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Abstract

In the last few decades, chimeric antigen receptor (CAR) T-cell therapy has led to a paradigm
shift in the treatment of hematological malignancies, including various subtypes of B-cell
non-Hodgkin’s lymphoma, B-cell acute lymphoblastic leukemia, and multiple myeloma.
However, most patients experience refractoriness to CAR T-cells or relapse after treatment.
Many efforts are underway to understand the mechanisms behind CAR T-cell failure, which
are mainly related to CAR T-cell dysfunction, tumor-intrinsic resistance, an immunosup-
pressive tumor microenvironment, manufacturing issues, or patient-related factors. Several
strategies are being developed to overcome these resistance mechanisms, including the
engineering of more functional allogeneic CAR T-cell products, the targeting of alternative
tumor antigens, and combination therapies with other drugs such as checkpoint inhibitors
or small molecules to enhance CAR T-cell efficacy. In this review, we will provide an
updated overview of the mechanisms of CAR T-cell failure and the therapeutic advances
currently under development to address them.

Keywords: CAR T-cells; B-cell lymphoma; B-cell acute lymphoblastic leukemia; multiple
myeloma; dual targeting; allogeneic CAR T-cells; CAR NK; CAR T-cell resistance

1. Introduction
Chimeric antigen receptor (CAR) T-cell therapy represents the most relevant advance

for patients with hematological malignancies of the last few decades, since it significantly
impacted the treatment paradigm of a wide spectrum of lymphoproliferative disorders.
CAR T-cells are autologous or allogeneic T-lymphocytes genetically engineered to express
synthetic receptors that redirect specificity against tumor-associated antigens. To date,
four anti-CD19 autologous CAR T-cell products—axicabtagene ciloleucel (axi-cel), brexu-
cabtagene autoleucel (brexu-cel), lisocabtagene maraleucel (liso-cel), and tisagenlecleucel
(tisa-cel)—are approved for treatment of relapsed or refractory (R/R) B-cell acute lym-
phoblastic leukemia (B-ALL) and B-cell non-Hodgkin lymphomas (B-NHLs), including
large B-cell lymphomas (LBCL), follicular lymphoma (FL), and mantle-cell lymphoma
(MCL); in addition, two anti-B-cell maturation antigen (BCMA) constructs—ciltacabtagene
autoleucel (cilta-cel) and idecabtagene vicleucel (ide-cel)—are commercially available for
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multiple myeloma (MM) [1–11]. Moreover, several CAR T-cell products are under develop-
ment for other hematological malignancies as well as solid tumors [12–15].

Despite the outstanding efficacy of CAR T-cells, most patients experience progressive
disease or subsequently relapse. The resistance to CAR T-cell treatment can be due to
different mechanisms: CAR T-cell-dependent issues (manufacturing failure or CAR T-cell
dysfunction), tumor-intrinsic factors (antigen escape or tumor microenvironment elements),
or CAR T-cell and patient-related determinants (prior antineoplastic treatment exposure or
gut microbiome) [16,17].

Therefore, understanding and overcoming the resistance mechanisms of CAR T-cells is
one of the most critical goals in hematological research. Many strategies are being investigated
to ameliorate CAR T-cell anticancer performance, including the adoption of different targets,
the resort to different cell sources, or the combination with other drugs with a potential
synergistic effect. This review aims to provide an up-to-date overview of these resistance
mechanisms and to illustrate how research is progressing to overcome them, with the ultimate
goal of improving the efficacy of CAR T-cell therapies and patient outcomes.

2. Mechanisms of CAR T-Cell Resistance
2.1. CAR T-Cell Dysfunction

The expansion and persistence of chimeric antigen receptor (CAR) T-cells are critical
determinants for achieving complete responses and preventing relapses in hematological
malignancies [18,19].

In autologous CAR T-cell therapy, the available T-cell pool used may be sub-optimal
for several reasons, including patient age, prior cytotoxic or lymphotoxic therapies, and
chronic antigen stimulation.

Adoptive cell transfer of T-cells, which entails ex vivo expansion and reinfusion of
antigen-specific T-lymphocytes—including CAR T-cell therapy—has shown improved
efficacy and a better toxicity profile when the infused T-cell pool predominantly consists
of less differentiated T-cells, such as naïve T-cells (TN), stem cell memory T-cells (TSCM),
and central memory T-cells (TCM). This is likely due to their superior expansion capacity,
long-term persistence, and potential to differentiate into effector cells compared to more
differentiated subsets such as effector memory T-cells (TEM) and effector T-cells (TEff) and
to dysfunctional subsets including exhausted (TEx), senescent, and anergic T-cells [20–23].

2.1.1. Memory T-Cells

Naïve T-cells expand and differentiate into effector cells upon antigenic stimulation, a
fraction of which evolve into memory T-cells (TMEM). TMEM cells can be further classified
based on their biological and immunophenotypic characteristics. TEM cells exhibit strong
effector functions but limited self-renewal capacity and long-term persistence, and they lack
lymph node homing ability. In contrast, TCM cells retain self-renewal and persistence capa-
bilities, preserve lymph node homing, and can differentiate into both TEM- and TEff-cells.
TSCM cells possess the highest levels of self-renewal and persistence, as well as the ability
to differentiate into TCM-, TEM-, and TEff-cells [20].

