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CONTEXT AND SIGNIFICANCE

Our actual biological age does

not always align with

chronological age because of the

complexity of aging, making it

important to develop tools for

accurately assessing aging. Here,

researchers established aging

clocks encompassing age-related

traits from multiomics levels

relevant to immune, lipid

metabolism, hormone regulation,

and tissue fitness. In addition, they

demonstrated that age-related

alterations peak in the third and

fifth decades of life, indicating

them as important periods to

monitor aging. The researchers

also found that hormone

replacement therapy can partially

delay the pace of several aging

clocks and alleviate multiple

aging-related markers. This study

provides a framework for

measuring aging using omics data

and sheds light on how aging

clocks can be applied to

translational aging studies.
SUMMARY

Background: Translating aging rejuvenation strategies into clinical
practice has the potential to address the unmet needs of the global ag-
ing population. However, to successfully do so requires precise quanti-
fication of aging and its reversal in a way that encompasses the
complexity and variation of aging.
Methods: Here, in a cohort of 113 healthy women, tiled in age from
young to old, we identified a repertoire of known and previously un-
known markers associated with age based on multimodal measure-
ments, including transcripts, proteins, metabolites, microbes, and clin-
ical laboratory values, based on which an integrative aging clock and a
suite of customized aging clocks were developed.
Findings: A unified analysis of aging-associated traits defined four ag-
ing modalities with distinct biological functions (chronic inflammation,
lipid metabolism, hormone regulation, and tissue fitness), and depicted
waves of changes in distinct biological pathways peak around the third
and fifth decades of life. We also demonstrated that the developed
aging clocks could measure biological age and assess partial aging
deceleration by hormone replacement therapy, a prevalent treatment
designed to correct hormonal imbalances.
Conclusions:We established aging metrics that capture systemic phys-
iological dysregulation, a valuable framework for monitoring the aging
process and informing clinical development of aging rejuvenation stra-
tegies.
Funding: This work was supported by the National Natural Science
Foundation of China (32121001), the National Key Research and Devel-
opment Program of China (2022YFA1103700 and 2020YFA0804000), the
National Natural Science Foundation of China (81502304), and the Quz-
hou Technology Projects (2022K46).
INTRODUCTION

Human aging is a complex multifactorial process affected by genetic and environ-

mental factors.1–4 Given that aging is recognized as a root cause of many chronic dis-

eases, identifying individuals at risk of functional deterioration and predicting the

prognosis of health outcomes could be facilitated if aging rates could be quanti-

fied.5–7 However, biological aging of the human body is a heterogeneous process
Med 4, 825–848, November 10, 2023 ª 2023 Elsevier Inc. 825
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not absolutely correlated with chronological age.5,8,9 Moreover, aging trajectories

can be slowed down by aging intervention strategies, such as dietary restriction

and exercise.10–14 To successfully apply geroprotective and rejuvenation strategies,

developing a reliable framework for assessing biological age is a prerequisite.5,15–17

Previous efforts to quantify ‘‘biological age’’ have included assessment of biological

age scores based on facial morphology,18–20 established indicators during physical

examination,21,22 and molecular changes that appear to be coordinated with chro-

nological age, such as telomere length23 and DNA methylation.24–28 Reported

more recently, molecular aging clocks based on profiling of RNA expression29–31

or serum protein32,33 are also promising approaches for assessing biological aging.

However, aging is a process that affects almost all tissues and organs at multiple

physiological levels; thus, it is urgent for the aging research field to move beyond

approaches that evaluate limited aspects of aging. Moreover, systemic studies

that calibrate aging clocks based on different aspects in the same set of individuals

are rare,5 leaving the performance of different aging clocks incomparable and hin-

dering the development of integrative and accurate aging clocks.

Women are physiologically different from men, and sex-specific features of aging and

longevity are widespread.34–36 However, previous aging cohort studies frequently mix

datasets of both sexes, and aging clocks that specifically quantify the aging of women,

therefore, remain outstanding. Here, we recruited a cohort of Chinese women, tiling

from the second to the sixth decade of life, in which we applied analysis of multidimen-

sional biomarkers across phenomics, transcriptomics (at the bulk and single-cell levels),

proteomics, andmetabolomics. Thus, our biological aging survey covers different health

aspects that allow quantification of the pace of multisystem physiological deterioration.

We applied this framework to score the variance of biological age between individuals

and systematically evaluate the geroprotective effect of hormone replacement therapy

(HRT) in an additional cohort. Therefore, our study represents a paradigm to measure

biological age and intervention strategies using omics data.
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RESULTS

Project design, cohort characteristics, and summary of multiomics data

We recruited a cohort of 113 healthy female volunteers of 20–66 years old residing in

Quzhou, a city located in southern China (Figure 1A; Table S1; STAR Methods),

ensuring that the cohort compromised similar numbers of individuals across

different age stratifications (Figure S1A; Table S1). For each volunteer, we collected

medical examination results, blood, and fecal specimens for multiomics data

profiling (Figure 1A). On the same day as the physical examination, we also collected

facial images of the volunteers to obtain their facialAge (Figure 1A).

All volunteers were requested to eat the uniformly provided food the day before the

physical examination (Figure S1B). Subsequently, clinical measurements included

175 parameters, from anthropometric data (such as body mass index [BMI], waist

and hip circumference, and muscle mass) to blood pressure, and measurements re-

flecting tissue fitness (such as forced expiratory volume in 1 s [FEV1], forced vital ca-

pacity [FVC], FEV1/FVC of the lungs, mineral density of bone, and electrocardio-

gram [ECG] parameters of the heart) were surveyed for each volunteer (Table S2).

The volunteers were also asked to perform five action competence tests, such as

the Purdue pegboard test, 30-s chair stand test, and grip strength test, to assess co-

ordination, finger flexibility,37 and muscular endurance (Table S2; STAR Methods).

All volunteers donated blood for complete blood cell count and blood biochemistry
826 Med 4, 825–848, November 10, 2023
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Figure 1. Characterization of age-related phenotypic measurements from clinical examination

(A) Schematic of this study. The icons used in the figures of this study were obtained from BioRender.com and Flaticon.com.

(B) Classification of phenotypic measurements. The number of measurements from each class is indicated.

(C) Correlation of values of phenotypic measurements with age. FEV 1, forced expiratory volume in 1 s; VC MAX, maximum vital capacity; FVC, forced

vital capacity; MEF 25, maximum expiratory flow at 25% of forced vital capacity.

(D) Pairwise correlation of all age-related phenotypic measurements. Each row or column indicates a measurement. ALT, alanine transaminase; AST,

aspartate aminotransferase; LDL, low-density lipoprotein; AP, alkaline phosphatase; FSH, follicle-stimulating hormone; LH, luteinizing hormone.

(E) The proportion of measurements from different classes in the five bins. The age-related measurements are first ordered by averaged feature-wise

correlation (as shown in Figure S1D), and every 20 measurements are merged into one bin.

(F) Age-related change score of different classes. The size of the dot indicates the number of age-related measurements.

(G) The value of the indicated age-related measurements and their linear relationship with age (n = 109–112 individuals). RLE, right lower extremity. The

units of measured values for each examination can be found in Table S2. AMH, Anti-Mullerian hormone; AP, alkaline phosphatase; FEF 75/85, forced

expiratory flow at 75% and 85% of forced vital capacity; RUE, right upper extremity.

See also Figure S1 and Tables S1 and S2.
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examination, such as blood lipid fraction, hormone measurement, and elements

related to liver function (e.g., alkaline phosphatase, alanine transaminase, and

cholinesterase) (Table S2).

For each volunteer’s blood sample, we obtained peripheral bloodmononuclear cells

(PBMCs) and plasma and measured the telomere length with the whole blood. As for

multiomics data profiling, we applied bulk RNA sequencing (RNA-seq) and mass

spectrometry analysis for quantification of plasma proteomics and metabolomics

signatures. PBMC samples of three young and three old individuals were also

randomly selected to be subjected to single-cell RNA-seq. We also employed 16S

rDNA sequencing for all volunteers to inspect the gut microbiota composition.
A systemic medical survey identifies multifaceted age-related phenotypic

measurements

We first annotated the measurements into seven classes (action competence,

anthropometry, lipid, hormone, blood content, blood cell, as well as tissue function)

(Figure 1B) and subsequently calculated the correlation between age and these

measurements. Among them, 32 were positively correlated with age, and 54 were

negatively associated with age (Pearson’s correlation, Benjamini-Hochberg [BH]-

adjusted p < 0.05, corrected with BMI) (Figures 1C and 1D; Table S2). Of note, vol-

unteers with advanced age tended to achieve lower scores on all five action compe-

tence tests (Figure S1C; Table S2), implying that these tests well indicate age-related

physical competence decline. By further analyzing the physiological implication of

aging-associated clinical parameters, we identified three major modalities that

markedly changed with aging: lipid metabolism, circulating hormones, and tissue

functions (Figures 1D–1F). First, we observed that a panel of lipid metabolic vari-

ables, such as blood cholesterol, low-density lipoprotein (LDL), and Apolipoprotein

A levels, increased with age (Figures 1C and S1C). Accordingly, anthropometric fea-

tures related to fat distribution, such as body fat percentage, visceral fat level, and

waist-hip rate, were positively correlated with age (Figures 1C and S1C). Second,

levels of four of the seven sex hormones are highly correlated with age and rank

top on the list, with follicle-stimulating hormone (FSH) and luteinizing hormone

(LH) the most positively correlated measurements with age and Anti-Mullerian hor-

mone (AMH) as the most downregulated one (Figure 1C). More importantly, indica-

tors related to tissue functions of liver, lung, bone, and muscle were strongly asso-

ciated with aging (Figures 1D–1G). For example, FEV1, an indicator for chronic

obstructive pulmonary disease, and bone density decreased with age, whereas

the serum alkaline phosphatase level (a marker associated with liver damage) grad-

ually increased with age,38 suggesting functional decline of multiple tissues

(Figure 1G).
828 Med 4, 825–848, November 10, 2023
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Figure 2. Transcriptomics analysis reveals regulation of age-associated gene expression changes and ‘‘immunotypes’’ during aging

(A) Locally estimated scatterplot smoothing (LOESS) fitting plots showing the scaled expression levels of the age-increased (left, red) and age-

decreased (right, blue) genes along the age trajectory. The most correlated genes are denoted beside the plot.

(B) Enriched pathways of age-increased (left, red) and age-decreased (right, blue) genes.

(C) Relative expression levels of the indicated age-related genes, measured by qRT-PCR, and their linear relationship with age (n = 97 individuals).

(D) Distribution of PBMCs captured by scRNA-seq, points are colored by cell type (left) and age (right). n = 3 individuals per group.

