
the above four item scores.

Bench stepping test This test aims to measure cardiorespiratory
fitness (VO, max). Volunteers’ body
weights (BW, kg) were first recorded. The
stepping test was conducted on a stepping
bench. The frequency of movement
was controlled at 22.5 b/min by a
metronome (90 bpm). The mean
heart rate (HR, b/min) was recorded
after 5 min of exercise. VO, max is

calculated as: VO, max(ml/kg - min) =
10 (0:438621 -0.002626xHR +0.006238xBW)/B\\/x 1000

Biological sample pretreatment and storage

Biospecimen acquisition. The blood and stool samples were collected after an
overnight fast. A 15 mL whole-blood sample was collected from each volunteer
through intravenous blood collection. Two anticoagulant tubes with EDTA covered
and one normal tube were used for collection, and the tubes were immediately
transported to the laboratory and deposited at 4°C for subsequent treatment. The
blood (EDTA tube) was centrifuged at 4°C (400 g, 15 min) to obtain the plasma
and blood cells. For serum acquisition, the coagulated blood (ordinary tube) was
centrifuged at 4°C (3,000 rpm, 5min), and the supernatant was collected. All blood
samples were stored at —80°C for long-term preservation. The collected stool sam-
ples were stored at —80°C.

PBMC isolation. Peripheral blood anticoagulated with EDTA was diluted in equal
proportion with PBS, and PBMCs were obtained via Ficoll density gradient centrifu-
gation. After washing with PBS, PBMCs were resuspension with DMSO/serum cryo-
preservation or TRIzol reagent, and the remaining cell pellets were immediately
frozen.

Cell culture

The cell culture experiment was performed as previously described.""” For Human
aortic endothelial cells (HAECs), the cell lines were purchased from Lonza (CC-
2535). HAECs were maintained on collagen (Advanced BioMatrix, 5005) in EGM-2
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medium (Lonza, CC-3126), providing 1% penicillin-streptomycin (Lonza, CC-3126)
and 0.01% plasmocin (Invivogen, ant-mpt). For metabolite treatment, valeric acid
(soluble in medium, 10 ng/mL), myristic acid (soluble in DMSO, 0.2 uM), piperine
(dissolved in DMSO, 5 uM) was added every time the medium was replaced. The cor-
responding solvent was added to the control group. The doses of the metabolites
were determined by concentration titration test.

SA-B-Gal staining

SA-B-Gal staining was conducted following previous studies.'** Cells were washed
twice with PBS buffer after removing the culture medium and fixed for 5 min with
2% formaldehyde and 0.2% glutaraldehyde fixation buffer at RT. After washing
with PBS buffer solution twice, the SA-B-Gal staining solution containing T mg/mL
X-gal (Amresco, 0428) was added to the culture dish. The cells were stained at
37°C and kept away from light for 12 h. A digital microscope camera (Olympus)
was used to take pictures. The proportion of SA-B-Gal-positive cells was quantified
by ImageJ software (version 1.48v).”>

HAEC migration assay

The migration assay was performed as previously described.'? HAECs were main-
tained on collagen in 12 well plates. The migration capability of HAECs was
measured by the Wound Healing Assay. Briefly, the cells were cultured to 100%
confluence, 10 pL pipette tips were used to produce scratches. The picture was
taken after 8 h. ImageJ was used to analyze the cell migration rate at the same
location.

HAEC matrigel tube formation assay

The tube formation assay was conducted as previously reported,’’” HAECs were
seeded at a density of 5 x 10%/ well into matrigel-coated 24 well plates (Corning).
The cells were cultured with incucyte s3 (Essen Bioscience) and photographed at
12 h afterward. The number of tubes/nodes and the length of branches were

analyzed by ImageJ-Angiogenesis Analyzer.'*®

RNA analysis

Total RNA was extracted with TRIzol Reagent (Ambion, 15596018). gRT-PCR
analyses was performed as previously described,’*® HiScript Ill 1st Strand cDNA
Synthesis Kit (R312-02, Vazyme) was used for reverse transcription to obtain
cDNA. RT-gqPCR was conducted with the iTag Universal SYBR Green Super Mix (No-
voprotein, E096-01S) by a Real-Time PCR system (Bio-Rad). All data were normalized
to the internal control and calculated by 2“9 method. The primer pairs used in this
study are listed in the key resources table. For RNA-seq, a total amount of 1-3 png
RNA per sample was used for the RNA sample preparation. Sequencing libraries
were generated using VAHTS Universal V6 RNA-seq Library Prep Kit for Illumina
(NR604-01/02) following the manufacturers recommendations. The obtained li-
braries were then sequenced on lllumina HiSeq X-Ten platforms and 150 bp
paired-end reads were generated.

