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Abstract: Exosomes, nano-sized lipid bilayer vesicles, have garnered significant attention as medi-
ators of cell communication, particularly within the central nervous system (CNS). Their unique
properties, including high stability, low immunogenicity, and the ability to traverse the blood-brain
barrier (BBB), position them as promising tools for understanding and addressing CNS diseases. This
comprehensive review delves into the biogenesis, properties, composition, functions, and isolation
of exosomes, with a particular focus on their roles in cerebrovascular diseases, neurodegenerative
disorders, and CNS tumors. Exosomes are involved in key pathophysiological processes in the
CNS, including angiogenesis, inflammation, apoptosis, and cellular microenvironment modification.
They demonstrate promise in mitigating ischemic injury, regulating inflammatory responses, and
providing neuroprotection across various CNS conditions. Furthermore, exosomes carry distinct
biomolecules, offering a novel method for the early diagnosis and monitoring of CNS diseases.
Despite their potential, challenges such as complex extraction processes, the heterogeneity of ex-
osomal contents, and targeted delivery limitations hinder their clinical application. Nevertheless,
exosomes hold significant promise for advancing our understanding of CNS diseases and developing
novel therapeutic strategies. This manuscript significantly contributes to the field by highlighting
exosomes’ potential in advancing our understanding of CNS diseases, underscoring their unique
value in developing novel therapeutic strategies and mediating cellular communication.

Keywords: exosomes; central nervous system diseases; blood-brain barrier; neuroprotection;
therapeutic applications

1. Introduction

The blood-brain barrier (BBB) has long posed a significant challenge for central ner-
vous system (CNS) research, particularly regarding the delivery of therapeutic agents.
Recent advancements in science and technology have led to the discovery of numerous
nanomaterials, spurring innovations in both therapeutic and diagnostic strategies. Among
these, exosomes, a subclass of nanomaterials, have garnered considerable attention for their
potential in theranostic applications due to their multifaceted cellular effects [1].

Exosomes, which originate from endocytosis, are secreted by nearly all cell types and
are present in various extracellular fluids [2–6]. Initially identified in sheep reticulocytes
by Johnstone et al. over three decades ago and regarded merely as cellular debris, the
perception of exosomes has dramatically evolved [7]. It is now recognized that exosomes
facilitate intercellular communication, influencing a wide array of biological processes,
including angiogenesis, inflammation, apoptosis, and the modulation of the cellular mi-
croenvironment [5,8,9]. Notably, exosomes can traverse the BBB under certain conditions,
underscoring their potential to affect CNS pathophysiological processes and serve as viable
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drug carriers for treating CNS disorders [10,11]. This review provides a comprehensive
analysis of the biological characteristics of exosomes and summarizes the current research
dedicated to their application, with a particular focus on the relationship between exosomes
and CNS disorders.

2. Biological Characteristics of Exosomes
2.1. Biogenesis

Exosomes are generated from the endocytic pathway [12]. This process begins with
the invagination of the plasma membrane, resulting in the formation of early sorting
endosomes (ESEs) [5,13,14]. These ESEs mature by incorporating various extracellular
components and membrane proteins, and transform into late sorting endosomes (LSEs).
The acidification of LSEs, primarily regulated by Rab5 and Vps34/P150, is crucial for their
maturation [15,16]. Afterwards, LSEs evolve into multivesicular bodies (MVBs), which
have two possible fates: degradation via lysosomes or fusion with the plasma membrane
to release exosomes into the extracellular space [17,18]. Although the exact mechanism
underlying exosome formation is complex and not fully established, prevailing theories
highlight the roles of the endosomal sorting complex required for transport (ESCRT)-
dependent and ESCRT-independent pathways. Additionally, four-transmembrane domain
proteins and lipid rafts are believed to participate in exosome formation (Figure 1) [19].

2.2. Properties

Exosomes, a class of extracellular vesicles ranging from 40 to 150 nm in diameter,
are identifiable in a myriad of body fluids, including blood, lymphatic fluid, saliva, urine,
semen, and breast milk [20]. Characterized predominantly by the lipid-to-protein ratio,
their density falls between 1.13 and 1.19 g/mL, as determined through density gradient
centrifugation [21,22]. Under transmission electron microscopy, exosomes typically present
as cup-shaped entities but appear as round vesicles under cryo-electron microscopy [23].
The morphology of exosomes can vary even when derived from the same cell type, high-
lighting their heterogeneity and the importance of developing refined isolation techniques
based on their physical properties [24].

2.3. Composition

The composition of exosomes reflects the dynamic state of their originating cells,
embodying a complex array of proteins, lipids, and nucleic acids (Figure 2) [25,26]. This
compositional variability endows exosomes with a broad spectrum of biological func-
tionalities [8]. Proteins within exosomes, whether ubiquitous or cell-specific, are derived
from processes such as endocytosis, membrane fusion, and cytoplasmic activities [27–29].
Ubiquitous proteins, including cytoskeletal proteins, tetraspanin, and GTPases, are essen-
tial for the structural integrity and functional efficacy of virtually all exosomes [15,30,31].
Conversely, cell-specific proteins, dictated by the exosome’s cellular origin, confer unique
functional attributes tailored to specific physiological or pathological contexts [15,32,33].

Additionally, exosomes are rich in various forms of RNA, including messenger RNAs,
long non-coding RNAs, and transfer RNAs. These nucleic acids can be transcribed and
translated or even directly integrated into the genome of recipient cells, thus profoundly
influencing their phenotypic characteristics [34,35]. The strategic inclusion of RNAs within
exosome cargoes, as highlighted by Fabbiano et al., mirrors the state of the originating
cell, which underscores the utility of exosomal RNAs in diagnostic applications [36,37].
Moreover, the lipid makeup of exosomes—distinct from that of their parental cells and
enriched in cholesterol, sphingolipids, phosphatidylserine, and ceramides [35]—fortifies
the stability of the exosomal membrane, further exemplifying the intricate design and
functional capacity of these vesicles [38,39].
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Figure 1. Exosomal biogenesis and pathways to biological roles. Exosomes originate from endocytosis.
During this process, invagination of the plasma membrane transforms ESEs into LSEs through
multiple folding and chemical reactions. Coordinated with Rab, GTPase, and SNARE proteins,
MVBs fuse with the plasma membrane to release exosomes. Exosomes are characterized by their
heterogeneity, necessitating efficient isolation and purification techniques. They fulfill biological roles
through fusion, endocytosis, and interaction with receptors, thereby activating various signaling
pathways involved in central nervous system diseases. Abbreviations: ESE, early sorting endosomes;
LSE, late sorting endosomes; MVB, multivesicular bodies.
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Figure 2. Exosomal structure. Exosomes are stable bilayer membrane vesicles. The contents of dif-
ferent exosomes vary considerably. Generally, exosomes contain three main types of substances: 
proteins, lipids, and nucleic acids. Proteins are distributed on and within the membranes and play 
roles in exosomal formation and signaling. The nucleic acids in exosomes are mainly RNA, although 
some DNA is also present. The lipids are primarily located in the membrane, enhancing the stability 
of the exosomal membrane and assisting in signaling. Abbreviations: ESCRT, endosomal sorting 
complex required for transport; MHC, major histocompatibility complex. 

