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Abstract

The human immune system consists of two main components: innate and adaptive im-
munity. To date, research on the pathogenesis of autoimmune neurological diseases has
primarily focused on the role of adaptive immunity. However, growing evidence high-
lights the significant contribution of innate immune mechanisms in the development of
neurological disorders. The aim of this article is to present the current state of knowledge
regarding the involvement of innate immunity in the pathogenesis and treatment of se-
lected autoimmune neurological diseases: multiple sclerosis (MS), neuromyelitis optica
spectrum disorder (NMOSD), MOG antibody-associated disease (MOGAD), myasthenia
gravis (MG), and chronic inflammatory demyelinating polyneuropathy (CIDP). A literature
review was conducted, including both experimental and clinical data on the activity of
innate immune effector cells—such as dendritic cells, macrophages, microglia, and natural
killer (NK) cells—as well as plasma proteins, including the complement system. Relevant
clinical and preclinical studies on targeted therapies affecting these components were also
identified. All analyzed diseases demonstrate the involvement of innate immune elements
in the initiation and maintenance of the inflammatory process. Furthermore, it has been
shown that therapies targeting these components may offer clinical benefits.
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1. Introduction
The human immune system is composed of two major components: innate (nonspe-

cific) and adaptive (specific) immunity. Innate immunity relies on the rapid activation of
nonspecific defense mechanisms and the presence of natural barriers within the body. In
contrast, adaptive immunity develops as a targeted response against microorganisms or
antigens previously recognized by innate immune mechanisms [1].

Innate immunity constitutes the first line of defense against infectious agents. Its
mechanisms act rapidly—within minutes to hours after pathogen exposure—whereas
adaptive immunity requires a longer period for activation. The primary functions of innate
immunity are to prevent infection, eliminate pathogens, and initiate as well as modulate
the adaptive immune response.

Key components of innate immunity include physical barriers (the skin and mucous
membranes); effector cells such as granulocytes, monocytes, macrophages, dendritic cells
(DCs), natural killer (NK) cells, and innate lymphoid cells (ILCs); as well as epithelial and
endothelial cells. Plasma proteins—including elements of the complement cascade—and
cellular receptors that recognize molecular patterns also play critical roles [2–5].
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Growing evidence supports the immunological basis of numerous neurological
disorders, establishing neuroimmunology as one of the most rapidly advancing fields
of neurology [6].

The aim of this paper is to review the current state of knowledge on the role of innate
immunity in the pathogenesis of selected immune-mediated neurological disorders and
to evaluate the therapeutic potential of its components. The analysis focuses on diseases
chosen by the authors including Multiple Sclerosis (MS), Neuromyelitis Optica Spectrum
Disorders (NMOSD), Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease
(MOGAD), Myasthenia Gravis (MG), and Chronic Inflammatory Demyelinating Polyradicu-
loneuropathy (CIDP). In this review major autoimmune neurological diseases were selected
to illustrate pathology of the central nervous system, the neuromuscular junction, and
the peripheral nervous system. This choice allows to provide a broad perspective across
different levels of the nervous system.

2. The Role of Innate Immunity in the Pathogenesis of
Neurological Diseases
2.1. Multiple Sclerosis

MS is the most common autoimmune demyelinating disorder of the central nervous
system (CNS), although its pathogenesis remains incompletely elucidated [7]. The role of
the immune system in MS development is indisputable and has been intensively investi-
gated for decades. While early research focused primarily on adaptive immunity, including
B and T cells and autoantibodies, it is now evident that innate immune elements also play
crucial roles in disease pathogenesis [8,9].

2.1.1. Dendritic Cells

Compelling evidence implicates DCs in MS [10]. In the murine model Experimental
Autoimmune Encephalomyelitis (EAE), Langerhans cells—specialized skin DCs—migrate to
lymph nodes after recognizing myelin antigens, where they present them to T lympho-
cytes. This signal alone is sufficient to initiate EAE [11]. DCs are present in multiple
CNS compartments, including the cerebrospinal fluid (CSF), choroid plexus, meninges,
and perivascular spaces [12]. Within the CNS, their primary pathogenic role is to en-
hance antigen presentation to T cells, facilitating their transmigration across the blood–
brain barrier (BBB) and subsequent invasion of neural tissue [13]. DCs drive polarization of
T cells toward a pro-inflammatory Th17 phenotype, characterized by secretion of interleukin-
17 (IL-17) and granulocyte–macrophage colony-stimulating factor (GM-CSF) [14]. Con-
versely, tolerogenic DCs (TolDCs) can induce protective effects, promoting T-cell anergy
or differentiation into regulatory T cells (Tregs) [15]. Tregs generated under TolDC in-
fluence exhibit increased expression of cytotoxic T-cell antigen-4 (CTLA-4), thereby limit-
ing excessive T-cell activity. They also lose the ability to produce pro-inflammatory cy-
tokines such as interferon-gamma (IFN-γ) and interleukin-2 (IL-2) [16]. In MS patients,
DCs are present in both demyelinating plaques and meninges, where pro-inflammatory
phenotypes predominate [17].