A preclinical study in both murine and human models demonstrated that the coexis-
tence of TMEM- and TN-cells during ex vivo expansion and subsequent in vivo co-transfer
can induce premature TN differentiation toward TEM- and TEff-cells rather than TCM- and
TSCM-cells, hampering the antitumor efficacy of the resulting product. The phenomenon is
dose-dependent (linked to the TMEM/TN ratio) and mediated by non-apoptotic Fas/FasL
interactions that activate AKT and ribosomal S6 protein (S6)—key regulators of cellular
metabolism and differentiation [22]. This study also showed that the TMEM/TN ratio was
markedly elevated in heavily pre-treated patients with LBCL compared to matched healthy
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donors, presumably due to prior lymphotoxic treatments—an observation of critical rel-
evance given the widespread clinical use of unfractionated T-cell products in CAR T-cell
therapy. Finally, transcriptomic analyses of CAR T-cells derived from patients with chronic
lymphocytic leukemia (CLL) revealed that responder-derived CAR T-cells exhibited high
expression of memory-associated genes, whereas non-responder-derived CAR T-cells were
enriched for genes related to effector differentiation, glycolysis, exhaustion, and apoptosis.
Notably, durable remission correlated with a high frequency of T-cells carrying a phenotype
consistent with TSCM-cells [24].

2.1.2. Dysfunctional T-Cells

Dysfunctional T-cells, including anergic, senescent, and TEx-cells, represent a major
barrier to the effectiveness of CAR T-cell therapy.

Anergic T-cells result from suboptimal antigen stimulation and show low proliferative,
cytotoxic, and cytokine-secreting capabilities. Conversely, senescent T-cells arise from re-
peated antigenic stimulation or cellular stress (e.g., reactive oxygen species, chemotherapy)
and experience cell cycle arrest due to telomere shortening or DNA damage. These cells
have low proliferation, reduced expression of costimulatory receptors (CD27, CD28), and di-
minished cytotoxic function. However, unlike TEx-cells, they retain high cytokine-secretion
capacity and acquire a unique “senescence-associated secretory phenotype”, producing
both pro-inflammatory cytokines (IL-2, IL-6, TNF-α, IFN-γ) and immunosuppressive ones
(IL-10, TGF-β). In contrast, TEx-cells result from chronic antigen stimulation (e.g., chronic
infections or cancer) and are characterized by poor proliferation, high expression of in-
hibitory receptors (IRs) such as PD-1, CTLA-4, TIM-3, LAG-3, and TIGIT, and reduced
cytotoxicity and cytokine secretion [21,25,26]. The IRs act synergistically to induce im-
mune tolerance via two main mechanisms: competition with costimulatory receptors (e.g.,
CTLA-4 competes with CD28 for binding to CD80/CD86) and transmission of inhibitory
signals that suppress TCR-mediated T-cell activation (e.g., PD-1/PD-L1 interaction) [21,25].
The exhausted phenotype is regulated by both intrinsic (transcription factors) and extrinsic
(cytokines) factors, resulting from complex T-cell–microenvironment interactions. A recent
study using both preclinical models and samples from responders and non-responders
enrolled in the pivotal ZUMA-1 trial showed that IL-4 promotes an exhausted-like pheno-
type in CAR T-cells, suggesting that IL-4 inhibition may enhance therapeutic efficacy [27].
In the JULIET trial, a higher PD-1/PD-L1 interaction score (defined as the percentage of
PD-1+ cells co-localized with PD-L1+ cells) and a higher percentage of LAG3+ T-cells were
associated with a greater risk of refractory disease and a greater risk of relapse [5].

2.1.3. Age-Related Changes in T-Cell Subsets

A recent study revealed significant age-related changes in T-cell subpopulations of
healthy individuals. Specifically, there was a decrease in both the absolute and relative
numbers of CD4+- and CD8+-naïve T-cells, an absolute reduction in CD8+ TSCM cells, a rel-
ative increase in CD8+ CD28− T-cells (indicative of senescent CD8+ T-cells), and an increase
in both absolute and relative numbers of CD4+ CD28− T-cells (indicative of senescent CD4+

T-cells) [28]. These immunological shifts reflect the process of immunosenescence and
might theoretically affect CAR T-cell manufacturing and function. However, clinical evi-
dence to date does not demonstrate consistent differences in efficacy between younger and
older patients, with comparable overall remission rates (ORR) and complete response (CR)
rates, progression-free survival (PFS), and overall survival (OS) across age groups [29,30].
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2.2. Intrinsic Tumor Resistance
2.2.1. Antigen Escape

Following CAR T-cell therapy, various mechanisms can lead to resistance through
antigen escape, characterized by reduced expression or complete loss of the target antigen
on the cell surface. These mechanisms include genetic alterations, epigenetic modifications,
and clonal selection, as well as antigen shedding and internalization. This phenomenon is
influenced by several factors, including prior antigen-targeted immunotherapies and the
biology of the underlying disease [31,32].

A common cause of antigen escape is the alteration to the DNA sequence encoding
the antigen. For example, there is evidence that loss of CD19 or BCMA is frequently
associated with homozygous biallelic frameshift mutations. When only a monoallelic
mutation is detected, additional mechanisms, such as silencing of the second allele, are
likely contributing to antigen loss [33,34]. Another mechanism of CD19 loss involves
aberrant CD19 processing through alternative splicing. Hundreds of CD19 isoforms can
arise from single-point mutations or cryptic splice sites, leading to resistance to CAR T-cell
therapy [35,36]. Similar alterations can affect various exons of the CD19 gene, resulting
in protein misfolding (e.g., exon 2) or disrupted membrane anchoring (e.g., exons 5 and
6). In some cases, antigen expression is altered through intron retention; for instance,
introns 2 and 6 are more abundantly retained in patients who develop CAR T-cell resis-
tance, even prior to treatment [37,38]. Genetic alterations such as RNA fusions, cryptic
splicing, frameshifts, or biallelic deletions can also affect the MS4A1 gene encoding the
protein CD20, similarly leading to antigen loss [39]. These diverse genetic changes ulti-
mately result in complete antigen loss on the cell membrane or in the production of antigen
isoforms that fail to bind to the CAR [40,41]. Finally, CD19 expression can also be down-
regulated through epigenetic modifications, such as promoter hypermethylation [42,43].
In addition, antigen loss may also result from the disruption of other proteins involved in
antigen expression such as CD81 deletion, observed in B-ALL patients who relapse with
CD19-negative disease [44]. Ziccheddu et al. [45] investigated 54 LBCL patients treated
with CAR T-cells using whole-genome and RNA sequencing. Their findings demonstrated
that CD19 downregulation can be associated with loss-of-function mutations in PAX5,
EBF1, and RHOA, key regulators of CD19 expression.

