
Academic Editors: Sergei Petrovskii,

Benito Chen-Charpentier, Souvik Roy

and Hristo V. Kojouharov

Received: 2 May 2025

Revised: 16 June 2025

Accepted: 1 July 2025

Published: 5 July 2025

Citation: Alqahtani, R.T.; Ajbar, A.;

Aljebli, E.H. Dynamics of a Model of

Tumor–Immune Cell Interactions

Under Chemotherapy. Mathematics

2025, 13, 2200. https://doi.org/

10.3390/math13132200

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Dynamics of a Model of Tumor–Immune Cell Interactions
Under Chemotherapy
Rubayyi T. Alqahtani 1,*, Abdelhamid Ajbar 2 and Eman Hamed Aljebli 1

1 Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University
(IMSIU), Riyadh 13318, Saudi Arabia

2 Department of Chemical Engineering, College of Engineering, King Saud University,
Riyadh 11421, Saudi Arabia; aajbar@ksu.edu.sa

* Correspondence: rtalqahtani@imamu.edu.sa

Abstract

This paper analyzes a mathematical model to investigate the complex interactions between
tumor cells, immune cells (natural killer (NK) cells and CD8+ cytotoxic T lymphocytes
(CTLs)) and chemotherapy. The primary objectives are to analyze tumor–immune inter-
actions without and under treatment, identify critical thresholds for tumor eradication,
and evaluate how chemotherapy parameters influence therapeutic outcomes. The model
integrates NK cells and CTLs as effector cells, combining their dynamics linearly for sim-
plicity. Tumor growth follows a logistic function, while immune–tumor interactions are
modeled using a Hill function for fractional cell death. Stability and bifurcation analysis
are employed to identify equilibria (tumor-free, high-tumor, and a novel middle steady
state), bistability regimes, and critical parameter thresholds. Numerical simulations use
experimentally validated parameter values from the literature. This mathematical analysis
provides a framework for assessing the efficacy of chemotherapy by examining the dy-
namic interplay between tumor biology and treatment parameters. Our findings reveal that
treatment outcomes are sensitive to the balance between the immune system’s biological
parameters and chemotherapy-specific factors. The model highlights scenarios where
chemotherapy may fail due to bistability and identifies critical thresholds for successful
tumor eradication. These insights can guide clinical decision making in dosing strategies
and suggest combination therapies such as immunotherapy–chemotherapy synergies to
shift the system toward favorable equilibria.

Keywords: bifurcation; bistability; cancer; chemotherapy; fractional cell kill law; tumor–
immune cells

MSC: 92-10

1. Introduction
Cancer ranks among the foremost causes of mortality globally, with more than 8 million

new diagnoses and approximately 5 million fatalities annually [1]. It is well known that the
innate and adaptive immune systems respond to tumor cells by releasing specific antigens
that are not present in healthy cells [2]. The immune system’s reaction to tumor cells is
primarily cell-mediated by natural killer (NK) cells and CD8+ cytotoxic T lymphocytes
(CTLs) cells [3]. NK cells function as the foremost protective mechanism in the host body
and are triggered when the activating and inhibitory receptors combine to identify the
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target cells [4]. CTLs are, on the other hand, essential for recognizing and destroying tumor
cells as part of adaptive immunity [5].

Researchers find mathematical modeling to be a significant asset in their efforts to
understand complex regulatory mechanisms. Additionally, it can be applied to examine
the mechanisms that underpin a successful immune response to tumor cells [6,7]. Different
modeling approaches have been used in the literature depending on the number of immune
cells considered (NK, CD8+T, CD4+T, etc.) and the desired rigor (distributed parameter
models or PDEs, lumped parameter models or ODEs, stochastic models and models with
time delay) [8–19].

In this regard, the model presented by Kuznetsov et al. [8] was one of the earliest and
basic ODE models used to depict the interactions between immune cells and cancer as a
predator–prey relationship. The model comprised two classes of cells, one representing
the population of effector cells (the predator) and the other representing the population of
tumor cells (the prey). The model analysis [8] identified regions of bistability, parameter
spaces where only one class of cells exists, and areas where dormant tumor cells can sneak
in immune surveillance and become active. The system in [8] was further modified by
Bashkirtseva et al. [17] by adding the chemotherapy treatment. In their investigation of the
impact of chemotherapy drugs, the authors [17] demonstrated the presence of regions of
periodic behavior in addition to static regimes.

The model suggested in [8] and studied further in [9,17], for instance, was based on the
assumption that the rate of tumor lysis or fractional cell killing (a mathematical expression
that describes the rate at which a specific population of cells is reduced to a fraction of
itself) would rise in a linear fashion corresponding to the number of immune cells present,
much like a typical Lotka–Volterra model [20]. However, subsequent research revealed
that the lysis curves seen in certain experimental settings [21,22] demonstrated satura-
tion as the initial effector-to-target ratios increased. In order to model these experimental
findings, a novel fractional cell killing expression for CD8+ lymphocytes was proposed
in [10]. The foundation of this fractional cell kill law is a Hill function [23]. Based on
that work, López et al. [13] developed—using the experimental work in [21]—a validated
ODE model that illustrated tumor progression through the interaction of three cell pop-
ulations: neoplastic tissue, healthy tissue, and immune cells. Later, Makhlouf et al. [14]
studied the stability of an ODE model that forecasted the interaction between tumor cells,
circulating lymphocytes, CD4+T cells, CD8+T cells, and natural killer cells without or
under chemotherapy. Song et al. [15] proposed and studied the stability of a model that
described the relationships between immune cells and tumors, highlighting the role of NK
cells and CTLs in immune surveillance.

This paper presents a new contribution to the afromentioned studies on interactions
between immune and tumor cells. We propose and analyze a model that encapsulates
the key components of the interactions and makes it possible to easily visualize their
dynamical behavior. In accordance with research in [13], we assume that there is a linear
relationship between the growth dynamics of the two immune populations, NK and CTLs
cells. In this way, we simply refer to both cells as effector cells and linearly combine their
equations. The novelty of this study lies in two aspects: (1) the proposed model includes
growth rates that were overlooked in previous models [13], and (2) the numerical analysis
is carried out using bifurcation analysis, which allows for the construction of practical
branch sets that determine the regions of bistability, facilitate the evaluation of the effect of
model parameters on interactions, and are used to investigate the impact of the intensity of
chemotherapy drug on treatment outcomes.