2.4. Functions and Advantages 
Exosomes serve as versatile nanoplatforms, orchestrating the delivery of biomolecu-

lar cargoes, thereby regulating intercellular communication and modulating the behavior 
of recipient cells [13,40]. Their functional diversity is attributed to their origin, size, and 
varied constituents [41]. Exosomes can either promote or inhibit disease progression, ren-
dering them promising for both diagnostic and therapeutic applications [42,43]. The pres-
ence of exosomes in various body fluids offers a novel approach to the early diagnosis and 
monitoring of a range of disorders. Furthermore, the innate biocompatibility of exosomes, 
combined with their ability to traverse biological barriers such as the BBB, positions them 
as invaluable therapeutic agents. They provide several advantages, including extending 
drug half-lives, minimizing systemic toxicity, and enhancing targeting efficacy [44]. 

Figure 2. Exosomal structure. Exosomes are stable bilayer membrane vesicles. The contents of
different exosomes vary considerably. Generally, exosomes contain three main types of substances:
proteins, lipids, and nucleic acids. Proteins are distributed on and within the membranes and play
roles in exosomal formation and signaling. The nucleic acids in exosomes are mainly RNA, although
some DNA is also present. The lipids are primarily located in the membrane, enhancing the stability
of the exosomal membrane and assisting in signaling. Abbreviations: ESCRT, endosomal sorting
complex required for transport; MHC, major histocompatibility complex.

2.4. Functions and Advantages

Exosomes serve as versatile nanoplatforms, orchestrating the delivery of biomolecular
cargoes, thereby regulating intercellular communication and modulating the behavior of
recipient cells [13,40]. Their functional diversity is attributed to their origin, size, and varied
constituents [41]. Exosomes can either promote or inhibit disease progression, rendering
them promising for both diagnostic and therapeutic applications [42,43]. The presence
of exosomes in various body fluids offers a novel approach to the early diagnosis and
monitoring of a range of disorders. Furthermore, the innate biocompatibility of exosomes,
combined with their ability to traverse biological barriers such as the BBB, positions them
as invaluable therapeutic agents. They provide several advantages, including extending
drug half-lives, minimizing systemic toxicity, and enhancing targeting efficacy [44].

2.5. Isolation

As the potential of exosomes continues to be explored, related separation technologies
are rapidly advancing, effectively supporting their clinical use. Based on their physicochem-
ical properties and composition, multiple purification technologies have been developed,
including ultracentrifugation, ultrafiltration, size-exclusion chromatography, polymer pre-
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cipitation, immunoaffinity capture, and integrated microfluidic technique (Figure 1) [45].
Ultracentrifugation is considered the gold standard method due to its ability to generate
high centrifugal forces and eliminate the need for exosome labeling [46]. Recent advance-
ments have led to superior separation methods through improvements or combinations of
existing technologies [47]. For example, Chen et al. introduced double-coupled harmonic
oscillations into ultrafiltration, improving processing speed, yield, and purity [48]. Despite
significant advances in exosome isolation techniques, researchers still encounter challenges
such as complex extraction procedures and low yields [49].

3. Exosomal Effects in Cerebrovascular Diseases
3.1. Ischemic Cerebrovascular Disease

Ischemic cerebrovascular disease (CVD) is a leading cause of mortality and disabil-
ity worldwide, representing a significant health concern [50,51]. Neuronal death in the
ischemic hemispheric zone occurs swiftly after the onset of an ischemic stroke, making
the interaction between exosome and neuronal death a critical area of study in cerebral
ischemia [52,53]. Exosomes exhibit notable effects on multiple cell death pathways, includ-
ing apoptosis, pyroptosis, and ferroptosis [54]. Neural progenitor cell-derived exosomes
reduce neural apoptosis through the NADPH oxidase 2 (Nox2)/reactive oxygen species
(ROS) and brain-derived neurotrophic factor (BDNF)/ tyrosine kinase receptor B (TrkB)
pathways. This effect is attributed to the overexpression of miR-126 and miR-210, which
diminishes ROS production and promotes dendritic spine density [55]. Further studies
indicate that exosomal opa interacting protein 5-antisense RNA 1 (OIP5-AS1) inhibits
neuronal pyroptosis by relying on thioredoxin-interacting protein (TXNIP) ubiquitination
and degradation [56]. Recently, ferroptosis has garnered attention due to its roles in the
prognosis of ischemic stroke [54]. Exosomes from adipose-derived mesenchymal stem cells
carrying miR-760-3p have proven to be effective anti-ferroptosis strategies. These exosomes
can inhibit the expression of ChaC glutathione specific gamma-glutamylcyclotransferase
1 (CHAC1), a key gene in the progression of ferroptosis [57].

In the context of the inflammatory response following ischemia, exosomes emerge
as vital mediators, particularly in modulating inflammasome activity. After the onset of
ischemic stroke, impaired brain tissues generate a series of damage-associated molecular
patterns (DAMPs), which activate immune cells [58,59]. Exosomes are crucial carriers of
DAMPs, [60] and inhibiting exosomes may prevent the diffusion of DAMPs [61]. Exo-
somes not only assist in DAMP diffusion but also mediate their production [62]. Exosomal
cargoes such as programmed death-ligand 1 (PD-L1) can retard necrosis, alleviating the
burst of DAMPs at its source [63]. Conversely, exosomal modification to DAMPs facilitates
their secretion and release [64]. Immune cells, especially microglia, are involved in the
initiation and progression of inflammation [65]. Exosomes can shift the phenotype of
activated microglia to either the “pro-inflammation” M1 type or the “anti-inflammation”
M2 type [66,67]. For instance, exosomes promote the conversion of microglia to an M1
phenotype through the Roquin-interferon regulatory factor 4 (IRF4) axis governed by ex-
osomal miR-3613-3p [68,69]. Exosomes can activate the nuclear factor-kappa B (NF-κB)
signaling pathway by acting on toll-like receptors (TLRs), thus promoting the polariza-
tion of macrophages to the M1 phenotype [70,71]. Furthermore, evidence suggests that
exosomes can regulate the function of macrophages, as exemplified by their ability to coun-
teract PAMP-induced macrophage activation through the prostaglandin E2 (PGE2)/cAMP
response element-binding protein (CREB) pathway [72].