Enzyme-linked immunosorbent assay (ELISA)

The concentrations of APOC4, APOE, LILRA2, and CHIT1 in the plasma were
analyzed by ELISA kits. ELISA was performed according to the manufacturer’s in-
structions and quantified by a microplate reader (Thermo Fisher Scientific, MK3).
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Telomere length analysis

Telomere length measurement was performed as previously described.” "%’ Briefly,
whole blood genomic DNA was extracted by TIANamp Genomic DNA Kit
(TIANGEN, DP304-03) according to the manufacturer’s instructions. qRT-PCR was
conducted to measure the telomere length with the iTaq Universal SYBR Green Su-
per Mix (Novoprotein, E096-01S) by a Real-Time PCR system (Bio-Rad). All data were
normalized to the internal control and calculated by 2729 method.

Western blot

Western blot was performed as previously described.'*® The protein samples of
APOE*"* and APOE~'~ hESCs were obtained from a previous study.”® Briefly,
gene knockout was performed using a CRISPR-Cas9 system for APOE~'~ hESCs
generation. For APOE*"* and APOE ™'~ hESCs protein acquisition, cells were lysed
in 1x SDS lysis buffer at 105°C, and the lysates were collected for quantification.
The liver tissues of monkeys (young, n = 8; old, n = 8) were collected in previous
studies.”'”"2""3? These liquid nitrogen cryopreservation liver samples were homog-
enized in liquid nitrogen and immersed with 2x SDS to facilitate tissue lysis and then
boiled at 105°C for 10 min for nest analysis. For protein quantitation, briefly, total
protein concentration was determined by BCA quantification Kit (Dingguo Chang-
sheng Biotechnology Co., Ltd. (Beijing, China)) following the manufacturer’s instruc-
tions. Protein lysates were subjected to SDS-PAGE. The PVDF (polyvinylidene fluo-
ride) membranes (Millipore) were blocked with 5% skimmed milk powder (BBI Life
Sciences) in 1x TBST and incubated with primary antibodies overnight at 4°C. The
PVDF membranes were incubated with the HRP-conjugated secondary antibodies
for 1 h at room temperature and then visualized using the ChemiDoc XRS system
(Bio-Rad).

Hormone level analysis

Plasma hormone levels were analyzed by ELISA (DHEAs) and radioimmunoassay
(Aldosterone, Cortisol). In brief, the concentration of DHEAs in the plasma was
analyzed by DRG DHEA-S ELISA Kit (DRG, EIA-1562) according to the manufac-
turer’s instructions. For radioimmunoassay, marker antibodies were added to the
standard and plasma samples (100 plL) and incubated 20-24 h at 4°C. Then centri-
fuge together with the separating agent at 3,800 rpm for 15 min. The concentration
of Aldosterone and Cortisol in the plasma was analyzed by lodine ['?*I] Aldosterone
Radioimmunoassay Kit (Beijing North Institute of Biotechnology, RVR-CW-100) and
lodine ['?°I] Cortisol Radioimmunoassay Kit (Beijing North Institute of Biotech-
nology, KIPI28000) according to the manufacturer’s instructions.

For sex hormone levels analysis, blood samples were collected during the menstrual
period (2-5 days after menstruation), while other hormones were detected after
menses ended. Postmenopausal volunteers could participate in the blood sample
collection at any time as demonstrated in the “establishment of quzhou cohort”
section.

PBMC scRNA-seq

PBMCs were resuscitated and alive cells were separated by FACS. Single cells were
encapsulated into droplet emulsions using a Chromium Single-Cell instrument (10x
Genomics), and scRNA-seq libraries were constructed following the 10x Genomics
protocol using a Chromium Single-Cell 3’ Gel Bead and Library V3 Kit. The isolated
single cells were then loaded in each channel. Reverse transcription and library prep-
aration were performed in a Bio-Rad C1000 Touch thermal cycler with a 96-deep well
reaction module. A total of 12 cycles were used for cDNA amplification and the
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sample index PCR step. The average fragment length in the 10x cDNA libraries was
quantified in a fragment analyzer (AATI) and by gPCR with a Kapal Library Quantifi-
cation Kit for lllumina. Libraries were sequenced with the NovaSeq 6000 Sequencing
System (Illumina 20012866).

