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MSCs 来源外泌体在创面修复中的研究进展

王江文，易阳艳，朱元正

南昌大学第二附属医院整形美容科（南昌  330006）

【摘要】   目的    总结近年来 MSCs 来源外泌体（exosomes，EXOs）在创面修复中的研究进展。方法    广泛查

阅国内外有关 MSCs-EXOs 在创面修复中作用的文献，总结分析 MSCs-EXOs 在创面修复过程中的作用机制及其

临床应用前景。结果    MSCs-EXOs 在创面愈合过程中可抑制早期的炎性反应，促进血管新生和上皮细胞的增殖

与迁移，后期调控胶原合成并抑制瘢痕增生。与 MSCs 相比，MSCs-EXOs 具有高稳定性、易于储存、不易致瘤、无

需增殖、便于定量使用等优点，有着广阔的临床应用前景。结论    MSCs-EXOs 能够促进创面修复，且有希望发展

成为临床上一种促进急性或慢性创面修复的产品。
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Conclusion    MSCs-EXOs can promote wound repair and hopefully develop into a clinical product to promote the repair
of acute or chronic wounds.
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皮肤是保护机体免受外界环境侵袭和病原体

入侵的屏障。然而，皮肤经常因创伤或各种疾病而

受损，比如在患有糖尿病的情况下，创面愈合非常

困难[1]。如何快速有效地加速创面愈合，对于机体

健康是至关重要的。干细胞疗法曾一度成为促进

和改善创面愈合的热门研究领域之一，但有文献报

道干细胞修复创面时可能发生急性心肌梗死、急性

肾损伤、严重肢体缺血、中风和肿瘤等一系列并发

症 [2 -4]。所以，干细胞治疗创面的疗效一直备受争

议。细胞因子疗法也一度成为促进创面愈合的热

门研究领域，但由于细胞因子半衰期短、不稳定、

靶细胞的吸收率低等一系列因素，使得细胞因子修

复创面愈合的疗效一直不乐观 [5]。近期研究发现，

MSCs 的疗效主要来自于其旁分泌方式分泌的产

物——外泌体（exosomes，EXOs）[6]。MSCs-EXOs 治
疗创面由于避免了干细胞治疗的免疫排斥、致瘤、

栓塞等缺点，且具有高稳定性、易于储存、无需增

殖、便于定量使用等优势，与单一细胞因子治疗比

较，具有较高的安全性和更大的组织再生潜能，从

而成为近年研究的热点领域[6]。本文就 MSCs-EXOs
的生物学特性以及促进创面愈合的研究进展综述

如下。
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1    EXOs 的生物学特性

EXOs 是一种由细胞经过“内吞-融合-外排”

等一系列调控过程形成的直径 40～100 nm 的膜性

脂质小囊泡[7]。EXOs 首先由 Harding 等[8]于 1983 年
在大鼠的网织红细胞中发现。1985 年，Pan 等[9]用

电镜同样发现了这种由细胞分泌的小囊泡。1987
年，Johnstone 等[10]将这种小囊泡正式定义为“exo-
somes”。而  EXOs 是细胞外囊泡（extracellular
vesicles，EVs）的一种亚型。EVs 是脂质双层膜封闭