The remainder of this paper is structured as follows: Section 2 presents the model, and
Section 3 examines the stability of tumor-free equilibrium. Section 4 discusses the choice
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of model parameters. Section 5 examines the model without chemotherapy. Section 6
examines the model with chemotherapy, and the final section includes a discussion and
concluding remarks.

2. The Mathematical Model
In the model presented in this work, two immune cell populations—natural killers

(NK) and CD8+ T lymphocytes (cytotoxic T lymphocytes, or CTLs)—interact with a tumor
cell population T. Similarities exist between the growth of NK and CTL cells. Three terms
are involved in the growth of both cells: one for recruitment, one for competition with
tumor cells, and one for death. The two cells’ growth dynamics differ noticeably in that
NK cells have a constant input for innate immunity, whereas CTL cells do not as they are
associated with acquired immunity. The dynamics of CTLs also include the stimulation of
T lymphocy in light of the interaction occurring between NK cells and cancerous cells in
addition to an activation term.

In this paper, we assume that the growth dynamics of the two immune cell populations
(NKs and CTLs) are linearly related in accordance with the work in [13]. Hence, we simply
refer to them as effector cells E and linearly combine their equations. As a result, there are
two classes of cells in the model: Class T, which represents the tumor cell (prey) population,
and Class E, which represents the effector cell (predator) population. The model equations
are as follows:

dT
dt

=αT(1 − βT)− γET − νD(E, T)T − k1CT (1)

dE
dt

=σ − δE +
jT2E

k + T2 +
gD2T2E

h + D2T2 − ϕET − k2CE (2)

dC
dt

=− µC + u. (3)

E (cell) and T (cell) denote concentrations of effector cells and tumor cells, respectively.
The growth of tumor cells T is assumed to follow a logistic law with growth rate α (1/day)
and a carrying capacity 1

β1
(1/cell). Tumor cell reduction owing to effector cells is repre-

sented by γET, where the rate of tumor cell lysis is denoted by γ (1/cell·day). Additionally,
tumor cells are destroyed by chemotherapy at a rate of k1 (m2/mg·day). The term D(E, T)
represents the fractional tumor cell killing by T cells. It is given by a Hill function [10–23]
that depends on the ratio of E/T, giving rise to the de Pillis–Radunskaya–Wiseman (PRW)
law [10]:

D(E, T) =
(E/T)τ

s + E/Tτ =
Eτ

sTτ + Eτ
(4)

The parameter τ is related to the tumor’s geometry. Tumors exhibiting reduced
sphericity are linked to higher τ values. On the other hand, the parameter s is indicative of
the innate proficiency of cytotoxic cells in recognizing and destroying their targets. Smaller
s values are associated with more effective immune cell responses [10].

It should be noted that the Hill function [23] is often used in mathematical models of
biological systems, including tumor–immune interactions, to describe saturation effects
(e.g., immune cell activation or suppression). In the context of tumor–immune dynamics, it
can model how immune responses depend on tumor cell numbers. One general form of
the Hill function is H = xn

Kn+xn where x is the input (e.g., tumor cell population, cytokine
concentration), n is the steepness, and K is a saturation constant.

For effector cells, the population (Equation (2)) increases at a constant rate of
σ (cell/day) responsible for innate immunity, and it decreases at a constant rate of δ (1/day)
in a natural demise. The decrease in effector cells is also due to their interactions with
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tumor cells ϕET at a rate of ϕ (1/cell·day). Additionally, effector cells are destroyed by
chemotherapy at a rate of k2 (m2/mg·day).

The dynamics of effector cells includes two recruitment terms: the first one corre-

sponds to a simple power law jT2E
(k+T2)

, where j (1/day) is the maximum recruitment rate

and k (cells2) is the steepness coefficient for the recruitment. This recruitment term is
predominately associated with NK cells [13]. The second term is represented by the PRW

law [10] gD2T2E
(h+D2T2)

, where g (1/day) is the maximum activation rate and h (cells2/day2) is
the steepness coefficient of the activation [10,13]. This term is predominately associated
with CTL cells [10,13]. These two terms are now described as functions of the effector cells
E, as the two types of immune cells are lumped.

The third equation (Equation (3)) represents the change in the concentration of the
chemotherapy drug over time at a rate µ (1/day). The term u (mg/BSA·day) represents
the daily dose of the chemotherapy drug, where BSA (m2) indicates the body surface
area. The BSA method is often used in chemotherapy treatments for cancer, where the
dosage needs to be carefully tailored to the patient’s body size; it is more accurate than
than weight-based methods. As a result, the fractional cell kill parameters k1 and k2

have a dimension of (m2/mg·day). The simplification used in this paper to lump natural
killer (NK) cells and CD8+ T cells into a single “effector cell” population is supported by
experimental and theoretical evidence but also has limitations depending on the research
context. We present in the following an examination of when and why this simplification is
appropriate. The first issue has to do with the functional overlap in tumor killing. Both NK
cells and CD8+ T cells contribute to tumor cell lysis through similar mechanisms, including
perforin/granzyme [24] and Fas-FasL [25], suggesting that their combined effect can be
approximated in a single population when modeling total cytotoxic pressure.

The second issue has to do with synergistic effects in immunotherapy: some im-
munotherapies activate both NK and CD8+ T cells through shared pathways, justifying a
unified “cytotoxic response” in models. Waldhauer and Steinle [26] showed that NKG2D
ligands on tumors activate both NK and CD8+ T cells similarly. Galon and Bruni [27]
discussed how the concept of “Immunoscore” in cancer often combines CD8+ T and NK
cell densities as a prognostic marker because both correlate with survival. This implies
that from a clinical outcome perspective, the combination of their effects is meaningful. As
result of these considerations, several mathematical models use a single effector equation
when differences between NK and CD8+ T cells are not critical [8,9,17,28]. The experimental
work of Diefenbach et al. [21] confirmed that NK and CD8+ T cells often cooperate in
tumor suppression, supporting the idea of combined cytotoxic potential. Eftimie et al. [29]
reviewed tumor–immune models and noted simplifications when studying tumor escape
mechanisms rather than immune subtypes. De Pillis et al. [10] combined effectors when
modeling chemotherapy effects, arguing that net tumor killing matters more than individ-
ual contributions. López et al. [13] demonstrated additive contributions of NK and CD8+
T cells in early tumor control and suggested that if the focus is on total tumor lysis rather
than subtype dynamics, lumping is reasonable.