(E) The proportion of the indicated cell types in young and old groups. n = 3 individuals per group.

(F) The proportion of the indicated cell types (deconvoluted from bulk RNA-seq) and their linear relationship with age (n = 111 individuals).
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Figure 2. Continued

(G) Left: scaled cell proportion of different cell types. Each row represents an individual, and each column represents a cell type. Right: averaged cell

proportion of different cell types from the three clusters.

(H) The ages of individuals from the three groups (n = 41, 31, and 39 individuals for groups 1, 2, and 3, respectively).

(I) Schematic showing the cell abundance change of PBMCs during aging.

Linear fitting is indicated by a red/blue line, with confidence intervals represented in gray shading in (C) and (F). Correlation coefficients and p values

were calculated with Pearson’s correlation analysis (corrected with BMI). See also Figure S2 and Tables S3 and S4.
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The transcriptomic landscape highlights T cell perturbation as a major feature

of immunosenescence

To gain molecular insight into aging-associated changes, we analyzed the PBMC

transcriptomes at the bulk and single-cell levels. We identified 356 genes positively

associated and 1,372 genes negatively correlated with age (Pearson’s correlation,

BH-adjusted p < 0.05, corrected with BMI) (Figures 2A and S2A; Table S3). Many

of these were known aging-associated genes noted in the Aging Atlas,39 such as

increased cellular senescence genes (CDKN2A, IGFBP3, and CLU) and decreased

mitochondrial function-related genes (COQ7, DLAT, and HSPD1) (Figure S2B), indi-

cating the reliability of our transcriptomic dataset.

The most negatively age-correlated gene was LRRN3, which is highly expressed in

naive T cells40 and whose reduced expression is associated with T cell senescence.41

Another top negatively age-correlated gene was CACHD1, which is also enriched in

naive T cells42 (Figure 2A). Consistent with this, we found more downregulated

genes involved in maintenance of naive T cell repositories, such as SATB1,

CD248, and TCF743–45 (Figure 2A; Table S3). Additionally, age-decreased genes

were enriched in biomolecule synthesis-related pathways (Figure 2B), indicating a

decline in the anabolism capacity of aging immune cells. For example, NT5E, which

encodes the 50 nucleotidase that mediates adenosine production in CD8+ T cells,46

was decreased with age (Figure 2A). Particularly, the age-dependent decline in RNA

expression levels of LRRN3, CACHD1, SATB1, and NT5E was confirmed in human

PBMCs by qRT-PCR (Figure 2C), highlighting these genes as sensitive markers for

evaluating the functional attrition of T cells, a typical feature of immunosenes-

cence.47 Accordingly, genes involved in immunosenescence were upregulated,

such as CD70, a marker of aged T cells susceptible to apoptosis and expressing

high levels of inflammatory cytokines48 (Figure 2A). We also revealed that pathways

related to elevated inflammation, such as ‘‘regulation of leukocyte activation’’ (e.g.,

CD70, CLCF1, and TNFSF9) and ‘‘cytolysis’’ (e.g., GZMH, GZMB, and C8G) (Fig-

ure 2B), were upregulated in aging.

We next analyzed PBMC single-cell RNA-seq (scRNA-seq) data for randomly

selected young and old volunteers (n = 3 individuals per group). We identified 18

different cell types encompassing naive and cytotoxic CD4+/CD8+ T cells (CTL

CD4/CD8T), CD56bright and CD56dim natural killer (NK) cells, naive and memory B

cells, plasmocytes, classical and non-classical monocytes (cMCs and nMCs, respec-

tively), plasmacytoid and conventional dendritic cells (pDCs and cDCs, respectively),

and megakaryocytes (Figures 2D and S2C; Table S3). In an integrative analysis of

age-related genes at the bulk and single-cell levels, we found that these genes

were highly enriched in T and NK cells (Figure S2D; Table S3), highlighting the

importance of these specific cell types in contributing to the aging of the whole

PBMC population. We also found dramatic aging-related changes in T cell clusters,

as reflected by shrinkage of naive T cells and accumulation of cytotoxic T cells

(Figures 2D, 2E, and S2E). Concomitantly, an age-related decrease of naive CD4+/

CD8+ T cells and accumulation of cytotoxic CD4+/CD8+ T cells were observed in

more volunteers by deconvoluting the bulk RNA-seq data (Figures 2F and S2F;
830 Med 4, 825–848, November 10, 2023
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Figure 3. Plasma proteomics analysis characterizes age-related proteins and their tissue origins

(A) Age-related plasma proteins. The age of each individual is annotated as bar plots above. Tissue specificity and secretome type are annotated by

color on the right according to the Human Protein Atlas.

(B) Enriched pathways of age-accumulated (left, red) and age-reduced (right, blue) proteins.

(C) The abundance of the indicated age-related proteins, measured by mass spectrometry (MS) (top, n = 112, 112, 99, and 81 individuals for APOC4,

APOE, LILRA2, and CHIT1, respectively) and ELISA (bottom, n = 74, 71, 75, and 75 randomly selected individuals for APOC4, APOE, LILRA2, and CHIT1,

respectively), and their linear relationship with age. Correlation coefficients and p values were calculated with Pearson’s correlation analysis.

(D) Tissue origin annotation of age-accumulated (top) and age-reduced (bottom) plasma proteins. Left: schematics showing the numbers and

percentages of proteins annotated as originating from different tissues. Center: scaled transcripts per million reads (TPM) of genes encoding the age-

related proteins among different tissues. Right: enriched pathways of proteins that are annotated as originating from different tissues.

See also Figure S3 and Tables S5 and S6.
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Table S4). We also found a decline in CD56bright NK cells, which function as innate

immunoregulators, and an increase in CD56dim NK cells, which exhibit greater cyto-

toxic activity, segregated with aging (Figure 2F). Further, based on the pattern of

PBMC compositional status, termed ‘‘immunotypes,’’ we divided all volunteers

into three groups from young to old, characterized by exuberant naive CD4+/

CD8+ and CD56bright NK cells; abnormally increased nMC, pDC, and cDC popula-

tions; and, eventually, accumulation of cytotoxic immune cells, respectively

(Figures 2G–2I).
The plasma secretome indicates lipid metabolism dysregulation,

inflammation, and tissue aging

We then characterized the aging patterns of plasma proteins based on chronological

age and identified 119 and 148 proteins that were accumulated and reduced with

age, respectively (Pearson’s correlation, BH-adjusted p < 0.05, corrected with

BMI) (Figures 3A, S3A, and S3B; Table S5). Besides circulatory aging biomarkers

identified previously in larger cohorts,33 such as glycoprotein NMB (GPNMB) and

C-reactive protein (CRP) (Figure S3C), we identified several proteins that gradually

increased with aging, including CCL16, SPP1, and CTSB, known to be included in

the senescence-associated secretory phenotype (SASP)49 (Figure S3D).

Age-accumulated proteins converge on plasma lipoproteins (e.g., APOF, APOC4,

APOA4, APOB, and APOC3), which are associated with elevated LDL and choles-

terol concentrations, as well as terms related to chronic inflammation, such as the

complement system, a fundamental constituent of the innate immune system

(e.g., C1R, C2, C4BPA, and C5), and inflammation and immune processes (e.g.,

CHIT1, LILRA2, LILRB1, CCL16, and CCL18) (Figure 3B; Table S5). Notably, using

enzyme-linked immunosorbent assay (ELISA)-based measurements of each volun-

teer serum, we verified that chitotriosidase (CHIT1) and leukocyte immunoglob-

ulin-like receptor subfamily A member 2 (LILRA2), two of the proteins most accumu-

lated in the elderly and closely associated with chronic inflammation, increased

during aging (Figure 3C).

Notably, we inferred that one-third of age-accumulated proteins originated from

the liver, while one-fifth of aging-reduced proteins were secreted by muscle (Fig-

ure 3D; Table S6; STAR Methods). The liver-derived proteins positively associated

with aging included apolipoproteins, complement and inflammatory proteins, and

well-known indicators of liver damage, such as PCSK9 and ANGPTL350,51 (Fig-

ure 3D). Of note, we used ELISA to verify age-dependent accumulation of

APOC4 in aged plasma as well as APOE (Figure 3C), a risk factor for aging-related

diseases in the elderly (i.e., Alzheimer’s disease and cardiovascular diseases),52,53

and, as a proof of concept, showed that APOE also accumulated in aged primate

liver (Figures S3E and S3F). In addition, muscle-derived proteins inversely
832 Med 4, 825–848, November 10, 2023
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Figure 4. Age-related plasma metabolomics analysis identifies metabolites attenuating human endothelial cell senescence

(A) Percentages of metabolites from different classes in the total identified metabolites (left) and age-related ones (right).

(B) Age-related plasma metabolites. The age of each individual is annotated as a bar plot above. Metabolite classes are annotated in the right column.

(C) Age-related change score of different metabolite classes. The size of the dot indicates the number of age-related metabolites. MH, methylhistidine.

(D and E) The abundance of the indicated metabolites and their linear relationship with age (n = 113 individuals).

(F)Representative images (left) and quantification (right) of SA-b-gal staining of HAECs with treatment of vehicle, and valeric acid (soluble in medium,

10 ng/mlL), myristic acid (soluble in DMSO, 0.2 mM), piperine (soluble in DMSO, 5 mM) (n = 4 biological replicates per group).

(G)Representative images (left) and quantification (right) of the cell migration assay of HAECs with treatment with vehicle (n = 4 biological replicates)

and the indicated metabolites (n = 4 biological replicates). Images taken at the time of scratching and 8 h later are displayed. The dotted line represents

the boundary of cells on both sides of the scratch.

(H)Representative images (left) and quantification (right) of the tube formation assay of HAECs with treatment with vehicle (n = 4 biological replicates)

and the indicated metabolites (n = 4 biological replicates). The bar plots show the quantification of the number and the total length of tubes for each

group.

Scale bars: 50 mm (F), 100 mm (G), and 200 mm (H). Data are shown as the means G SEM. See also Figure S3 and Table S5.
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associated with aging included factors related to the ATP metabolic and autopha-

gic process, dysregulation of which has been reported to trigger sarcopenia54,55

(Figure 3D). Proteins that should be released by other tissues, such as tissues of

the immune and nervous systems (Figure 3D), as well as pan-tissue sources were

also characterized, which might help us narrow down more tissue-specific and sys-

temic biomarkers of aging.

The plasma metabolome reveals abnormal hormone and lipid metabolism

during aging

Given that metabolism-related changes were observed at phenotypic, transcrip-

tomic, and proteomic levels, we were inspired to investigate the metabolism status

of volunteers of different ages. We identified 99 and 46 metabolites that were posi-

tively and negatively correlated with age, respectively (Pearson’s correlation, BH-

adjusted p < 0.05, corrected with BMI) (Figures 4A–4C and S3G; Table S5). Notably,

almost half of these age-related metabolites were lipids and lipid-like molecules,

including molecules belonging to glycerophospholipids, fatty acyls, and steroids

and steroid derivatives (Figures 4A–4C).