At any point in their history, from diagnosis to subsequent lines of therapy, cancers
may exhibit varying degrees of clonal heterogeneity, including a subset of antigen-negative
clones. For instance, approximately 20% of B-ALL cases harbor CD19 and CD22 negative
subclones which, under the selective pressure of CAR T-cell therapy, can expand and cause
treatment resistance [46].

Antigen escape can also occur following treatment with anti-BCMA CAR T-cells,
although BCMA-negative clonal relapses appear less frequent, occurring in fewer
than 5% of cases compared to the 9–24% reported in B-ALL and 20–27% in B-NHL
patients [4,5,19,47–49]. This discrepancy is likely due to the essential role of BCMA in
plasma cell survival [50,51]. Mechanisms driving BCMA loss include biallelic deletion of
the BCMA encoding gene TNFRSF17, monoallelic loss combined with additional alterations
to the second allele, or in-frame deletions affecting the extracellular domain of BCMA [41].
Notably, CAR T-cell-resistant MM often exhibits substantial intratumoral heterogeneity,
with the frequent coexistence of both antigen-positive and antigen-negative clones [52].
Similarly, a study of a small cohort of MM patients relapsing after a GPRC5D-targeted
CAR T-cell therapy revealed diverse mechanisms of antigen loss or reduction: one-third of
patients exhibited genetic deletions, while the majority showed hypermethylation affecting
the transcriptional regulation of GPRC5D [53].
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Epitope masking, which can occur through the unintended transduction of leukemic
B-cells with the CAR construct during the manufacturing process, is another reported
mechanism of antigen escape. In this scenario, the CAR molecule is expressed on the
surface of the malignant cell and binds its target antigen in cis, thereby masking it and
protecting the cell from recognition. This phenomenon, although rare, can be avoided with
strict manufacturing procedures [54].

2.2.2. Trogocytosis

Trogocytosis is a cell-contact-dependent, bidirectional transfer of membrane and cy-
toplasmic material between cells. It was first identified in studies of the immunological
synapse between T-cells and antigen-presenting cells, where it emerged as a key mechanism
of immune activation and adaptability [55]. This process involves various immune cell
lineages and has been extensively studied in T- and natural killer (NK)-cells, revealing both
stimulatory and inhibitory effects on immune responses depending on the context [56]. Tro-
gocytosis also affects CAR T-cells and can contribute to treatment resistance by mediating
the transfer of target antigens from tumor cells to CAR T-cells. This leads to reduced anti-
gen density on malignant cells and to fratricidal killing of CAR T-cells that have acquired
the tumor antigen [57,58]. Moreover, trogocytosis may promote functional exhaustion of
CAR T-cells, as evidenced by increased expression of inhibitory receptors such as PD-1
and LAG-3 [59]. The extent of this resistance mechanism is influenced by multiple fac-
tors, including antigen density, CAR binding affinity, checkpoint receptor expression, and
downstream intracellular signaling [60]. While the regulatory mechanisms of trogocytosis
remain incompletely understood, emerging evidence points to tumor-derived factors as key
drivers of this process, particularly through the modulation of cholesterol 25-hydroxylase
and transcriptional regulators such as ATF3 [61]. Other important modulators of trogocyto-
sis include antigen-binding affinity and the composition of CAR costimulatory domains.
Lower-affinity CARs have been shown to reduce trogocytosis, offering a potential strategy
to mitigate antigen loss. Additionally, certain costimulatory domains, such as 4-1BB, appear
to enhance trogocytosis [62].

2.2.3. Lineage Switch

Targeted therapies exert strong immunological selective pressure on tumor cells, trig-
gering complex adaptive mechanisms including lineage switch. This phenomenon consists
in the emergence of resistant neoplastic clones with a distinct phenotype, due to a profound
transformation of the malignant clone, driven by extensive cellular reprogramming through
alterations in key transcription factors. Lineage switch often results in the loss of the target
antigen [63]. It has been extensively described in B-ALL with KMT2A rearrangements and
is driven by the inherent genetic instability of these diseases. The switch often results in
a transition to a myeloid or mixed lymphoid–myeloid phenotype [64–66]. Although less
frequent, lineage switching has also been reported in B-ALL patients with CRLF2 rear-
rangements or Philadelphia chromosome positivity [67,68]. Additional rare cases of lineage
switching include CLL transforming into plasmablastic lymphoma and MCL undergoing
transdifferentiation into sarcoma following anti-CD19 CAR T-cell therapy [69,70].

2.2.4. Tumor Genetic Alterations

Among the genomic alterations associated with poor therapeutic outcomes, several
have been specifically linked to resistance or suboptimal response to CAR T-cell therapy.
Genes involved in apoptosis regulation, such as FAS (reduced expression) and BCL2 (upreg-
ulation), play a central role and have been correlated with poor clinical responses [71–73].
As expected, TP53 mutations are also associated with poor responses, potentially impairing
CAR T-cell efficacy through dysregulation of apoptosis pathways, interferon signaling, and
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impaired immune cell infiltration [74]. As demonstrated by Cox et al. [75], TP53 mutations
may contribute not only to antigen loss but also to antigen-independent resistance by
downregulating death receptors such as Fas (CD95) and DR5 (TNFRSF10B) [73,76].