Lumping the two cells has, on the other hand, some limitations. One issue concerns
the differences in response time: NK cells respond within hours/days, while CD8+ T cells
require days/weeks [30]. There is also the issue of therapy specificity: checkpoint inhibitors
(e.g., anti-PD-1) primarily target CD8+ T cells and not NK cells [31]. The two immune
cells also have distinct suppression mechanisms; tumors may evade NK cells (e.g., MHC-I
downregulation) but suppress CD8+ T cells via PD-L1 [32].

In conclusion, lumping NK and CD8+ T cells is a practical simplification for models
prioritizing overall tumor–immune dynamics, such as the one presented in this paper,
where the focus is on net tumor killing. However, separate modeling is essential for studies
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requiring mechanistic precision, such as those studying immunotherapies targeting only
one subset (e.g., CAR-T cells), if timescales of NK vs. CD8+ T cell responses are critical, or
if it is necessary to model immune evasion strategies that are specific to each cell type.

The model is made dimensionless by employing the following variables:

T̄ = βT, Ē =
αE
σ

, C̄ =
C
C0

, t̄ = αt, γ̄ =
γσ

α2 , ν̄ =
ν

α
, k̄1 =

k1C0

α
, δ̄ =

δ

α

j̄ =
j
α

, ḡ =
g
α

, k̄ = kβ2, h̄ = β2h, ϕ̄ =
ϕ

αβ
, k̄2 =

k2C0

α
, µ̄ =

µ

α
, ū =

u
αC0

, s̄ = s(
α

βσ
)τ .

The dimensionless model becomes

dT̄
dt̄

=T̄(1 − T̄)− γ̄ĒT̄ − ν̄D̄T̄ − k̄1C̄T̄ (5)

dĒ
dt̄

=1 − δ̄E +
j̄T̄2Ē

k̄ + T̄2 +
ḡD̄2T̄2Ē

h̄ + D̄2T̄2 − ϕ̄ĒT̄ − k̄2C̄Ē (6)

dC̄
dt̄

=− µ̄C̄ + ū (7)

D̄ =
Ēτ

s̄T̄τ + Ēτ
(8)

It can be noted that the model variables are rendered dimensionless by utilizing solely
(α (1/day), β (1/cell)), which represent the parameters of the logistic growth rate, the
growth rate of effector cells σ (cell/day), and a reference value for drug concentration
C0 (mg/m2). It is known that the values of tumor growth rates α and β depend not only on
the type of tumors but also on their stages of development. Consequently, the examination
of the dimensionless model through variations of its dimensionless parameters around
certain experimentally validated values constitutes a useful study that can be correlated
with various tumor cases and stages. Conversely, the reference drug concentration C0 solely
influences the dimensionless values of chemotherapy drug dose ū and values of fractional
cell kill parameters k̄1 and k̄2.

In the rest of this manuscript, we drop the bar notation from all variables and parameters.

3. Equilibria Existence and Classification
In the following analysis, we examine the presence of real and positive equilibria

within the framework of the model defined by Equations (5)–(8). Equation (7) at steady-
state yields C = u

µ . Substituting the expression of D (Equation (8)) into Equations (5) and (6)
yields the following two equations as a function of E and T:

ln
Eτ

sTτ + Eτ
=

1 − γE − k1CT
ν

. (9)

a3E3 + a2E2 + a1E + a0 =0, (10)

where the coefficients (ai, i = 1, 3) depend explicitly on T and are shown in Appendix A.
Note that Equation (9) is transcendental and can only be solved numerically. We can
deduce from Equations (9) and (10) that the maximum number of equilibria (other than the
tumor-free one) is three. Details of this result and the stability of the non-trivial equilibrium
are shown in Appendix A. However, because of the transcendental nature of the equations,
any analysis of stability or saddle–node bifurcation can only be carried out numerically.



Mathematics 2025, 13, 2200 6 of 22

The model tumor-free equilibrium is (T = 0, E = 1
δ+k2

u
µ
). The eigenvalues of the

Jacobian matrix in this steady state (with details given in Appendix B) are λ1 = −µ, λ2 =

−δ − k2u
µ , while the third eigenvalue satisfies the following quadratic equation:

aλ2 + bλ + c = 0, (11)

with

a = −k1k2, b = µ((1 − ν)k2 − δk1), c = µ2((1 − ν)δ − γ). (12)

4. Model Baseline Parameters
In conducting numerical simulations, the values of the model parameters shown in

Table 1 were carefully chosen to align with realistic situations. The model parameters
were validated under two conditions: without treatment and during chemotherapy, as
detailed in [13]. In the untreated scenario, validation was achieved by replicating immune-
mediated tumor lysis, supported by experimental data fitting, dynamical analysis, and
residual comparisons to ensure biological plausibility. Growth curves in the absence of an
immune response, derived from data in [21], facilitated the estimation of tumor logistic
growth parameters α and β. These parameters were determined by minimizing the least-
squares distance between simulated values and experimental data. Additionally, immune
recruitment rates were approximated using measurements of IFN-γ (Interferon gamma),
producing immune cells as a function of ligand expression, comparing ligand-transduced
and control-transduced tumor cells. The background source rate for immune cells σ and
their death rate d were sourced from experiments reported in [8]. Parameters governing
tumor–immune interactions, such as the fractional kill rate γ, immune recruitment coeffi-
cients (j, k, g, h), and competition term ϕ were adopted from prior validated models [10],
ensuring alignment with established tumor biology. The fractional kill function D(E, T)
(Equation (4)) was calibrated against experimental lysis data [21], which examined tu-
mor rejection mediated by NK cells and CD8+ T cells in mice. Least-squares fitting was
employed to adjust D(E, T) parameters, matching experimental effector-to-target (E–T)
cytotoxicity curves across various immune challenges.

For the chemotherapy model, an exponential kill model k(1 − exp−ρC(t−τ)) was used
in [13], with parameters reflecting drug pharmacodynamics. The drug resistance coef-
ficient ρ and time delay (τ) were fitted to tumor regression data [13], where mice with
plasmacytomas were treated with cyclophosphamide, and tumor regression was monitored
post-treatment.

In this work, a simplified linear cell kill law (i.e., k1C, Equation (1)) was adopted,
omitting drug delay and resistance effects. While this approach streamlined our mathemat-
ical analysis, it has inherent limitations. The selection of either an exponential fractional
kill law or a linear cell kill law hinges on the drug’s mechanism, pharmacokinetics, and
the timescales under consideration. Neglecting delay effects—such as cell cycle arrest
or drug uptake time—is justified when the drug action timescale is significantly shorter
than the tumor growth dynamics. Similarly, disregarding resistance is valid for short-term
treatments or scenarios where resistance mutations are infrequent, such as during early
therapy phases.
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Table 1. Model baseline parameters [10,13,21].