的亚细胞结构，通常为球形，尺寸范围为几纳米至

几微米。它们几乎是由体内的每种细胞类型产生

的，并且已从大多数体液（从母乳到尿液样品）及

分离的组织和细胞培养上清液中分离出来[7, 11]。EVs
根据其生物合成模式被分为 3 个主要亚型——EXOs、
微泡和凋亡小体[7]。

EXOs 的合成始于细胞膜的内向出芽和初级核

内体的产生，这些初级核内体进一步内向出芽形成

次级核内体，次级核内体继续向内逆向出芽，形成

含有多囊泡的次级核内体，称为多囊泡体（multi-
vesicular bodies，MVBs）。MVBs 部分进入溶酶体

被降解；剩余部分与质膜融合，再次向内凹陷出芽

为颗粒状小囊泡，并释放到细胞外，这种囊泡结构

就称为 EXOs[12]。微泡起源于质膜的小突起向外出

芽和酶促裂变，其生成需要通过调节肌动蛋白和肌

球蛋白相互作用，而使细胞骨架蛋白收缩[13]。当细

胞进行程序性死亡时，凋亡细胞经核碎裂形成核碎

片，然后整个细胞通过发芽、起泡等方式形成一个

球形的突起，并在其根部脱落形成一些大小不等，

内含细胞质、细胞器及核碎片的小体称为凋亡小

体，凋亡小体在细胞间通讯过程中也具有功能效

应[14]。

EXOs 囊泡膜具有脂质双分子层结构，其大小

较均一，直径为  40～100 nm，膜表面标记物主要

有  CD9、CD63、CD81、CD82、HSP70 等。囊泡内

富 含 多 种 蛋 白 质 和 核 酸 如  m R N A 、 微 小

RNA（micro RNA，miRNA）  等，其中  Alix 蛋白和

TSG101 蛋白为其囊内标记物 [ 1 5 ]。微泡直径较

EXOs 大，为  100～1 000 nm。微泡内除了富含蛋

白质、mRNA 及  miRNA 外，还有大量细胞因子、

趋化因子、金属蛋白酶和磷脂酰丝氨酸等，其标

记物主要有整合素、基质金属蛋白酶和组织因子

等 [16]。凋亡小体大小为  50～5 000 nm，内含组蛋

白质、RNA、DNA 等，其磷脂酰丝氨酸含量也很

高[14]。

2    创面愈合的生理过程

创面愈合是一个动态又复杂的生理过程，已被

细分为 4 个阶段：止血期、炎症期、增殖期和重塑

期[17]。

在止血期，创面形成的血凝块保护伤口部位免

受环境污染，并提供基质和可溶性因子如 TGF-β、
PDGF、FGF 和 EGF 促进黏附，并成为创面愈合过

程中各种细胞谱系分化的诱导剂[18-20]。

随后的炎症期以骨髓来源免疫细胞浸润为特

征，通过清除创面部位的病原体、凋亡细胞、细胞

碎片和受损基质，为愈合做准备 [17]。微生物病原

体被中性粒细胞除去，巨噬细胞接下来就开始

吞噬凋亡的细胞和细胞碎片 [21]。当然，淋巴细胞

也参与伤口愈合，文献表明 CD4+ T 细胞与促愈合

作用有关，而 CD8+ T 细胞则对创面修复有负面影

响 [22]。其中更发现一种在皮肤驻留的 γ-δT 细胞亚

群，其可通过调节组织结构和炎症以及防止感

染，从而在创面愈合中发挥重要作用。这些炎症

变化最终促进  M1 型巨噬细胞向  M2 型巨噬细胞

转变[23]。

当到达增殖期时，M2 型巨噬细胞通过调节角

质形成细胞、成纤维细胞和内皮细胞的增殖和迁

移，来促进组织再生以及大量细胞外基质（extracel-
lular matrix，ECM）的产生[18]。

到最后的重塑期，新生 ECM 的胶原蛋白分解

和结构调整导致伤口厚度减小，大部分新生成的毛

细血管退化，使组织的血管正常化，并通过下面结

缔组织的收缩将创面的边缘拉到一起，最后创面得

以愈合[17, 20, 24]。

3    MSCs-EXOs 调节创面愈合

3.1    调控创面的炎性反应

炎症是机体响应有害刺激的一种自卫机制，当

机体遭受损害或病原体侵入后，良好调节的炎性反

应是创面愈合的基本保障[25]。

在皮肤损伤后 24～36 h，嗜中性粒细胞作为主

要细胞类型最初招募到损伤部位，吞噬外来颗粒、

病原体、受损组织和细胞[18]。皮肤损伤后 48～72 h
内，巨噬细胞被募集到伤口部位，并继续吞噬过

程 [ 2 6 ]。巨噬细胞呈现促炎 M1 表型和抗炎 M2 表
型，M2 型巨噬细胞在组织重塑和血管生成等方面

起着核心作用，而 M1 型巨噬细胞则产生促炎细胞

因子，吞噬病原体和受损细胞 [27]。近年研究表明，

EXOs 可通过骨髓来源的巨噬细胞被有效摄取，导
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致它们从 M1 表型向 M2 表型转变[28]。另一项研究