Somatic mutations in class I human leukocyte antigen (HLA) genes are frequently
observed in LBCL patients who relapse after CAR T-cells. However, only those with biallelic
loss of the HLA class I complex exhibit significantly reduced PFS. While such alterations
would typically be expected to trigger NK-cell-mediated tumor clearance, concurrent
mutations in genes regulating NK-cell cytotoxicity, such as D58, CD48, MICA, PVR, SPPL3,
and TNFSF9 (loss of function), and MUC1, GMDS, and CD44 (gain of function), appear
to impair this compensatory mechanism [45]. These findings underline that CAR T-cell
resistance is intricately linked not only to escape from adaptive immunity but also from
innate immune responses.

2.2.5. Tumor Microenvironment

The efficacy of CAR T-cell therapy is further compromised by a profoundly altered
tumor microenvironment (TME) which supports neoplastic growth and hinders antitumor
immunity through multiple mechanisms.

The hypoxic nature of the neoplastic microenvironment induces the constitutive pro-
duction of pro-angiogenic factors (VEGF, PDGF, FGF, TGF-β), resulting in rapid formation
of aberrant vascular networks. Endothelial cells exhibit reduced expression of adhesion
molecules (VCAM1, ICAM1), thus impeding cellular extravasation, including extravasation
and trafficking of CAR T-cells. The pro-inflammatory TME promotes the recruitment of
cancer-associated fibroblasts, which typically express high levels of fibroblast activation
protein and continuously deposit and remodel the extracellular matrix, further hamper-
ing T-cell infiltration [77,78]. TGF-β plays a particularly important role: secreted by a
multitude of stromal and immune cells, it inhibits CD8+ T-cell functionality through tran-
scriptional downregulation of genes encoding granzymes, perforins, and cytotoxins. It
also promotes differentiation of CD4+ T-cells into regulatory T-cells (Tregs) and has been
implicated in the expansion, survival, and immune evasion of MM cells within the bone
marrow niche [79–81]

Moreover, the TME can be enriched in CD4+ Tregs, which secrete additional immuno-
suppressive cytokines such as IL-10 and TGF-β, as well as myeloid-derived suppressor
cells (MDSCs) and M2-polarized TAMs (tumor-associated macrophages), all of which are
skewed towards an immunosuppressive phenotype known to promote tumor proliferation.
Additionally, increased macrophage infiltration at the tumor site has been associated with
less durable responses to some CAR T-cell products [82–86]

Tumor hypoxia and necrosis further increase concentrations of immunosuppressive
metabolites such as adenosine and lactate, leading to metabolic acidosis, reduced IFN-γ
production, impaired T-cell function, M2 polarization of TAMs, and upregulation of PD-L1
expression [87–90]

The oncometabolite kynurenine, a product of tryptophan catabolism by IDO1
(Indoleamine-2,3-Dioxygenase 1) or TDO2 (Tryptophan-2,3-Dioxygenase 2), is present
at high concentrations in the TME and directly inhibits glucose uptake by T-cells,
leading to diminished cytotoxicity capacity and proliferation. Tryptophan depletion
also deprives CAR T-cells of an essential amino acid. Interestingly, fludarabine and
cyclophosphamide—commonly used in lymphodepleting regimens—have been shown
to inhibit intracellular IDO expression, thus hypothetically enhancing the activity of CAR
T-cells [91]

A TME rich in IFN-γ and infiltrated with MDSCs plays a key role in hampering CAR
T-cell expansion, as observed in patients with LBCL treated with axi-cel. Chronic IFN-γ
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stimulation leads to upregulation of inhibitory ligands (PD-L1, PD-L2, Galectin-9, HHLA2,
VISTA) via increased transcription of multiple genes commonly associated with T-cell
exhaustion and inferior CAR T-cell response quality. This highly pro-inflammatory TME
may be indirectly evaluated by pre-infusion serum levels of ferritin, IL-6, and CRP [92]

Finally, the PD1/PD-L1 axis, overexpressed within the TME and partly driven by IFN-
α, IFN-β, and IFN-γ, plays a central role in inducing T-cell anergy through physiological
mechanisms of self-tolerance and immune modulation. PD1 and CTLA4 upregulation oc-
curs upon antigen encounter, while tumor cells are known to upregulate PD-L1 in response
to T-cell cytokine release. Interaction between these actors—normally expressed on T-, B-,
NK-cells, and macrophages—ultimately inhibits both innate and adaptive immunity in
PD1+ cells through signaling pathways involving the TCR or BCR [93–95]

2.2.6. Other Issues: CAR-Positive Relapses

Another critical concern at the time of leukapheresis is the inadvertent collection and
subsequent transduction of malignant B-cells, which may result in so-called CAR-positive
relapses. This phenomenon, first described by Ruella and colleagues [54], highlights the
risk that a leukemic clone could integrate the CAR transgene and thereby evade therapy.
To reduce this risk, specific enrichment steps for T-lymphocytes have been incorporated
into certain manufacturing platforms, such as brexu-cel, which includes additional T-cell
selection procedures to minimize malignant B-cell contamination and ensure the integrity
of the final product [8].