Proteomics analysis

For protein extraction, the top 14 high-abundance proteins were removed by
Pierce™ Top 14 Abundant Protein Depletion Spin Columns Kit (ThermoFisher Scien-
tific). The protein concentration was determined with the BCA kit according to the
manufacturer’s instructions. For digestion, the protein solution was reduced with 5
mM dithiothreitol for 30 min at 56 °C and alkylated with 11 mM iodoacetamide for
15 min at room temperature in darkness. Displace the urea with 8 M urea for three
times, and then displace the urea with displacement buffer three times. Enzymolyse
with trypsin in the proportion of 1:50 (protease: protein, m/m) overnight. Peptide
segment was recovered by centrifugation at 12,000 g for 10 min. The sample was
fractionated into fractions by high pH reverse-phase high-performance liquid chro-
matography (HPLC) using Agilent 300 Extend C18 column (5 pm particles, 4.6 mm
ID, 250 mm length). Peptides were separated with an EASY-nLC 1200 UPLC system
(ThermoFisher Scientific) (Mobile phase A: an aqueous solution with 0.1% formic
acid and 2% acetonitrile. Mobile phase B: an aqueous solution with 0.1% formic
acid and 90% acetonitrile). The separated peptides were further separated by an ul-
tra-high performance liquid phase system and injected into an NSl ion source for
ionization, before entering Orbitrap Exploris 480 (ThermoFisher Scientific) for
mass spectrometry analysis. The ion source voltage is set to 2.3 kV, and the
FAIMS compensation voltage (CV) is set to -45 V - 70 V, both the peptide parent
ion and its secondary fragments were detected and analyzed with high-resolution
Orbitrap. The scanning range of the primary mass spectrometry is set to 390-810
m/z. The scanning resolution is set to 30,000. For the second mass spectrometry,
the fixed starting point of the scanning range is 200 m/z and the scanning resolution
is set to 30,000. The data collection mode uses a data-independent scanning (DIA)
program and fragmentation was performed with fragmentation energy of 25, 30,
and 35. To improve the effective utilization of mass spectrometry, the Automatic
Gain Control (AGC) is set to 3E6 and the maximum injection time is set to Auto.
The service of proteomics analysis was provided by PTM Biolabs, Inc.

Metabolomics analysis

The plasma samples were thawed at 4°C and 100 plL aliquots were mixed with 400 plL
of cold methanol/acetonitrile (1:1, v/v) to remove the protein. The mixture was
centrifuged for 15 min (14,000 g, 4°C). The supernatant was dried in a vacuum centri-
fuge. For LC-MS analysis, the samples were re-dissolved in 100 plL acetonitrile/water
(1:1, v/v) solvent. Analysis was performed using an ultra-high performance liquid
chromatography (UHPLC) (1290 Infinity LC, Agilent Technologies) coupled to a
quadrupole time-of-flight (AB Sciex TripleTOF 6600) in Shanghai Applied Protein
Technology Co., Ltd. For hydrophilic interaction liquid chromatography (HILIC) sep-
aration, samples were analyzed using a 2.1 mm x 100 mm ACQUIY UPLC BEH
1.7 um column (waters, Ireland). For the first MS/MS acquisition, the instrument
was set to acquire over the m/z range of 60 - 1,000 Da, and the accumulation time
for the product ion scan was set at 0.2 s/spectra. The m/z range of the second
MS/MS acquisition was 25 - 1,000 Da with an accumulation time of 0.05 s/spectra.
The product ion scan is acquired using information-dependent acquisition (IDA)
with high sensitivity mode selected. In brief, the declustering potential (DP) was fixed
at + 60V and excluded isotopes within 4 Da. The collision energy (CE) was fixed at
35V with £15 eV. 10 candidate ions were acquired to monitor per cycle.
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16S rDNA-seq

