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Abstract

Background: Previous studies have indicated that the gut microbiome and plasma metabo-
lites play key roles in autism spectrum disorder (ASD), but their causal relationships remain
unclear. Linkage disequilibrium score regression (LDSC) and Mendelian randomization
(MR) are powerful tools for assessing genetic causality. This study uses LDSC and MR to in-
vestigate the genetic links between the gut microbiome and ASD and explore the mediating
role of plasma metabolites. Methods: To explore the genetic relationships between the gut
microbiome, plasma metabolites, and ASD, we obtained summary statistics from large-scale
genome-wide association studies (GWAS). Gut microbiome data came from a MiBioGen
consortium meta-analysis (N = 18,340), ASD data from the Danish Psychiatric Central
Research Register (DPCRR) (N = 18,382), and plasma metabolite data from the Canadian
Longitudinal Study of Aging (CLSA) (N = 8299). We applied LDSC and bidirectional MR to
analyze the genetic associations between the gut microbiome and ASD and plasma metabo-
lites and ASD. Mediation MR was used to assess the mediating role of plasma metabolites in
the gut microbiome-ASD relationship. Results: LDSC analysis revealed significant genetic
correlations between the gut microbiota Lachnospiraceae NK4A136 group and Sellimonas
with ASD. Moreover, bidirectional MR demonstrated causal effects of five gut microbial
genera on ASD risk, as indicated by inverse variance weighted (IVW) methods. Similarly,
we identified 49 plasma metabolites that exhibited genetic correlations with ASD, and
58 metabolites had causal effects on ASD in MR analysis. Mediation analysis revealed
that specific bacteria, Ruminiclostridium5, reduce the occurrence of ASD through metabo-
lites Delta-CEHC and Docosadioate (C22-DC). Furthermore, Ruminococcaceae UCG005 and
Sutterella modulate ASD by inhibiting Serotonin and N-acetyl-L-glutamine, respectively.
Conclusions: This study provides evidence of a causal relationship between the gut micro-
biome and ASD, with plasma metabolites acting as a potential mediator. Our findings offer
new insights into the causal mechanisms linking the gut microbiome and ASD and provide
a theoretical foundation for microbiome-based therapeutic strategies.
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1. Introduction
Autism Spectrum Disorders (ASD) encompass a range of complex neurodevelopmen-

tal disorders characterized by significant impairments in social interaction, communication,
and the presence of restrictive and repetitive behaviors [1]. The prevalence of ASD has
been steadily rising, with recent estimates indicating that approximately 1 in 43 children
worldwide (2.30%) are affected [2], underscoring the urgency of addressing this public
health issue. The clinical manifestations of ASD typically become apparent by the age of
three years; milder cases are often overlooked, resulting in delayed diagnosis and interven-
tion [3]. Early identification and intervention are crucial for enhancing outcomes in areas
such as social functioning, language development, and adaptive behavior.

Despite substantial progress in understanding the epidemiology of ASD, its precise
etiology remains incompletely understood. Current research reveals that ASD arises from a
complex interplay of genetic and environmental factors. Genetic studies have identified
several mutations, including those in the SHANK3 [4] and CNTNAP2 [5] genes, which are
implicated in ASD pathophysiology. In addition, prenatal exposure to environmental risk
factors such as pollutants, teratogens, and maternal nutritional deficiencies has been linked
to an increased risk of ASD [6–8]. However, although both genetic and environmental
factors play critical roles in the development of ASD, they do not fully account for the
observed heterogeneity in ASD prevalence, with significant variation remaining among
individuals with similar genetic and environmental backgrounds.

Microbes residing in symbiosis within the human gastrointestinal tract play a pivotal
role in health and disease [9]. Increasing evidence shows that the gut microbiota of individ-
uals with ASD differs significantly from that of healthy controls, with marked changes in
the abundance of specific bacterial taxa [10]. Pathogenic species such as Bacteroides and
Fusobacterium are often elevated in ASD [11], while beneficial bacteria like Bifidobacterium
and Lactobacillus are reduced [12]. Our own work in the 16p11.2dp/+ autism mouse model
has similarly shown decreased levels of Faecalibaculum and Romboutsia and increased levels
of Turicibacter and Prevotellaceae UCG_001 [13]. These microbiome alterations may influence
ASD pathogenesis via the gut–brain axis, potentially through modulation of short-chain
fatty acids, immune dysregulation, or disruption of intestinal barrier integrity (e.g., “leaky
gut”) [14–16]. Despite a growing body of evidence linking the microbiota to ASD, the causal
relationship remains unclear. Establishing causality could pave the way for microbiome-
targeted interventions and provide critical insights into neurodevelopmental disorders.