Recent animal studies have progressively illuminated the crucial role exosomes play in
the pathogenesis of ischemic CVD (Figure 3). These vesicles have demonstrated a profound
capacity to mitigate brain damage at ischemic sites by promoting angiogenesis—a vital
mechanism for recovery after ischemic injury [73]. For instance, macrophage-derived
exosomes have been identified to upregulate the secretion of matrix metalloproteinases
(MMPs), essential for vascular remodeling and repair via the c-JunN-terminal kinase
(JNK) and p38 pathways [74,75]. Exosomes contain a variety of bioactive molecules im-
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perative for endothelial cell (EC) proliferation and migration, elements fundamental to
angiogenesis [76]. Specifically, exosomal miRNAs such as miR-21, augment angiogenesis
by increasing vascular endothelial growth factor (VEGF) levels reliant on a phosphatase
and tensin homolog deleted on chromosome ten (PTEN)/protein kinase B (Akt)-dependent
mechanism [77–79]. Additionally, exosomes from brain ECs, through the activation of the
Notch signaling pathway, collaborate with pericytes to bolster angiogenesis and maintain
BBB integrity [80]. This interaction also protects pericytes from pyroptosis, facilitating the
repair of ischemic damage [81].
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Figure 3. Exosomal effects in cerebrovascular diseases. Exosomes can influence the progression
of cerebrovascular diseases in various ways. They can accelerate the deterioration or delay the
progression of these diseases. Exosomes exert effects mainly through mechanisms involving neuronal
death, inflammation, angiogenesis, and neurogenesis. Abbreviations: MSCs, mesenchymal stem
cells; ROS, reactive oxygen species; BDNF, brain-derived neurotrophic factor; TrkB, tropomyosin
receptor kinase B; Nox2, NADPH oxidase 2; PD-L1, programmed cell death 1 ligand 1; DAMPs,
damage-associated molecular patterns; VEGF, vascular endothelial growth factor; MMP, matrix
metalloproteinase; JNK, c-Jun N-terminal kinase; NSCs, neural stem cells.

Neurogenesis can occur after various central nerve injuries, being especially important
for the improvement of neural function after stroke [82]. Emerging studies manifest
that exosomes partly mediate the rehabilitation of infarct focus. Exosomes first promote
angiogenesis and lay a solid material foundation for subsequent neurogenesis. Later,
exosomes promote neural stem cell recruitment and neuronal differentiation. Processes such
as axonal regeneration, remyelination, and synapse formation are subsequently launched,
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eventually resulting in neurogenesis and even brain structural remodeling [83–85]. During
neurogenesis, exosomes carry BDNF to promote neuroplasticity [86]. Exosomes regulate
neurogenesis mainly by miRNAs. MiR-124-3p is identified with the highest enrichment in
neuron-derived exosomes involved in neurogenesis [87]. Further research shows that miR-
124-3p may act on the phosphoinositide 3-kinase (PI3K)/AKT/NF-κB signaling pathway.
Increased levels of exosomal miR-193a are detected after neuronal differentiation [88],
further implying the relationship between exosomal miRNAs and neurogenesis.

3.2. Hemorrhagic Cerebrovascular Disease

Non-traumatic intracerebral hemorrhage (ICH) is considered the most lethal type of
stroke, with a mortality of exceeding 50% within one year [89]. Despite available medical
or surgical interventions, improving the prognosis of ICH remains a formidable chal-
lenge [90,91]. Recent research suggests exosomes as potential innovative therapies for ICH.
For instance, using a mouse model of ICH, Li et al. documented an increase in exosome
levels in the brain, finding that suppression of their release exacerbated neurological dam-
age [92]. The therapeutic effects of exosomes are largely dependent upon their cargo. Lai
et al. discovered that delivering exosomal miR-193b-3p to mice with subarachnoid hemor-
rhage (SAH) ameliorated subsequent neuroinflammatory responses and neurobehavioral
impairments, presumably by downregulating histone deacetylase 3 (HDAC3) expression
and upregulating NF-κB p65 acetylation [93]. Another study demonstrated that exosomal
miR-124 could restrict microglial activation and neuroinflammation, thereby alleviating
secondary brain injury in a SAH rat model [94]. BDNF is known to exert critical functions
in mediating neuronal survival in various diseases, including ICH. Further investigation
has shown that BDNF transferred by mesenchymal stem cell (MSC)-derived exosomes can
attenuate apoptotic neuronal death and enhance neurogenesis following intraventricular
hemorrhage in vivo [95]. Nevertheless, as these exploratory studies are mainly conducted
on small animals, the therapeutic value of exosomes in ICH remains uncertain.

3.3. Venous Thromboembolism

Cerebral venous thrombosis (CVT), a rare but significant type of stroke, disproportion-
ately affects young individuals with a female predominance [96,97]. The heterogeneity in
clinical manifestations, myriad a risk of factors, lack of standardized treatment protocols,
and unpredictable patient outcomes complicate the diagnosis and management of CVT [98].

Exosomes have been implicated in the pathogenesis of venous thrombosis, potentially
regulating thrombus formation by modulating vascular EC activation, primarily through
mechanisms driven by oxidative stress and ROS [99]. Crewe et al. observed that adipocyte-
derived exosomes carrying oxidatively damaged mitochondrial particles could induce ROS
surges in recipient cells [100]. Conversely, Zhang et al. demonstrated that exosomal miR-522
could suppress ROS production by inhibiting Arachidonate-15-Lipoxygenase (ALOX15),
highlighting the dual role of exosomes in oxidative stress modulation [101]. Moreover,
exosomes influence EC activity by impacting key regulators such as P53, caspase-3, and
Plasminogen activator inhibitor-1. The intimate association between platelets and exosomes,
and their regulation of venous thromboembolism (VTE) through exosome secretion has
been documented [102]. In a previous study, the colchicine-mediated inhibition of platelet
exosome release was found to significantly lower prothrombin levels [103]. Exosomes also
orchestrate the systemic inflammatory response integral to VTE pathogenesis by recruiting
inflammatory cells and releasing inflammatory factors.

Although D-dimer levels are traditionally used to predict thrombotic events, their
specificity is limited. Exosomes bearing a multitude of biological markers may offer
enhanced diagnostic precision. Han et al. pinpointed exosomal peroxidase as a novel
marker for VTE diagnosis [104]. The differential expression of circulating miRNAs, such
as miR-522-3p and miR-134 between VTE patients and healthy controls further suggests a
potential diagnostic utility [105].
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In the therapeutic domain, exosomes hold promise for VTE management, with evidence
revealing that exosomal components could deter VTE progression or even reverse it. Notably,
exosomal miR-233 has been shown to counteract atherosclerosis and vascular endothelial in-
flammation, with similar therapeutic potentials observed for miR-342-3p and miR-339 [106,107].
Additionally, the adjunctive use of exosomes in existing therapies, exemplified by the deploy-
ment of exosome-eluting stents, underscores their potential to reduce endothelial hyperplasia,
mitigate inflammation, and lower the risk of thrombotic recurrence [108].

While research on the relationship between exosomes and CVT is limited, valuable
insights can be drawn from studies on other venous thromboses. Given the shared patho-
genesis between CVT and other forms of venous thrombosis, there is a high likelihood
that exosomes could be applicable to CVT. With their ability to cross the BBB, exosomes
may herald a new era in CVT research. The main effects of exosomes in the progression of
cerebrovascular diseases are detailed in Table 1.