2.1.2. Macrophages

Macrophages are the most abundant immune cells in demyelinating plaques. These
include resident microglia and macrophages derived from infiltrating peripheral mono-
cytes, which normally are absent in CNS and require specific activation signals to cross the
BBB [18–20]. EAE studies demonstrate that microglia are essential for disease initiation, whereas
activation of peripheral monocytes drives disease progression. Experimental depletion of
monocytes prior to symptom onset delays disease development and reduces severity, while
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depletion after clinical onset halts progression [21,22]. Elevated peripheral monocyte counts
at disease onset correlate with faster progression and accelerated disability accumulation [23].
Once within the CNS, monocytes differentiate into DCs or macrophages. Depending on their
polarization, macrophages acquire either a pro-inflammatory (M1) or anti-inflammatory (M2)
phenotype [24]. Pro-inflammatory polarization, driven by cytokines such as GM-CSF, IFN-γ,
and tumor necrosis factor-alpha (TNF-α), predominates during the early stages of EAE and
during relapses, causing both direct and indirect neural damage [25–27]. In contrast, M2
macrophages are more prominent during remission and promote tissue repair [28,29].

2.1.3. Microglia

Microglia play a central role in MS pathology, contributing to myelin phagocyto-
sis, antigen presentation, and the release of pro-inflammatory cytokines within active
lesions [30]. In EAE, microglial inactivation delays disease onset and attenuates clinical
severity [31]. Histopathological analyses of human MS tissue and EAE models confirm
their involvement: in early active lesions, microglia account for approximately 40% of
phagocytes, localize centrally, and exhibit a pro-inflammatory phenotype, whereas in in-
active plaques they shift toward anti-inflammatory states [32]. In animal models, myelin
internalization induces a regenerative microglial phenotype that promotes oligodendrocyte
differentiation and supports remyelination [33–36]. In progressive MS, microglia within
chronic plaques become reactivated, accumulate at lesion margins, and drive gradual
lesion expansion [30]. Transcriptomic studies further demonstrate microglial alterations
beyond visible plaques, including upregulation of lipid metabolism-related genes in normal-
appearing white matter and iron metabolism-related genes in gray matter [37,38].

2.1.4. Astrocytes

Astrocytes have long been implicated in the pathogenesis of MS, with their presence in
lesions recognized as early as the 19th century. In EAE, depletion of reactive astrocytes dur-
ing the acute phase exacerbates clinical symptoms and CNS inflammation [39,40], whereas
selective depletion during the chronic phase ameliorates disease and suppresses the re-
cruitment of microglia and monocytes [41]. Astrocytes are activated by pro-inflammatory
cytokines and pathogen-associated molecular patterns (PAMPs) [42,43]. Once activated,
they produce a broad spectrum of chemokines that attract leukocytes to perivascular and
parenchymal compartments [44–46], including CXCL12, which facilitates the recruitment of
monocytes, T cells, B cells, and plasma cells into active and chronic plaques [47]. Moreover,
astrocytes limit T-cell infiltration into the CNS by expressing pro-apoptotic molecules such
as Fas ligand (FASL) and TNF-related apoptosis-inducing ligand (TRAIL) [48].

2.1.5. NK Cells

The role of NK cells in MS is complex and remains unclear. Evidence supports both pro-
tective/regulatory functions—limiting autoimmunity—and pathogenic effects—enhancing
immune responses and promoting relapses [49]. CD56bright NK cells can distinguish ac-
tivated from resting T cells and selectively eliminate activated T cells through granzyme
release or TRAIL-dependent cytotoxicity [50–52]. CD56bright NK cells producing granzyme
K are enriched in periventricular regions and demyelinating plaques, migrating via the
choroid plexus in response to activated T-cell signals [53,54]. Granzyme K release induces
mitochondrial dysfunction and oxidative stress in activated T cells, ultimately leading to
apoptosis [55,56]. In contrast, CD56dim NK cells mediate antibody-dependent cellular
cytotoxicity (ADCC) against both activated and resting T cells [57]. Increased NK-cell toler-
ance toward T cells, as well as T-cell resistance to NK-cell activity, may accelerate disease
progression [50]. Recently identified CD8+ NK-cell subset has been associated with reduced
relapse risk [58]. EAE models further confirm the importance of NK cells: their depletion
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exacerbates disease, whereas their expansion alleviates symptoms [59,60]. NK cells can
also exert indirect effects by eliminating activated microglia, thereby limiting Th17 activa-
tion [60], and by producing IFN-γ in the meninges, which promotes an anti-inflammatory
astrocyte phenotype and induces TRAIL-dependent T-cell apoptosis [61]. Conversely, other
studies have implicated NK cells in cortical demyelination, where CD56dim NK cells
accumulate near vessels, infiltrate demyelinated gray matter, and mediate perivascular
demyelination via ADCC [62]. NK cells have also been reported to impair neurogenesis
and neural tissue repair in chronic MS [63,64].