Plasma metabolites, small molecules produced through metabolic pathways, reflect
physiological states and may serve as biomarkers for disease. In ASD, plasma metabolite
profiles differ significantly from those in healthy controls, particularly in amino acids,
fatty acids, neurotransmitters, and other metabolites [17]. Notable examples include
altered levels of tryptophan and its derivatives (e.g., serotonin) [18], phenylalanine [19],
glutamate [20], γ-aminobutyric acid (GABA) [21], bile acids (e.g., deoxycholic acid) [22],
and fatty acids such as omega-3 (n-3) and omega-6 [23]. These changes may be key players
in ASD pathogenesis. Plasma metabolites are hypothesized to mediate ASD through
mechanisms involving gut microbiota and environmental influences. For example, gut-
derived short-chain fatty acids (SCFAs), including propionate and butyrate, modulate
immune responses and neurodevelopment, correlating with ASD symptoms [11]. Similarly,
shifts in tryptophan metabolism may impact brain development and behavior, driving
ASD progression [18]. These metabolites not only offer potential as biomarkers but also
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provide insights into the complex mechanisms underlying ASD. However, most evidence
is correlational, and causal roles for plasma metabolites in ASD remain to be established.
Determining these causal relationships could uncover novel therapeutic targets and deepen
understanding of ASD’s underlying mechanisms.

Current observational studies are insufficient to definitively determine the causal
relationships between gut microbiota, plasma metabolites, and ASD, making further explo-
ration essential. Statistical methods based on genome-wide association studies (GWAS)
offer promising tools for such investigations. Linkage disequilibrium score regression
(LDSC) uses GWAS summary statistics to evaluate genetic correlations while avoiding
sample overlap bias [24]. Mendelian randomization (MR), leveraging genetic variants as
instrumental variables, has emerged as a powerful approach for inferring causality [25].
Since genotypes precede phenotypes and alleles are randomly assigned at conception, MR
minimizes biases from measurement error, confounding, and reverse causation.

In this study, we applied LDSC and MR to evaluate the genetic correlations and
causal relationships between genetically predicted gut microbiota, plasma metabolites, and
ASD. We further investigated whether plasma metabolites mediate the pathway from gut
microbiota to ASD. Additionally, through reverse causality analysis, we explored whether
genetic predisposition to ASD influences gut microbiota and plasma metabolites. The key
findings of our study, which are highlighted as follows, directly address these objectives:

1. Identified causal links between gut microbiota, plasma metabolites, and ASD using
Mendelian Randomization.

2. Revealed key taxa, including Ruminiclostridium5, RuminococcaceaeUCG-005, and
Sutterella, influencing ASD through metabolites.

3. Highlighted metabolites like serotonin, N-acetyl-L-glutamine, Delta-CEHC, and
Docosadioate (C22-DC) as mediators in the gut–brain axis.

4. Proposed diagnostic and therapeutic targets for ASD based on gut microbiota
and metabolites.

2. Method
2.1. Study Design Overview

In our study, we utilized a Mendelian Randomization (MR) approach to assess the
potential causal links between gut microbiota, plasma metabolites, and Autism Spectrum
Disorder (ASD), outlined in a comprehensive three-step process (Figure 1). Initially, we
analyzed the impact of 211 types of gut microbiota on ASD (Step 1), employing Single
Nucleotide Polymorphisms (SNPs) as instrumental variables (IVs) to establish a causal con-
nection. Subsequently, our examination extended to the potential influences of 1458 plasma
metabolites on ASD (Step 2), using SNPs as IVs to pinpoint crucial metabolic pathways
potentially contributing to ASD’s etiology. The final phase involved a mediation analysis
(Step 3), which assessed the role of plasma metabolites as intermediaries in the link between
gut microbiota and ASD, thereby elucidating the gut–brain axis’s involvement in ASD. This
methodological framework relies on three foundational assumptions: that the SNPs serving
as IVs are significantly related to the exposures (either gut microbiota or metabolites); these
IVs are free from associations with any confounders; and the IVs affect the ASD outcome
exclusively through these exposures, without a direct impact. The entire study protocol is
detailed in the Supplementary Figure S1.
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Figure 1. Study overview. Step 1: Assessment of the causal effects of 211 gut microbiota taxa on ASD
using Single Nucleotide Polymorphisms (SNPs) as instrumental variables (IVs). 1A: Represents a
positive causal relationship of gut microbiota on ASD. 1B: Represents a negative causal relationship
of gut microbiota on ASD. Step 2: Investigation of the impact of 1458 plasma metabolites on ASD, uti-
lizing SNPs as IVs to identify key metabolic pathways potentially contributing to ASD pathogenesis.
2A: Represents a positive causal relationship of metabolites on ASD. 2B: Represents a negative causal
relationship of metabolites on ASD. Step 3: Mediation analysis to evaluate the role of plasma metabo-
lites as intermediaries in the association between gut microbiota and ASD, providing insights into
the involvement of the gut–brain axis in ASD development. a (Path a): Represents the causal effect of
gut microbiota on the mediating metabolites. b (Path b): Represents the causal effect of the mediating
metabolites on ASD after controlling for the influence of gut microbiota. c (Path c): Represents the
direct effect of gut microbiota on ASD (not through that specific metabolite).