Total genomic DNA was extracted using DNA Extraction Kit following the manufac-
turer's instructions. The concentration of DNA was verified with NanoDrop and
agarose gel. The genomic DNA was used as the template for PCR amplification
with the barcoded primers using the Tks Gflex DNA Polymerase (Takara). For bacte-
rial diversity analysis, V3-V4 variable regions of 16S rRNA genes were amplified with
universal primers 343 F and 798 R. For Eukaryota diversity analysis, variable regions
of 18S rRNA genes were amplified with universal primers 817F and 1196R. For fungal
diversity analysis, ITS | variable regions were amplified with universal primers ITS1F
and ITS2. Amplicon quality was visualized using gel electrophoresis, purified with
AMPure XP beads (Agencourt), and amplified for another round of PCR. After being
purified with the AMPure XP beads again, the final amplicon was quantified using the
Qubit dsDNA assay kit (Thermo Fisher Scientific, USA). Equal amounts of purified
amplicon were pooled for subsequent sequencing.

Process of multi-omics data

Transcriptomic data of PBMCs.  For bulk RNA-seq data, raw files of the sequencing
data were first trimmed with TrimGalore (version 0.4.5). Clean reads were mapped
against the hg19 genome with HISAT2 (version 2.0.4).”® High-quality mapping reads
(score of mapping quality >20) were then counted for gene expression quantitation
with HTSeq (version 0.11 .0).77 Transcripts per million (TPM) were calculated with a
custom script. For scRNA-seq data, raw data generated with the 10x Genomics
Chromium platform were processed with Cell Ranger (version 4.0.0) and mapped
to the hg19 reference. The expression matrices were obtained for downstream
analysis.

Plasma proteomic data. For spectral library generation, the DDA data were pro-
cessed using MSFragger (version 3.4)°® and then searched against the human
SwissProt database. The cleavage enzyme was set as Trypsin/P and up to two
missing cleavages were allowed. The mass tolerance was set as 20 ppm. The fixed
modification was set as carbamidomethyl on Cys, and the variable modifications
were set as acetylation on protein N-terminal and oxidation on Met. FDR was
adjusted to <1%. The DIA data were processed with DIA-NN (version 1.8) using
the above library and default settings.”” The raw intensity was divided by the median
of each sample to obtain the normalized intensity for downstream analysis.

Plasma metabolomic data. The raw MS data were first converted to MzXML files us-
ing ProteoWizard MSConvert (version 3.0.6428)"°° and then subjected to peak pick-
ing (centWave m/z = 10 ppm, peakwidth = ¢ (10, 60), prefilter = ¢ (10, 100)) and
grouping (bw = 5, mzwid = 0.025, minfrac = 0.5) with XCMS (version 3.14.1)."%? |so-
topes and adducts were annotated with CAMERA (version 3.6).101 Only extracted
ion features with more than 50% of the non-zero values in all samples were kept.
Metabolite identification was conducted by comparing the accuracy m/z value
(<10 ppm) with MS/MS spectra based on an in-house database (Shanghai Applied
Protein Technology). The raw intensity was divided by the median of each sample
to obtain the normalized intensity for downstream analysis.

16s rDNA data. Raw sequencing data were preprocessed using Trimmomatic
(version 0.35) to cut off ambiguous bases (N) and low-quality sequences with an
average quality score below 20 using the sliding window trimming approach.'®?
Trimmed reads were assembled using FLASH (version 1.2.11) with parameters as
10 bp of minimal overlapping, 200 bp of maximum overlapping, and 20% of
maximum mismatch rate.'% Reads with 75% of bases above Q20 were kept and
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those with chimera were also removed using QIIME (version 1.8.0)."% After primer
sequences were removed, clean reads were subjected to clustering to generate
operational taxonomic units (OTUs) using Vsearch (version 2.4.2) with a cutoff of
97% similarity.'® The representative read of each OTU was selected with QIIME.
All representative reads were annotated and blasted against the SILVA database
(version 138) using the RDP classifier algorithm (confidence threshold was 70%)."4°
The OTU abundance matrices were randomly sampled to even according to the
sample with the least sequencing depth.