2.1.6. Complement System

Complement activation contributes to all MS subtypes [65,66]. Deposits of C1q, C3d,
and C5b-9 complexes are consistently observed in white matter and demyelinating le-
sions [67,68]. Genetic silencing of early complement activation, particularly at C3, amelio-
rates EAE severity [69]. Human genetic studies further implicate the C3 variant rs2230199 in
white and gray matter damage and cognitive dysfunction [70]. Although the precise cellu-
lar targets of complement-mediated injury remain unclear, complement activation markers
may identify patients who benefit most from plasmapheresis during MS relapses [71].
Cerebrospinal fluid C3a levels in patients with clinically isolated syndrome and newly
diagnosed relapsing–remitting MS may serve as a promising prognostic marker of disease
activity—correlating with the emergence of new focal lesions and with the “No Evidence
of Disease Activity-3” (NEDA-3) status [72].

2.2. Neuromyelitis Optica Spectrum Disorders

NMOSD is an inflammatory demyelinating disorder of the CNS. Approximately 80%
of patients are seropositive for immunoglobulin G (IgG) directed against aquaporin-4
(AQP4), a key water channel protein located on the perivascular endfeet of astrocytes [73].
Although the presence of autoantibodies indicates the involvement of adaptive immunity,
their pathogenic effects are largely mediated by innate immune mechanisms. AQP4-
specific IgG (AQP4-IgG) initiate complement-dependent cytotoxicity (CDC) and antibody-
dependent cellular cytotoxicity (ADCC), ultimately leading to astrocyte injury, secondary
oligodendrocyte degeneration, and demyelination [74].

2.2.1. Complement System

Binding of AQP4-IgG to AQP4 on the astrocyte surface activates the classical com-
plement pathway. This process begins with C1q binding to the Fc region of IgG within
antigen–antibody complexes and progresses through the complement cascade to form the
membrane attack complex (MAC), which damages astrocytic membranes [75]. Complement
activation also generates C3a and C5a, which increase vascular permeability and create
chemotactic gradients that facilitate leukocyte migration across the BBB [76]. Histopatho-
logical evidence underscores the role of complement in NMOSD: active lesions exhibit
marked perivascular deposition of immunoglobulins and the C9neo antigen, a residual
marker of MAC, accompanied by fibrosis and hyalinization of vessel walls [77]. Notably,
the absence of complement activation does not necessarily protect against neural injury. In
such cases, astrocyte membranes remain structurally intact, but AQP4 undergoes endocyto-
sis with concurrent loss of the sodium-dependent glutamate transporter excitatory amino
acid transporter 2 (EAAT2). Disrupted glutamate homeostasis may cause excitotoxicity,
neuronal death, oligodendrocyte dysfunction and secondary demyelination [78].

2.2.2. NK Cells

NK cells are key effectors of ADCC in NMOSD. By binding the Fc fragment of AQP4-
IgG through FcγRIII (CD16), NK cells become activated and degranulate, releasing perforin
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and granzymes that lyse astrocytes and drive neurodegeneration and demyelination. Their
role has been confirmed in animal models, where blockade of FcγR–antibody interactions
significantly reduced astrocytic damage [79]. Increasing evidence also suggests a contribu-
tion of other innate lymphoid cells (ILCs) to NMOSD pathogenesis. Type 2 ILCs have been
shown to exert protective effects and suppress disease development [80].

2.2.3. Neutrophils

The involvement of neutrophils in NMOSD is supported by both clinical and ex-
perimental findings. During relapses, elevated neutrophil counts in CSF are observed
in approximately 60% of untreated patients, compared with only 20% during remis-
sion [81]. Plasma from NMOSD patients shows increased concentrations of CXCL5 and
CXCL8—potent neutrophil chemoattractants—as well as neutrophil elastase (NE) [82]. In
murine models, neutrophil depletion attenuated neural tissue injury, whereas increased
neutrophil number exacerbated inflammation. Immunohistochemistry revealed degran-
ulated neutrophils within inflammatory foci, suggesting pathogenic activity through
NE-dependent mechanisms. Administration of the NE inhibitor sivelestat ameliorated
disease severity [83].

2.2.4. Eosinophils

A hallmark of active NMOSD lesions in the spinal cord is intense infiltration of
eosinophils within perivascular and meningeal spaces, along with expression of CCR3—the
principal receptor for eotaxin, a potent eosinophil chemoattractant [77]. CSF from NMOSD
patients contains higher levels of eotaxin-2 and eotaxin-3 compared with both healthy
controls and MS patients. Moreover, stimulation of CSF cells with myelin oligodendrocyte
glycoprotein (MOG) antigen enhances production of interleukin-5 (IL-5), which recruits
and activates eosinophils [84]. Activated eosinophils release cytotoxic proteins including
eosinophil cationic protein (ECP), eosinophil-derived neurotoxin (EDN), eosinophil peroxi-
dase (EPX), and major basic protein (MBP). Eosinophils can therefore damage neural tissue
through both lytic granule degranulation and ADCC [85].