2.2. Data Sources and Instruments
2.2.1. Gut Microbiota

Genetic instruments for gut microbiota were sourced from the MiBioGen consortium
(https://mibiogen.gcc.rug.nl (accessed on 15 January 2024)), which gathered data on the
fecal 16S rRNA sequencing data and GWAS information from 18,340 participants across
24 cohorts, 78% of whom were of European descent. Among these cohorts, twenty-two
cohorts comprised adult or adolescent individuals (N = 16,632), and two cohorts consisted
of children (N = 1708). After excluding unclassifiable microbial taxa, a total of 211 taxa were
identified, including 131 genera, 35 families, 20 orders, 16 classes, and 9 phyla. GWAS data
from all cohorts were adjusted for covariates such as genetic principal components, age,
sex, and other relevant factors. We identified SNPs meeting the genome-wide significance
threshold (p < 5 × 10−8) in these studies to serve as genetic instruments. Subsequent check
in the GWAS Catalog confirmed that the underlying studies for these SNP-microbiota
associations had pre-adjusted their models for covariates (e.g., age, sex), thereby obviating
the need for additional correction on our part.

2.2.2. Plasma Metabolome

In this study, serum metabolite data were derived from the Canadian Longitudinal
Study of Aging (CLSA) study (PubMed: 31633757). After excluding 203 European individ-
uals with first- and second-degree relatives identified through kinship inference, we ob-
tained a cohort of 8299 participants of European ancestry (doi:10.1038/s41588-022-01270-1).
Post-rigorous GWAS quality control, approximately 15.4 million SNPs were included

https://mibiogen.gcc.rug.nl
doi: 10.1038/s41588-022-01270-1
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in the analysis. Plasma metabolites were quantified using UPLC-MS/MS, identifying
1458 metabolites. Following a series of standardization and quality control steps, which
eliminated non-compliant data, a final selection of 1091 metabolites (including 850 known
substances and 241 unknown entities) and 309 metabolite ratios were chosen for genome-
wide association analysis. Given that metabolites serve both as substrates and products
of enzymatic reactions, investigating the genetic underpinnings of their ratios enhances
our understanding of broader biological processes; hence, the analysis also encompassed
309 metabolite ratios. We identified single nucleotide polymorphisms (SNPs) meeting
the genome-wide significance threshold (p < 1 × 10−5) in these GWASs to serve as
genetic instruments.

2.2.3. ASD

The Genetic data for ASD patients were sourced from the Danish Psychiatric Cen-
tral Research Register (DPCRR) (PubMed: 21775352), incorporating 18,382 child cases
diagnosed with ASD by psychiatrists according to ICD10 in 2013 or earlier, along with
27,969 control children excluding an ASD diagnosis. Through rigorous GWAS criteria
screening, a total of 9,112,386 SNPs were filtered for genetic studies.

2.2.4. Statistical Analysis

To ensure the independence and validity of our IVs, we first conducted an associ-
ation analysis, selecting SNPs strongly associated with the exposure factor from GWAS
based on a p-value criterion of less than 1 × 10−5. Additionally, we removed SNPs in
linkage disequilibrium (LD) by setting a threshold of R2 less than 0.001 within a 10,000 KB
range, enhancing the independence of our IVs. To ensure the strength of our instrumental
variables, we further excluded weak instruments with an F-statistic value of less than 10.

2.2.5. Genetic Correlation Analysis

We used LDSC to estimate the genetic correlation (rg) between gut microbiota/blood
metabolites and ASD. Initially, GWAS summary statistics were filtered based on the
HapMap3 reference data, excluding non-SNPs and SNPs with MAF < 0.01. LDSC quantifies
the true polygenic signal or bias by examining the association between test statistics and
linkage disequilibrium, allowing for genetic correlation assessment from GWAS summary
statistics, independent of sample overlap. The product of z-scores for each variant from
Trait 1 and Trait 2 was regressed against the LD score to estimate genetic covariance, nor-
malized by SNP heritability. A significance threshold of p < 0.0004 (Bonferroni correction:
0.05/119) was considered statistically significant, while 0.0004 < p < 0.05 indicated potential
evidence for potential genetic correlation.

2.2.6. Two-Sample MR

Our primary MR analysis method was IVW, supplemented with MR-Egger, Weighted
median, Weighted mode, Simple mode methods, and heterogeneity was assessed using
IVW and MR-Egger methods (p < 0.05). The MR-Egger method was specifically employed
to detect unknown horizontal pleiotropy (p < 0.05), where a non-zero intercept indicates po-
tential bias. To further mitigate potential pleiotropic effects, a leave-one-SNP-out approach
was utilized for assessment. All analyses were conducted in the R environment using the
TwoSampleMR package (version 0.5.7), which facilitated the harmonization of exposure
and outcome datasets, including phenotypes, effect alleles, effect allele frequencies, effect
sizes, and standard errors for each SNP. Effect estimates are reported as beta values for
continuous outcomes and ORs (95% confidence intervals) for binary outcomes. Bonferroni
correction was applied to adjust the p-value threshold for multiple comparisons, reducing
the risk of false positives.
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2.2.7. Median MR

To determine whether blood metabolites mediate the effect of gut microbiota on ASD,
we divided the total effect of gut microbiota on ASD into direct (non-mediated) and indirect
(mediated) components. We employed a two-step MR strategy, also known as the product
of coefficients method, to assess mediators individually. The first step involved estimating
the impact of gut microbiota on mediators (blood metabolites) using univariable MR. The
second step assessed the effect of mediators on ASD. The indirect effect was calculated by
multiplying the estimates from both analytical steps. The direct effect is the total effect of
gut microbiota on ASD minus the indirect effect. The mediation proportion was determined
as the ratio of the indirect effect to the total effect, with 95% confidence intervals.