2.3. Tumor-Independent Mechanisms of Resistance: Role of the Microbiota

Antibiotic-induced microbiome dysbiosis—the disruption of the non-pathogenic gut
microbiota caused by antibiotic use—has emerged as a significant factor associated with
poorer outcomes in several antineoplastic settings, including immune checkpoint inhibitors,
allogeneic stem cell transplantation, and CAR T-cell therapy [96–101]. In a study involving
over two hundred patients with B-NHLs or B-ALL, exposure to antibiotics—particularly
piperacillin/tazobactam and carbapenems—within 4 weeks prior to CAR T-cell infusion
was associated with reduced gut microbiota diversity, decreased OS, and higher incidence
of toxicities such as immune-effector-cell-associated neurotoxicity syndrome (ICANS) and
cytokine release syndrome (CRS). Conversely, a higher abundance of obligate anaerobic
bacteria in stool samples, such as Ruminococcus, Bacteroides, and Faecalibacterium, was linked
to improved CR rates and a lower incidence of toxicity [99]. These findings were further
supported and expanded by two large-scale studies. In a cohort of 172 patients with
B-NHLs, exposure to “high-risk” antibiotics—including piperacillin/tazobactam, cefepime,
ceftazidime, and meropenem—within 3 weeks prior to CAR T-cell infusion was signifi-
cantly associated with shorter PFS and increased incidence of ICANS of any grade, although
no association with CRS was observed. Moreover, specific associations were identified
between the composition of gut microbiota, CAR T-cell product characteristics, and therapy
outcomes: Bifidobacterium longum and peptidoglycan biosynthesis—a bacterial pathway of-
ten upregulated in antibiotic-resistant strains—strongly correlated with long-term survival
and CAR T-cell response, independently of clinical or demographic variables. Lachnospira
pectinoschiza and Akkermansia muciniphila were significantly associated with CD3+ and CD4+

T-cell counts at the time of apheresis, whereas Bacteroides, Blautia, and Faecalibacterium
prausnitzii were negatively correlated with CD3+ and CD8+ T-cell levels [101]. Similarly, in
a study of 422 patients with LBCL, exposure to antibiotics targeting commensal anaerobic
gut bacteria—specifically piperacillin/tazobactam and carbapenems—before CAR T-cell
infusion was associated with a worse outcome. Notably, a decrease in short-chain fatty
acids (SCFAs) and other anionic metabolites was observed, proportional to the reduc-
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tion in the abundance of multiple bacterial species in fecal samples—including Roseburia,
Faecalibacterium prausnitzii, Ruminococcus spp., Bifidobacterium, Bacteroides, and Akkermansia
muciniphila. Importantly, SCFAs were shown to enhance the metabolic fitness of CAR T-cells
and improve their tumor-killing capacity [100]. On this basis, interventional approaches are
now under clinical investigation, with ongoing trials evaluating the use of fecal microbiota
transplantation (FMT) to restore microbial diversity and improve outcomes in patients
receiving CAR T-cell therapy (NCT06218602, NCT07042438).

The main mechanisms of resistance to CAR T-cell therapy are summarized in Figure 1.

 

Figure 1. Key mechanisms of resistance to CAR T-cell therapy. Resistance to CAR T-cell therapy arises
from multiple, often overlapping, mechanisms. These include CAR T-cell dysfunction, characterized
by progressive loss of proliferative capacity, cytotoxic function, and persistence due to senescence or
exhaustion (top left); intrinsic tumor resistance, involving antigen escape (e.g., loss or downregulation
of CD19), trogocytosis-mediated fratricidal killing, and tumor-intrinsic genetic alterations enhancing
immune evasion (top right); and an immunosuppressive tumor microenvironment, which impairs
CAR T-cell trafficking, expansion, and activity through hypoxia, nutrient deprivation, suppressive
cytokines (e.g., IL-10, TGF-β), regulatory T-cells (Tregs), myeloid-derived suppressor cells (MDSCs),
and tumor-associated macrophages (TAMs) (bottom). Together, these factors contribute to limited
tumor infiltration, reduced cytotoxic capacity, and diminished therapeutic efficacy.

3. Overcoming CAR T-Cell Resistance
3.1. CAR Engineering
3.1.1. CAR Modifications

First-generation CAR T-cells were designed with a CAR comprising a single-chain vari-
able fragment (scFv), responsible for antigen recognition, a hinge/transmembrane (H/T)
domain, and an intracellular CD3z domain containing three immunoreceptor tyrosine-
based activation motifs (ITAMs), crucial for initiating T-cell activation. However, these
constructs demonstrated limited efficacy, mainly due to poor proliferative capacity and
insufficient persistence. To overcome these limitations, second-generation CAR T-cells
were engineered to include a costimulatory domain—typically CD28 or 4-1BB—inserted
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between the transmembrane region and the CD3z domain. The addition of this “second sig-
nal” enhanced both the potency and durability of responses, leading to the FDA approval
of the first second-generation CAR T-cell product, tisa-cel, in 2017 for R/R B-ALL [102].
The structure and signaling pathway of second-generation CAR T-cells is summarized
in Figure 2.

 

Figure 2. Structure and signaling pathways of second-generation CAR T-cells. Upon antigen recog-
nition, CAR engagement triggers CD3z phosphorylation and recruitment of ZAP-70, leading to
downstream LAT signaling and activation of NFAT, NF-κB, and AP-1 transcription factors. Distinct
costimulatory domains promote divergent signaling and metabolic programs. CD28 costimulation
recruits Lck and PI3K, driving PDK1/AKT/mTOR activation, robust clonal expansion, TEM dif-
ferentiation, and glycolytic reprogramming. In contrast, 4-1BB costimulation recruits TRAF1/2,
leading to TRAF3 degradation, NIK stabilization, and activation of the non-canonical NF-κB path-
way (p52/RelB), which supports TCM differentiation, enhanced fatty acid oxidation, and long-term
persistence. Abbreviations: H/T (hinge/transmembrane), scFv (single-chain variable fragment), TCM

(central memory T-cells), TEM (effector memory T-cells).