Parameter Definition Value Unit Dimensionless Value

C0 Reference value for concentration 103 mg.m−2 -
of chemotherapy drug

g Maximum recruitment rate 0.0375 day−1 0.073
related to the PRW law

h Steepness coefficient for recruitment 2.02 × 107 cell2 1.75 × 10−12

related to the PRW law
j Maximum recruitment rate 0.0357 day−1 0.073

related to the power law
k Steepness coefficient for recruitment 2.02 × 107 cell2 2.1 × 10−11

related to the power law
k1 Fractional tumor cell kill 2.41 m2mg−1day−1 4680

by chemotherapy
k2 Fractional immune cell kill 4.03 m2mg−1day−1 7840

by chemotherapy
s Steepness coefficient of the PRW law 2.5 - 15.9
α Tumor cell growth rate 0.514 day−1 -
β Inverse of tumor-carrying capacity 1.0204 × 10−9 cell−1 -
δ Death rate of effector cells 0.0612 day−1 0.119
γ Rate of tumor cell lysis 1.1 × 10−10 cell−1day−1 3.12 × 10−5

ϕ Effector cell inactivation rate by 2.8 × 10−9 day−1 5.34
tumor cells

µ Rate of chemotherapy drug decay 0.9 day−1 1.75
ν Saturation level of fractional 3.47 day−1 6.75

tumor cell kill
σ Growth rate of effector cells 7.5 × 104 cell·day−1 -
τ Exponent of the PRW law 0.21 - 0.21

5. Analysis of the Model Without Chemotherapy
When the chemotherapy is not administrated, the model tumor-free equilibrium

is (T = 0, E = 1
δ ). The eigenvalues λi of the Jacobian matrix at this equilibrium are

(Appendix B)

λ1 = −δ, and
δ(1 − ν)− γ

δ
. (13)

Therefore, for ν > 1, the second eigenvalue is always negative, and the tumor-free
equilibrium is always stable. For ν < 1, the tumor-free solution is unstable for γ < δ(1− ν).

For parameter values in Table 1, with γ = 0.2 for example, we can numerically solve
the model equations and show that there are two steady states in addition to the tumor-free
solution. The steady states are A (T = 0, E = 8.4033), B (T = 0.1570, E = 1.2323) and
C (T = 0.5778, E = 0.3261). (A) is the tumor-free solution, and (B) is a saddle point
characterized by low-tumor-concentration cells. Steady state (C) is a stable node and
is characterized by a high tumor cell concentration and low effector cell levels, which
correspond to uncontrolled tumor growth. The phase portrait is shown in Figure 1. The
stable manifold of the steady state B acts as a boundary that divides the basins of attraction
of (A) and (C). Initial conditions (i) and (ii) depicted in Figure 1 reside within the basin
of attraction of the tumor-free equilibrium, ultimately converging towards point (A). In
contrast, the initial conditions (iii) and (iv) fall within the basin of attraction of the high-
tumor equilibrium. These initial conditions escape immune surveillance, leading the system
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towards the high-tumor equilibrium (C). The disease’s outcome is therefore significantly
influenced by the basin boundary’s location.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

T

0

2

4

6

8

10

E

(B)

(C)

(A)

(ii)

(iii)

+

+

+(iv)

+(i)

Figure 1. Phase portrait of the model (Equations (5)–(8)) with no chemotherapy at the dimensionless
parameter values in Table 1 with γ = 0.2. (A) is the free-tumor equilibrium, (B) the low-tumor
equilibrium, and (C) the high-tumor equilibrium. Stable manifold of saddle point B (blue); unstable
manifold of saddle point B (red); initial conditions (+) for transients (dotted curves) denoted (i–iv).
Initial conditions for (i) (E,T) = (0.3,9); (ii) (E,T) = (0.05,0.1); (iii) (E,T) = (0.65,7.0); (iv) (E,T) = (0.2,0.1).

By conducting a bifurcation analysis, we can better comprehend the system’s overall
dynamics. This kind of analysis can also identify model parameter values that act as
thresholds, above which the patient’s system moves into a stable tumor-free equilibrium.
All bifurcation diagrams were generated using Matcont [33], a graphical MATLAB [34]
software package for the bifurcation study of continuous and discrete dynamical systems.

We choose the parameter γ as the bifurcation parameter. This parameter basically
describes the rate at which tumor cells are attacked due to interaction with the tumor i.e., the
cytolytic potential of the immune cells. Using the model parameter’s values in Table 1,
Figure 2 shows that the model predicts a simple saddle–node bifurcation where a limit
point is seen to occur at γ = 0.3975. Since the tumor-free equilibrium in this case is always
stable (since ν = 6.75 > 1), the following regimes are observed. For 0 < γ < 0.3975, the
system exhibits a coexistence between the tumor-free and the uncontrolled tumor equilibria.
Bistability indicates that external influences on the immune system, which may intuitively
be perceived as beneficial for enhancing the immune response (such as immunostimulation
or modifications to initial conditions), can in reality have adverse effects. Beyond the limit
point, the system’s solutions stabilize at the equilibrium without tumors.

Another behavior predicted by the model is found when the tumor-free steady state
is unstable. Figure 3 presents an illustration of a bifurcation diagram for ν = 0.5 < 1
(Equation (13)). It can be seen that the tumor-free steady state is unstable for very small
values of γ, and there is a stable high-tumor equilibrium. This corresponds to a system that
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demonstrates a severely inadequate innate immune response to cancer. With an increase
in the parameter γ, the stability of the tumor-free equilibrium is achieved, and there is
coexistence with the stable high-tumor steady state. Once the tumor-free equilibrium
reaches stability, a saddle equilibrium emerges, acting as a boundary between the two
stable equilibria. The system is presently in a bistable condition, and the treatment’s goal
should be to position the system within the basin of attraction of the zero-tumor equilibrium.
Beyond the saddle–node bifurcation, the system maintains a stable equilibrium devoid of
tumors, ensuring that the disease does not advance.

0 0.1 0.2 0.3 0.4 0.5
-0.2

0

0.2

0.4

0.6

0.8

1

T

LP

Figure 2. Bifurcation diagram for a model without chemotherapy for the system parameters in
Table 1, and rate of tumor cell lysis γ as the bifurcation parameter. Solid line (stable branch), dashed
line (unstable branch), LP(static limit point).