2.2.5. Microglia

Microglial activation and macrophage infiltration also occur in regions of high AQP4
expression [86]. In animal models, AQP4-IgG induce astrocytic production of complement
component C3 [87]. Microglia, which express receptors for C3a, become activated in
response to elevated C3 levels [88]. Activated microglia produce C1q, which may promote
axonal damage and neurodegeneration independently of full complement activation [89,90].
Conversely, microglia can also provide neuroprotection by phagocytosing myelin debris
and supporting remyelination through tissue clearance and regeneration [91,92]. The
triggering receptor expressed on myeloid cells 2 (TREM2) plays a pivotal role in this
process, enhancing microglial phagocytic activity and degradation of myelin remnants,
thereby facilitating neuroprotection in NMOSD-associated demyelination [93].

2.3. Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease

MOGAD is an inflammatory demyelinating disease that most commonly presents as
acute disseminated encephalomyelitis, optic neuritis or transverse myelitis. Diagnosis relies
on the detection of IgG autoantibodies against myelin oligodendrocyte glycoprotein (MOG),
an accessible autoantigen located on the surface of myelin sheaths and oligodendrocyte
processes within the CNS [94].

As in NMOSD, autoantibodies are central to pathogenesis, but tissue injury is me-
diated primarily by effector mechanisms of innate immunity. Demyelination induced by
MOG-specific IgG (MOG-IgG) occurs through CDC, ADCC, antibody-dependent cellular
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phagocytosis (ADCP), as well as by direct disruption of the oligodendrocyte cytoskeleton.
Despite increasing research, the immunological mechanisms underlying MOGAD remain
incompletely defined [95].

Complement System

Among the best-characterized effector processes is complement activation. Its role
is supported by preclinical studies [96] and histopathological evidence showing depo-
sition of complement components within demyelinating lesions [97–99]. Furthermore,
serum from MOGAD patients exhibits greater activity of both the classical and alternative
complement pathways compared with healthy controls, as assessed using a multiplex
chemiluminescence-based ELISA assay [100]. However, complement activation by MOG-
IgG appears less efficient than that induced by AQP4-IgG, likely because MOG-IgG in
most patients are predominantly bivalent, a form considered less effective at initiating the
complement cascade [101].

2.4. Myasthenia Gravis

MG is an autoimmune disorder characterized by impaired neuromuscular transmis-
sion. It is highly heterogeneous, both pathogenetically—reflected by diverse autoantibody
profiles—and clinically. Antibodies against the acetylcholine receptor (AChR) are the most
common autoantibody type, detected in approximately 85% of patients with the generalized
form of the disease [102,103].

In AChR antibody–positive MG, aberrant adaptive immune activation leads to
pathogenic antibody production through B-cell somatic hypermutation and antigen selec-
tion [104]. However, the initiation and maintenance of autoimmunity largely depend on
innate immune mechanisms [105,106].

Innate immunity contributes to both the initiation of autoimmunization and the
effector phase of MG pathogenesis. Evidence implicates Toll-like receptor (TLR) signaling
pathways, the classical complement cascade, and innate immune cells including NK cells,
NKT cells, and DCs.

2.4.1. TLRs

Pathogen exposure can trigger aberrant TLR activation in the thymus [107]. Poliovirus
(PV), for example, activates the TLR4 pathway, leading to increased expression of chemokines
that attract DCs and to cytokine release by Th17 cells, thereby disturbing the balance between
effector and regulatory T cells [108,109]. Epstein–Barr virus (EBV) interacts with TLR3 or
TLR7, inducing excessive production of pro-inflammatory cytokines such as interferon-beta
(IFN-β) and chemokines that recruit peripheral B cells and Th17 cells, which promote germinal
center (GC) formation in the thymus [110–113]. Type I interferons (IFN-I) are pivotal in MG
pathogenesis. IFN-β stimulates thymic epithelial cells (TECs) to express AChR, which are
subsequently internalized by antigen-presenting cells (APCs), initiating autosensitization to
AChR and driving autoantibody production [114].

2.4.2. Complement System

Anti-AChR antibodies exert their pathogenicity through complement activation. The
classical pathway is triggered by antibody binding to C1q, leading to assembly of the C4b2a
complex (C3 convertase), cleavage of C3, and subsequent formation of the C5 convertase.
Generation of C5b initiates formation of the membrane attack complex (MAC), resulting in
destruction of the postsynaptic membrane at the neuromuscular junction (NMJ) [115].
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2.4.3. NK Cells

NK cells are involved in MG pathogenesis, but their role may be protective or
pathogenic depending on phenotype and function [116]. The chemokine receptor CXCR5
promotes migration of follicular helper T cells (Tfh) and B cells into GCs [117]. Based on
CXCR5 expression, NK cells can be divided into CXCR5(−) and CXCR5(+) subsets. Transfer
of CXCR5(−) NK cells into rats with experimental autoimmune myasthenia gravis (EAMG)
alleviated disease symptoms, reduced Tfh frequencies, and lowered anti-AChR antibody
titers [118]. Conversely, NK cells promote Th1 activation by enhancing IFN-γ secretion
and inhibiting transforming growth factor-β1 (TGF-β1), thereby contributing to EAMG
development. Mice deficient in NK cells display reduced anti-AChR antibody levels, im-
paired Th1 responses, and resistance to EAMG. In MG patients undergoing plasmapheresis,
responders exhibited significantly reduced NK-cell cytotoxicity [119].