3. Result
3.1. Cause Effects of Gut Microbiota on ASD
3.1.1. LDSC Analysis

We conducted LDSC analysis to assess the genetic correlations between 131 genus-
level gut microbiota and ASD. Due to constraints such as low heritability and limited
sample sizes, not all genera were suitable for the analysis. Ultimately, genetic correlation
estimates were obtained for 74 genera in relation to ASD. As depicted in Table 1 and
Figure 2, the LDSC analysis indicated a significant correlation between the Lachnospiraceae
NK4A136 group and ASD (rg = −1.196, p = 0.005), as well as between Sellimonas and ASD
(rg = −0.467, p = 0.005). Comprehensive details on all genetic correlation findings are
provided in Supplementary Table S1.

Figure 2. Circular heat map of genetic correlations between gut microbes and ASD.
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Table 1. The genetic correlations between gut microbes and ASD.

Trait1 Trait2 rg SE p Value

Lachnospiraceae NK4A136 group ASD −1.1956 0.4208 0.0045
Sellimonas ASD −0.4673 0.1666 0.0051

3.1.2. Two-Sample MR and Sensitivity Analysis

Following our screening criteria, 1531 SNPs were identified as IVs for 119 genus-level
gut microbiotas at a significance threshold of p < 1 × 10−5. Then, all 1531 instrumental SNPs
were subjected to a phenome-wide association study (PheWAS) screen via the GWAS Cata-
log to assess potential horizontal pleiotropy. Using an automated script, we batch-queried
all SNPs and excluded any that were genome-wide significantly associated (p < 5 × 10−8)
with pre-specified potential confounding traits, including age. Following this rigorous
screening, all 1531 SNPs were retained for the final Mendelian randomization analysis. The
F-statistics for selected IVs all exceeded 10, indicating a minimal risk of weak instrument
bias. Seven genus-level gut microbiotas demonstrated potential associations with ASD in
IVW MR analyses, each supported by more than four SNPs. Subsequent analyses, including
the radial MR-Egger intercept and MR-PRESSO global tests, revealed evidence of pleiotropy
for Faecalibacterium (p = 0.04). Ultimately, six genus-level gut microbiotas—Turicibacter,
Ruminococcaceae UCG005, Sutterella, Ruminiclostridium5, Ruminococcus1, and Dorea—were
identified as having genetic correlations with ASD, as shown in Table 2. Detailed scatter
plots and sensitivity analyses are provided in Supplementary Figures S2 and S3, respec-
tively. In summary, we identified six gut bacterial genera that exhibit significant genetic
correlations with ASD, implying that these gut microbiotas may play a causal role in the
development of ASD. From a genetic perspective, variations in these bacterial communities
could increase the risk of ASD.

Table 2. Significant MR results of causal association between gut microbes and ASD. The method
used for MR analyses is inverse variance weighted.

Expoure Outcome Beta ± SE p Value HR (95% CI)

Turicibacter ASD 0.1310 ± 0.0630 0.0375 1.1400 (1.0076–1.2898)
Ruminococcaceae UCG005 ASD −0.2538 ± 0.0749 7 × 10−4 0.7758 (0.6699–0.8984)

Sutterella ASD −0.1966 ± 0.0935 0.0356 0.8215 (0.6839–0.9868)
Ruminiclostridium5 ASD −0.2077 ± 0.0856 0.0152 0.8125 (0.6870–0.9609)

Ruminococcus1 ASD −0.1846 ± 0.08419 0.0284 0.8315 (0.7050–0.9807)
Dorea ASD −0.2098 ± 0.0855 0.0142 0.8108 (0.6856–0.9587)

3.1.3. Reverse MR Analysis

In accordance with our established screening protocol, we identified 1476 SNPs as IVs
for an analysis involving 18,382 individuals diagnosed with ASD, each SNP surpassing the
pre-specified significance level of p < 1 × 10−5. The F-statistics for selected IVs all exceeded
10, indicative of a negligible likelihood of bias due to weak instruments. We employed five
distinct MR methods to assess the influence of ASD on the relative abundance of six targeted
bacterial genera. The analysis, particularly through the IVW method, yielded no statistically
significant outcomes (Table 3). The results of the reverse MR analysis did not demonstrate a
significant causal effect of ASD on these six gut bacterial genera, indicating that ASD cannot
be considered the cause of changes in these specific microbial communities. Therefore, our
findings support a unidirectional causal relationship, where these six gut bacterial genera
may increase the risk of ASD by influencing an individual’s genetic background, while
ASD itself is not the cause of these changes in the gut microbial communities. These results
highlight the potential key role of gut microbiota in the pathogenesis of ASD and imply
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that modulation of the gut microbiome could be a potential strategy for the prevention or
treatment of ASD in the future.