0 0.5 1 1.5
-0.2

0

0.2

0.4

0.6

0.8

1

T

LP

P

Figure 3. Bifurcation diagram for model without chemotherapy for the system parameters in Table 1
with ν = 0.5 and the rate of tumor cell lysis γ as the bifurcation parameter. Solid line (stable branch);
dashed line (unstable branch); LP (static limit point). (P) indicates the point of transition from unstable
to stable tumor-free equilibrium.
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It should be noted that the location of the point of transition (P, Figure 3) depends
solely on γ, δ and ν (Equation (13)). Large values of δ or smaller values of ν would push
the point (P) to occur at larger values of γ. Consequently, if the tumor-free equilibrium
is unstable, any treatment must alter the system’s parameters in addition to reducing the
tumor burden.

Furthermore, we can map out the different regions of behavior in Figures 2 and 3 as a
function of model parameters. Figure 4 shows the locus of the limit point. The effect of ν, ϕ,
s and δ shows an increasing trend with γ. This means that any increase/decrease in any of
these parameters as a result of some non-chemotherapy treatment will enlarge/decrease
the range of bistability in terms of γ. The effect of both ν and ϕ can be seen to be linear,
while the bistability region grows much faster with an increase in the parameter s. The
effect of δ (shown in Figure 4d) is noticeable only when γ exceeds a certain value and
the region of bistability increases almost linearly with the increase in δ. The effects of j
(Figure 4e) (and g, not shown in the figure) show a decreasing trend. The increase in these
activation terms reduces almost linearly in the range of the bistablity region. The effect of k
(Figure 4f) (and h, not shown in the figure), shows that these parameters do not significantly
affect the locus of the limit point and therefore do not alter the region of bistability much.

0 0.5 1
0

0.5

1
(a)

0 0.5 1
0

5

10
(b)

0 0.5 1
0

20

40

s

(c)

0 0.5 1
0

1

2
(d)

0 0.25 0.5
0

1.2

2.5

j

(e)

0 0.25 0.5
0

1.25

2.5

kb
ar

(f)

Figure 4. Two parameter continuation diagrams showing the locus of the limit point of Figure 2.
(a) Effect of saturation level of fractional tumor cell kill ν; (b) effect of effector cell inactivation rate by
tumor cells ϕ; (c) effect of steepness coefficient of the PRW law s; (d) effect of death rate of effector
cells δ; (e) effect of maximum recruitment rate related to the power law j; (f) effect of steepness
coefficient for recruitment related to the power law k.

6. Analysis of the Model with Chemotherapy
When the system is under chemotherapy, the model tumor-free steady state has two

negative eigenvalues, while for the third eigenvalue, the following cases are possible for
the quadratic equation (Equations (11) and (12)). A summary of the the analysis is also
shown in Table 2.
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1. ν ≥ 1. In this case, c and b are both negative, and since a, (Equation (12)) is always
negative, the discriminate ∆ = b2 − 4ac can be either positive or negative. When it is
positive, the product of both roots is positive, and their sum is negative, so there is no
positive solution to Equation (11), and the tumor-free equilibrium is stable for all u.

2. ν < 1, c > 0 and b > 0, which is equivalent to ν < 1, ν < 1 − γ
δ and ν < 1 − δ k1

k2
. In

this case, the discriminate is always positive, and there is only one positive solution
u1. The tumor-free equilibrium is stable for all u > u1.

3. ν < 1, and c > 0, b < 0, which is equivalent to ν < 1, ν < 1 − γ
δ and ν > 1 − δ k1

k2
.

In this case, the discriminate is always positive, and there is also only one positive
solution u1. The steady state is stable for all u > u1.

4. ν < 1, c < 0 and b > 0, which is equivalent to ν < 1, ν > 1 − γ
δ and ν < 1 − δ k1

k2
. In

this case, the discriminate can be either be positive or negative. When it is positive,
there are two positive solutions u1 and u2, and the tumor-free equilibrium is unstable
for u1 < u < u2.

5. ν < 1, c < 0 and b < 0. This is equivalent to ν < 1, ν > 1 − γ
δ and ν > 1 − δ k1

k2
. In this

case, the discriminate can be either positive or negative, but even in the former case,
there is no positive solution, and the point is stable for all values of u.

Table 2. Stability conditions for tumor-free equilibrium under chemotherapy.

Case No. Sign of (ν − 1) Sign of (b) Sign of (c) Sign of
(∆ = b2 − 4ac)

Number of
Positive

Solutions of
Equation (11) If

∆ > 0

Stability of
Trivial

Equilibrium

1 + − − ± 0 always stable

2 − + + + 1 (u1) stable for u > u1

3 − − + + 1 (u1) stable for u > u1

4 − + − ± 2 (u1, u2)
unstable for
u1 < u < u2

5 − − − ± 0 always stable

Following this analysis, we can distinguish between three qualitatively different
bifurcation diagrams. It is more convenient to choose the chemotherapy dosage intensity
(u) as the bifurcation parameter.

The first situation corresponds to ν > 1. The tumor-free equilibrium point is stable for
all values of u, as shown in the bifurcation diagram of Figure 5, for example, for ν = 6.75,
k1 = 4680, and k2 = 7840 and the rest of the model parameters of Table 1. The diagram is
characterized by the presence of a static limit point. When the chemotherapy drug intensity
(u) is larger than the limit point, the tumor cells disappear. For a drug dose below the limit
point, there exits a bistability between the tumor-free equilibrium and the high-tumor cells.
Again, this shows that sudden changes in system parameters and/or initial conditions may
be detrimental even to the effect of the chemotherapy treatment.
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Figure 5. Bifurcation diagram for model with chemotherapy for the system parameters in Table 1,
with ν = 6.75 and drug intensity u as the main bifurcation parameter. Solid line (stable branch);
dashed line (unstable branch); LP (static limit point).

The second situation is when the tumor-free equilibrium is unstable below a critical
level of drug intensity. This situation is shown in Figure 6, for example, for ν = 0.9. In this
case, the tumor-free steady state is unstable for u below point P in Figure 6. This situation
indicates that any level of drug intensity below the critical value is unable to suppress the
tumor, and the system settles on a high tumor concentration. A coexistence between the
tumor-free and high-tumor cells exists for drug intensity between the critical value and the
limit point. Only values of drug intensity larger than the limit point completely suppress
the tumor.