Table 1. The main effects of exosomes in the progression of cerebrovascular diseases.

Targeted Disease Parental Cell Effective Elements
of Exosome Target Cell Effect Possible Mechanisms Ref.

Ischemic
cerebrovascular disease NPC/EPC miR-126/miR-210 Nerve cell Neuroprotection

Downregulation of Nox2
and increase in BDNF

and p-TrkB/TrkB levels
[53]

Ischemic
cerebrovascular disease M2 microglia OIP5-AS1 Nerve cell Neuroprotection

Induce TXNIP ubiquitination
and degradation by recruiting
ITCH, negatively regulating

TXNIP stability

[54]

Ischemic
cerebrovascular disease ADSC miR-760-3p Nerve cell Neuroprotection Inhibit the expression of

CHAC1 to restrain ferroptosis [55]

Ischemic
cerebrovascular disease Tumor cell PD-L1 T cell Suppress

inflammation

Exosomal cargoes such as PD-L1 can
retard necrosis, alleviating the burst

of DAMPs at its source
[61]

Ischemic
cerebrovascular disease Microglia MPO Nerve cell Trigger

inflammation

Stimulate the production of
hypochlorous acid and oxidative

modification of HMGB1, facilitating
the secretion and release of HMGB1
and activating neuroinflammation

[62]

Ischemic
cerebrovascular disease

Panax
notoginseng Lipid Nerve cell Suppress

inflammation

Alter the phenotype of microglia from
“pro-inflammation” M1 type to
“anti-inflammation” M2 type

[64]

Ischemic
cerebrovascular disease Neuron miR-21-5p Microglia Trigger

inflammation

Exosomal miR-21-5p induces microglia
polarization, aggravating the release of

neuroinflammation factors
[65]

Ischemic
cerebrovascular disease BMEC miR-3613-3p Microglia Trigger

inflammation

Exosomal miR-3613-3p promotes
microglial M1 polarization by

inhibiting RC3H1 protein levels
[66]

Ischemic
cerebrovascular disease / CpG oligonucleotides Macrophage Trigger

inflammation

Act on toll-like receptors to activate
the NF-κB signaling pathway, thus

promoting the polarization of
macrophages to the M1 phenotype

[68]

Ischemic
cerebrovascular disease / / Macrophage Suppress

inflammation

Activate the PGE2/CREB
pathway, thus decreasing

the production of
inflammatory cytokines

[70]

Ischemic
cerebrovascular disease Macrophage Unspecified VSMC Angiogenesis

Stimulate JNK and p38 pathways
to enhance the production

of MMP-2 in VSMCs
[73]

Ischemic
cerebrovascular disease Endothelial cell VEGF Endothelial

cell Angiogenesis Bind to the relevant receptor
and then activate MAPK [74]

MSC miR-21 Endothelial
cell Angiogenesis

Upregulate vascular
growth factor levels via
the PTEN/Akt pathway

[77]

Ischemic
cerebrovascular disease MSC Unspecified Pericyte Angiogenesis Inhibit pericyte pyroptosis [79]

Ischemic
cerebrovascular disease Nerve cell BDNF Nerve cell Neuroprotection

Improve the pathological
microenvironment and
promote neuroplasticity

[84]



Biomolecules 2024, 14, 1519 9 of 26

Table 1. Cont.

Targeted Disease Parental Cell Effective Elements
of Exosome Target Cell Effect Possible Mechanisms Ref.

Ischemic
cerebrovascular disease Nerve cell miR-124-3p Nerve cell Neuroprotection

Upgrade the level of MYH9 by
PI3K/AKT/NF-κB signaling

cascades to suppress the
activation of M1 microglia

[85]

Hemorrhagic
cerebrovascular disease MSC miR-193b-3p Nerve cell Suppress

inflammation
Reduce the expression of HDAC3

and acetylate the NF-κB p65 [91]

Hemorrhagic
cerebrovascular disease Neuron miR-124 Microglia Suppress

inflammation
Target protein

CCAAT-enhancer-binding protein α
[92]

Hemorrhagic
cerebrovascular disease MSC BDNF Nerve cell Neuroprotection

Facilitate the expression of
the anti-apoptotic protein gene

BCL-2, thus promoting neuronal
cell survival and increasing

synaptic plasticity

[93]

Abbreviations: NPC, neural progenitor cell; EPC, endothelial progenitor cell; Nox2, NADPH oxidase 2; BDNF,
brain-derived neurotrophic factor; TrkB, tyrosine receptor kinase B; OIP5-AS1, opa interacting protein 5-antisense
RNA 1; TXNIP, thioredoxin interacting protein; ITCH, itchy E3 ubiquitin protein ligase gene; ADSC, adipose-
derived stem cell; CHAC1, ChaC glutathione specific gamma-glutamylcyclotransferase 1; PD-L1, programmed cell
death 1 ligand 1; DAMP, damage associated molecular pattern; MPO, myeloperoxidase; HMGB1, high mobility
group box-1 protein; BMEC, brain-microvessel endothelial cell; RC3H1, ring finger and CCCH-type domains 1;
NF-κB, nuclear factor kappa-B; PGE2, prostaglandin E2; CREB, cAMP-response element binding protein; VSMC,
vascular smooth muscle cell; JNK, c-Jun N-terminal protein kinases; MMP-2, matrix metalloproteinase-2; VEGF,
vascular endothelial growth factor; MAPK, mitogen-activated protein kinase; MSC, mesenchymal stem cell; PTEN,
phosphatase and tensin homolog deleted on chromosome ten; Akt, protein kinase B; MYH9, myosin heavy chain
9; PI3K, phosphoinositide 3-kinase; HDAC3, histone deacetylase 3; BCL-2, B-cell lymphoma-2.

4. Brain Tumor

Brain tumors, although relatively rare, are notably lethal, especially among children
and adolescents, where they are responsible for a substantial proportion of cancer-related
deaths [109]. Exosomes may play a key role in the development and potential treatment of
brain tumors.

4.1. Exosomes in Brain Tumor Development

The tumor microenvironment (TME) of brain tumors, comprising the extracellular
matrix, blood vessels, stromal cells (e.g., immune cells, fibroblasts, ECs, mesenchymal stem
cells), and a milieu of secreted factors (e.g., cytokines, growth factors), profoundly influ-
ences tumor progression [110,111]. Recent research has spotlighted the ability of exosomes
to remodel the TME, thereby facilitating tumor development through mechanisms includ-
ing angiogenesis, immune evasion, and the provision of stimulatory signals (Figure 3).

Angiogenesis, a process that supplies oxygen and nutrients to tumor cells and con-
tributes to tumor metastasis and recurrence [112], is recognized as a hallmark of can-
cer [111]. Exosomes laden with angiogenic factors like VEGF, fibroblast growth factor
(FGF), interleukin-6 (IL-6), and interleukin-8 (IL-8) [15] promote the migration and pro-
liferation of vascular endothelial cells (VECs), thus bolstering angiogenesis. Moreover,
exosomal miRNAs, including miR-135b, miR-210, and miR-21, are implicated in modu-
lating the biological behavior of these ECs [113,114]. Beyond affecting VECs, exosomes
also act on other components of the TME, such as macrophages, MSCs, and fibroblasts, to
release pro-angiogenic signals [115–117].