In particular, glycerophospholipids (e.g., phosphocholine [PC] (18:0/18:1) and

PC(18:0/22:6)), important lipid constituents of lipoproteins, were markedly

increased with age (Figure 4B), in accordance with the accumulation of protein con-

stituents of lipoproteins and elevated LDL and cholesterol concentrations we

observed. Additionally, pathway enrichment analysis revealed upregulation of histi-

dine metabolism with an accumulation of 1-methylhistidine (1-MH) and 3-MH

(Figures 4D and S3H), biomarkers of muscle degradation and frailty,56 respectively,

consistent with the decreased muscle mass in older people (Figure 1G).

In contrast, natural steroid hormones, such as dehydroepiandrosterone (DHEA) and

its sulfated form DHEA sulfate (DHEA-S), along with pregnenolone sulfate, allopreg-

nanolone sulfate, and estrone sulfate, were ranked as the top category of metabo-

lites that markedly decreased with age (Figures 4B and 4D). Notably, DHEA and

DHEA-S have been previously recognized as important biomarkers of aging,57

with their supplementation inhibiting dysfunction of endothelial cells,58,59 the inner-

most layer of blood vessels that is in direct contact with blood flow. Thus, we spec-

ulated that supplementation of other age-reduced metabolites could potentially

attenuate the aging phenotypes. To test this hypothesis, we treated human aortic

endothelial cells (HAECs) with three top age-reduced metabolites (Figures 4E and

S3I). Treatments with valeric acid and myristic acid, both of which are short-chain

fatty acids, and piperine delayed cellular senescence of HAECs, as evidenced by

decreased senescence-associated (SA)-b-Galactosidase (b-Gal) levels and improved
834 Med 4, 825–848, November 10, 2023
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Figure 5. Establishment of multilayered aging clocks

(A) Scaled values of all age-related features from different omics. The age of each individual is annotated as a bar plot above, and the feature type is

annotated in the right column.

(B) Joint pathway annotation of age-related molecules from different omics.
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Figure 5. Continued

(C) Predicted age of the indicated age estimators and their linear relationship with chronological age. Correlation coefficients (Pearson’s correlation,

corrected with BMI) and mean absolute error (MAE) are denoted.

(D) Left: schematic showing establishment of the facialAge prediction model. Right: predicted facialAge and its linear relationship with chronological

age. The numbers of individuals analyzed in aging clock models are shown in Figure S4E. Correlation coefficients (Pearson’s correlation, corrected with

BMI) and MAE are denoted.

(E) Prediction accuracy and Nfeature included in different aging clocks. The proportion of features of different types is denoted by the color of each dot.

(F) Correlation between different aging clocks. The colors and widths of the edges indicate the correlation between different clocks. CA,

chronological age.

See also Figures S4–S6 and Tables S6 and S7.
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capability of migration and formation of capillary-like structures (Figures 4E–4H and

S3J). These findings raise the exciting possibility that metabolites diminished in

aged plasma may inform the development of new aging intervening strategies.60

Compared with other layers, gut microbiota composition seems to be less corre-

lated with age (Figure S3K). We only discovered that Paraburkholderia fungorum, re-

ported to be associated with infection in humans,61 was positively correlated with

age, and Ruminococcus bicirculans, which plays a role in degradation of cellulose

and xylan,62 was inversely correlated with age (Figure S3L).
Paralleling comparison of aging clocks built from different omics levels

Next, we used the matched datasets to build a suite of comparable clocks in our Chi-

nese women cohort. We first performed k-means clustering on all age-related omics

features and identified two clusters in which features were increased or reduced

with age and with relatively low variation (Figures 5A and S4A). To improve biological

interpretability, we performed a joint pathway annotation of molecular features from

these two clusters. The results uncovered that these age-related features from

different ‘‘omes’’ converged on pathways associated with inflammation (e.g., comple-

ment, infection and cytokine signaling pathways), lipid metabolism (e.g., cholesterol,

phospholipid, and sphingolipid metabolism), and hormone regulation (e.g., steroido-

genesis and hormone synthesis, secretion, and action) (Figure 5B; Table S6).

We then applied the ElasticNet model to obtain phenoAge (based on phenome), tran-

scriptAge (based on transcriptome), proteinAge (based on proteome), metabAge

(based on metabolome), and compositeAge (based on all ‘‘omes’’) for each volunteer

(Figures 5C and S4B–S4G; Table S7). Because of their importance in aging, we also

built immuneAge, lipidAge, and hormoneAge, which can be seen as specialized com-

positeAge (Figure 5C). We then tried to measure tissue aging with plasma proteins

according to the tissue origin annotation (Figure 3D) to obtain proteinAge for liver,

muscle, and the immune/nervous/hematopoietic systems (Figure S4F). The age-

related features highlighted above were included in the prediction models. For

example, AMH levels contributed to prediction of compositeAge and hormoneAge

(Figure S5A; Table S7). Interestingly, the three metabolites tested for age-attenuating

effects on HAECs (valeric acid, myristic acid, and piperine) were included in the meta-

bAge model (Figure S5A; Table S7). As a complementary approach, we also trained a

facialAge model with public datasets via a convolutional neural network (CNN)-based

approach to predict facialAge (Figure 5D) and calculated the correlation between age

and telomere length of PBMCs (Figure S4B). All resultant aging clocks achieve accept-

able prediction accuracy with or without correction of the locally estimated scatterplot

smoothing (LOESS) model (Figures 5C, 5D, and S4C).

When comparing all aging clocks, the best performance in predicting calendar age

was achieved by compositeAge (R = 0.93, MAE [mean absolute error] = 4.00, Nfeature
836 Med 4, 825–848, November 10, 2023
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[number of features] = 88) and facialAge (R = 0.93, MAE = 4.35) (Figures 5C and 5D).

The three molecular aging clocks have similar power in predicting chronological

age, with transcriptAge having the lowest MAE (R = 0.89, MAE = 4.52, Nfeature =

123) and those for proteinAge (R = 0.88, Nfeature = 34) and metabAge (R = 0.87,

Nfeature = 38) being 5.09 and 5.14, respectively (Figure 5C), which is comparable

with the performance of those obtained in larger cohorts (Figure S5B).30,31,33,63–67

However, telomere length has a low correlation with chronological age (R = 0.07,

p = 0.61) as observed in previous study68 (Figure S4B), suggesting a limited ability

of telomere length to act as a sensitive age estimator. In contrast, hormoneAge

(R = 0.87, MAE = 4.82, Nfeature = 20), immuneAge (R = 0.72, MAE = 7.04, Nfeature =

28), and lipidAge (R = 0.67, MAE = 7.53, Nfeature = 29) exhibit good age prediction

power (Figure 5C). In consideration of prediction accuracy and Nfeature, phenoAge,

hormoneAge, proteinAge, and metabAge seem to outperform the other clocks,

which use fewer features to achieve a high prediction power (Figure 5E).

Pairwise comparison of age estimators shows that compositeAge is highly corre-

lated with all clocks, indicating its ability to reflect the heterogeneous aging process

(Figures 5F and S6A). Although both levels are profiling the plasma composition,

metabAge has a relatively low correlation with proteinAge, suggesting that prote-

ome and metabolome aging might have distinct patterns even within one individual

(Figures 5F and S6A). Regarding the specialized aging clocks, hormoneAge has the

overall highest correlation with the other clocks (Figures 5F and S6A). As expected,

immuneAge and proteinAge of the immune system are highly correlated (Figures 5F

and S6A).

Biological aging clocks are associated with lifestyle factors

To identify genetic, environmental, and lifestyle factors that might influence the

aging pace, we jointly analyzed the agingmetrics with traits obtained from the ques-

tionnaire, such as eating habits, lifestyle, reproductive aging symptoms, and self-

reported health status (Table S7). First, we calculated the ‘‘aging pace’’ of all age

estimators for each volunteer (STAR Methods). The results (corrected with chrono-

logical age) show that the aging pace of different age estimators is positively asso-

ciated with the degrees of hot flushing and reproductive aging symptoms and nega-

tively associated with healthy eating habits (e.g., fruits and grains) (Figures S6B and

S6C). In addition, the immuneAge pace is negatively correlated with the times of

drinking tea per week (Figure S6B). We also observed that the aging pace of nervous

and muscle proteinAge is positively correlated with body pain (Figure S6B).

Multilayered features display different waves of alterations with aging

To uncover whether aging affects the organism equally throughout the lifetime, we

performed a sliding window analysis (with increment date by 5 years) on the age-

related multilayered features.33 This approach pinpointed peaks of differentially

presented features along the aging trajectory (Figure 6A). Notably, the wave pat-

terns varied across distinct data modalities, together forming two crests at around

ages of 30 and 50, respectively (Figure 6A). Two peaks only share a small proportion

of changes, indicating that humans age differently at distinct ages (Figure S7A).

Interestingly, these two crests are also the time points that generally split the volun-

teers into two groups according to their history of giving birth andmenopause status

(Figure S7B).

At age 30, stage-specific changes were observed at transcriptomic and metabolo-

mic levels (Figure 6B). The abundance of three glycerophospholipids (PC(18:1e/

8-HEPE [hydroxyeicosapentaenoic acid]), PC(38:4), and PC(40:6)) and enniatin A, a
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Figure 6. Non-linear changed multilayered features with aging

(A) Sliding window analysis showing the number of differentially presented features at different ages.

(B) Characterization of the changed features at two ages (top, age 30; bottom, age 50). Left: scale values of features with change at the two ages. Right:

summary and representative altered features of different omics types.

(C) Schematic summarizing the changes of different omics at ages around 30 and 50.

See also Figure S7.
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common mycotoxin present in food that has been recently reported to inhibit ste-

roidogenesis,69 increases at this stage (Figures 6B and 6C). Accordantly, three me-

tabolites belonging to steroids and steroid derivatives (pregnenolone sulfate,

DHEA-S, and 4-pregnen-17a, 20b-diol-3-one-20-sulfate) decrease (Figure 6B).
838 Med 4, 825–848, November 10, 2023
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Figure 7. HRT effects on female aging at multiomics levels

(A) Left: predicted age of individuals from the Young, Old, and Old-HRT groups and their linear relationship with chronological age. Blue lines indicate

the linear fitting for values of individuals from the Young and Old groups, while red lines indicate that of individuals from the Young and Old-HRT

groups. Right: paces of different predicted ages of individuals from the Old and Old-HRT groups.