2.4.4. NKT Cells

NKT cells modulate immune responses by producing immunoregulatory cytokines.
Activation of NKT cells with their agonist α-galactosylceramide (α-GalCer) enhances IL-2
production, a key driver of Treg development [120]. In mice treated with α-GalCer, Tregs
were not only more abundant but also functionally more potent, expressing higher levels of
anti-apoptotic proteins Foxp3 and Bcl-2. Consequently, NKT cells protected against EAMG
induction [121]. DCs are also central APCs. In vivo inhibition of DC maturation reduced
IL-1β secretion, lowered Tfh-cell numbers, and ameliorated EAMG severity [122].

2.5. Chronic Inflammatory Demyelinating Polyneuropathy

CIDP is an autoimmune disorder characterized by chronic inflammation and damage
to the myelin sheaths and axons of peripheral nerves [123]. Growing evidence indicates
that autoantibodies contribute significantly to demyelination in CIDP by injuring myelin
and axons, disrupting Schwann-cell membranes and damaging the nodes of Ranvier [124].
Innate immune mechanisms are also critical in CIDP pathogenesis.

2.5.1. Complement System

Their involvement of complement system is supported by the detection of comple-
ment component deposits in the myelin sheaths of sural nerves in patients [125,126] and
by elevated levels of activated complement components (C3d) in serum during active
disease [127]. Lewis rats are a standard animal model of experimental autoimmune neuritis
(EAN), and studies in these models have demonstrated that complement inhibition can
restore nerve function and slow disease progression [128–130]. The importance of comple-
ment in CIDP is further underscored by genetic studies: cases of early-onset neuropathy
resembling CIDP have been described in children carrying rare mutations in the CD59 gene,
which encodes a complement regulator. These mutations resulted in excessive complement
activation, suggesting that complement dysregulation may represent a key pathogenetic fac-
tor in CIDP [131]. More recently, an in vitro “human-on-a-chip” functional model showed
that serum from CIDP patients induced binding of autoantibodies to Schwann cells and
motor neurons, accompanied by deposition of C3b and C5b-9 [132].

2.5.2. Macrophages

Macrophages also play a pivotal role in the pathogenesis of inflammatory demyelinating
polyneuropathies such as Guillain–Barré syndrome (GBS) and CIDP [133,134]. One mech-
anism initiating their activation may be molecular mimicry, in which pathogen epitopes
resemble peripheral nerve antigens [135]. Alternatively, disease may begin with activation of
resident macrophages, which acting as APCs, erroneously recognize myelin structures [136].
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Once the inflammatory cascade is triggered, peripheral blood monocytes—guided by adhe-
sion molecules such as selectins and ICAM-1—migrate into the endoneurium [137,138]. There,
under the influence of matrix metalloproteinases, they differentiate into macrophages [139].
Both resident and monocyte-derived macrophages then amplify inflammation through cy-
tokine secretion. In addition, macrophages directly damage myelin by releasing proteolytic
enzymes and phagocytosing myelin structures [140–142].

2.5.3. DCs and NK Cells

DCs and NK cells have also been proposed to contribute to CIDP pathogenesis.
However, beyond observed alterations in their levels following immunoglobulin therapy,
there is currently no conclusive evidence confirming their substantial involvement in the
disease process [143,144].

The connections between innate immune elements, their mechanisms of action and
pathogenic effects in neurological diseases are summarized in Figure 1.

Figure 1. Cont.
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Figure 1. Links between innate immune elements, their mechanisms of action and pathogenic effects
in neurological diseases.

3. Elements of Innate Immunity as Potential Therapeutic Targets
3.1. Treatment of MS

Current therapeutic strategies for MS focus on managing relapses with glucocorti-
coids and reducing inflammatory activity with disease-modifying therapies (DMTs). These
agents alter the disease course primarily by suppressing or modulating immune responses.
Currently approved and widely used DMTs predominantly target adaptive immunity,
although they may indirectly influence innate immune pathways [145]. Increasing evi-
dence supports the feasibility of developing therapies that directly target components of
innate immunity.