Tumor cell-derived exosomes carrying oncogenic factors seed the TME with condi-
tions conducive to tumor growth. The secretion of exosomes is directly proportional to
tumor aggressiveness, highlighting their role in cancer biology [118,119]. For example,
glioblastoma-derived exosomes containing the Notch1 protein can induce carcinogenesis
in normal glial cells through Notch1 signaling activation [119]. The inflammatory milieu
within the TME [120], augmented by the exosomal secretion of transforming growth factor
beta (TGF-β), interleukin-4 (IL-4), and interleukin-10 (IL-10), modulates the local immune
response to favor tumor progression [121].

The interaction between tumor cells and the immune system is intricately mediated
by exosomes within the TME [122], leading to an immunosuppressive environment that
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facilitates tumor development [123]. Exosomal PD-L1, for instance, binds to programmed
death-1 (PD-1) on CD8+ T lymphocytes, attenuating their activity and proliferation [124].
Exosomes also downregulate the expression of co-stimulatory molecules (e.g., CD27), fur-
ther inhibiting T cell activation [125]. In response to exosomal signals, macrophages may
undergo polarization to the M2 phenotype, which supports tumor growth and metasta-
sis [126]. Additional studies have demonstrated that tumor cell-derived exosomes extend
the survival of M2 macrophages within the TME [127] and similarly modulate other im-
mune cells (e.g., NK cells, dendritic cells, myeloid-derived suppressor cells), resulting in
overall immunosuppression [128].

Besides remodeling the TME, exosomes directly interact with tumor cells to facilitate
the development of drug resistance [118]. Ding et al. reported that exosomal circ_0072083
promotes temozolomide resistance in glioma by regulating miR-1252-5p-mediated degra-
dation and demethylation [129]. Cells may develop resistance to therapeutic agents by
absorbing exosomes from cells already resistant to those treatments [130,131]. This discov-
ery points to the complex role exosomes play in mediating cellular communication and drug
resistance, emphasizing their significance in understanding cancer’s adaptive mechanisms
and in devising innovative therapeutic strategies to counteract tumor resilience.

4.2. Exosomes in the Diagnosis and Treatment of Brain Tumors

Exosomes, ubiquitous in body fluids, facilitate liquid biopsies by carrying distinct
biomolecules from healthy individuals to patients with brain tumors (Figure 4) [132].
Their cargo, particularly miRNAs stabilized by exosomal membranes, can act as crucial
biomarkers for diagnosing brain tumors [4]. Lan et al. observed that glioma patients ex-
hibit significantly elevated serum levels of exosomal miR-301a compared to controls [133].
Furthermore, the differential presence of exosomal miR-766-5p elevates its utility in dis-
tinguishing glioma from conditions such as intracranial lymphoma [134]. The correlation
between exosomal miR-210 levels and brain tumor malignancy further underscores the
prognostic value of exosomal miRNAs [135].

The effective delivery of anticancer drugs is often hindered by obstacles such as poor
solubility, limited bioavailability, and the inability to penetrate the BBB [40]. Exosomes
emerge as promising vectors capable of overcoming these barriers, facilitating drug delivery
directly to brain tumors. Their inherent stability, subtle negative surface charge, and spe-
cific membrane components, such as glycosaminoglycans derived from glioma exosomes,
significantly enhance their targeting efficiency [136]. The acidic microenvironment of tu-
mors and the enhanced permeability and retention effect in solid tumors further improve
exosome-mediated delivery, optimizing drug targeting to malignant cells [137,138].

Exosomes also mediate intercellular communication that can accelerate tumor growth
and metastasis. Inhibiting tumor cell secretion of exosomes may decelerate tumor progres-
sion, making the identification of efficient and selective exosome inhibitors a vital research
avenue. The association of Rab proteins with exosome secretion positions compounds like
tipifarnib as potential inhibitors, which reduce the release of exosomes and thereby their
contribution to tumor development [139]. Additionally, targeting sphingomyelinase with
specific inhibitors such as Manumycin A offers another therapeutic strategy to suppress
tumor-derived exosome secretion [140]. The main effects of exosomes in the progression of
brain tumors are detailed in Table 2.
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Figure 4. Exosomal application in the diagnosis and treatment of brain tumors, AD, and PD. (A) Exo-
somes are present in various extracellular fluids, making them accessible from blood and cerebrospinal
fluid samples. After purification, their physical and chemical properties are analyzed to diagnose
diseases. (B) Exosomes, secreted by almost all cells, can cross the blood-brain barrier. Consequently,
they are widely used in the treatment of brain tumors, AD, and PD. Abbreviations: AD, Alzheimer’s
disease; PD, Parkinson’s disease; Aβ, amyloid β-protein.

Table 2. The main effects of exosomes in the progression of brain tumors.

Parental Cell Effective Elements
of Exosomes Target Cell Effect Possible Mechanisms Ref.

Tumor cell VEGF/FGF/IL-6/IL-8 Endothelial cell Angiogenesis
Stimulate the migration and

proliferation
of endothelial cells

[14]

Tumor cell miR-135b Endothelial cell Angiogenesis Block the expression of HIF-1 [112]

Tumor cell miR-210 Endothelial cell Angiogenesis Stimulate hypoxic signaling [112]

Tumor cell miR-21 Endothelial cell Angiogenesis Upregulate the expression of
pro-angiogenic factors [112]

Glioma cell Notch1 Protein Glial cell Carcinogenesis
Deliver Notch1 to surrounding cells,
inducing their dedifferentiation to

glioblastoma stem cells
[117]
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Table 2. Cont.

Parental Cell Effective Elements
of Exosomes Target Cell Effect Possible Mechanisms Ref.

Mesenchymal
stem cell Unspecified Treg cell Suppress

inflammation

Restrain the expression of
inflammatory cytokines and modulate
immune responses by increasing the

production of anti-inflammatory
mediators/regulate the Treg population

[119]

Tumor cell PD-L1 CD8+ T cell Immunoregulation
Exosomal PD-L1 binds with PD-1 on

the CD8+ T cell surface, thus
attenuating CD8+ T cell function

[122]

Tumor cell Galectin-1 CD8+ T cell Immunoregulation Induce a SP in CD8+ T cells [123]

Tumor cell Functional receptor tyrosine
kinase Monocyte Immunoregulation Activate the MAPK pathway and

generate a block of caspase cleavage [125]

Tumor cell circ_0072083 Tumor cell Drug resistance
Regulate miR-1252-5p-mediated

degradation and demethylation to
enhance the expression of NANOG

[127]

Abbreviations: VEGF, vascular endothelial growth factor; FGF, fibroblast growth factor; HIF-1, hypoxia-inducible
factor-1; Notch1, neurogenic locus notch homolog protein 1; PD-L1, programmed cell death 1 ligand 1; SP, suppressor
phenotype; MAPK, mitogen-activated protein kinase; NANOG, Nanog homeobox.