显示，脂多糖预处理的 MSCs-EXOs 携带的 miRNA-
let-7b，可通过抑制 TLR4/NF-κB 通路和激活 STAT3/
AKT 信号传导通路来调节巨噬细胞极化，从而促进

创面愈合[29]。

此外，有研究表明，活化的 T 调节性细胞可以

通过减少 IFN-γ 产生和 M1 型巨噬细胞聚集促进创

面愈合[30]。并且，MSCs-EXOs 不仅可调节 B 淋巴细

胞的活化、分化和增殖，还可抑制 T 淋巴细胞的增

殖，MSCs-EXOs 可以转换活化的 T 淋巴细胞到 T
调节性细胞的表型，从而发挥免疫抑制作用[31-32]。

在炎性因子的调控上，MSCs-EXOs 也发挥着

重要作用。多种 MSCs-EXOs 可以抑制多种促炎因

子的分泌，包括 TNF-α、诱导型一氧化氮合酶、环

加氧酶、IL-1 和单核细胞趋化蛋白等，并促进抗炎

因子如 IL-10 的分泌[33-35]。有研究表明，MSCs-EXOs
能激活有丝分裂原活化蛋白激酶信号传导通路，从

而抑制促炎因子 IL-1β、IL-6 和 TNF-α 的分泌[36-38]。

另外，Eirin 等[39]在代谢综合征和肾动脉狭窄的猪模

型中，发现 MSCs-EXOs 通过促进抗炎细胞因子 IL-
10 的分泌来减轻炎症。

通过分析 miRNA 表达谱，Ti 等[40]证实 MSCs-
EXOs 携带的 3 个具有调控有关免疫应答和炎症功

能的特定  miRNAs（miRNA-21、miRNA-146a 和
miRNA-181C），在靶细胞中具有最高表达。此外，

研究表明，MSCs-EXOs 携带的 miRNA-181C 可通

过下调 TLR4 信号传导通路，从而降低过度的炎性

反应[34]。

3.2    促进创面的血管生成

新血管的形成是在多种生理和病理过程，包括

创面愈合和组织修复的关键步骤[41]。Zhang 等[42]发

现，人脐带 MSCs（human umbilical cord MSCs，
hucMSCs-EXOs）介导 Wnt4/β 连环蛋白激活，促进

内皮细胞增殖和迁移，从而促进血管生成，这可能

是一个重要的皮肤伤口愈合机制。Sahoo 等[43]发现

人 CD34+ 干细胞衍生的 EXOs 与促进血管生成的

miRNAs（miRNA-126 和 miRNA130A），两者均可

显著诱导血管在局部缺血的组织中富集。

此外，人脂肪来源干细胞（human adipose
derived stem cells，hADSCs）来源的 EXOs 含有丰富

的 miRNA-125A 和 miRNA-31，其可被转移到血管

内皮细胞，从而显著促进血管生成。张静等 [ 4 4 ]研

究已证明 hADSCs-EXOs 可促进血管内皮细胞的增

殖、迁移，从而促进血管新生。既往研究证明

hADSCs-EXOs 可以通过抑制 DLL4 将 miR-125a 转

移到内皮细胞，从而促进血管生成[45]。Kang 等[46]还

证实，h A D S C s -E X O s  可以通过抑制  H I F 1  将
miRNA-31 转移到内皮细胞，促进血管生成。Shabbir
等[47]发现，MSCs-EXOs 激活了与伤口愈合相关联的