Considerable efforts have been made to further refine CAR design in order to enhance
efficacy and overcome mechanisms of resistance. One of the earliest areas of interest was
comparing the performance of the two most commonly used costimulatory domains, CD28
and 4-1BB. Data from pivotal clinical trials, including ELIANA and ZUMA-1, highlighted
significant functional differences: CAR T-cells with 4-1BB costimulation showed slower
expansion kinetics but longer persistence, while CD28-containing CARs expanded more
rapidly but persisted for a shorter duration [1,4]. Although the precise molecular basis
underpinning these differences is not yet fully elucidated, mechanistic studies have shed
light on distinct signaling and metabolic profiles. CD28-based CARs (28z CARs) tend to
produce higher levels of IL-2 and IFN-γ, favoring the acquisition of a TEM phenotype and a
more glycolytic metabolic state. In contrast, 4-1BB-based CARs (BBz CARs) are characterized
by more moderate cytokine production, differentiation into TCM, and enhanced fatty acid
oxidation [103,104]. These differences can be partially attributed to the ability of 4-1BB to
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activate non-canonical NF-κB signaling, recruit TNF-receptor-associated factors (TRAFs),
promote Th1 polarization and IL-21 secretion, and downregulate PD-1 expression [105–107].
In contrast, CD28’s constitutive association with the tyrosine kinase Lck leads to higher basal
phosphorylation, stronger and more immediate signaling, increased IL-2 production—which
can inadvertently promote Treg infiltration in the tumor microenvironment—and reduced
CAR T-cell persistence [108,109]. Remarkably, deletion of the Lck-binding motif within
the CD28 endodomain eliminated IL-2 secretion, reduced Treg recruitment, and enhanced
persistence without compromising cytotoxicity or IFN-γ release [109].

These findings suggest that the robust activation conferred by CD28-based CARs may
paradoxically lead to early exhaustion and impaired persistence. To address this, CARs
with attenuated signaling strength—termed “tuned CARs”—have been developed by
modulating the number of ITAMs in the CD3z domain. Notable examples include CD28z
1XX (bearing a single proximal ITAM) and CD28z XX3 (bearing a single distal ITAM).
While both retained in vitro cytotoxicity comparable to conventional 28z CARs, CD28z 1XX
CARs demonstrated superior in vivo persistence and TCM differentiation, translating into
prolonged survival. Conversely, CD28z XX3 CARs were linked to rapid disease progression,
underscoring the importance of ITAM positioning [110].

Aligned with the “less activation = more persistence” paradigm, low-affinity CARs
have also been developed. These constructs exhibit approximately 40-fold reduced binding
affinity to their target antigen and offer two key advantages beyond prolonged persistence:
diminished trogocytosis and reduced fratricide of CAR T-cells that acquire the antigen
through trogocytosis [62]. In the phase I CARPALL trial, low-affinity anti-CD19 CARs
(CAT CARs) achieved high response rates and prolonged survival in pediatric patients
with R/R B-ALL [111]. Building on this concept, obecabtagene autoleucel (obe-cel), an
autologous 4-1BB-based anti-CD19 CAR T-cell therapy incorporating a fast off-rate scFv
with intermediate affinity, was evaluated in the phase Ib/II FELIX trial in adults with
R/R B-ALL. Obe-cel demonstrated a 77% ORR, a median event-free survival (EFS) of
11.9 months, and low rates of grade ≥3 CRS (2,4%) and ICANS (7.1%) [112]. However, both
tuned and low-affinity CARs may be less effective against tumor cells with low antigen
density—a potential mechanism of immune escape, especially for BBz CARs. To overcome
this limitation, BBzz CARs—CARs containing a 4-1BB costimulatory domain and two CD3z
chains—were designed, achieving efficacy against low-antigen-density targets comparable
to 28z CARs while retaining the superior persistence of BBz CARs [113].

Modifications of the H/T domain have also been explored. The improved performance
of 28z CARs against low-antigen targets has been partly attributed to the CD28-derived
H/T region, which facilitates a more stable and organized immunological synapse than
the CD8-derived H/T found in BBz CARs. Thus, substituting the CD28 H/T into BBz
CARs improved their activity against low-antigen-density cells to levels similar to 28z
CARs [113]. More recently, alternative H/T domains such as CD1a have been tested. In a
comparative study, CD1a-derived H/T domains led to reduced surface CAR expression
(due to enhanced internalization and recycling), dampened cytokine production, lower
exhaustion, enhanced TCM differentiation, and improved tumor control [114].

Another strategy involved engineering novel scFvs targeting alternative CD19 epi-
topes. AT101 CARs, based on the h1218 scFv—which binds a more membrane-proximal
epitope than the canonical FMC63—were effective against FMC63-resistant models, includ-
ing those with epitope masking or point mutations. AT101 CARs exhibited superior on/off
kinetics, enhanced expansion, reduced exhaustion, and better tumor control, as revealed by
early studies on R/R B-NHLs [115].

Finally, advances in non-viral gene delivery platforms and genome editing technologies
have significantly expanded the repertoire for CAR T-cell engineering. DNA transposon
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systems, such as Sleeping Beauty and piggyBac, have emerged as cost-effective, virus-
free alternatives for stably integrating CAR constructs into T-cells. These platforms allow
for the delivery of large transgene cassettes with sustained CAR expression and have
shown promising results in preclinical and early-phase clinical studies [116,117]. However,
concerns have been raised regarding potential insertional mutagenesis, especially with
piggyBac, which has been associated with integration near oncogenes and rare cases of
lymphomagenesis [118,119]. In parallel, genome editing strategies using the CRISPR/Cas9
system have enabled the precise insertion of CAR transgenes into specific genomic loci. A
landmark study by Eyquem et al. [120] demonstrated that targeting the CAR construct to
exon 1 of the TRAC gene—which encodes the T-cell receptor alpha constant region—resulted
in uniform CAR expression, reduced tonic signaling, enhanced receptor recycling, improved
TCM differentiation, reduced exhaustion, and superior tumor control in murine models.