(B) Age-related metabolites that are reversed in the Old-HRT group.

(C) Bar plots showing the values of markers related to liver damage. n = 23, 24, and 24 for the Young, Old, and Old-HRT groups, respectively. Data are

shown as the means G SEM.

(D) Paces of proteinAge of liver and the immune and nervous systems of individuals from the Old and Old-HRT groups.

(E) Bar plots showing the cell proportion of naive CD8+ T cells and nMCs (deconvoluted from bulk RNA-seq). n = 22, 24, and 22 for the Young, Old, and

Old-HRT groups, respectively. Data are shown as the means G SEM.
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Figure 7. Continued

(F) Relative expression levels of the indicated genes. n = 15, 17, and 20 for the Young, Old, and Old-HRT groups, respectively. Data are shown as the

means G SEM.

(G) Relative abundance of CD163 and LILRB1 in human plasma of different groups. For CD163, n = 23, 24, and 24 for the Young, Old, and Old-HRT

groups, respectively. For LILRB1, n = 21, 23, and 20 for the Young, Old, and Old-HRT groups, respectively. Data are shown as the means G SEM.

(H) Schematic summarizing HRT effects on female aging at multiomics levels. The red and blue arrows indicate the features are increased and decreased

with age, respectively. The blue and red triangle indicate the features are decreased and increased in HRT-Old group, respectively.

The numbers of individuals from different groups that were used to compare the pace across different biological ages are shown in Figure S7E.

See also Figure S7.
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Consistent with this, genes involved in response to hormones (AR, NTRK3, and

PPARG) are also decreased at this stage (Figure 6B).

Compared with age 30, stage-specific changes were more pronounced around age

50 (Figure 6A). For the phenotypic measurements, Apolipoprotein A increases, while

tissue fitness indicators undergo a rapid transition, with bone density and lung func-

tion diminished around age 50 (Figures 6B and 6C), in line with their reported asso-

ciation with altered hormone levels,70 which display an earlier reduction at the age

axis (Figure S7C). Consistently, muscle tissue proteins also sharply diminished

around age 50 (Figures 6B and S7D). Regarding the transcriptomic levels, we

observed upregulation in genes involved in myeloid cell differentiation (MAF,

TSPAN2, and GAB3) (Figure 6B), in agreement with the immunotypes that charac-

terize increased myeloid cell proportion around age 50 (Figures 2G–2I).
Multiomics implications of HRT as an aging-intervention strategy

Given that circulatory hormone levels are highly correlated with female aging, and

hormoneAge is highly correlated with various age estimators (Figures 1C and 5F),

we asked whether HRT, a widely used medical treatment that replaces declining

or deficient circulating hormones, could mitigate aging-related changes. To answer

this question, we recruited an additional cohort of 24 volunteers who had received

HRT for a 4-year median duration, aged 45–62 years (Old-HRT group), and

compared themwith the age- and geographical feature-matched volunteers without

HRT (Old group).

We first calculated biological ages for the Old-HRT volunteers based on the aging

clock models built in the control cohort (Figures 7A, S7E, and S7F). As expected,

we observed retardation in hormoneAge and that HRT was associated with allevia-

tion of aging-related deficiency of steroidmetabolites (Figures 7A, 7B, and S7G). For

example, three age-reduced steroid derivatives were elevated in the cohort treated

with HRT, including estrone sulfate and pregnenolone sulfate (Figure 7B). Although

no significant decelerating effects at phenoAge and facialAge were associated with

HRT (Figure 7A), several age-related measurements were slowed down in the Old-

HRT group compared with the control counterpart (Figures 7C and S7F). Especially

aging-associated liver degeneration, as assessed by levels of alkaline phosphatase

(ALP), alanine transaminase (ALT), aspartate aminotransferase (AST), and cholines-

terase (ChE), was less pronounced in the HRT-Old group (Figure 7C).

At the molecular level, HRT was associated with retardation in the proteinAge and

metabAge aging clocks (Figure 7A). In particular, the pace of liver and nervous sys-

tem aging indicated by the proteinAge clocks was delayed in the HRT-Old group

(Figures 7D, S7H, and S7I). As for the metabolome, three of the five age-accumu-

lated metabolites belonging to acylcarnitine and its derivatives (stearoylcarnitine,

L-arachidonoylcarnitine, and 3-dehydrocarnitine), which are linked with a higher

risk of aging-related conditions, such as cardiovascular diseases,71,72 type 2
840 Med 4, 825–848, November 10, 2023
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diabetes,73,74 and polycystic ovary syndrome,75 were all repressed in the Old-HRT

group (Figure 7B).

Moreover, at the immune system level, levels of naive CD8+ T cells (decreased in ag-

ing) and nMCs (increased in aging) appeared to be less impacted by aging in the

HRT group (Figure 7E). Consistent with this, expression of aging-decreased

STAB1, RCAN3, and CACHD1 and the most negatively age-correlated gene,

LRNN3, appeared to be partially restored in HRT volunteers, as assessed by qRT-

PCR (Figure 7F). The aging pace of the HRT-Old volunteers using the composite im-

muneAge and proteinAge of the immune system was also delayed, and, consistent

with this, the abundance of inflammatory proteins (CD163 and LILRB1) were

decreased relative to the Old group (Figures 7A, 7D, and 7G). These data support

the notion that HRT is associated with more robust maintenance of the T cell pool

and alleviation of aging-associated immunosenescence (Figure 7H). In all, our find-

ings imply that HRT, to some extent, decelerates aging in women at the phenotypic

and molecular levels.
DISCUSSION

In this study, we conducted detailed multiomics profiling of healthy individuals of

20–66 years old, which allowed us to systematically identify different types of aging

biomarkers at molecular, cellular, and organ levels; based on our comprehensive da-

tasets, a hierarchical combination of aging clocks was generated. We proposed that

the integrated clock system can serve as a valuable reference for assessing aging

rates and for dissecting population-level physiological states associated with sys-

temic chronic inflammation, hormonal andmetabolic dysfunction, and tissue degen-

eration. As a proof of concept, we leveraged the aging clocks to measure to what

extent and in which aspects HRT is associated with deceleration of female aging,

and we also identified metabolites that are enriched in young blood and with the ca-

pacity to attenuate senescence of human vascular endothelial cells.

A strength of our study is that we use a single information source for different types

of ‘‘omics’’ measurements. Although previous related work has evaluated age-asso-

ciated clinical and molecular traits,76–79 here, we integrated multiple bioinformatics

tools to investigate aging from macro- to microlevels. In addition, we applied mul-

tiple independent experiments to investigate gene expression, protein abundance,

and metabolite function that consistently verified the reliability of our clocks.

Importantly, we pinpointed that dramatic physiological changes occur around 30

and 50 years of age in women. The 30-year-old stage could be referred to as an ag-

ing onset time point characterized by lipid and hormone metabolism changes. The

50-year-old state coincides with the menopausal transition.80,81 Changes in this

period are much more dramatic, not only in hormone levels but also in immunity

and tissue function. Recently, whole-genome sequencing of single-cell-derived he-

matopoietic colonies spanning the human lifespan revealed an abrupt loss of clonal

diversity around 70 years.82 Waves of changes at the proteomic level were also iden-

tified at the ages of 40, 70, and 80.33 These studies, together with our results,

demonstrate that aging does not proceed evenly across the lifespan.

The aging clocks presented here also open up possibilities for a multifaceted assess-

ment of aging interventions. A reduction of hormonal activity is a hallmark of female

aging, known to accelerate biological aging and manifesting as bone loss, decline in

muscle mass and strength, and increased fat mass.83,84 We found that HRT might be
Med 4, 825–848, November 10, 2023 841



ll
CTRTI
able to lower aging clock scores, although the effects might be limited in aspects of

hormones, metabolism, and immunity. However, it should be noted that HRT might

also increase the risk of diseases such as cancer and thromboembolism,85–88 sug-

gesting a necessity to determine the best strategy for HRT in aging intervention in

future work.

In sum, we established a metric of aging clocks to monitor various aspects of aging,

spanning contributions of hormone signaling, lipid metabolism, chronic inflamma-

tion, and systemic manifestations. Therefore, they have strong translational poten-

tial to define inter-individual variations of aging patterns, for potential use as a diag-

nostic tool to identify those at risk for aging-related disorders, and to inform

precision medicine for aging intervention. With the continuous development of

the multicenter composite aging clock system, our vision of establishing an index

of Chinese aging score (iCAS) may no longer be far off.

Limitations of the study

Several limitations of this study should be noted. First, the results of the study are

generated from a single-centered and cross-sectional cohort with a relatively small

size. Although the cohort was established with stringent standards, further validation

on larger independent and multicentered cohorts and follow-up studies should be

conducted. Second, we characterized the age-related multi-omics feature characteris-

tics of women and built a set of aging clocks for female aging. However, the sex-asso-

ciated variations might potentially lead to sex-specific disparities in aging clocks (e.g.,

metaAge, lipidAge, phenoAge, and immuneAge).89–91 Therefore, a comparable male

cohort should be established to reveal aging differences between sexes. Last, a well-

designed clinical trial for HRT is required to better determine its effects on aging.
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Schöttker, B., Holleczek, B., and Brenner, H.
(2016). Frailty is associatedwith the epigenetic
clock but not with telomere length in a
German cohort. Clin. Epigenetics 8, 21.
https://doi.org/10.1186/s13148-016-0186-5.

127. Zeng, Y., Feng, Q., Hesketh, T., Christensen,
K., and Vaupel, J.W. (2017). Survival,
disabilities in activities of daily living, and
physical and cognitive functioning among the
oldest-old in China: a cohort study. Lancet
389, 1619–1629. https://doi.org/10.1016/
S0140-6736(17)30548-2.

128. Nyberg, S.T., Singh-Manoux, A., Pentti, J.,
Madsen, I.E.H., Sabia, S., Alfredsson, L.,
Bjorner, J.B., Borritz, M., Burr, H., Goldberg,
M., et al. (2020). Association of Healthy
Lifestyle With Years Lived Without Major
Chronic Diseases. JAMA Intern. Med. 180,
760–768. https://doi.org/10.1001/
jamainternmed.2020.0618.

129. Ware, J.E., Jr., and Sherbourne, C.D. (1992).
The MOS 36-item short-form health survey
(SF-36). I. Conceptual framework and item
selection. Med. Care 30, 473–483.

130. Lin, P.S., Hsieh, C.C., Cheng, H.S., Tseng, T.J.,
and Su, S.C. (2016). Association between
Physical Fitness and Successful Aging in
848 Med 4, 825–848, November 10, 2023
Taiwanese Older Adults. PLoS One 11,
e0150389. https://doi.org/10.1371/journal.
pone.0150389.