信号通路（AKT、ERK 和 STAT3）和诱导的许多生

长因子（如肝细胞生长因子、IGF-1、NGF 和 stromal-
表达衍生生长因子 1）来促进新生血管的形成。

3.3    促进皮肤细胞增殖和再上皮化

在增殖期，成纤维细胞增殖通常开始于皮肤损

伤后第 3 天，此后成纤维细胞出现并开始增殖产生

ECM；此外，上皮细胞开始增殖并朝创面中心迁

移，从而加速创面愈合。因此，细胞增殖和皮肤上

皮再形成是皮肤再生的关键[41]。

有研究发现，在糖尿病大鼠模型中，富血小板

血浆衍生的 EXOs 通过激活 YAP 蛋白，有效促进成

纤维细胞的增殖和迁移，以及创面皮肤再上皮化[48]。

尹刚等[49]也发现 ADSCs-EXOs 能够促进周围神经损

伤后再生。另外，Geiger 等[50]发现，人成纤维细胞

衍生的  EXOs 富含具有生物活性的热休克蛋白-

90α，以及具有促血管生成能力的 miR-126、miR-
130a、miR-132，具有抗炎作用的 miR-124a、miR-
125b，以及具有调节胶原沉积的 miR-21，从而表现

出加速创面血管生成、加速创面成纤维细胞及上皮

细胞的增殖和迁移，来促进创面愈合。Hu 等[51]发

现，hADSCs-EXOs 可以通过促进成纤维细胞增殖

和胶原蛋白合成，以及上调 N 钙黏蛋白的基因表

达，促进细胞周期蛋白  1 、增殖细胞核抗原

（proliferating cell nuclear antigen，PCNA）、Ⅰ型胶

原和体外Ⅲ型胶原的合成，来促进创面愈合。体内

实验[46]也证明，hADSCs-EXOs 通过优化成纤维细胞

特性，从而显著促进皮肤伤口愈合。

此外，Zhang 等[52]发现，人诱导多能干细胞衍

生的 MSCs-EXOs 通过促进人皮肤成纤维细胞增殖

和迁移，以及通过增强胶原合成促进皮肤创面愈

合。研究表明，在大鼠深二度烧伤损伤模型中，

hucMSCs-EXOs 可抑制细胞凋亡，并激活 Wnt4/β-
catenin 和 AKT 信号通路，以增加角蛋白 19、PCNA
和Ⅰ型胶原的表达，从而促进细胞增殖，加速再上

皮化[53]。

3.4    促进胶原重塑从而减少瘢痕

严重创伤和大面积烧伤通常会导致瘢痕形成，

这是肌成纤维细胞过度聚集和 ECM 沉积的结果。

瘢痕的形成不仅影响美观，而且也影响器官功能[41]。

Hu 等[51]报道，hADSCs-EXOs 可优化成纤维细

胞的特性来促进创面愈合，他们发现在创面愈合早
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期阶段，hADSCs-EXOs 通过促进成纤维细胞分泌

Ⅰ、Ⅲ型胶原，从而加速皮肤再生；然而在晚期阶

段，它们可以抑制胶原蛋白的表达，从而减少瘢痕

形成。Fang 等[54]证明脐带间充质干细胞来源 EXOs
内携带一些特异性 miRNAs（miRNA-21、miRNA-
23A、miRNA-125B 和 miRNA-145），这些 miRNAs
通过抑制 TGF-β/SMAD2 通路，抑制肌成纤维细胞

分化和过度纤维化，从而减少瘢痕形成。Zhao 等[55]