Table 3. The causal relationship between ASD and gut microbes were using the IVW method.

Expoure Outcome Beta ± SE p Value HR (95% CI)

ASD Turicibacter 0.0207± 0.2955 0.9443 1.0209 (0.5720–1.8219)
ASD Ruminococcaceae UCG005 0.0521 ± 0.2215 0.8143 1.0534 (0.6824–1.6262)
ASD Sutterella −0.0561 ± 0.1573 0.7215 0.9455 (0.6946–1.2869)
ASD Ruminiclostridium5 −0.0332 ± 0.2272 0.8839 0.9674 (0.6198–1.5100)
ASD Ruminococcus1 −0.0962 ± 0.1039 0.3451 0.9082 (0.7410–1.1133)
ASD Dorea −0.0506 ± 0.1583 0.7495 0.9507 (0.6970–1.2967)

3.2. Cause Effects of Plasma Metabolites on ASD
3.2.1. LDSC Analysis

We performed LDSC analysis to evaluate the genetic correlations between 1400 plasma
metabolites and ASD. Given constraints such as genetic heterogeneity, the complexity
of metabolic pathways, and the influence of environmental factors, not all metabolites
were suitable for this analysis. Ultimately, we derived genetic correlation estimates for
1170 metabolites in relation to ASD. After screening (p < 0.05), a total of 49 metabolites
exhibited correlations with ASD. Among these, negative correlations included Salicylate to
Caprylate (8:0) ratio and Cytidine to N-acetylglucosamine to N-acetylgalactosamine ratio
among 34 metabolites/metabolite ratios. Positive correlations included Hexanoylglycine
and Cysteinylglycine to Taurine ratio among 15 metabolites/metabolite ratios (Table 4).

Table 4. The genetic correlations between plasma metabolites and ASD.

Trait1 Trait2 rg SE p Value

4-methyl-2-oxopentanoate ASD −0.6174 0.2172 0.0045
Alpha-hydroxyisocaproate ASD −0.6501 0.2365 0.0060
1-stearoyl-GPI(18:0) ASD −1.0537 0.4341 0.0152
4-acetylphenolsulfate ASD −0.9291 0.2787 0.0009
Indolepropionate ASD −0.3776 0.1522 0.0131
Pyridoxate ASD 0.5543 0.2586 0.0321
Alpha-hydroxysovalerate ASD −0.3251 0.1199 0.067
Hexanoylglycine ASD 1.7316 0.8041 0.0313
Taurocholenatesulfate ASD −0.2675 0.1187 0.0242
Palmitoylsphingomyelin(d18:1/16:0) ASD −0.2580 0.1256 0.0400
2s,3R-dihydroxybutyrate ASD −0.4529 0.1290 0.0004
1-(1-enyl-stearoyl)-GPE(p-18:0) ASD −0.2683 0.1357 0.0480
2-hydroxydecanoate ASD 0.3812 0.1873 0.0418
2-aminophenolsulfate ASD 0.7891 0.3992 0.0481
P-cresolglucuronide ASD 0.2877 0.1087 0.0081
Lignoceroylsphingomyelin(d18:1/24:0) ASD −0.2622 0.1267 0.0385
2-hydroxybutyrate/2-hydroxysobutyrate ASD −0.4417 0.1758 0.0120
Tricosanoylsphingomyelin(d18:1/23:0) ASD −0.3056 0.1440 0.0338
1-(1-enyl-stearoyl)-2-arachidonoyl-GPE(p-18:0/20:4) ASD −0.6361 0.2698 0.0184
Caffeicacidsulfate ASD 0.2972 0.1460 0.0418
Sphingomyelin(d18:2/24:2) ASD −0.2810 0.1215 0.0207
2-hydroxy-4-(methylthio)butanoicacid ASD 0.2535 0.0986 0.0101
Pentoseacid ASD −0.7062 0.3562 0.0474
Pantothenate ASD 0.2376 0.1172 0.0427
2-aminobutyrate ASD −0.4337 0.1736 00125
4-acetamidobutanoate ASD −0.2659 0.1127 0.0183
Cys-gly,oxidized ASD 0.2285 0.1076 0.0337
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Table 4. Cont.