131. Fitchett, M.A. (1985). Predictability of VO2
max from submaximal cycle ergometer and
bench stepping tests. Br. J. Sports Med. 19,
85–88. https://doi.org/10.1136/bjsm.19.
2.85.

132. Rasmussen, L.J.H., Caspi, A., Ambler, A.,
Broadbent, J.M., Cohen, H.J., d’Arbeloff, T.,
Elliott, M., Hancox, R.J., Harrington, H.,
Hogan, S., et al. (2019). Association of
Neurocognitive and Physical Function With
Gait Speed in Midlife. JAMA Netw. Open 2,
e1913123. https://doi.org/10.1001/
jamanetworkopen.2019.13123.

133. Reddon, J.R., Gill, D.M., Gauk, S.E., and
Maerz, M.D. (1988). Purdue Pegboard: test-
retest estimates. Percept Mot Skills 66,
503–506. https://doi.org/10.2466/pms.1988.
66.2.503.

134. Liu, X., Liu, Z., Wu, Z., Ren, J., Fan, Y., Sun, L.,
Cao, G., Niu, Y., Zhang, B., Ji, Q., et al. (2023).
Resurrection of endogenous retroviruses
during aging reinforces senescence. Cell 186,
287–304.e26. https://doi.org/10.1016/j.cell.
2022.12.017.

135. Carpentier, G., Berndt, S., Ferratge, S.,
Rasband, W., Cuendet, M., Uzan, G., and
Albanese, P. (2020). Angiogenesis Analyzer
for ImageJ - A comparative morphometric
analysis of "Endothelial Tube Formation
Assay" and "Fibrin Bead Assay. Sci. Rep. 10,
11568. https://doi.org/10.1038/s41598-020-
67289-8.

136. Zhang, Y., Zheng, Y., Wang, S., Fan, Y., Ye, Y.,
Jing, Y., Liu, Z., Yang, S., Xiong, M., Yang, K.,
et al. (2023). Single-nucleus transcriptomics
reveals a gatekeeper role for FOXP1 in
primate cardiac aging. Protein Cell 14,
279–293. https://doi.org/10.1093/procel/
pwac038.

137. Vasilishina, A., Kropotov, A., Spivak, I., and
Bernadotte, A. (2019). Relative Human
Telomere Length Quantification by Real-Time
PCR. Methods Mol. Biol. 1896, 39–44. https://
doi.org/10.1007/978-1-4939-8931-7_5.

138. Ma, S., Wang, S., Ye, Y., Ren, J., Chen, R., Li,
W., Li, J., Zhao, L., Zhao, Q., Sun, G., et al.
(2022). Heterochronic parabiosis induces
stem cell revitalization and systemic
rejuvenation across aged tissues. Cell Stem
Cell 29, 990–1005.e10. https://doi.org/10.
1016/j.stem.2022.04.017.

139. Wang, S., Zheng, Y., Li, J., Yu, Y., Zhang, W.,
Song, M., Liu, Z., Min, Z., Hu, H., Jing, Y., et al.
(2020). Single-Cell Transcriptomic Atlas of
Primate Ovarian Aging. Cell 180, 585–
600.e19. https://doi.org/10.1016/j.cell.2020.
01.009.

140. Wang, Q., Garrity, G.M., Tiedje, J.M., and
Cole, J.R. (2007). Naive Bayesian classifier for
rapid assignment of rRNA sequences into the
new bacterial taxonomy. Appl. Environ.
Microbiol. 73, 5261–5267. https://doi.org/10.
1128/AEM.00062-07.

141. Uhlén, M., Fagerberg, L., Hallström, B.M.,
Lindskog, C., Oksvold, P., Mardinoglu, A.,
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Antibodies

Mouse monoclonal anti-GAPDH Santa Cruz Biotechnology Cat# sc-365062; RRID: AB_10847862

apolipoprotein E/apoE Antibody Santa Cruz Biotechnology Cat# sc-13521; RRID: AB_626691

Chemicals, peptides, and recombinant proteins

Piperine Solarbio P7460-5g

Valeric acid Macklin V820439-5mL

Myristic acid Sigma M3128-10G

X-gal Amresco 0428

Critical commercial assays

HiScript� III 1st Strand cDNA Synthesis Kit Vazyme R312-02

TIANamp Genomic DNA Kit TIANGEN DP304-03

APOC4 ELISA Kit CUSABIO CSB- EL001934HU

APOE ELISA Kit Abcam Ab108813

LILRA2 ELISA Kit XYBiotechnology XY9H2451

CHIT1 ELISA Kit Biomatik EKF57345

DRG DHEA-S ELISA Kit DRG EIA-1562

Iodine [125I] Aldosterone
Radioimmunoassay Kit

Beijing North Institute of Biotechnology KIPI28000

VAHTS Universal V6 RNA-seq Library Prep Kit Vazyme NR604-01/02

BCA quantification Kit Dingguo Changsheng Biotechnology
Co., Ltd. (Beijing, China)

N/A

KAPA Library Quantification Kit Roche 07960140001

Chromium Single-Cell 30 Gel Bead
and Library V3 Kit

10x Genomics PN-1000075

Pierce� Top 14 Abundant Protein
Depletion Spin Columns Kit

ThermoFisher Scientific A36369

Qubit� dsDNA HS and BR Assay Kits ThermoFisher Scientific Q32851

Deposited data

Raw data for RNA-seq This study HRA003766

Raw data for proteomics analysis This study PXD041432

Raw data for metabolomics analysis This study OMIX003055

Raw data for 16s rDNA-seq This study CRA009498

Experimental models: Cell lines

Human aortic endothelial cells (HAECs) Lonza CC-2535

APOE+/+ and APOE�/� hESCs Zhao et al., 202292 N/A

Experimental models: Organisms/strains

Human blood sample Quzhou People’s Hospital,
Quzhou, Zhejiang, China

N/A

Human stool sample Quzhou People’s Hospital,
Quzhou, Zhejiang, China

N/A

Human urine sample Quzhou People’s Hospital,
Quzhou, Zhejiang, China

N/A

Monkey liver tissue sample Institute of Zoology, Chinese
Academy of Sciences, Beijing, China

N/A

Oligonucleotides

Primer: LRRN3 Forward (50-30)
AAGCCTCTTATCAATCTTCGCAG

PrimerBank93 153792226c1

Primer: LRRN3 Reverse (50-30)
CCAGTCCAACCAAGGCGTTA

PrimerBank93 153792226c1
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Primer: CACHD1 Forward (50-30)
CATGCAGCGGATATTCAACTCC

PrimerBank93 110578648c1

Primer: CACHD1 Reverse (50-30)
TGCTTGTTCCGATTGACCACA

PrimerBank93 110578648c1

Primer: NT5E Forward (50-30)
GCCTGGGAGCTTACGATTTTG

PrimerBank93 325651882c1

Primer: NT5E Reverse (50-30)
TAGTGCCCTGGTACTGGTCG

PrimerBank93 325651882c1

Primer: RCAN3 Forward (50-30)
CTTCACGCGGGAACAGAGTC

PrimerBank93 354623075c1

Primer: RCAN3 Reverse (50-30)
GCCTCGTCTGGGCAATTTT

PrimerBank93 354623075c1

Primer: SATB1 Forward (50-30)
GATCATTTGAACGAGGCAACTCA

PrimerBank93 306518683c1

Primer: SATB1 Reverse (50-30 )
TGGACCCTTCGGATCACTCA

PrimerBank93 306518683c1

Primer: beta actin Forward (50-30)
CATGTACGTTGCTATCCAGGC

PrimerBank93 4501885a1

Primer: beta actin Reverse (50-30)
CTCCTTAATGTCACGCACGAT

PrimerBank93 4501885a1

Primer: Tel Forward (50-30)
GGTTTTTGAGGGTGAGGGTG
AGGGTGAGGGTGAGGGT

Zhang et al.,94 N/A

Primer: Tel Reverse (50-30)
TCCCGACTATCCCTATCCCT
ATCCCTATCCCTATCCCTA

Zhang et al.,94 N/A

Primer: 36B4 Forward (50-30)
CAGCAAGTGGGAAGGTGTAATCC

Zhang et al.,94 N/A

Primer: 36B4 Reverse (50-30)
CCCATTCTATCATCAACGGGTACAA

Zhang et al.,94 N/A

Software and algorithms

ImageJ (version 1.48v) Schneider et al.,95 https://imagej.net/Welcome

GraphPadPrism 8.0 GraphPad Software Inc. https://www.graphpad.com/

incucyte s3 Essen Bioscience https://www.essenbioscience.com/

TrimGalore (version 0.4.5) Felix Krueger https://github.com/FelixKrueger/TrimGalore

HISAT2 (version 2.0.4) Kim et al.,96 http://daehwankimlab.github.io/hisat2/

HTSeq (version 0.11.0) Anders et al.,97 https://htseq.readthedocs.io/en/master/

Cell Ranger (version 4.0.0) 10x Genomics https://support.10xgenomics.com/single-cell-
gene-expression/software/downloads/4.0/

MSFragger (version 3.4) Kong et al.,98 https://msfragger.nesvilab.org/

DIA-NN (version 1.8) Demichev et al.,99 https://github.com/vdemichev/DiaNN

ProteoWizard MSConvert (version 3.0.6428) Chambers et al.,100 https://proteowizard.sourceforge.io/

CAMERA (version 3.6) Kuhl et al.,101 https://github.com/sneumann/CAMERA

XCMS (version 3.14.1) Benton et al.,102 https://github.com/sneumann/xcms

Trimmomatic (version 0.35) Bolger et al.,103 http://www.usadellab.org/cms/?
page=trimmomatic

FLASH (version 1.2.11) Reyon et al.,104 http://www.talengineering.org/platforms-
flash.htm

QIIME (version 1.8.0) Caporaso et al.,105 http://qiime.org/

Vsearch (version 2.4.2) Rognes et al.,106 https://github.com/torognes/vsearch

ppcor (version 1.1) Kim,107 https://rdrr.io/cran/ppcor/

MaAsLin2 (version 1.10.0) Mallick et al.,108 https://github.com/biobakery/Maaslin2

MetaboAnalyst (version 5.0) Pang et al.,109 https://www.metaboanalyst.ca/

DoubletFinder (version 2.0.2) McGinnis et al.,110 https://github.com/chris-mcginnis-ucsf/
DoubletFinder

Seurat (version 3.2.3) Butler et al.,111 https://satijalab.org/seurat/articles/install.
html

DESeq2 (version 1.36.0) Love et al.,112 https://bioconductor.org/packages/release/
bioc/html/DESeq2.html
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Metascape Zhou et al.,113 http://metascape.org/

CIBERSORTx Newman et al.,114 https://cibersortx.stanford.edu

ComplexHeatmap (version 2.13.1) Gu et al.,115 https://github.com/jokergoo/
ComplexHeatmap

Cytoscape (version 3.8.2) Shannon et al.,116 https://cytoscape.org/

glmnet (version 4.1.4) Simon et al.,117 https://glmnet.stanford.edu/

mxnet-cu101 (version 1.5.0) Chen et al.,118 https://github.com/apache/mxnet

DEswan (version 0.0.0.9001) Lehallier et al.,33 https://lehallib.github.io/DEswan

ggpubr (version 0.4.0) Hadley Wickham https://rpkgs.datanovia.com/ggpubr
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to

and will be fulfilled by the lead contact, Dr. Weiqi Zhang (zhangwq@big.ac.cn).
Materials availability

This study did not generate new unique reagents.