报道表明，在大鼠创面模型中，高浓度的人羊膜上

皮细胞来源 EXOs 通过刺激基质金属蛋白酶 1 的表

达来调控 ECM 沉积，从而促进创面愈合。

此外，近年研究表明，hucMSCs-EXOs 抑制皮

肤瘢痕形成的新机制是，在皮肤再生的重塑阶段，

hucMSCs-EXOs 递送  14-3-3ζ 蛋白，有效地调控

YAP 通路；在高细胞密度条件下，14-3-3ζ 蛋白募

集 YAP 和 p-LATS 形成复合物，复合物诱导 YAP
磷酸化来抑制 Wnt/β-连环蛋白信号传导，从而限制

过度真皮成纤维细胞扩张和胶原沉积[56]。

4    EXOs 的临床应用前景

4.1    作为载体和联合支架治疗创面

在临床上，基于 EXOs 的巨大作用潜力，利用

其天然的生物相容性和细胞靶向定位性，很多科学

家将注意力集中在将 EXOs 作为新药的载体输送系

统上[6]。另外，为了稳定 EXOs 的局部作用浓度以

保证其治疗效果，EXOs 可混合水凝胶或涂层在纤

维蛋白凝胶上，水凝胶或纤维蛋白凝胶作为支架起

到缓释作用，从而增强 EXOs 的创面愈合能力[6]。

4.2    可开发为免疫抑制剂

基于 EXOs 在免疫调节上的抑制作用，临床上

可将 EXOs 作为免疫抑制治疗剂。但由于 EXOs 携
带少量同种异体蛋白，可刺激自身免疫反应，所以

其在免疫调节的应用上尚待考证 [57]。最近研究表

明，生产含有 EXOs 成分的人造脂质囊泡是一种可

行办法，以增加其稳定性和吸收性。人造 EXOs 磷
脂酰丝氨酸的水平使其具有刚性的囊泡膜，可防止

胞膜内容物的降解[58]。

4.3    提升 EXOs 的分离和鉴定技术

临床上使用 EXOs 作为治疗剂的另一个棘手问

题是 EXOs 的分离技术。首先，目前 EVs 研究的最

新技术尚缺乏广泛适用的方法来分离和鉴别各个

EVs 亚型；其次，可用的技术导致分离物在不同程

度上由多种 EVs 亚型组成，并且还可能含有非 EVs
成分，如脂蛋白、蛋白质和病毒，这取决于初始生

物液的性质[59]。

4.4    提高 EXOs 的功效

尽管现在已证明了 MSCs-EXOs 在创面愈合中

的积极作用，但需要进一步提高治疗功效。如何提

高 EXOs 功效已成为临床中的热门话题。目前，有

3 种方法已被用于进一步改善 EXOs 的功效：① 用
治疗药物作用于 EXOs 供体细胞。用特定药物预处

理 EXOs 供体细胞有可能改变 EXOs 表达特征，从

而调节其治疗特性[60]。近年，Lu 等[61]报道用 TNF-α
预处理 ADSCs，从而增加 EXOs 中 Wnt3a 的释放，

促进成骨基因表达。② EXOs 供体细胞的基因工

程。在 EXOs 分离之前对供体细胞进行基因工程技

术，似乎也是一种非常有前景的策略。许多不同的

技术可用于将遗传物质引入靶细胞，包括重组病毒

载体（慢病毒、腺病毒、腺相关病毒）或非病毒转染

技术[62]。可以应用特定 mRNA 或 miRNA 的过表达

或沉默技术来改变 EXOs 的表达特性。研究表明，

具有促血管新生作用的 miRNA-126 在人滑膜间充

质干细胞中的过表达，导致其产生的 EXOs 具有促

进人皮肤微血管内皮细胞增殖、迁移和管形成的能

力，从而增强糖尿病患者的皮肤创面愈合 [ 6 3 ]。③

EXOs 的直接操作，可选择的方法包括用脂质体处

理，与药物或生物分子直接孵育等[64]。

5    小结与展望

上述研究证明 EXOs 可促进创面愈合，从细胞

角度看，EXOs 通过增强上皮细胞、内皮细胞和成

纤维细胞的增殖、迁移，以及调节血管新生、胶原

合成和 ECM 重塑的能力，来达到创面更快愈合的

目的；从分子角度看，E X O s  通过携带特定的

miRNA 或蛋白质，来调节靶细胞基因的表达和信

号通路的激活。目前虽已证明 EXOs 治疗创面从安

全性和疗效方面都有不错的效果，但其安全性和疗

效仍不能完全保证。希望进一步了解 EXOs 促进创

面愈合的机制，同时改进  EXOs 纯化和鉴定的方

法，最终能够开发出针对急性和慢性创面的高效

EXOs 治疗产品。
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