Trait1 Trait2 rg SE p Value

Arachidonate(20:4n6) ASD −0.4844 0.2182 0.0264
3-(4-hydroxyphenyl)lactate ASD −0.3912 0.1423 0.0060
Taurine ASD −0.4340 0.1997 0.0297
Cytidine ASD −0.4656 0.2223 0.0362
Bilirubindegradationproduct,C17H18N2O4(3) ASD -0.8692 0.3925 0.0268
Glycinetopyridoxalratio ASD −0.2364 0.1127 0.0360
Citrullinetodimethylarginine(SDMA+ADMA)ratio ASD 0.3116 0.1488 0.0363
Uridinetocytidineratio ASD 0.3035 0.1473 0.0393
Pyruvateto3-methyl-2-oxobutyrateratio ASD 0.2385 0.1204 0.0477
Cysteinylglycinetotaurineratio ASD 0.9990 0.3513 0.0045
Salicylatetocaprylate(8:0)ratio ASD −2.8567 0.9801 0.0036
Glucosetosucroseratio ASD −1.2513 0.4655 0.0072
Fructosetosucroseratio ASD −0.5650 0.1929 0.0034
Caffeinetotheophyllineratio ASD 0.5331 0.2424 0.0278
Alpha-ketobutyratetopyruvateratio ASD −0.5827 0.2642 0.0274
CytidinetoN-acetylneuraminateratio ASD -0.3967 0.1625 0.0146
CytidinetoN-acetylglucosaminetoN-acetylgalactosan ASD −1.7244 0.7071 0.0147
Arachidonate(20:4n6)toparaxanthineratio ASD −0.4253 0.1868 0.0228
Paraxanthinetolinoleate(18:2n6)ratio ASD 0.2857 0.1313 0.0296
Salicylatetooxalate(ethanedioate)ratio ASD −0.9387 0.4150 0.0237
Alpha-ketobutyrateto3-methyl-2-oxovalerateratio ASD −0.5800 0.2943 0.0487
3-methyl-2-oxovalerateto4-methyl-2-oxopentanoate ASD 0.5238 0.1758 0.0029

3.2.2. Two-Sample MR and Sensitivity Analysis

Following our established screening criteria, 34,843 SNPs were identified as IVs for
1458 plasma metabolites at a significance threshold of p < 1 × 10−5. The F-statistics for
selected IVs all above 10, indicating a low likelihood of weak instrument bias. Fifty-eight
metabolites showed potential associations with ASD in IVW MR analyses, each supported
by more than four SNPs. Further analyses, including the radial MR-Egger intercept and MR-
PRESSO global tests, revealed no pleiotropy among these 58 metabolites. In conclusion, we
identified 58 plasma metabolites with significant genetic correlations with ASD, indicating
that these metabolites might play a causal role in ASD development (as depicted in Figure 3
and detailed in Supplementary Table S1). Genetically, variations in these metabolite profiles
could elevate the risk of ASD.

3.2.3. Reverse MR Analysis

Utilizing the same extraction methodology consistent with our ASD analysis, we
applied five distinct MR methods to evaluate the impact of ASD on the relative abundance
of 58 plasma metabolites. The analysis, especially via the IVW method, revealed significant
changes in the metabolites 11beta-hydroxyetiocholanolone glucuronide and 9,10-DiHOME
(Table 5 and Supplementary Table S2). The outcomes of the reverse MR analysis demon-
strate that ASD cannot be deemed the cause of alterations in these specific metabo-
lites. Hence, assuming a reciprocal causality between 11beta-hydroxyetiocholanolone glu-
curonide and 9,10-DiHOME metabolites and ASD is untenable and contradicts Mendelian
principles. Accordingly, we conclude that aside from these two metabolites, the remaining
56 metabolites have a genetic causal relationship with the incidence of ASD. These findings
underscore the pivotal role that plasma metabolites may play in the etiology of ASD and
propose that modulating these metabolites could serve as a potential approach for the
future prevention or treatment of ASD.
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Figure 3. Circular heat map of MR results for causal associations between plasma metabolites
and ASD.

Table 5. Significant MR results of causal association between ASD and plasma metabolites were
using the IVW method.

Expoure Outcome Beta ± SE p Value HR (95% CI)

ASD 9,10-DiHOME 0.0933 ± 0.0416 0.0248 1.0978 (1.0119–1.1910)
ASD 1beta-hydroxyetiocholanolone glucuronide −0.1401 ± 0.0515 0.0065 0.8692 (0.7858–0.9616)

3.3. Causal Effects of Cardiometabolic Diseases on Gut-Dependent Metabolites
Median MR

Given the hypothesized influence of serum metabolites on the progression from gut
microbiota alterations to ASD, we employed a two-step mediation MR framework for
our analysis. Initially, we conducted a two-sample MR study to explore the associations
between the gut microbiome and plasma metabolites. By utilizing the same extraction
methodology as applied in our analysis of the gut microbiota, we leveraged five distinct
MR methods to assess the impact of gut microbiota composition on the relative abundance
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of 56 plasma metabolites. Our sensitivity and pleiotropy assessments for these metabolite
associations revealed no significant discrepancies. Cross-referencing the positive findings
from our previous MR analyses linking specific bacteria with ASD, we identified intersec-
tions involving 5 bacterial taxa and 21 metabolites. Further intersection with positively
associated metabolites from our prior MR analysis examining the relationship between
plasma metabolites and ASD yielded 4 common metabolites (Figure 4 and Supplementary
Table S3). This allowed us to calculate specific MR effect estimates and p-values for the
interactions among these three elements. Additionally, we quantified both the direct effects
of the microbiota on ASD and the indirect effects mediated through metabolites. In con-
clusion, our findings illuminate that ASD’s genetic predisposition may exert its influence
through alterations in plasma metabolites, thereby impacting ASD progression from a
genetic standpoint.