The third situation is when the tumor-free equilibrium is unstable between two critical
values of u. This situation is shown in Figure 7, for example, for δ = 0.0005 and ν = 0.97.
Figure 7a shows only the nontrivial steady state. Only values of u larger than the limit
point completely destroy the tumor cells. However, Figure 7b shows the enlargement of
the small rectangle close to the zero axis of Figure 7a. Two critical points (P1) and (P2)
appear at u1 = 1.231 × 10−7 and u2 = 1.098 × 10−5 on the tumor-free equilibrium (red
line). Moreover, there is the appearance of a middle tumor concentration branch (blue
curve). For values of drug intensity smaller than P1, the tumor-free equilibrium is stable,
the middle curve is unstable, and the upper curve (Figure 7a) is stable. Consequently, there
is bistability between the disease-free equilibrium and the high-tumor cell steady state. For
drug intensity between P1 and P2, the tumor-free curve is unstable, the middle curve is
stable, and the upper curve (Figure 7a) is also stable. Therefore, there is bistability where
the system can settle on the middle tumor level concentration or on the high-tumor level
equilibrium. For drug intensity larger than P2 and up to the limit point, the tumor-free
equilibrium is stable, the middle steady state is unstable, and the high-tumor steady state
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(Figure 7a) is stable. Therefore, there is again a bistablity regime between the tumor-free
equilibrium and the high-level tumor concentration.

0 1 2 3 4

u 10-4

-0.2

0

0.2

0.4

0.6

0.8

1

T

LP

P

Figure 6. Bifurcation diagram for the model with chemotherapy for the system parameters in Table 1
with ν = 0.95 and drug intensity u as the main bifurcation parameter. Solid line (stable branch);
dashed line (unstable branch); LP (static limit point). (P) indicates the point of transition from unstable
to stable tumor-free equilibrium(unstable branch, below point P) .

0 1 2 3 4

u 10-4

0

0.5

1

T

0 0.2 0.4 0.6 0.8 1 1.2

u 10-5
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0.015

0.03
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Figure 7. Bifurcation diagram for the model with chemotherapy for the system parameters in Table 1
with (δ = 0.0005, ν = 0.97) and drug intensity u as the main bifurcation parameter. Solid line (stable
branch); dashed line (unstable branch); LP (static limit point); (a) Diagram with high-tumor steady
state only; (b) free-tumor equilibrium (red); and low-tumor equilibrium (blue); (P1) and (P2) are
critical points. The dotted box in Figure 7a is enlarged in Figure 7b.
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Since the location of the critical points P1 and P2 is governed by the simple quadratic
equation (Equation (11)), it is straightforward to examine the effect of model parameters
on the location of these points and therefore on the range of the instability region between
them. Figure 8 shows the effect of the model parameters in a qualitative way, where ∆
denotes the range (in terms of u between P1 and P2). We recall that γ is the rate of tumor
cell lysis, ν the saturation level of fractional tumor cell kill law, and δ the rate of the natural
death of effector cells. The chemotherapy parameters are µ (the rate of change in the
chemotherapy drug over time), and k1 and k2 are the killing effects of chemotherapy on the
tumor and effector cells, respectively.

k1 k2

(a)

(e) (f)

(d)(c)

(b)

Figure 8. Effect of model parameters on the range (∆) of the instability region (between P1 and P2

of Figure 7b). (a) Effect of rate of tumor cell lysis γ; (b) effect of saturation level of fractional tumor
cell killing ν; (c) effect of death rate of effector cells δ; (d) effect of rate of chemotherapy drug decay
µ; (e) effect of fractional tumor cell killing by chemotherapy k1; (f) effect of fractional immune cell
killing by chemotherapy k2.

It can be seen that as γ increases, the range of instability decreases until it disappears
as both points P1 and P2 collapse into a single point. The same can be seen for the effect of
ν. On the other hand, the increase in δ increases the range of the instability region.

For the chemotherapy-related parameters, the increase in µ increases the region of
instability. However, for both k1 and k2, the regime of instability decreases with the increase
in any of these two parameters.

The effect of model parameters on the locus of the limit point of Figure 5 is, on other
hand, shown in Figures 9 and 10. It can be seen that ν and γ decrease almost linearly with
u. This means that if the parameters ν or γ increase, then the amount of chemotherapy
drugs needed to completely suppress the tumor (i.e., past the limit point) will also decrease
linearly. The trend of j is also a decreasing one, but it is in a limited range of u. On the
other hand, the effect of ϕ, s, and δ shows a fast and increasing trend with u. This implies
that should any of these parameters increase, the amount of drugs needed to completely
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suppress the tumor would have to be increased. Lastly, Figure 10 shows the effect of
chemotherapy-related parameters on the location of the limit point. As expected, k1 (tumor-
associated) decreases with u, while k2 (effector-associated) increases. This means that larger
values of k1 or smaller values of k2 will decrease the amount of chemotherapy drug needed
to eliminate the tumor. The effect of µ is, on other hand, a decreasing one. Increasing the
rate of chemotherapy drug will obviously reduce the amount of drug needed to reach a
stable tumor-free equilibrium. A summary of the different bifurcation behaviors obtained
without and with chemotherapy is shown in Table 3.

0 2 4
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0
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15 (a)

0 0.75 1.5
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Figure 9. Two parameter continuation diagrams showing the effect of model biological parameters
on the locus of the limit point of Figure 5. (a) Effect of saturation level of fractional tumor cell killing
ν; (b) Effect of effector cell inactivation rate by tumor cells ϕ; (c) Effect of rate of tumor cell lysis γ;
(d) Effect of steepness coefficient of the PRW law s; (e) Effect of death rate of effector cells δ; (f) Effect
of maximum recruitment rate related to the power law j.

Table 3. Summary of bifurcation behaviors found in the different diagrams.

Figure 2 Key par. Bif. par. [0, LP] ≥LP
(u = 0) (γ) TF,HT TF

Figure 3 Key par. Bif. par. [0, P] [P, LP] ≥LP
(ν = 0.5) (γ) HT TF,HT TP

Figure 5 Key par. Bif. par. [0, LP] ≥LP
(ν = 6.75) (u) TF,HT TF

Figure 6 Key par. Bif. par. [0, P] [P, LP] ≥LP
(ν = 0.95) (u) HT TF,HT TF

Figure 7a,b Key par. Bif. par. [0, P1] [P1, P2] [P2, LP] ≥LP
(δ = 0.0005, ν = 0.97) (u) TF,HT MT,HT TF,HT TF

Bif. par.: Bifurcation parameter in the figure (x-axis). Key par.: All model parameter values are taken from Table 1,
except the value of the key parameter associated with the figure. MT: Medium tumor levels. HT: High tumor
levels. TF: Tumor-free equilibrium. [−,−]: Range of the bifurcation parameter. X,Y: The stable coexistence of
equilibria X and Y.
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Figure 10. Two parameter continuation diagrams showing the effect of model chemotherapy-related
parameters on the locus of the limit point of Figure 5. (a) Effect of fractional tumor cell killing by
chemotherapy k1; (b) Effect of fractional immune cell killing by chemotherapy k2. (c) Effect of rate of
chemotherapy drug decay µ.