Data and code availability

All RNA-seq raw data can be accessed in the GSA-Human database (https://ngdc.

cncb.ac.cn/gsa-human/) : HRA003766. Raw data for proteomics analysis were

deposited in the iProx (https://www.iprox.cn/) database: PXD041432. Raw data for

metabolomics analysis were deposited in the OMIX database (https://ngdc.cncb.

ac.cn/omix/): OMIX003055. Raw data for 16s rDNA-seq were deposited in the

GSA database (https://ngdc.cncb.ac.cn/gsa): CRA009498.

This paper does not report original code. Any additional information required to re-

analyze the data reported in this paper is available from the lead contact upon

request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human participants

The Quzhou cohort study was established in Quzhou, Zhejiang Province of

China and conducted under the approval of the Research Ethics Committee of

the Quzhou People’s Hospital (2020-12-001) and Beijing Institute of Genomics,

Chinese Academy of Sciences (China National Center for Bioinformation)

(2023H001) with informed consent from volunteers. The collection of biological

samples and data in this study was compiled with the guidance of the Human

Genetic Resource Administration, Ministry of Science and Technology of the

People’s Republic of China. Volunteer information (e.g., age, sex, BMI) is docu-

mented in Table S1.
Animal samples

The utilization of cynomolgus monkeys in this study received approval from the Insti-

tutional Animal Care and Use Committee of the Institute of Zoology (IOZ18048-A),

Chinese Academy of Sciences, and was carried out in accordance with the guidelines

for the Ethical Treatment of Non-Human Primates.119–121 Liver samples of 16 mon-

keys were used for Western blot assay, which included eight young (four males

and four females, 4–6 years old) and eight old (four males and four females, 18–21

years old) monkeys.122
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Cell lines

The HAECs lines were purchased from Lonza (CC-2535). HAECs were maintained on

collagen (Advanced BioMatrix, 5005) in EGM-2medium (Lonza, CC-3162), providing

1% penicillin-streptomycin (GIBCO, Cat# 15140-163) and 0.01% plasmocin (Invivo-

gen, ant-mpt). The APOE+/+ and APOE�/� human ESCs (embryonic stem cells) were

generated in a previous study.92
METHOD DETAILS

Volunteer recruitment and data collections

The recruitment and data collection for every volunteer in the cohort were conduct-

ed under strict procedures. A pre-test questionnaire was initially distributed to

collect basic information about potential volunteers. Referring to published

research,65,123–126 the following criteria were applied for recruiting eligible volun-

teers: (1) healthy adult aged over 18 years old; (2) local birth or long-term (over 10

years) local residence history; (3) without severe diseases (such as cancer, severe car-

diovascular diseases, diabetes mellitus, autoimmunity/inflammation, severe gyne-

cological disease); (4) without persistent drug or alcohol abuse; (5) without taking

chemotherapy drugs, anti-platelet drugs, or cholinesterase inhibitor of Alzheimer’s

disease; (6) no other clinical trials participation within recent three months. For HRT

evaluation, women aged 45–65 years who had been taking hormone medication for

more than three years were enrolled in the HRT Intervention Observational Study. To

avoid the potential confounding effects of diseases, only volunteers under 66 years

old were recruited for that older individuals might suffer from chronological dis-

eases. We collected the same multi-level data and biospecimens for the HRT volun-

teers under the same procedure as the non-HRT volunteers. In addition to providing

the same questionnaire as the non-HRT cohort, we also recorded the type of hor-

mone medication they took, together with the dosage, frequency, and duration

information.

Eligible volunteers were asked to fill up a more detailed questionnaire that was de-

signed based on previous studies,127,128 including questions from the 36-Item Short-

Form Survey (SF-36) to measure the self-assessment of health status.129 All volun-

teers were asked to follow their normal schedule, but avoid extremely strenuous

exercise, acute injury, or other abnormal actions in the one month before the clinical

examination. Volunteers were also asked to have uniformly provided food the day

before the examination to obtain controllable dietary variables. For young volun-

teers with regular menstrual cycles, the physical examination and biological sample

collection were conducted within one week after menstruation except for samples

for sex hormone levels analysis. For elderly volunteers with irregular menstrual cycles

or those after menopause, the examinations and sample collection were performed

without special request. In addition, the volunteers received comprehensive phys-

ical examinations at the hospital, such as anthropometric measurements, blood tests

(blood content, blood cells, hormone assessment), routine urine tests, electrocar-

diogram (ECG) tests, bone density tests, pulmonary function tests, and Doppler Ul-

trasonography (Table S2). Features with similar functional implications were not

excluded for redundancy to avoid bring more artificial effects. The face images

were captured under well-controlled circumstances with the same equipment to

assess facial aging. To include a more comprehensive characterization of aging,

the volunteers were asked to have action competence tests, including bench step-

ping test (VO2 max), single-legged balance, grip strength test, 30 s chair�stand

test, and Purdue Pegboard test. All these tests were performed according to pub-

lished studies,130–133 and the detailed requirements for these tests are as follows.
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Single-legged balance Volunteers stand on level ground with eyes
closed and arms outstretched to maintain
balance. Timing begins when one leg is raised.
Timing stops when the supporting foot moves
or the other leg touches the ground. The test
was repeated three times on the same leg (left
or right, depending on the volunteers’ habit)
and the best score was recorded.

Grip strength test Volunteers are given the test twice using their
dominant hand with a grip dynamometer. The
best scores were recorded. Volunteers should
keep their elbows at 90� and upper arms
drooping naturally and stand steadily.

30 s chair-stand test Volunteers were asked to repeat sit-and-stand
on a chair within 30 s. The number of times that
they repeated was recorded. The chair should
be stable, with a backrest and no armrest.
Volunteers should put their hands across their
shoulders throughout the test.

Purdue Pegboard test Volunteers used the pegboard to complete
four sets of tasks, including a left-handed
assembly task (30 s), a right-handed assembly
task (30 s), a two-handed assembly task (30 s),
and a complex assembly task (60 s). Volunteers
can practice 2–3 times before the test, but it is
forbidden to interrupt or restart after the
official start. The final scores were the sum of
the above four item scores.

Bench stepping test This test aims to measure cardiorespiratory
fitness (VO2 max). Volunteers’ body
weights (BW, kg) were first recorded. The
stepping test was conducted on a stepping
bench. The frequency of movement
was controlled at 22.5 b/min by a
metronome (90 bpm). The mean
heart rate (HR, b/min) was recorded
after 5 min of exercise. VO2 max is
calculated as: VO2 max(ml/kg $ min) =
10 (0.438621 -0.002626*HR +0.006238*BW)/BW31000;
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Biological sample pretreatment and storage

Biospecimen acquisition. The blood and stool samples were collected after an

overnight fast. A 15 mL whole-blood sample was collected from each volunteer

through intravenous blood collection. Two anticoagulant tubes with EDTA covered

and one normal tube were used for collection, and the tubes were immediately

transported to the laboratory and deposited at 4�C for subsequent treatment. The

blood (EDTA tube) was centrifuged at 4�C (400 g, 15 min) to obtain the plasma

and blood cells. For serum acquisition, the coagulated blood (ordinary tube) was

centrifuged at 4�C (3,000 rpm, 5min), and the supernatant was collected. All blood

samples were stored at �80�C for long-term preservation. The collected stool sam-

ples were stored at �80�C.

PBMC isolation. Peripheral blood anticoagulated with EDTA was diluted in equal

proportion with PBS, and PBMCs were obtained via Ficoll density gradient centrifu-

gation. After washing with PBS, PBMCs were resuspension with DMSO/serum cryo-

preservation or TRIzol reagent, and the remaining cell pellets were immediately

frozen.
Cell culture

The cell culture experiment was performed as previously described.119 For Human

aortic endothelial cells (HAECs), the cell lines were purchased from Lonza (CC-

2535). HAECs were maintained on collagen (Advanced BioMatrix, 5005) in EGM-2
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medium (Lonza, CC-3126), providing 1% penicillin-streptomycin (Lonza, CC-3126)

and 0.01% plasmocin (Invivogen, ant-mpt). For metabolite treatment, valeric acid

(soluble in medium, 10 ng/mL), myristic acid (soluble in DMSO, 0.2 mM), piperine

(dissolved in DMSO, 5 mM) was added every time themediumwas replaced. The cor-

responding solvent was added to the control group. The doses of the metabolites

were determined by concentration titration test.
SA-b-Gal staining

SA-b-Gal staining was conducted following previous studies.134 Cells were washed

twice with PBS buffer after removing the culture medium and fixed for 5 min with

2% formaldehyde and 0.2% glutaraldehyde fixation buffer at RT. After washing

with PBS buffer solution twice, the SA-b-Gal staining solution containing 1 mg/mL

X-gal (Amresco, 0428) was added to the culture dish. The cells were stained at

37�C and kept away from light for 12 h. A digital microscope camera (Olympus)

was used to take pictures. The proportion of SA-b-Gal-positive cells was quantified

by ImageJ software (version 1.48v).95
HAEC migration assay

The migration assay was performed as previously described.13 HAECs were main-

tained on collagen in 12 well plates. The migration capability of HAECs was

measured by the Wound Healing Assay. Briefly, the cells were cultured to 100%

confluence, 10 mL pipette tips were used to produce scratches. The picture was

taken after 8 h. ImageJ was used to analyze the cell migration rate at the same

location.
HAEC matrigel tube formation assay

The tube formation assay was conducted as previously reported,119 HAECs were

seeded at a density of 5 x 104/ well into matrigel-coated 24 well plates (Corning).