5. Neurodegenerative Diseases

Neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s dis-
ease (PD), multiple sclerosis (MS), and Huntington’s disease (HD), are characterized by
progressive neuronal loss and functional decline, leading to cognitive and behavioral im-
pairments [141]. According to the World Health Organization, these diseases are projected
to become the second leading cause of death globally [142]. Exosomes are increasingly
recognized for their critical roles in the pathogenesis, diagnosis, and treatment of neurode-
generative diseases, positioning them at the forefront of current research in this field.

5.1. Alzheimer’s Disease

The pathology of AD is marked by the accumulation of amyloid-beta (Aβ) and neu-
rofibrillary tangles (NFT), formed by hyperphosphorylated Tau protein [143]. Exosomes
play a dual role in AD, contributing to pathology while also holding promise for diagnostic
and therapeutic applications (Figure 4). They are implicated in the cleavage of amyloid
precursor proteins (APPs) through β-secretase, a crucial step in Aβ production [144]. More-
over, exosomal miRNAs, notably miR-101, can modulate APP expression and β-secretase
activity, thereby affecting Aβ aggregation [145,146]. The presence of exosomal proteins like
Alix in amyloid plaques of AD patients further signifies the significance of exosomes in Aβ

aggregation [146]. Additionally, the interaction between exosomes and Aβ, facilitated by
ceramides within exosomes, promotes Aβ aggregation [147].

Tau pathology, another hallmark of AD, involves the transformation of normal tau
proteins into hyperphosphorylated variants, culminating in NFT formation [148]. Exo-
somal miRNAs, such as miRNA-200c, have been shown to contribute to increased tau
phosphorylation [149]. Research indicates that phosphorylated Tau proteins are enriched
in exosomes secreted by the brain tissue of AD patients, suggesting their involvement in
the effective transmission of Tau proteins [150,151].

Lysosomal dysfunction, linked to neuronal loss in AD [152], promotes exosomal
secretion to eliminate toxic proteins. This process exacerbates the accumulation of extracel-
lular toxic proteins, predominantly Aβ metabolites [153]. Upon internalization by other
cells, these proteins can impair cellular mitochondria and ion channels, leading to cell
death [154,155]. Furthermore, neuron-derived exosomes in AD patients exhibit significantly
reduced levels of cell survival factors, such as low-density lipoprotein receptor-related
protein 6 (LRP6) and heat shock factor-1 (HSP-1), compared to controls [156]. Exosomes
are also related to intracranial inflammation, evidenced by elevated levels of complement
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components and pro-inflammatory factors in cerebrospinal fluid (CSF)-derived exosomes
from AD patients, signifying their contribution to disease progression [157].

Exosomes derived from neurons and astrocytes offer diagnostic markers for AD, [158]
enabling early detection and monitoring before symptom onset through the quantification
of Aβ and tau protein levels [159]. These proteins in neuron-derived exosomes correlate
with their levels in CSF, which indicate that the diagnostic accuracy is comparable to that
of CSF analysis [160]. Emerging research has identified exosomal proteins (e.g., cathep-
sin D and synaptosome-associated proteins) [161–163], and miRNAs (e.g., miR-30b-5p,
miR-22-3p, miR-378a-3p) as markers for early AD diagnosis [164].

Therapeutically, exosomes can mediate the degradation of Aβ through various pathways,
including direct breakdown by enzymes such as enkephalinase and insulinase [165,166],
or indirectly by promoting Aβ clearance via lymphatic drainage and BBB transport [144].
Sphingolipids in exosomes can induce conformational changes in Aβ deposits, facilitating
their uptake and breakdown by glial cells [167].

AD is often accompanied by pathological features such as oxidative stress and synaptic
dysfunction, which can cause severe neuronal loss [168]. Exosomes have a neuroprotective
role, potentially improving the prognosis of AD patients by suppressing inflammation
through the regulation of glial cell function [169]. MSC-derived exosomes have been shown
to protect hippocampal neurons by inhibiting oxidative stress induced by Aβ, possibly
involving exosomal peroxidase [170]. Another study demonstrated that exosomes secreted
by neural stem cells could safeguard synapses against Aβ binding [171]. Moreover, Wei
et al. discovered that MSC-derived exosomal miR-223 offered protection to neuronal cells
from apoptosis through the PTEN-PI3K/Akt pathway [172]. The main effects of exosomes
in the progression of AD are shown in Table 3.

Table 3. The main effects of exosomes in the progression of Alzheimer’s Disease.

Parental Cell Effective Elements
of Exosomes Target Cell Effect Possible Mechanisms Ref.

Neuron miR-101 / Propagate Aβ
Inhibit amyloid precursor protein

expression and β-secretase activity [143]

Neuron Alix / Propagate Aβ Unspecified [144]

Neuron miR-200c Neuron Increase Tau
phosphorylation Promote p-GSK-3β phosphorylation [147]

Neuron Metabolites of Aβ Neuron Neuronal loss
Damage cellular mitochondria as well as
regulate ion channels, thus promoting the

death of the cells involved

[152,
153]

Neuron LRP6/HSF1 Neuron Neuroprotection Activate genes encoding survival factors [154]

Astrocyte Complement protein Macrophage/Neutrophil Inflammation Stimulate inflammatory cells [155]

Abbreviations: Aβ, amyloid β-protein; p-GSK-3β, glycogen synthase kinase-3β phosphorylation; LRP6, low-
density lipoprotein receptor-related protein 6; HSF1, heat-shock factor-1.

5.2. Parkinson’s Disease

PD is delineated by the aggregation of α-synuclein (α-syn), which leads to the forma-
tion of Lewy bodies and a pronounced loss of dopaminergic neurons in the substantia nigra
pars compacta [173]. Exosomes have been identified as key players in the transmission of
α-syn, [174] enabling its transport across long distances and inducing substantial neuro-
toxic effects (Figure 4) [175]. The presence of α-syn in exosomes enhances cellular uptake
and drives neuroinflammation, ultimately resulting in neuronal death [176]. Moreover,
exosomal miRNAs, such as miR-21 and miR-146a, are known to trigger inflammatory
responses through the NF-κB/NLR family pyrin domain containing 3 (NLRP3) pathway,
which further aggravates PD progression [177].

The transportation of miRNAs and aberrant proteins by exosomes sheds light on the
mechanisms underlying PD progression and unveils potential therapeutic targets [178]. Shi
et al. reported a correlation between exosomal α-syn levels and the severity of PD, with
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these levels being substantially higher than those in serum [179]. Comparative protein
analysis of plasma exosomes from PD patients revealed significantly reduced levels of
clusterin, complement C1r subcomponents, and apolipoprotein A1 compared to healthy
individuals [180]. Additionally, exosomal miRNA profiling indicated a marked elevation in
miR-331-5p levels, alongside a decrease in miR-505, suggesting their utility as biomarkers
for PD [181].