Figure 4. Two-step Mendelian randomization analyses of the causal effects between gut microbes,
plasma metabolites and ASD. Arrow colors denote the direction and significance of causal effects:
blue arrows represent significant negative causal effects; orange arrows represent significant positive
causal effects; the purple arrow indicates a non-significant association. The β estimates reflect the
change in the outcome (in SD units) per unit increase in the exposure. Color saturation of significant
paths is proportional to the absolute magnitude of the β estimate.

4. Discussion
This study investigated the intricate relationship between gut microbiota, plasma

metabolites, and Autism Spectrum Disorder (ASD), with a focus on the microbiota-
metabolite-disease interplay. Through the integration of Linkage Disequilibrium Score
Regression (LDSC) and Mendelian Randomization (MR) approaches, we identified sig-
nificant associations between specific gut microbes, plasma metabolites, and ASD, while
providing causal evidence to unravel their roles in ASD pathogenesis. These findings reveal
the existence of a gut microbiota-plasma metabolite-ASD axis, offering new perspectives
for understanding the biological mechanisms underlying ASD. Furthermore, this study
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highlights the potential of utilizing gut microbiota and plasma metabolites as biomarkers
for ASD diagnosis and as targets for developing innovative therapeutic interventions.

Gut microbiota has been increasingly recognized as a key contributor in the etiology
of ASD. Studies utilizing 16S rRNA sequencing and metagenomics have consistently
demonstrated significant dysbiosis in ASD patients, characterized by a lack of the typical
age-related increase in alpha diversity, reduced Bacteroidota abundance, and an elevated
Bacillota/Bacteroidota ratio [10]. At the genus level, notable changes include reduced levels
of Alistipes, Bilophila, and Parabacteroides, alongside increased levels of Collinsella and
Lactobacillus, highlighting a strong link between gut microbiota and ASD [26], although
causality has remained unclear. Specific bacterial taxa, such as Lactobacillus, Bacillus spp.,
and Streptococcus spp., have been hypothesized to influence ASD through the gut–brain axis,
potentially via the production of neurotransmitters like serotonin and dopamine [27,28]. In
our study, using the LDSC method, we identified a genetic negative correlation between
the Lachnospiraceae NK4A136 group, Sellimonas, and ASD. The Lachnospiraceae NK4A136
group has been widely reported to be associated with gut inflammation [29], with high fecal
expression levels observed in Chinese children with ASD [30] and potential regulatory
roles identified in the VPA-induced ASD mouse model [31]. Similarly, Sellimonas has
been found to decrease in abundance in psychiatric disorders [32], with fecal microbiota
transplantation (FMT) in ASD mouse models further revealing its mechanistic link to
ASD [33]. To further address causality, we employed MR analysis, which revealed a
positive association between Turicibacter and ASD, while Ruminococcus 1, Ruminiclostridium,
Ruminococcaceae UCG-005, Sutterella, and Dorea were negatively associated with ASD.
Turicibacter, as identified in our previous 16P11.2dp/+ ASD mouse model, is hypothesized
to impair gut barrier function and promote inflammation, both of which may contribute to
ASD development [34,35]. In both human data and our mouse model, we observed lower
expression levels of Ruminococcus and Ruminiclostridium in ASD [36]. Previous studies
have also reported a significant reduction in Dorea and Sutterella in children with ASD and
functional abdominal pain [37], although inconsistent findings have been noted, with some
studies observing an increase in Sutterella [38], possibly due to the heterogeneity of ASD and
variations in clinical characteristics. Our MR analysis provides causal evidence, indicating
that Sutterella may genetically slow the progression of ASD. RuminococcaceaeUCG-005,
known for its protective role against gut inflammation, has also been reported to exhibit
a negative correlation with ASD [39], which aligns with our findings, shedding light on
the complex interplay between gut microbiota and ASD and offering new insights into
potential therapeutic targets for intervention.