Promising results have been reported with DCs–directed therapies. Agents that inhibit
DC maturation toward a pro-inflammatory phenotype include cytokine inhibitors such
as anakinra and tocilizumab [146], MOR103 [147,148], KB003, and BVDU [149], as well as
T-cell costimulation inhibitors, including CTLA4-Ig, a cytotoxic T-lymphocyte antigen-4
fusion protein. These agents act by suppressing immunogenic DC functions or by inducing
a tolerogenic phenotype. Research efforts also include recombinant chimeric antibodies
such as anti-DEC205-MOG [150] and anti-CD11c-MOG [151], which deliver tolerogenic
antigens to DCs through specific receptors [152–157]. Another approach involves the use
of ex vivo-generated TolDCs [158]. This strategy is constrained by technical challenges
related to isolating, purifying and culturing autologous DCs or their precursors, which
increases cost and complexity [159]. As an alternative, nanoparticles carrying antigens and
immunomodulators have been designed to induce TolDCs in vivo [160]. An additional
therapeutic approach involves blocking DCs migration from inflamed tissues to peripheral
lymphoid organs. Arc/Arg3.1, a cytoskeleton-regulating protein, plays a critical role in
DCs motility and T-cell activation in both EAE and allergic dermatitis models. Targeting
Arc/Arg3.1 may enable selective modulation of immune responses [161].

Microglia have also emerged as promising therapeutic target in MS. Inhibition of
microglial activity with the orally administered colony-stimulating factor 1 receptor (CSF1R)
inhibitor PLX5622 significantly reduced both clinical symptoms and pathological features
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in EAE. The treatment created a regenerative microenvironment by selectively enriching
lesion sites with anti-inflammatory microglia and mature oligodendrocytes. PLX5622 is
currently under evaluation in preclinical studies [162].

Another experimental strategy is the PADRE-Kv1.3 vaccine, developed to modulate
immune responses by inducing antibodies against the Kv1.3 potassium channel, which
is critical for the activity of microglia and macrophages. In a 2018 study, PADRE-Kv1.3
significantly ameliorated clinical symptoms and reduced CNS pathology in EAE. Treatment
diminished microglial and macrophage infiltration and promoted a shift toward the anti-
inflammatory M2 phenotype. However, studies on PADRE-Kv1.3 remain limited to animal
model and clinical data in humans regarding efficacy and safety are currently lacking [163].

3.2. Treatment of NMOSD

Therapeutic management of NMOSD includes both the treatment of acute relapses
and long-term relapse prevention. Acute attacks are typically managed with high-dose
intravenous glucocorticoids, while therapeutic plasmapheresis is reserved for refractory
or severe cases. Intravenous immunoglobulins (IVIG) may be considered in selected
clinical contexts. Preventive strategies include not only classical immunosuppressants
but also biological agents targeting both adaptive and innate immune pathways. Adap-
tive immunity-directed therapies include satralizumab and tocilizumab, which block the
interleukin-6 receptor (IL-6R), as well as inebilizumab and rituximab, which deplete B cells.
The principal innate immune target is the complement system, whose activation plays a
pivotal role in NMOSD pathogenesis [164,165].

Eculizumab and ravulizumab are monoclonal antibodies that inhibit complement compo-
nent C5, thereby preventing formation of MAC. In a phase 3 clinical trial, eculizumab reduced
relapse risk by 94% in AQP4-IgG-positive patients [166], an effect confirmed in open-label
extension [167] and monotherapy studies [168], independent of demographic and clinical
variables [169]. Ravulizumab, a longer-acting analogue, reduced relapse risk by 98.6% in
clinical trials [170]. Both agents demonstrated favorable safety profiles [166,167,170].

There is also a case report suggesting potential benefit from adjunctive cetirizine in
NMOSD, with a proposed mechanism involving inhibition of eosinophil activation and
function. However, the authors emphasized that these findings constitute class IV evidence,
and no clinical trials of cetirizine in NMOSD are currently ongoing [171].

3.3. Treatment of MOGAD

There is currently no disease-specific therapy for MOGAD. Management like NMOSD
involves both relapse treatment and relapse prevention. High-dose intravenous methyl-
prednisolone remains the first-line therapy for acute relapses. In cases of incomplete
neurological recovery, IVIG or plasmapheresis may be effective. Maintenance therapies
include mycophenolate mofetil, azathioprine, IVIG, oral glucocorticoids, rituximab, and
interleukin-6 receptor antagonists such as satralizumab [172]. At present, no clinical trials
are evaluating therapies that directly target elements of innate immunity in MOGAD.

3.4. Treatment of MG

Standard therapy for MG consists of acetylcholinesterase inhibitors and immuno-
suppressive agents. However, approximately 10% of patients remain refractory to
this treatment [173].

Advances in understanding the role of innate immunity in MG pathogenesis have
prompted the development of novel therapeutic strategies. Anifrolumab, a monoclonal
antibody targeting the IFN-I receptor, has been approved for systemic lupus erythematosus
(SLE)—an autoimmune disease characterized by excessive IFN-I production [174,175].
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Although no clinical trials are currently investigating IFN-I blockade in MG, modulation of
this pathway may represent a promising future strategy.