The cells were cultured with incucyte s3 (Essen Bioscience) and photographed at

12 h afterward. The number of tubes/nodes and the length of branches were

analyzed by ImageJ-Angiogenesis Analyzer.135
RNA analysis

Total RNA was extracted with TRIzol Reagent (Ambion, 15596018). qRT-PCR

analyses was performed as previously described,136 HiScript III 1st Strand cDNA

Synthesis Kit (R312-02, Vazyme) was used for reverse transcription to obtain

cDNA. RT-qPCR was conducted with the iTaq Universal SYBR Green Super Mix (No-

voprotein, E096-01S) by a Real-Time PCR system (Bio-Rad). All data were normalized

to the internal control and calculated by 2-DCq method. The primer pairs used in this

study are listed in the key resources table. For RNA-seq, a total amount of 1–3 mg

RNA per sample was used for the RNA sample preparation. Sequencing libraries

were generated using VAHTS Universal V6 RNA-seq Library Prep Kit for Illumina

(NR604-01/02) following the manufacturers recommendations. The obtained li-

braries were then sequenced on Illumina HiSeq X-Ten platforms and 150 bp

paired-end reads were generated.
Enzyme-linked immunosorbent assay (ELISA)

The concentrations of APOC4, APOE, LILRA2, and CHIT1 in the plasma were

analyzed by ELISA kits. ELISA was performed according to the manufacturer’s in-

structions and quantified by a microplate reader (Thermo Fisher Scientific, MK3).
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Telomere length analysis

Telomere length measurement was performed as previously described.94,137 Briefly,

whole blood genomic DNA was extracted by TIANamp Genomic DNA Kit

(TIANGEN, DP304-03) according to the manufacturer’s instructions. qRT-PCR was

conducted to measure the telomere length with the iTaq Universal SYBR Green Su-

per Mix (Novoprotein, E096-01S) by a Real-Time PCR system (Bio-Rad). All data were

normalized to the internal control and calculated by 2-DCq method.

Western blot

Western blot was performed as previously described.138 The protein samples of

APOE+/+ and APOE�/� hESCs were obtained from a previous study.92 Briefly,

gene knockout was performed using a CRISPR–Cas9 system for APOE�/� hESCs

generation. For APOE+/+ and APOE�/� hESCs protein acquisition, cells were lysed

in 13 SDS lysis buffer at 105�C, and the lysates were collected for quantification.

The liver tissues of monkeys (young, n = 8; old, n = 8) were collected in previous

studies.119,121,139 These liquid nitrogen cryopreservation liver samples were homog-

enized in liquid nitrogen and immersed with 23 SDS to facilitate tissue lysis and then

boiled at 105�C for 10 min for nest analysis. For protein quantitation, briefly, total

protein concentration was determined by BCA quantification Kit (Dingguo Chang-

sheng Biotechnology Co., Ltd. (Beijing, China)) following the manufacturer’s instruc-

tions. Protein lysates were subjected to SDS-PAGE. The PVDF (polyvinylidene fluo-

ride) membranes (Millipore) were blocked with 5% skimmed milk powder (BBI Life

Sciences) in 13 TBST and incubated with primary antibodies overnight at 4�C. The
PVDF membranes were incubated with the HRP-conjugated secondary antibodies

for 1 h at room temperature and then visualized using the ChemiDoc XRS system

(Bio-Rad).

Hormone level analysis

Plasma hormone levels were analyzed by ELISA (DHEAs) and radioimmunoassay

(Aldosterone, Cortisol). In brief, the concentration of DHEAs in the plasma was

analyzed by DRG DHEA-S ELISA Kit (DRG, EIA-1562) according to the manufac-

turer’s instructions. For radioimmunoassay, marker antibodies were added to the

standard and plasma samples (100 mL) and incubated 20-24 h at 4�C. Then centri-

fuge together with the separating agent at 3,800 rpm for 15 min. The concentration

of Aldosterone and Cortisol in the plasma was analyzed by Iodine [125I] Aldosterone

Radioimmunoassay Kit (Beijing North Institute of Biotechnology, RVR-CW-100) and

Iodine [125I] Cortisol Radioimmunoassay Kit (Beijing North Institute of Biotech-

nology, KIPI28000) according to the manufacturer’s instructions.

For sex hormone levels analysis, blood samples were collected during the menstrual

period (2–5 days after menstruation), while other hormones were detected after

menses ended. Postmenopausal volunteers could participate in the blood sample

collection at any time as demonstrated in the ‘‘establishment of quzhou cohort’’

section.

PBMC scRNA-seq

PBMCs were resuscitated and alive cells were separated by FACS. Single cells were

encapsulated into droplet emulsions using a Chromium Single-Cell instrument (10x

Genomics), and scRNA-seq libraries were constructed following the 10x Genomics

protocol using a Chromium Single-Cell 30 Gel Bead and Library V3 Kit. The isolated

single cells were then loaded in each channel. Reverse transcription and library prep-

aration were performed in a Bio-Rad C1000 Touch thermal cycler with a 96-deep well

reaction module. A total of 12 cycles were used for cDNA amplification and the
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sample index PCR step. The average fragment length in the 10x cDNA libraries was

quantified in a fragment analyzer (AATI) and by qPCR with a KapaL Library Quantifi-

cation Kit for Illumina. Libraries were sequenced with the NovaSeq 6000 Sequencing

System (Illumina 20012866).

Proteomics analysis

For protein extraction, the top 14 high-abundance proteins were removed by

Pierce� Top 14 Abundant Protein Depletion Spin Columns Kit (ThermoFisher Scien-

tific). The protein concentration was determined with the BCA kit according to the

manufacturer’s instructions. For digestion, the protein solution was reduced with 5

mM dithiothreitol for 30 min at 56 �C and alkylated with 11 mM iodoacetamide for

15 min at room temperature in darkness. Displace the urea with 8 M urea for three

times, and then displace the urea with displacement buffer three times. Enzymolyse

with trypsin in the proportion of 1:50 (protease: protein, m/m) overnight. Peptide

segment was recovered by centrifugation at 12,000 g for 10 min. The sample was

fractionated into fractions by high pH reverse-phase high-performance liquid chro-

matography (HPLC) using Agilent 300 Extend C18 column (5 mm particles, 4.6 mm

ID, 250 mm length). Peptides were separated with an EASY-nLC 1200 UPLC system

(ThermoFisher Scientific) (Mobile phase A: an aqueous solution with 0.1% formic

acid and 2% acetonitrile. Mobile phase B: an aqueous solution with 0.1% formic

acid and 90% acetonitrile). The separated peptides were further separated by an ul-

tra-high performance liquid phase system and injected into an NSI ion source for

ionization, before entering Orbitrap Exploris 480 (ThermoFisher Scientific) for

mass spectrometry analysis. The ion source voltage is set to 2.3 kV, and the

FAIMS compensation voltage (CV) is set to -45 V - 70 V, both the peptide parent

ion and its secondary fragments were detected and analyzed with high-resolution

Orbitrap. The scanning range of the primary mass spectrometry is set to 390–810

m/z. The scanning resolution is set to 30,000. For the second mass spectrometry,

the fixed starting point of the scanning range is 200 m/z and the scanning resolution

is set to 30,000. The data collection mode uses a data-independent scanning (DIA)

program and fragmentation was performed with fragmentation energy of 25, 30,

and 35. To improve the effective utilization of mass spectrometry, the Automatic

Gain Control (AGC) is set to 3E6 and the maximum injection time is set to Auto.

The service of proteomics analysis was provided by PTM Biolabs, Inc.

Metabolomics analysis

The plasma samples were thawed at 4�C and 100 mL aliquots were mixed with 400 mL

of cold methanol/acetonitrile (1:1, v/v) to remove the protein. The mixture was

centrifuged for 15min (14,000 g, 4�C). The supernatant was dried in a vacuum centri-

fuge. For LC-MS analysis, the samples were re-dissolved in 100 mL acetonitrile/water

(1:1, v/v) solvent. Analysis was performed using an ultra-high performance liquid

chromatography (UHPLC) (1290 Infinity LC, Agilent Technologies) coupled to a

quadrupole time-of-flight (AB Sciex TripleTOF 6600) in Shanghai Applied Protein

Technology Co., Ltd. For hydrophilic interaction liquid chromatography (HILIC) sep-

aration, samples were analyzed using a 2.1 mm 3 100 mm ACQUIY UPLC BEH

1.7 mm column (waters, Ireland). For the first MS/MS acquisition, the instrument

was set to acquire over the m/z range of 60 - 1,000 Da, and the accumulation time

for the product ion scan was set at 0.2 s/spectra. The m/z range of the second

MS/MS acquisition was 25 - 1,000 Da with an accumulation time of 0.05 s/spectra.

The product ion scan is acquired using information-dependent acquisition (IDA)

with high sensitivity mode selected. In brief, the declustering potential (DP) was fixed

at G 60 V and excluded isotopes within 4 Da. The collision energy (CE) was fixed at

35 V with G15 eV. 10 candidate ions were acquired to monitor per cycle.
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16S rDNA-seq

Total genomic DNA was extracted using DNA Extraction Kit following the manufac-

turer’s instructions. The concentration of DNA was verified with NanoDrop and

agarose gel. The genomic DNA was used as the template for PCR amplification

with the barcoded primers using the Tks Gflex DNA Polymerase (Takara). For bacte-

rial diversity analysis, V3-V4 variable regions of 16S rRNA genes were amplified with

universal primers 343 F and 798 R. For Eukaryota diversity analysis, variable regions

of 18S rRNA genes were amplified with universal primers 817F and 1196R. For fungal

diversity analysis, ITS I variable regions were amplified with universal primers ITS1F

and ITS2. Amplicon quality was visualized using gel electrophoresis, purified with

AMPure XP beads (Agencourt), and amplified for another round of PCR. After being

purified with the AMPure XP beads again, the final amplicon was quantified using the

Qubit dsDNA assay kit (Thermo Fisher Scientific, USA). Equal amounts of purified

amplicon were pooled for subsequent sequencing.
Process of multi-omics data

Transcriptomic data of PBMCs. For bulk RNA-seq data, raw files of the sequencing

data were first trimmed with TrimGalore (version 0.4.5). Clean reads were mapped

against the hg19 genome with HISAT2 (version 2.0.4).96 High-quality mapping reads

(score of mapping quality >20) were then counted for gene expression quantitation

with HTSeq (version 0.11.0).97 Transcripts per million (TPM) were calculated with a

custom script. For scRNA-seq data, raw data generated with the 10x Genomics

Chromium platform were processed with Cell Ranger (version 4.0.0) and mapped

to the hg19 reference. The expression matrices were obtained for downstream

analysis.

Plasma proteomic data. For spectral library generation, the DDA data were pro-

cessed using MSFragger (version 3.4)98 and then searched against the human

SwissProt database. The cleavage enzyme was set as Trypsin/P and up to two

missing cleavages were allowed. The mass tolerance was set as 20 ppm. The fixed

modification was set as carbamidomethyl on Cys, and the variable modifications

were set as acetylation on protein N-terminal and oxidation on Met. FDR was

adjusted to <1%. The DIA data were processed with DIA-NN (version 1.8) using

the above library and default settings.99 The raw intensity was divided by themedian

of each sample to obtain the normalized intensity for downstream analysis.