Correlation analysis

For phenotypic measurements, bulk RNA-seq, proteomics, and metabolomics data,
correlation analysis was performed with pcor.test function of ppcor package (version
1.1) via Pearson’s correlation method.'®” When the correlation analysis was conduct-
ed between a certain value of chronological age, BMI would be used as the covari-
ate. Log-transformed values were used to identify age-related genes, proteins, and
metabolites. For 16s rDNA data, the association between age and gut microbes was
achieved by MaAsLin2 (version 1.10.0) with BMI as the covariate.'%® Only those OTU
detected in at least 70% of the total samples were retained for analysis.

Calculation of age-related change score
The age-related change score is meant to measure the change tendency of a group
of features with age and is calculated as below:

Nincrease - Ndecrease

Age change score =
Ntota/

Nincreaser Ndecreases and Niotal are the number of features that are increased,
decreased, and total features in a certain group. A positive score indicates the
feature group tends to increase with age, while a negative one indicates the
opposite.

Pathway enrichment analysis

Pathway enrichment analysis of genes and proteins was performed via Metascape
webtool.'”® MetaboAnalyst (version 5.0) was used to annotate metabolites with
pathway information with SMPDB as the library.'®” Only metabolite sets containing
at least 2 entries were used.

Integration, clustering, and cell-type identification of scRNA-seq

The output files of Cell Ranger were processed with the Seurat package
(version 3.2.3).""" Cells with a mitochondria gene ratio >20% and a gene number
<400 were excluded. Doublets of each sample were further removed with
DoubletFinder (version 2.0.2).""° “SCTransform” function of Seurat was then applied
to each sample for data normalization and then subjected to integration. 3,000 high-
ly variable genes were selected for integration with the “SelectintegrationFeatures”
function, based on which the principal component analysis (PCA) was conducted
with the “RunPCA" function for each sample. After integration preparation via “Pre-
SCTIntegration” function, datasets of different samples were integrated following
the RPCA integration pipeline of Seurat.

The integrated Seurat object was then successively subjected to “"RunUMAP”, “Find-
Neighbors”, and “FindClusters” functions for dimension reduction and clustering
based on the first 30 principal components with a resolution of 3. The cell type iden-
tity of each cluster was determined by the expression levels of the canonical marker
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genes for different cell types as shown in Figure S2C. A cluster of red blood cells was
excluded.

Differential expression (DE) analysis for multi-omics features

For differentially expressed genes (DEGs), DEGs of bulk RNA-seq data between in-
dividuals from Old-HRT and Old groups are identified with DESeq2 package (version
1.36.0) with a cutoff of BH-adjusted p value <0.05.""? To keep similar sample sizes of
different groups, samples in the Old group are randomly selected from all individ-
uals with similar ages to those in the HRT-Old group. The specific individuals
included in each group were shown in Figure S7E. DEGs of scRNA-seq data between
individuals from Old and Young groups were identified using the “FindMarkers”
function of Seurat with a cutoff of adjusted p value <0.05 and | avg_logFC | > 0.5.
For DE analysis for other omics features which aims to compare the value among
Old and Old-HRT groups, Wilcoxon rank-sum test was used to calculate the p values,
and only those with BH-adjusted p values <0.05 were identified as HRT-changed
features.

Deconvolution analysis of bulk RNA-seq data of PBMCs

The deconvolution analysis was performed with CIBERSORTx.''* To obtain the
scRNA-seq data as the reference, cells of different cell types were first sampled to
achieve 200 cells retained in each cell type. The raw count of the downsampled data-
sets was extracted, based on which the signature matrix file was built. The signature
matrix and raw count of bulk RNA-seq data were inputted into the “Impute Cell Frac-
tion” module with permutation times of 500, and S-mode batch correction was con-
ducted. The cell fractions of different cell types were then subjected to correlation
and statistical analysis.

Immunotype analysis

A matrix with individuals as the row and deconvoluted cell fraction as the column was
subjected to the k-means clustering algorithm with ComplexHeatmap package
(version 2.13.1).7"° Both row and column were clustered, and the k value was set
as 3 so that to discriminate the young, middle, and old stages. Each cluster of indi-
viduals was described as an immunotype, and a total of three immunotypes were
identified.