7. Biological Interpretation
The goal of this work was to study a relatively simple model to encapsulate the

expected behaviors of tumor–immune cell competition.
In the absence of immunotherapy or chemotherapy, the model was able to predict

a saddle–node bifurcation for any small changes in model parameters. In reality, due to
the non-uniformity of effector and tumor cell populations and the presence of distinct
subpopulations characterized by unique parameter values that dictate their behavior, it is
highly probable that variations in these parameter values will occur.

Depending on the values of the parameters, the outcome may manifest in one of three
ways: an elimination scenario where immune cells proficiently eliminate cancer cells; a
steady-state coexistence where the immune system exhibits reduced efficiency, containing
the tumor without achieving its complete removal; or a situation in which the immune
system fails to function effectively, resulting in uncontrolled tumor growth.

In the presence of bistability, where a high-tumor state exists alongside a tumor-free
state, a treatment that directs the system towards the stable equilibrium of the tumor-free
basin of attraction may result in a healthy condition. For instance, adaptive cell transfer
may be employed to enhance the quantity of immune cells, while radiation or surgical
interventions can be utilized to reduce the tumor population [15].

For other parameter space, the equilibrium without tumors is unstable, and merely
reducing the tumor size is insufficient. In order to achieve a stable equilibrium, any
treatment approach aimed at effectively eliminating a tumor must not only decrease the
tumor load but also alter the system’s parameters [10]. Thus, immunotherapy may be
perceived as a treatment that changes systemic conditions, including the long-lasting
enhancement of immune cells’ cytolytic capabilities.
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In the presence of chemotherapy treatment, the situation is more complex. The model
predicted three different situations that depend exclusively on the relative importance of
the system biological parameters γ, δ and ν and the chemotherapy parameters k1 and k2 in
addition to the level of administrated drug u. We recall that γ is the rate of tumor cell lysis,
δ the rate of natural demise of effector cells, and ν the saturation level of fractional tumor
cell killing law.

If ν is larger than unity, then the tumor-free equilibrium is always stable for any values
of the other model parameters, or any level of administrated drug. Bistability between
tumor-free and high-tumor cells also prevails in this case, and only values of u larger than
the saddle–node critical point will completely suppress the tumor. This critical value of the
drug can be lowered by attempting to increase ν,γ or decrease ϕ, s or δ.

If ν < 1, ν < 1 − γ
δ , and ν < 1 − δk1

k2
, then there is a critical value of u below which

the tumor-free equilibrium is unstable. This means that values of drug u smaller than the
critical value can not stop the growth of the tumor. Beyond that, there is bistability, and
depending on the rates k1

k2
, the basin of attractions can be altered.

If ν is such that 1 − γ
δ < ν < 1 − δk1

k2
, then the disease-free equilibrium is unstable

between the two critical values of the drug intensity u. Moreover, there is the appearance
of a non-trivial middle tumor concentration equilibrium. That means that relatively large
doses of chemotherapy (between the two critical points) are not able to suppress the tumor
but rather cause the existence of bistabiity between a low-level tumor cell and high-tumor
cell steady states. This interesting scenario illustrates the unexpected results that may
arise from the intricate interactions between the biological parameters of the model and its
chemotherapy parameters.

The middle steady-state may represent a chronic controlled tumor burden, where the
immune system is active but not completely successful in eliminating the tumor or the
tumor persists without unchecked growth, similar to what is seen in cancer dormancy.
This might resemble clinical remission or indolent tumors that are not progressing but also
are not fully eradicated. The existence of dormant cancer cells in many common cancers
has been clinically documented in cases where organ transplant recipients developed
cancers originating from dormant tumor cells present in donor organs [35]. These cases
highlight how immunosuppression can awaken previously dormant tumor cells [35]. Other
studies have shown that the immune system plays a crucial role in maintaining tumor
dormancy [36].

8. Conclusions
This study analyzed the dynamic interactions between tumor cells and immune

effector cells without and with chemotherapy. The model incorporated a Hill function to
describe the fractional cell kill law and the logistic growth for tumor cells, while simplifying
the immune response by linearly combining the dynamics of NK and CTL cells into a
single effector cell population. The analysis focused on the stability of equilibrium points
and the identification of bistability regimes, which are critical for understanding tumor
progression and treatment outcomes. The findings of this analysis provided some insights
for optimizing cancer treatment strategies, particularly in the context of chemotherapy and
immune system interactions. Below are the key clinical implications.

1. Personalized treatment based on immune parameters:

• The model highlighted that the effectiveness of chemotherapy depends on the
patient’s immune parameters (e.g., γ, δ, ν).

• Patients with a strong innate immune response (ν > 1) may require lower
chemotherapy doses to achieve tumor suppression, reducing toxicity risks. Con-
versely, patients with weaker immune responses (ν < 1) may need higher drug
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doses or additional immunotherapy to shift the system toward a tumor-free equi-
librium.

2. Importance of bistability in treatment:

• The presence of bistability (coexistence of tumor-free and high-tumor states)
suggests that small changes in immune function or tumor burden can drastically
alter outcomes.

• Immunostimulatory therapies (e.g., checkpoint inhibitors, adoptive T-cell trans-
fer) could help push the system into the tumor-free basin of attraction.

3. Optimizing chemotherapy dosing:

• The model identified critical drug thresholds where chemotherapy either suc-
ceeds or fails. Below a certain dose, the tumor may persist or even grow (treat-
ment resistance). Above the threshold, complete tumor suppression is possible.

• Combination therapies (chemotherapy and immunotherapy) may help lower the
required drug dose while improving outcomes.

4. Unintended effects of chemotherapy:

• High chemotherapy doses can deplete effector cells (k2 effect), weakening im-
mune surveillance and potentially leading to relapse.

• The model suggests that balancing k1 (tumor kill rate) and k2 (immune cell kill
rate) is crucial. Drugs with high tumor specificity (k1 >> k2) are preferable.