TLR antagonists are also being explored as potential therapies for autoimmune dis-
eases due to their ability to suppress inflammatory signaling and cytokine induction [176].
Chaperonin 10 exhibits anti-inflammatory effects by inhibiting TLR4 activation, as demon-
strated in clinical studies in rheumatoid arthritis (RA) [176]. M5049, a TLR7/8 antagonist,
protected against SLE development in preclinical murine models and was shown to be safe
in a phase I trial in healthy volunteers [177,178]. IMO-3100, a dual TLR7/TLR9 antagonist,
demonstrated therapeutic potential in autoimmune disease by reducing skin inflammation
in a phase 2a trial in psoriasis [179]. Despite their potential, no clinical studies are currently
evaluating TLR inhibitors in MG.

In recent years, the complement system has attracted the greatest attention in the
development of novel MG therapies. Eculizumab, a high-affinity monoclonal antibody
against complement component C5, inhibits C5 convertase activity and prevents MAC for-
mation. Clinical trials have demonstrated that eculizumab reduces the risk of exacerbations
and improves daily functioning and quality of life in treatment-refractory, AChR-antibody-
positive MG [180–182]. Real-world studies further support its favorable safety profile and
effectiveness in reducing exacerbations, while enabling safe tapering of corticosteroids [183].
Case reports also describe its successful use as rescue therapy in myasthenic crisis [184].

Zilucoplan, a macrocyclic peptide inhibitor of C5, prevents C5 cleavage and blocks
MAC formation. Clinical studies have shown that zilucoplan improves daily functioning
in patients with moderate-to-severe generalized AChR-antibody–positive MG, suggesting
potential utility even in earlier disease stages [185]. Ravulizumab, another long-acting
monoclonal antibody targeting C5, maintains therapeutic serum concentrations that allow
dosing every 8 weeks [186]. The phase 3 CHAMPION MG trial confirmed its efficacy and
tolerability in adults with generalized AChR-antibody–positive MG [187,188].

C1 esterase inhibitors represent an innovative therapeutic class that blocks activation
of the classical complement pathway. These agents have been shown to effectively control
attacks of hereditary angioedema due to C1 esterase deficiency [189,190] and are being
investigated as alternatives to eculizumab in solid-organ transplantation [191]. Given the
role of C1 in MG pathogenesis, C1 esterase inhibitors may represent a promising therapeutic
strategy, although no clinical trials in MG are currently underway.

3.5. Treatment of CIDP

Current treatment options for CIDP include intravenous and subcutaneous im-
munoglobulins [192,193], plasmapheresis [194], glucocorticoids [195], and immunosup-
pressive agents [196]. More recently, additional strategies have shown efficacy, including
monoclonal antibodies targeting the neonatal Fc receptor [197–200] and Bruton’s tyrosine
kinase inhibitors [201,202].

In parallel, components of innate immunity are being investigated as therapeutic tar-
gets, with the complement system attracting the greatest attention. Riliprubart (SAR445088)
is a humanized monoclonal antibody directed against C1s, acting at the proximal step of
the classical complement pathway. Selective inhibition of the C1 complex prevents down-
stream complement activation, thereby potentially mitigating inflammatory processes
implicated in CIDP pathogenesis. Compared with distal complement inhibitors such as C5
blockers, its targeted mechanism may provide a more favorable safety profile, particularly
with respect to infection risk. To date, riliprubart has demonstrated good tolerability and
safety [203,204], and a phase 3 clinical trial is currently underway [205].

Continued investigation of innate immune mechanisms in CIDP pathogenesis holds
promise for the development of novel, targeted and effective therapeutic strategies for this
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disease. A summary of currently used and emerging therapies directed against innate
immune components is provided in Table 1.

Table 1. Therapies targeting innate immunity.

Disease Therapeutic Target Example Therapies Development Stage

MS DCs
CTLA4-Ig, anakinra, tocilizumab,
TolDCs, nanoparticles,
anti-DEC205-MOG

Clinical and preclinical studies

MS Microglia PLX5622 Preclinical studies

MS Kv1.3 channel (microglia,
macrophages) PADRE-Kv1.3 (vaccine) Preclinical (EAE model)

NMOSD Complement (C5) Eculizumab, ravulizumab Phase 3 (approved drugs)

NMOSD Eosinophils Cetirizine Preliminary reports (class
IV evidence)

MOGAD — — —

MG IFN-I Anifrolumab Approved in SLE; potential
in MG

MG TLRs Chaperonin-10, M5049, IMO-3100 Phase 1–2a in other
autoimmune diseases

MG Complement (C5) Eculizumab, ravulizumab,
zilucoplan Approved and used clinically

MG Complement (C1 esterase) Conestat alfa Promising; no active MG trials

CIDP Complement (C1s) Riliprubart Phase 3

4. Conclusions
Innate immunity, long regarded as merely a nonspecific defense system, is now recog-

nized as significant in the pathogenesis of many immune-mediated neurological diseases.
Cells such as microglia, DCs, macrophages, neutrophils, and NK cells not only initiate
inflammatory responses but also fine-tune them through selective modulation, in close
interplay with adaptive immune mechanisms.