Current treatments for PD primarily address symptoms without offering a cure. The
capability of exosomes to ferry active substances across the BBB presents a promising
therapeutic avenue. Qu et al. illustrated that exosomes could effectively deliver dopamine
to the brain, leveraging interactions between transferrin and its receptors [182]. Exosomes
are also capable of transporting genetic material that can regulate gene expression [183].
Kojima et al. observed significant anti-inflammatory effects in rat models of PD through
the delivery of hydrogen peroxide via exosomes [184]. Furthermore, Izco et al. reported
the successful inhibition of α-syn aggregation in PD rat models by utilizing exosomes to
convey short hairpin RNA (shRNA) [185].

5.3. Other Neurodegenerative Diseases

Neurodegenerative diseases encompass a spectrum of conditions marked by progres-
sive CNS damage [186]. Despite their varied etiologies, these disorders share common
pathological hallmarks, including abnormal protein aggregation, neuroinflammation, ox-
idative stress, and neuronal loss [187]. Exosomes, pivotal in cell-to-cell communication,
play significant roles across various physiological and pathological contexts, rendering
them indispensable to neurodegenerative disease research [22]. For instance, exosomes
have been identified as carriers of HD proteins, establishing them as a potential diagnos-
tic biomarker [188]. Moreover, research in MS models has revealed that exosomal let-7i
miRNA can influence the disease’s pathogenesis by targeting the insulin-like growth factor
1 receptor (IGF1R)/TGF-β type 1 receptor (TGFBR1) signaling pathway, which underscores
its therapeutic relevance [189]. The main effects of exosomes in the progression of PD, HD,
and MS are detailed in Table 4.

Table 4. The main effects of exosomes in the progression of Parkinson’s disease, Huntington’s disease,
and multiple sclerosis.

Parental Cell Effective Elements
of Exosomes Target Cell Effect Possible Mechanisms Ref.

Microglia a-synuclein Neuron Transmission of
a-synuclein Exosomes fuse with target cells [172]

Microglia miR-21/miR-146a Neuron Inflammation Stimulate the NF-κB/NLRP3 pathway [175]

Neuron Huntington protein Neuron Transmission of
Huntington protein Exosomes fuse with target cells [186]

Unspecified Let-7i Foxp3+Treg cells Immunomodulation Block the IGF1R/TGFBR1 pathway [187]

Abbreviations: NF-κB, nuclear factor kappa-B; NLRP3, nucleotide-binding oligomerization domain-like receptor
protein 3; IGF1R, insulin-like growth factor 1 receptor; TGFBR1, transforming growth factor beta receptor 1.

6. The Roles of Exosomes in Other Central Nervous System Diseases

Exosomes have emerged as key players in CNS diseases, attributed largely to their
ability to traverse the BBB. This unique characteristic positions them as a vital tool in
the study and treatment of CNS injuries, particularly by modulating processes such as
apoptosis, inflammation, and angiogenesis [190]. Guo et al. demonstrated the therapeutic
potential of exosomes by administering them with phosphatase and siRNA to rats suffer-
ing from spinal cord injuries. These exosomes were found to substantially foster axonal
regeneration and angiogenesis while concurrently reducing the proliferation of microglia
and astrocytes [191]. Likewise, Manek et al. observed that patients with severe cranial
injuries exhibited increased levels of exosomes associated with cell death and neurodegen-
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eration following brain injury. These findings suggest that targeting the release of such
exosomes could be a promising strategy to improve the prognosis for individuals with
CNS injuries [192].

7. Clinical Challenges and Perspectives

The transition of exosome research from bench to bedside in the context of CNS
diseases is at a pivotal juncture, fraught with challenges yet brimming with potential.
The multidimensional utility of exosomes as diagnostic tools, therapeutic vehicles, and
biomarkers offers a promising frontier in neurology. However, several significant barriers
to clinical translation persist, necessitating focused efforts to overcome them.

7.1. Complex Extraction and Scalability Issues

A primary concern in the clinical application of exosomes is the complexity of their
extraction and purification processes. Traditional methods such as ultracentrifugation,
while widely employed, often co-isolate non-exosomal extracellular vesicles, introducing
variability and potentially confounding experimental outcomes. Advanced techniques,
including size-exclusion chromatography and immunoaffinity capture, although offering
enhanced specificity, are labor-intensive and challenging in terms of scalability. These
methodological disparities underscore the pressing need for the development and stan-
dardization of protocols to ensure the reproducibility, purity, and scalability of exosome
preparations for clinical use.

7.2. Therapeutic Targeting and Delivery

The inherent ability of exosomes to traverse biological barriers, including the BBB,
heralds their potential as vehicles for CNS-targeted therapies. However, the engineering of
exosomes for enhanced targeting specificity to diseased cells or tissues remains a challenge.
Innovations in exosome surface modification techniques, such as the incorporation of
targeting ligands or antibodies, offer a path forward. These modifications aim to improve
the homing efficiency of therapeutic exosomes, ensuring their accumulation at the site of
pathology without off-target effects.

7.3. Regulatory and Safety Considerations

The regulatory landscape for exosome-based therapeutics remains nascent, with clear
guidelines for production, characterization, and quality control yet to be fully established.
Additionally, while exosomes are generally considered to have low immunogenicity, the
potential for immune responses, particularly when using allogeneic exosomes, cannot be
entirely discounted. Rigorous long-term safety and immunogenicity studies are essential
to elucidate and mitigate potential risks associated with exosome-based therapies.

7.4. Clinical Trials

Recent advancements in exosome research have catalyzed the initiation of several
promising clinical trials, as detailed in Table 5. For instance, an ongoing clinical trial
(NCT06082713) is at the forefront, evaluating the safety and preliminary efficacy of in-
travenously administered exosomes derived from human induced pluripotent stem cells
(GD-iExo-003) in acute ischemic stroke. This endeavor represents a significant step toward
harnessing the therapeutic potential of exosomes in mediating recovery after stroke. Con-
currently, another trial (NCT06082713) focuses on the discovery of blood-based biomarkers
for HD progression using extracellular vesicles. This study aims to enhance the preci-
sion of HD monitoring and establish standardized methodologies for extracellular vesicle
biomarker research, thereby setting a foundational benchmark for the field. Together, these
studies exemplify the dual focus of current exosome research on therapeutic application
and biomarker development, highlighting the field’s growing impact on personalized
medicine and its potential to revolutionize treatment paradigms for neurological disorders.
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Table 5. Ongoing clinical research on exosomes.