Tissue origin annotation of age-related proteins

Gene expression levels of different tissues (TPM) were obtained from the Human
Protein Atlas database (h‘t’qos://www.pro‘teina‘tlas.org/about/dovvnload).141 The tis-
sues specifically exist in males and pregnant females were excluded (e.g., testis,
prostate, placenta). The age-accumulated and age-reduced proteins were sepa-
rately clustered with k-means methods based on the expression levels (row Z score
transformed) of the corresponding genes across tissues. Proteins with specific
expression in a group of tissues with similar characteristics were grouped into a mod-
ule (e.g., liver, muscle, nervous system, immune system). Proteins with no specific
expression in certain tissues or with high expression in a group of tissues with no
similar characteristics were identified as pan-tissue-originated.

Joint analysis of multi-omics age-related features

The normalized matrices of multi-omics data (normalization was demonstrated in the
previous section, except for phenotypicmeasurement value whose raw values were
used.) were first subjected to z-score transformation by row and merged (feature as
the row and individual as the column). The merged matrix was then subjected to
k-means clustering. Molecular features (genes, proteins, and metabolites) from
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the two clusters with fewer variances along the age trajectory were extracted for
pathway annotation analysis using the Joint-pathway function of MetaboAnalyst
(version 5.0)."%7 Similar pathways were merged, and the features from the three ma-
jor categories (immune, lipid, hormone) were used for functional compositeAge pre-
diction, together with phenotypic measurements related to the three categories
(Table Sé).

Establishment of aging clocks from multi-omics data

The 110 healthy individuals without HRT were first randomly divided into training (55
individuals) and validation (56 individuals) sets, based on which all the age clock
models were built. In the training set, the ElasticNet regression model was applied
to raw data of phenotypic measurement data (phenoAge), and log-transformed data
of transcriptomic (transAge), proteomic (proteinAge), and metabolomic (metabAge)
data using the glmnet R package (version 4.1.4)."" In phenotypic measurement
data, only individuals with blank values less than 10 were kept, and features that
were not detected in all the kept individuals were further excluded. In the proteomic
data, only proteins that were detected in all individuals were retained. Nine models
for each type of data were built with alpha values of 0.1-0.9. And the lambda values
were selected using a 10-fold cross-validation on the training sets. The models with
the smallest mean absolute error (MAE) in the validation set were selected as the
final models. The proteinAge estimators of different tissues were built similarly to
proteinAge, except that only a subset of proteins was used when building a single
tissueAge according to the tissue-origin annotation results (Table Sé). The correc-
tion with the LOESS model was conducted as previously described."”

To build the compositeAge, the data of different types were first 0-1 scaled and then
merged. Features of total compositeAge and functional compositeAge were
selected as described in the "“joint analysis of multi-omics age-related features” sec-
tion. The prediction models were then determined as described.

The parameters used to build the multi-omics aging clocks and the features that
constitute the models were listed in Table S7.

Establishment of facialAge prediction model

The prediction model was trained with publicly available datasets of face images of
Asians (The AFAD Dataset, MegaAge Dataset, AgeDB) using mxnet-cu101 (version
1.5.0) based on the insightFace module. The model structure was modified based on
the MobileNet. The images were preprocessed with opencv. After obtaining the
final model, the facialAge of individuals were predicted with the collected pictures
after the same preprocessing procedure.

Identification of associated factors with biological aging pace

To calculate the aging pace, the linear regression model with chronological and pre-
dicted age was first built. The aging pace was defined as the residual between the
predicted age and the regressed value of the linear model for chronological age.
The correlation between the aging pace and the factors was calculated with chrono-
logical age as the covariate (Pearson'’s correlation). Factors associated with the aging
pace were identified as those with p value <0.05. Network plots were drawn with
Cytoscape (version 3.8.2)."°

Slide window analysis to identify peaks of age-related changes

Slide window analysis was performed with the DEswan R package (version
0.0.0.9001).7* Age-related features of different types were subjected to the slide
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window analysis with a window of 5 years by comparing groups in parcels of 5 years.
Results with BH-adjusted p value <0.05 were identified as significantly changed
features.

QUANTIFICATION AND STATISTICAL ANALYSES

Statistical analysis of the comparisons in Figures 4F-4H,S3F, S3I, and S3J, was per-
formed using the two-tailed t-test with GraphPad (version 9.0.0). Statistical analysis
of the comparisons in Figures 2H, 7A, 7C-7G, S7G, and S7 was performed using the
Wilcoxon rank-sum test with the ggpubr R package (version 0.4.0).
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