In the disorders analyzed—MS, NMOSD, MOGAD, MG and CIDP—extensive ex-
perimental, preclinical and clinical evidence supports the involvement of innate effector
mechanisms in both disease initiation and progression. Increasingly detailed characteri-
zation of molecular pathways and effector-cell phenotypes underscores their potential as
therapeutic targets.

However, important gaps remain. Translation of findings from preclinical models to
clinical therapies is still limited, and further research is needed to determine which innate
immune pathways are most promising and safe for therapeutic modulation. In particular,
questions regarding the selective regulation of effector versus regulatory phenotypes, the
long-term consequences of complement inhibition, and the interplay between innate and
adaptive responses in chronic disease remain unanswered.

Taken together, these findings suggest that the future of neuroimmunological ther-
apy may rest on integrated strategies that combine modulation of innate immunity with
interventions targeting adaptive responses. Continued research into the selective regula-
tion of innate immune cell activity and phenotype holds promise for the development of
individualized, effective and safe therapeutic approaches.
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Abbreviations
The following abbreviations are used in this manuscript:

Abbreviation Full Name
MS Multiple Sclerosis
NMOSD Neuromyelitis Optica Spectrum Disorder(s)
MOGAD Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease
MG Myasthenia Gravis
CIDP Chronic Inflammatory Demyelinating Polyneuropathy
DCs Dendritic Cells
NK Natural Killer (cells)
ILCs Innate Lymphoid Cells
CNS Central Nervous System
EAE Experimental Autoimmune Encephalomyelitis
CSF Cerebrospinal Fluid
BBB Blood–Brain Barrier
Th17 T helper 17 (cells)
IL-17 Interleukin-17
GM-CSF Granulocyte–Macrophage Colony-Stimulating Factor
TolDCs Tolerogenic Dendritic Cells
Tregs Regulatory T Cells
CTLA-4 Cytotoxic T-Lymphocyte Antigen-4
IFN-γ Interferon-Gamma
IL-2 Interleukin-2
PAMPs Pathogen-Associated Molecular Patterns
CXCL12 C-X-C Motif Chemokine Ligand 12
FASL Fas Ligand
TRAIL TNF-Related Apoptosis-Inducing Ligand
ADCC Antibody-Dependent Cellular Cytotoxicity
CDC Complement-Dependent Cytotoxicity
MAC Membrane Attack Complex
IgG Immunoglobulin G
AQP4 Aquaporin-4
AQP4-IgG Aquaporin-4–Specific Immunoglobulin G
C9neo Neoantigen of C9 (marker of MAC)
EAAT2 Excitatory Amino Acid Transporter 2
FcγRIII (CD16) Fc Gamma Receptor III (Cluster of Differentiation 16)
NE Neutrophil Elastase
CCR3 C-C Chemokine Receptor Type 3
IL-5 Interleukin-5
ECP Eosinophil Cationic Protein
EDN Eosinophil-Derived Neurotoxin
EPX Eosinophil Peroxidase
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MBP Major Basic Protein
TREM2 Triggering Receptor Expressed on Myeloid Cells-2
MOG Myelin Oligodendrocyte Glycoprotein
MOG-IgG Myelin Oligodendrocyte Glycoprotein–Specific Immunoglobulin G
ADCP Antibody-Dependent Cellular Phagocytosis
AChR Acetylcholine Receptor
TLR Toll-Like Receptor
PV Poliovirus
EBV Epstein–Barr Virus
IFN-β Interferon-Beta
GC Germinal Center
IFN-I Type I Interferons
TECs Thymic Epithelial Cells
APCs Antigen-Presenting Cells
NMJ Neuromuscular Junction
CXCR5 C-X-C Motif Chemokine Receptor 5
Tfh Follicular Helper T Cells
EAMG Experimental Autoimmune Myasthenia Gravis
TGF-β1 Transforming Growth Factor-Beta 1
NKT cells Natural Killer T Cells
α-GalCer Alpha-Galactosylceramide
Foxp3 Forkhead Box P3
Bcl-2 B-cell Lymphoma 2 (protein)
IL-1β Interleukin-1 Beta
GBS Guillain–Barré Syndrome
ICAM-1 Intercellular Adhesion Molecule 1
DMTs Disease-Modifying Therapies
CTLA4-Ig Cytotoxic T-Lymphocyte Antigen-4 Fusion Protein
Arc/Arg3.1 Activity-Regulated Cytoskeleton-Associated Protein
CSF1R Colony-Stimulating Factor 1 Receptor
PADRE-Kv1.3 Vaccine targeting Kv1.3 Potassium Channel with PADRE Epitope
IL-6R Interleukin-6 Receptor
IVIG Intravenous Immunoglobulins
SLE Systemic Lupus Erythematosus
RA Rheumatoid Arthritis
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