Research Period Related Disease Possible
Exosome Effects Research Purpose Study Type Estimated Enrollment NCT Number

2023/10/25–
2031/11 HD Biomarker

Use EVs to
identify a less invasive
blood-based biomarker

of brain Huntingtin

Observational 100 participants NCT06082713

2022/11/18–
2026/01/31

Acute ischemic
cerebrovascular

syndrome
Biomarker

Determine the performance of
EV profiling, added to a

structured clinical and imaging
evaluation, to discriminate TIAs

from TIA mimics

Observational 200 participants NCT06319742

2021/10/01–
2027/09/01

Acute ischemic
cerebrovascular

syndrome
Biomarker

Determine whether the
exosomes derived from

endothelial cells increase
thrombotic risk and the

resulting extended prothrombin
time is associated with patients

at highest risk of stroke

Observational 360 participants NCT05645081

2021/04/01–
2025/06/01

Post-stroke
cognitive

impairment
Biomarker

Investigate capillary
dysfunction and exosome
profiles as predictors of

cognitive function one year after
AIS and TIA

Observational 140 participants NCT06257823

2022/07/06–
2023/12/31 PD Biomarker

(1) Compare the effects between
experimental treatment and

conventional treatment;
(2) Explore whether it is possible

to identify predictive and
indicative biomarkers of an

outcome measure of
rehabilitation using EVs

Interventional
(Clinical Trial) 60 participants NCT05902065

2017/12/20–
2023/12 AD Biomarker Explore the presence of Tau in

extracellular vesicles in CSF Observational 100 participants NCT03381482

2013/01–
2016/06/21 PD Biomarker

(1) Determine whether there are
biomarkers associated with PD

susceptibility and/or
progression in

exosome-proteomes;
(2) Determine if LRRK2

expression and/or
phosphorylation are

significantly lowered in the
exosomes of individuals treated
with the potent LRRK2 kinase

inhibitor sunitinib (a
multi-kinase inhibitor

compound), to establish an
assay for on-target effects for

future LRRK2 inhibitor
clinical trials

Observational 601 participants NCT01860118

2022/08/01–
2025/07/31 PSD Treatment

Explore the role of
acupuncture-induced exosomes

in the treatment of PSD

Interventional 30 participants NCT05326724

2024/05/27–
2025/08/30 AIS Treatment

Evaluate safety and preliminary
efficacy of intravenous exosomes

derived from human induced
pluripotent stem cells in AIS

Interventional 29 participants NCT06138210

2023/07/04–
2024/05/31 OMG Biomarker

Find some specific miRNAs to
diagnose OMG (miR-340-5p,
miR-106b-5p, or miR-27a-3p)

Observational 160 participants NCT05888558

2024/12–2034/12 AD Prevention

Investigate the effect of a
long-term combined aerobic

exercise and cognitive training
program on cognitive function
and blood exosomal synaptic
protein levels for seniors at

increased risk for AD

Interventional 200 participants NCT05163626

Abbreviations: HD, Huntington’s disease; EVs, extracellular vesicles; TIAs, transient ischemic attacks; AIS, acute
ischemic stroke; PD, Parkinson’s Disease; AD, Alzheimer’s Disease; CSF, cerebrospinal fluid; LRRK2, leucine-rich
repeat kinase 2; PSD, post-stroke depression; OMG, ocular myasthenia gravis.
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7.5. Future Directions

The unique ability of exosomes to cross the BBB offers a significant advantage for both
diagnostics and therapeutics. This property has made exosomes a highly attractive tool
for delivering therapeutic agents directly to the brain. Furthermore, their role in carrying
disease-specific biomarkers presents a non-invasive approach to diagnosing multiple CNS
disorders such as CVD, tumors, and neurodegenerative diseases. However, challenges
remain in standardizing protocols for exosome isolation, achieving consistent targeting
precision, and ensuring sufficient payload capacity. Current studies are also limited by
technical bottlenecks in large-scale production and challenges in ensuring long-term safety
and biocompatibility. Additionally, the complexity of exosome-mediated signaling in the
CNS is not yet fully understood, limiting the translation of basic research findings into
clinical applications.

To navigate these challenges, future research directions must prioritize the integration
of cutting-edge technologies in nanotechnology and synthetic biology. These disciplines
hold promise for the creation of engineered exosomes with enhanced stability, targeting
precision, and therapeutic payload delivery. Fostering interdisciplinary collaborations
and public-private partnerships will be crucial for bridging the gap between exosome
research and its clinical implementation. Such collaborations can accelerate the translation
of basic research findings into therapeutic innovations, paving the way for exosome-based
diagnostics and therapeutics in CNS disease management. Additionally, standardizing
protocols for exosome production, purification, and characterization across laboratories
will be critical for ensuring reproducibility and scalability.

8. Conclusions

While exosomes present a novel and promising avenue for the diagnosis and treat-
ment of CNS diseases, realizing their full potential requires addressing current technical,
therapeutic, and regulatory challenges. Through concerted efforts in research and develop-
ment, standardization, and collaboration, exosomes can emerge as a cornerstone of future
therapeutic strategies against CNS pathologies.
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Abbreviations
CNS Central nervous system
BBB Blood-brain barrier
ESEs Early sorting endosomes
LSEs Late sorting endosomes
MVBs Multivesicular bodies
ESCRT Endosomal sorting complex required for transport
CVD Ischemic cerebrovascular disease
Nox2 NADPH oxidase 2
ROS Reactive oxygen species
BDNF Brain-derived neurotrophic factor
TrkB Tyrosine kinase receptor B
OIP5-AS1 Opa interacting protein 5-antisense RNA 1
TXNIP Thioredoxin-interacting protein
CHAC1 ChaC glutathione specific gamma-glutamylcyclotransferase 1
DAMPs Damage-associated molecular patterns
PD-L1 Programmed death-ligand 1
IRF4 Interferon regulatory factor 4
NF-κB Nuclear factor-kappa B
TLR Toll-like receptor
PGE2 Prostaglandin E2
CREB cAMP response element-binding protein
MMPs Matrix metalloproteinases
JNK c-JunN-terminal kinase
EC Endothelial cell
VEGF Vascular endothelial growth factor
PTEN Phosphatase and tensin homolog deleted on chromosome ten
Akt Protein kinase B
PI3K Phosphoinositide 3-kinase
ICH Intracerebral hemorrhage
SAH Subarachnoid hemorrhage
HDAC3 Histone deacetylase 3
MSC Mesenchymal stem cell
CVT Cerebral venous thrombosis
ALOX15 Arachidonate-15-Lipoxygenase
VTE Venous thromboembolism
TME Tumor microenvironment
FGF Fibroblast Growth Factor
IL-6 Interleukin-6
IL-8 Interleukin-8
VEC Vascular endothelial cell
TGF-β Transforming growth factor beta
IL-4 Interleukin-4
IL-10 Interleukin-10
PD-1 Programmed death-1
AD Alzheimer’s disease
PD Parkinson’s disease
MS Multiple sclerosis
HD Huntington’s disease
Aβ Amyloid-beta
NFT Neurofibrillary tangle
LRP6 Low-density lipoprotein receptor-related protein 6
HSP-1 Heat shock protein-1
CSF Cerebrospinal fluid
α-syn α-synuclein
NLRP3 NLR family pyrin domain containing 3
IGF1R Insulin-like growth factor 1 receptor
TGFBR1 TGF-β type 1 receptor
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