5. Predictive biomarkers for treatment response:

• Parameters like γ (immune cell killing efficiency) and ν (saturation of immune
response) could serve as biomarkers with which to predict which patients will
respond to chemotherapy.

• Patients with low γ or ν may benefit from adjuvant immunotherapy to enhance
immune-mediated tumor killing.

6. Potential for adaptive therapy:

• Since the model showed parameter-dependent thresholds, adaptive therapy (ad-
justing drug doses based on tumor–immune dynamics) could improve outcomes
while minimizing side effects.

• Monitoring immune cell levels during treatment could help guide dose adjust-
ments in real time.

Future clinical studies could validate these predictions by correlating immune pa-
rameters (γ, ν, δ) with patient outcomes, paving the way for more precise and effective
cancer treatments.

Other future directions of the work could include the following. The model assumed
constant drug administration. Incorporating pharmacokinetics/dynamics (e.g., drug clear-
ance, intermittent dosing) could improve realism. It might also be worth exploring the
model with immune response delay. Time delays are important, because immune responses
do not occur instantaneously as they involve multi-step biological processes with inherent
lags. Adjusting time delay could also yield richer dynamics [37].
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Appendix A. Derivation of Non-Trivial Steady States and Study of
Their Stability

The steady state of Equation (7) yields

C =
u
µ

. (A1)

Eliminating D from the steady sate form of Equation (5) and substituting it in
Equation (8) yields

D̄ =
Ēτ

s̄T̄τ + Ēτ
=

1 − γE − k1C − T
ν

(A2)

This yields a transcendental equation as function of E and T,

Eτ(ν − 1 + k1C + T) + γEn+1 =sTn(1 − γE − k1C)− Tτ+1, (A3)

that can also be written as

lnEτ − ln(sTτ + Eτ) =
1 − γE − k1CT

ν
. (A4)

A second equation involving E and T can be obtained by substituting Equation (8) in
Equation (6) to yield

a3E3 + a2E2 + a1E + a0 =0, (A5)

where the coefficients ai, i = 1, 3 depend explicitly on T.

a0 = (k + T2)(hν2 + T2(−1 + Ck1 + T)2). (A6)

a1 = −C3k2
1k2T2(k + T2)− δ(k + T2)(hν2 + T2(−1 + Ck1 + T)2) + C2k1T2(gk1(k + T2)−

2k2(−1 + T)(k + T2)− k1T(−jT + ϕ(k + T2))) + T(−hν2(−jT + ϕ(k + T2))+

(−1 + T)T(2γ(k + T2) + (−1 + T)(gk − kϕT + (g + j)T2 − ϕT3)))− C(hk2ν2(k + T2)+

T2(−2γk1(k + T2) + (−1 + T)(−2gk1(k + T2) + k2(−1 + T)(k + T2) + 2k1T(−jT + ϕ(k + T2))))), (A7)

a3 = −δγ2kT2 + γ2gkT2 − Cγ2k2kT2 − γ2kϕT3 − δγ2T4 + γ2gT4 + γ2 jT4 − Cγ2k2T4 − γ2ϕT5, (A8)

a2 = γT2(γ(k + T2)− 2δ(−1 + Ck1 + T)(k + T2)− 2(−1 + Ck1 + T)(−gk + Ck2k+

kϕT − (g + j − Ck2)T2 + ϕT3)). (A9)

Given that a0 is always positive, for a real and positive solution T, Equation (A5) is a
polynomial of third order in E. The application of Descartes rule of sign stipulates that the
maximum real and positive roots for Equation (A5) is three which corresponds to the case
when a1 < 0, a2 > 0 and a3 < 0.

For the local stability of the nontrivial steady state, the Jacobian matrix of the model
(Equations (5)–(8)) is given by:
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J =

 J1T J1E J1C

J2T J2E J2C

J3T J3E J3C

. (A10)

J1T = 1 − γE − k1C − 2T +
sτνEτTτ

(Eτ + sTτ)2 − νEτ

Eτ + sTτ

J1E = −γT +
τνTE−1+2τ

(Eτ + sTτ)2 − τνTE−1+τ

Eτ + sTτ

J1C = −k1T

J2T = E(−ϕ +
2jkT

(k + T2)2 − 2(−1 + τ)gTE2τ

2hsEτTτ + hs2T2τ + E2τ(h + T2)
+

2gE3τT(sτhTτ + Eλ(τh + (−1 + τ)T2))

(2hsEτTτ + hs2T2τ + E2τ(h + T2))2 )

J2E = −δ − k2C − ϕT + jT2

k+T2 −
2gτE3τ T2

(Eτ+sTτ)3(h+ E2τ T2
(Eτ+sTτ )2

)
+ g(1+2τ)E2τ T2

(Eτ+sTτ)2(h+ E2τ T2
(Eτ+sTτ )2

)
−

gE1+2τ T2(−2τE−1+3τ T2

(Eτ+sTτ )3
+ 2τE−1+2τ T2

(Eτ+sTτ )2
)

(Eτ+sTτ)2(h+ E2τ T2
(Eτ+sTτ )2

)2

J2C = −k2E

J3T = 0

J3E = 0

J3C = −µ

Since J3T = 0 and J3E = 0, one eigenvalue is λ = −µ, while the two other satisfy

λ2 − (J1T + J2E)λ + (J1T J2E − J1E J2T) =0. (A11)

The elements (J1T + j2E) and (J1T J2E − J1E J2T) are respectively the trace and determi-
nant of the 2 by 2 Jacobian matrix formed by eliminating the third equation (Equation (7))
that does not depend on the two others. The local stability of the eigenvalues is based on
the sign of trace and determinant although numerical analysis is essential because of the
transcendental nature of the equations. The same can be said about the study of occurrence
of saddle–node bifurcation using the Sotomayor theorem [38].

Appendix B. Derivation of Equations (11) and (12) for Eigenvalues of
Tumor-Free Equilibrium

Substituting for the tumor-free conditions, T = 0, E = 1
δ+k2C , C = u

µ yields the
following elements of the Jacobian matrix.

J1T = 1 − ν − k1u
µ

− γ

δ + k2u
µ

J1E = 0, J1C = 0

J2T =
−ϕ

δ + k2u
µ

J2E = −δ − k2u
µ
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J2C =
−k2

δ + k2u
µ

J3T = 0; J3E = 0; J3C = −µ.

The eigenvalues of the Jacobian matrix can be readily obtained and are those of
Equations (11) and (12).
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