Plasmametabolomic data. The raw MS data were first converted to MzXML files us-

ing ProteoWizard MSConvert (version 3.0.6428)100 and then subjected to peak pick-

ing (centWave m/z = 10 ppm, peakwidth = c (10, 60), prefilter = c (10, 100)) and

grouping (bw = 5, mzwid = 0.025, minfrac = 0.5) with XCMS (version 3.14.1).102 Iso-

topes and adducts were annotated with CAMERA (version 3.6).101 Only extracted

ion features with more than 50% of the non-zero values in all samples were kept.

Metabolite identification was conducted by comparing the accuracy m/z value

(<10 ppm) with MS/MS spectra based on an in-house database (Shanghai Applied

Protein Technology). The raw intensity was divided by the median of each sample

to obtain the normalized intensity for downstream analysis.

16s rDNA data. Raw sequencing data were preprocessed using Trimmomatic

(version 0.35) to cut off ambiguous bases (N) and low-quality sequences with an

average quality score below 20 using the sliding window trimming approach.103

Trimmed reads were assembled using FLASH (version 1.2.11) with parameters as

10 bp of minimal overlapping, 200 bp of maximum overlapping, and 20% of

maximum mismatch rate.104 Reads with 75% of bases above Q20 were kept and
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those with chimera were also removed using QIIME (version 1.8.0).105 After primer

sequences were removed, clean reads were subjected to clustering to generate

operational taxonomic units (OTUs) using Vsearch (version 2.4.2) with a cutoff of

97% similarity.106 The representative read of each OTU was selected with QIIME.

All representative reads were annotated and blasted against the SILVA database

(version 138) using the RDP classifier algorithm (confidence threshold was 70%).140

The OTU abundance matrices were randomly sampled to even according to the

sample with the least sequencing depth.
Correlation analysis

For phenotypic measurements, bulk RNA-seq, proteomics, and metabolomics data,

correlation analysis was performed with pcor.test function of ppcor package (version

1.1) via Pearson’s correlation method.107 When the correlation analysis was conduct-

ed between a certain value of chronological age, BMI would be used as the covari-

ate. Log-transformed values were used to identify age-related genes, proteins, and

metabolites. For 16s rDNA data, the association between age and gut microbes was

achieved by MaAsLin2 (version 1.10.0) with BMI as the covariate.108 Only those OTU

detected in at least 70% of the total samples were retained for analysis.
Calculation of age-related change score

The age-related change score is meant to measure the change tendency of a group

of features with age and is calculated as below:

Age change score =
Nincrease �Ndecrease

Ntotal

Nincrease, Ndecrease, and Ntotal are the number of features that are increased,

decreased, and total features in a certain group. A positive score indicates the

feature group tends to increase with age, while a negative one indicates the

opposite.
Pathway enrichment analysis

Pathway enrichment analysis of genes and proteins was performed via Metascape

webtool.113 MetaboAnalyst (version 5.0) was used to annotate metabolites with

pathway information with SMPDB as the library.109 Only metabolite sets containing

at least 2 entries were used.
Integration, clustering, and cell-type identification of scRNA-seq

The output files of Cell Ranger were processed with the Seurat package

(version 3.2.3).111 Cells with a mitochondria gene ratio >20% and a gene number

<400 were excluded. Doublets of each sample were further removed with

DoubletFinder (version 2.0.2).110 ‘‘SCTransform’’ function of Seurat was then applied

to each sample for data normalization and then subjected to integration. 3,000 high-

ly variable genes were selected for integration with the ‘‘SelectIntegrationFeatures’’

function, based on which the principal component analysis (PCA) was conducted

with the ‘‘RunPCA’’ function for each sample. After integration preparation via ‘‘Pre-

SCTIntegration’’ function, datasets of different samples were integrated following

the RPCA integration pipeline of Seurat.

The integrated Seurat object was then successively subjected to ‘‘RunUMAP’’, ‘‘Find-

Neighbors’’, and ‘‘FindClusters’’ functions for dimension reduction and clustering

based on the first 30 principal components with a resolution of 3. The cell type iden-

tity of each cluster was determined by the expression levels of the canonical marker
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genes for different cell types as shown in Figure S2C. A cluster of red blood cells was

excluded.

Differential expression (DE) analysis for multi-omics features

For differentially expressed genes (DEGs), DEGs of bulk RNA-seq data between in-

dividuals fromOld-HRT andOld groups are identified with DESeq2 package (version

1.36.0) with a cutoff of BH-adjusted p value <0.05.112 To keep similar sample sizes of

different groups, samples in the Old group are randomly selected from all individ-

uals with similar ages to those in the HRT-Old group. The specific individuals

included in each group were shown in Figure S7E. DEGs of scRNA-seq data between

individuals from Old and Young groups were identified using the ‘‘FindMarkers’’

function of Seurat with a cutoff of adjusted p value <0.05 and | avg_logFC | > 0.5.

For DE analysis for other omics features which aims to compare the value among

Old andOld-HRT groups,Wilcoxon rank-sum test was used to calculate the p values,

and only those with BH-adjusted p values <0.05 were identified as HRT-changed

features.

Deconvolution analysis of bulk RNA-seq data of PBMCs

The deconvolution analysis was performed with CIBERSORTx.114 To obtain the

scRNA-seq data as the reference, cells of different cell types were first sampled to

achieve 200 cells retained in each cell type. The raw count of the downsampled data-

sets was extracted, based on which the signature matrix file was built. The signature

matrix and raw count of bulk RNA-seq data were inputted into the ‘‘Impute Cell Frac-

tion’’ module with permutation times of 500, and S-mode batch correction was con-

ducted. The cell fractions of different cell types were then subjected to correlation

and statistical analysis.

Immunotype analysis

Amatrix with individuals as the row and deconvoluted cell fraction as the column was

subjected to the k-means clustering algorithm with ComplexHeatmap package

(version 2.13.1).115 Both row and column were clustered, and the k value was set

as 3 so that to discriminate the young, middle, and old stages. Each cluster of indi-

viduals was described as an immunotype, and a total of three immunotypes were

identified.

Tissue origin annotation of age-related proteins

Gene expression levels of different tissues (TPM) were obtained from the Human

Protein Atlas database (https://www.proteinatlas.org/about/download).141 The tis-

sues specifically exist in males and pregnant females were excluded (e.g., testis,

prostate, placenta). The age-accumulated and age-reduced proteins were sepa-

rately clustered with k-means methods based on the expression levels (row Z score

transformed) of the corresponding genes across tissues. Proteins with specific

expression in a group of tissues with similar characteristics were grouped into amod-

ule (e.g., liver, muscle, nervous system, immune system). Proteins with no specific

expression in certain tissues or with high expression in a group of tissues with no

similar characteristics were identified as pan-tissue-originated.

Joint analysis of multi-omics age-related features

The normalizedmatrices of multi-omics data (normalization was demonstrated in the

previous section, except for phenotypicmeasurement value whose raw values were

used.) were first subjected to z-score transformation by row and merged (feature as

the row and individual as the column). The merged matrix was then subjected to

k-means clustering. Molecular features (genes, proteins, and metabolites) from
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the two clusters with fewer variances along the age trajectory were extracted for

pathway annotation analysis using the Joint-pathway function of MetaboAnalyst

(version 5.0).109 Similar pathways were merged, and the features from the three ma-

jor categories (immune, lipid, hormone) were used for functional compositeAge pre-

diction, together with phenotypic measurements related to the three categories

(Table S6).

Establishment of aging clocks from multi-omics data

The 110 healthy individuals without HRT were first randomly divided into training (55

individuals) and validation (56 individuals) sets, based on which all the age clock

models were built. In the training set, the ElasticNet regression model was applied

to raw data of phenotypic measurement data (phenoAge), and log-transformed data

of transcriptomic (transAge), proteomic (proteinAge), andmetabolomic (metabAge)

data using the glmnet R package (version 4.1.4).117 In phenotypic measurement

data, only individuals with blank values less than 10 were kept, and features that

were not detected in all the kept individuals were further excluded. In the proteomic

data, only proteins that were detected in all individuals were retained. Nine models

for each type of data were built with alpha values of 0.1–0.9. And the lambda values

were selected using a 10-fold cross-validation on the training sets. The models with

the smallest mean absolute error (MAE) in the validation set were selected as the

final models. The proteinAge estimators of different tissues were built similarly to

proteinAge, except that only a subset of proteins was used when building a single

tissueAge according to the tissue-origin annotation results (Table S6). The correc-

tion with the LOESS model was conducted as previously described.19

To build the compositeAge, the data of different types were first 0-1 scaled and then

merged. Features of total compositeAge and functional compositeAge were

selected as described in the ‘‘joint analysis of multi-omics age-related features’’ sec-

tion. The prediction models were then determined as described.

The parameters used to build the multi-omics aging clocks and the features that

constitute the models were listed in Table S7.

Establishment of facialAge prediction model

The prediction model was trained with publicly available datasets of face images of

Asians (The AFAD Dataset, MegaAge Dataset, AgeDB) using mxnet-cu101 (version

1.5.0) based on the insightFacemodule. Themodel structure wasmodified based on

the MobileNet. The images were preprocessed with opencv. After obtaining the

final model, the facialAge of individuals were predicted with the collected pictures

after the same preprocessing procedure.

Identification of associated factors with biological aging pace

To calculate the aging pace, the linear regression model with chronological and pre-

dicted age was first built. The aging pace was defined as the residual between the

predicted age and the regressed value of the linear model for chronological age.

The correlation between the aging pace and the factors was calculated with chrono-

logical age as the covariate (Pearson’s correlation). Factors associated with the aging

pace were identified as those with p value <0.05. Network plots were drawn with

Cytoscape (version 3.8.2).116

Slide window analysis to identify peaks of age-related changes

Slide window analysis was performed with the DEswan R package (version

0.0.0.9001).33 Age-related features of different types were subjected to the slide
e12 Med 4, 825–848.e1–e13, November 10, 2023



ll
CTRTI
window analysis with a window of 5 years by comparing groups in parcels of 5 years.

Results with BH-adjusted p value <0.05 were identified as significantly changed

features.
QUANTIFICATION AND STATISTICAL ANALYSES

Statistical analysis of the comparisons in Figures 4F–4H,S3F, S3I, and S3J, was per-

formed using the two-tailed t-test with GraphPad (version 9.0.0). Statistical analysis

of the comparisons in Figures 2H, 7A, 7C–7G, S7G, and S7I was performed using the

Wilcoxon rank-sum test with the ggpubr R package (version 0.4.0).
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