Plasma metabolites also play a critical role in the pathophysiology of ASD. Children
with ASD consistently exhibit abnormal metabolite concentrations, reflecting disruptions
in key pathways such as lipid, amino acid, neurotransmitter, and vitamin metabolism [40].
These disturbances align with metabolic changes observed in acute stress disorder, sug-
gesting that shared mechanisms—such as oxidative stress, chronic inflammation, impaired
energy metabolism, and disrupted signal transduction—may underlie the pathophysiology
of ASD by interfering with normal brain development and function [41]. For example, al-
tered serotonin levels may influence the gut–brain axis and modulate neurodevelopmental
processes, while disruptions in amino acid metabolism, including imbalances in glutamate
and GABA pathways, may hinder neurotransmitter synthesis and brain development.
Lipid metabolism abnormalities, such as altered levels of polyunsaturated fatty acids,
have also been linked to neuronal membrane dysfunction and neuroinflammation, both of
which are implicated in ASD pathogenesis. However, establishing the causal relationship
between these metabolite changes and ASD remains challenging, partly due to the difficul-
ties of directly measuring intracranial metabolites, which limits causal research. Through
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LDSC analysis, we identified 59 metabolites or metabolite ratios associated with ASD,
and using bidirectional Mendelian Randomization (MR), we demonstrated that 56 plasma
metabolites or metabolite ratios are causal factors for ASD. These metabolites span crucial
pathways, including lipid metabolism (e.g., 3-hydroxyhexanoate, Docosatrienoate), amino
acid metabolism (e.g., Threonate, Cystathionine), neurotransmitter metabolism (e.g., Sero-
tonin, 3-methoxytyramine sulfate), and vitamin metabolism (e.g., Pyridoxate, Ascorbic acid
2-sulfate). Notably, several of these metabolites have been previously associated with cogni-
tive and behavioral impairments in ASD, but their causal roles remained unclear until now.
For example, serotonin and its downstream metabolites are well-recognized for their influ-
ence on the gut–brain axis [42], while pyridoxate and ascorbic acid 2-sulfate are essential
for maintaining redox homeostasis and providing neuroprotection [43]. These findings pro-
vide the first robust causal evidence linking plasma metabolites to ASD, offering a deeper
understanding of how metabolic disruptions contribute to neurodevelopmental disorders.

Metabolites are often regarded as passive intermediates, subject to regulation by dis-
ease states, environmental factors, and other external stimuli; however, gut microbiota
actively modulate metabolite levels, which in turn mediate the effects of the microbiota
on ASD and other neurological disorders, underscoring the importance of understanding
the causal relationships within the gut microbiota-plasma metabolite-ASD axis. Previous
studies indicated that RuminococcaceaeUCG-005 may influence neurotransmitter synthesis
through the production of short-chain fatty acids (SCFAs), while Dorea has been impli-
cated in modulating serotonin and dopamine levels within the gut–brain axis [44]. To
elucidate the causal relationships among gut microbiota, plasma metabolites, and ASD,
we conducted mediation Mendelian Randomization (MR) analysis, which demonstrated
that gut microbiota affect ASD risk by altering plasma metabolite levels. Specifically,
Ruminiclostridium5 was linked to changes in Delta-CEHC and Docosadioate (C22-DC),
RuminococcaceaeUCG-005 was associated with serotonin regulation, and Sutterella influ-
enced the levels of N-acetyl-L-glutamine. The involvement of vitamin E, lipid metabolism,
and neurotransmitters indicates that the regulation of ASD by gut microbiota likely oc-
curs through multiple pathways. This Mendelian randomization study provides strong
causal evidence for the gut microbiota–plasma metabolite–ASD axis, emphasizing its
critical role in ASD pathogenesis. From a clinical-translational perspective, the specific
microbial taxa and plasma metabolites identified—such as RuminococcaceaeUCG-005 linked
to C22-DC and serotonin and Sutterella associated with N-acetyl-L-glutamine—form a
promising biomarker panel. This panel could enable early auxiliary diagnosis and subtype
stratification for ASD, while the elucidated causal pathways highlight actionable targets
for microbial intervention, laying a scientific foundation for future therapies involving
probiotics, prebiotics, or dietary supplements.

Despite its strengths, this study has several limitations. First, the ASD GWAS data were
derived solely from the Danish Psychiatric Central Research Register (DPCRR), limiting the
generalizability of our findings to other populations. Second, our reliance on existing GWAS
data may have excluded important metabolites or microbial traits, restricting the scope
of causal effects. Third, while sensitivity analyses were conducted, horizontal pleiotropy
cannot be completely ruled out, potentially biasing causal estimates. Additionally, our
mediation MR analysis focused on single mediators, without assessing the interactions
among multiple mediators, which may underestimate the complexity of the gut microbiota-
metabolite-ASD pathway. Finally, despite a relatively large sample size, ASD’s complex
pathophysiology likely involves additional unexplored pathways.



Pathogens 2025, 14, 1137 14 of 16

5. Conclusions
In this study, we comprehensively investigated the impact of gut microbiota and

plasma metabolite levels on the progression of ASD. Initially, we identified both positive
and negative causal relationships between gut microbiota, plasma metabolites, and ASD,
and validated these findings using sensitivity analyses to ensure their robustness. Fur-
thermore, we explored potential reverse causal relationships and ruled out any reverse
causation of ASD on gut microbiota or plasma metabolites. The study identified three key
bacterial taxa that influence ASD progression through four critical metabolites. These find-
ings establish a causal link between gut microbiota and ASD and underscore the mediating
role of specific plasma metabolites in this relationship.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pathogens14111137/s1, Figure S1: Detailed overview of study
design and methodology; Figure S2: Scatter plots for causal effects of gut microbes on ASD;
Figure S3: Leave-one-out sensitivity analysis of gut microbes associated with ASD; Table S1:
The causal relationship between plasma metabolites and ASD were using the IVW method;
Table S2: The causal relationship between ASD and plasma metabolites were using the IVW method;
Table S3: Statistical data from two-step Mendelian randomization analyses of the causal relationships
between gut microbes, plasma metabolites, and ASD.
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