3.1.2. Alternative Costimulatory Domains and Third-Generation CAR T-Cells

Beyond the canonical CD28 and 4-1BB costimulatory domains, several alternative
domains have been investigated with the aim of optimizing the effector function and
persistence of CAR T-cells. Among these, costimulatory domains such as CD27, OX40,
ICOS, and IL-15Rα have demonstrated promising results [121–124].

In parallel with efforts to explore alternative costimulatory domains, third-generation
CAR T-cells have been developed. These constructs incorporate two costimulatory do-
mains (e.g., CD28/OX40, ICOS/4-1BB) within the same CAR molecule, with the goal of
combining the functional benefits of each. For example, co-expression of CD28 and OX40
was designed to pair the robust initial activation provided by CD28 with OX40’s ability
to sustain T-cell proliferation and survival. In vitro models of neuroblastoma showed that
these third-generation CARs retained cytotoxic activity comparable to that of first- and
second-generation CARs while displaying enhanced expansion and persistence, even under
repeated antigen stimulation [125]. Another example is the ICOS/4-1BB third-generation
CAR, evaluated in preclinical models of solid tumors. These constructs exhibited superior
antitumor activity compared to second-generation CARs, with reduced tonic signaling and
improved persistence. [126].

3.1.3. Dual Targeting

One promising strategy to address disease relapse driven by CD19 antigen escape is
dual antigen targeting, which involves incorporating an additional CAR that is specific for
an alternative antigen (e.g., CD22 or CD20). Several approaches have been developed to
implement this strategy, including co-administration of monospecific CAR T-cells, cotrans-
duction of two CAR constructs, bicistronic vectors, and tandem or loop CAR architectures.

Co-administration of monospecific CAR T-cells targeting CD19 and CD22 has shown
high response rates in B-cell malignancies. In a phase I trial on heavily pretreated patients
with B-ALL, the combined infusion of two distinct CAR T-cell products resulted in 100%
CR with minimal residual disease (MRD) negativity in all evaluable patients, with most
responses proving durable [127]. These findings were confirmed in a larger phase II
trial involving 225 pediatric patients [128]. Similarly, a pilot study of 89 patients with
CD19+CD22+ R/R malignancies also reported high efficacy [129]. Notably, relapses were
rarely associated with CD22 antigen escape. This observation can be explained by the lower
selective pressure exerted by anti-CD22 CARs, as CD22 is expressed at lower and more
heterogeneous levels compared to CD19, undergoes rapid internalization upon receptor
engagement, and exerts weaker signaling thresholds, resulting in reduced immunologic
pressure [130–132]. Consequently, in dual CD19/CD22 CAR approaches, immune evasion
predominantly occurs through CD19 loss rather than CD22 negativity.
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In MM, co-administration of anti-BCMA and anti-CD19 CAR T-cells demonstrated
encouraging results. In a phase II trial, this approach yielded an ORR of 92% and a CR
rate of 60%, with a median PFS of 18.3 months. These promising outcomes may reflect the
elimination of CD19+ “myeloma stem-like” cells and a reduced risk of BCMA-negative
relapse [133,134].

Co-transduction involves transducing T-cells with two separate viral vectors encoding
different CARs, resulting in a heterogeneous population in which only a fraction co-
express both receptors. In preclinical B-ALL models, anti-CD19/CD22 co-transduced CAR
T-cells effectively eliminated both single- and dual-antigen-positive tumor cells in vitro and
cleared CD19− tumors in vivo [135]. This strategy was evaluated clinically in the phase I
CARPALL trial in 12 pediatric patients with R/R B-ALL, achieving an 83% MRD-negative
CR rate with no cases of antigen escape [136].

Bicistronic CAR constructs, which use a single vector to encode two CARs (each with
a distinct scFv), offer an alternative approach. AUTO3, a bicistronic anti-CD19/CD22 CAR,
was evaluated in the phase I AMELIA trial, inducing an 80% MRD-negativity in 15 pediatric
and young adult patients with R/R B-ALL. However, relapse occurred in nine patients,
eight of whom had low CAR T-cell levels, suggesting poor persistence as the primary
mechanism of relapse—potentially inferior to that observed with second-generation CAR
T-cells [137].

Tricistronic constructs targeting CD19, CD20, and CD22, were found to be effective
in vitro and in vivo against CD19− primary B-ALL models and patient-derived ex vivo
samples of patients relapsed after anti-CD19 CAR T-cells [138].

Despite their efficacy, co-transduction and bicistronic CARs present certain limitations.
Qin et al. [139] reported that only ~25% of co-transduced products co-expressed both CARs,
with preferential expansion of CD19-only CAR T-cells, undermining dual targeting efficacy.
Similarly, Cordoba et al. [137] observed imbalanced CAR expression in bicistronic products,
with anti-CD19 CARs typically dominating. To address these issues, tandem (TanCARs)
and loop (LoopCARs) CARs were developed, wherein two scFvs are combined in a single
polypeptide chain. TanCARs arrange the two scFvs linearly, while LoopCARs interleave the
VH and VL regions of each scFv, enhancing folding, surface expression, and dual antigen
recognition [139].

A CD19/CD20-targeting TanCAR (LV20.19 or zamtocabtagene autoleucel) tested in a
phase I trial for R/R B-NHL achieved a 100% ORR and 92% CR rate in patients treated at the
target dose, and preliminary data of phase II studies confirmed deep and durable responses
in R/R LBCL setting [140,141]. Another CD19/CD20 TanCAR (TanCAR7) evaluated in a
phase I/II trial on R/R B-NHL patients yielded a 70% CR, with a median PFS of 27.6 months
and median OS not reached. Notably, most patients previously treated with anti-CD19
CAR T-cells responded, and only 1 out of 12 relapsed patients who underwent biopsy
exhibited dual antigen loss (CD19−/CD20−), indicating resistance to antigen escape [142].
In MM, a TanCAR targeting BCMA and transmembrane activator and CAML interactor
(TACI) showed activity against BCMA-negative models in vitro [143].

LoopCARs targeting CD19 and CD22 demonstrated efficacy against CD19+CD22+,
CD19−CD22+, and CD19+CD22− tumors in preclinical models [139]. Preliminary studies
showed high rates of deep response in patients with R/R B-ALL and LBCL but emphasized
the need to optimize persistence and expansion, both inferior to those achieved with
monospecific anti-CD22 CARs. Consistent with other CD19/CD22 bispecific CARs, relapses
were linked to CD19 loss rather than CD22 escape [144,145].

Beyond CD19, CD22, and CD20, a number of alternative antigens have been ex-
plored in preclinical dual-CAR platforms. Dual-specific CARs targeting CD19/CD79b,
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CD19/CD38, CD19/CD123, and CD19/CD37 have shown promising anti-tumor activity
in vitro and in vivo [146–151].

3.1.4. Fourth-Generation CAR T-Cells: Armored CARs and CAR TRUCKs

Fourth-generation CAR T-cells represent a significant evolution beyond conventional
CAR T-cell platforms. These advanced constructs are engineered not only to express a
CAR but also to produce additional bioactive molecules—such as cytokines, checkpoint-
blocking minibodies, or switch receptors—that enhance antitumor activity, counteract the
immunosuppressive TME, and prolong T-cell persistence. These enhanced CAR T-cells are
commonly referred to as armored CAR T-cells or T-cells redirected for universal cytokine
killing (CAR TRUCKs) [102].

CAR TRUCKs represent a specialized subset of fourth-generation CAR T-cells engi-
neered to secrete cytokines either constitutively or in an antigen-inducible manner, which
exert both autocrine and paracrine effects: they promote T-cell cytotoxicity, persistence,
and central memory differentiation while simultaneously activating components of the
host immune system, including NK cells, dendritic cells, and endogenous non-transduced
T-lymphocytes. In preclinical models, certain CAR TRUCKs have demonstrated therapeutic
efficacy even in the absence of lymphodepleting chemotherapy, offering a potential strategy
for patients ineligible for standard conditioning regimens [152–155].

Armored CAR T-cells have been developed to overcome immunosuppressive signals
within the TME and improve in vivo persistence. A widely explored strategy involves
engineering CAR T-cells to secrete checkpoint-blocking minibodies, such as those targeting
PD-1, CTLA-4, or TIM-3. These molecules mediate local immune checkpoint blockade and
have shown comparable or superior efficacy with reduced systemic toxicity compared to
systemic checkpoint inhibitors like pembrolizumab [156,157]. Another promising approach
involves the use of switch receptors, chimeric proteins that convert inhibitory signals
into activating ones by replacing the intracellular inhibitory domain (e.g., from PD-1 or
FAS) with a costimulatory domain such as CD28 or 4-1BB. This strategy has yielded
encouraging results in preclinical models and early clinical trials in R/R B-NHLs [158–160].
Similarly, dominant negative receptors have been designed to act as decoys: they bind
immunosuppressive ligands (e.g., PD-L1 or FASL) but lack intracellular signaling domains,
thereby neutralizing inhibitory cues without transmitting suppressive signals [161,162].

Advances in gene editing have further expanded the toolkit for enhancing CAR T-cell
function. For instance, forced expression of the transcription factor JUN in CAR T-cells (JUN-
HA-28z) counteracts IRF4/BATF-driven exhaustion, leading to enhanced antitumor efficacy,
proliferation, and long-term persistence [163]. CRISPR-based genetic screens have also
identified targetable genes whose disruption enhances CAR T-cell function, such as RASA2,
SOCS1, TCEB2 (ELOB), CBLB, and SUV39H1, leading to improved cytotoxicity, memory
differentiation, and in vivo persistence [164–167]. Complementary to genome editing,
post-transcriptional checkpoint silencing has been explored through a dual-short/small
harpin RNA (shRNA) approach targeting PD-1 and TIGIT. This method employs a “two-
in-one” lentiviral vector integrating both the CAR construct and two shRNA cassettes for
simultaneous checkpoint inhibition and is currently under clinical investigation in a phase
1–2 trial for R/R LBCL [168]. Epigenetic modulation has also emerged as a viable strategy
for CAR T-cell enhancement. Inhibition of key regulators such as LSD1 and Nrf2 has been
shown to influence T-cell differentiation, memory programming, and effector function,
further contributing to durable responses [169,170].

Additional approaches have focused on cell survival and proliferation. For instance,
bicistronic vectors have been used to co-express anti-apoptotic proteins like BCL-2 or BCL-
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XL or constitutively active IL-7 receptors, thereby improving the persistence and expansion
of CAR T-cells [171,172].

Other innovations have targeted intracellular trafficking and receptor recycling. Over-
expression of Rab5 GTPase, a key regulator of early endosome formation, can prevent
a process termed “CAR-jacking,” in which tumor cells internalize and degrade CAR
molecules [173]. Similarly, CAR constructs lacking lysine residues in the cytoplasmic do-
main (CARKRs) are resistant to ubiquitination and lysosomal degradation, promoting
receptor recycling and sustained surface expression [174].

A particularly novel and highly specific platform is the SEAKER system: CAR T-cells
are engineered to secrete enzymes that activate systemically administered prodrugs within
the TME, enabling antigen-independent cytotoxicity while limiting systemic toxicity [175].

Finally, the CAR BiTE platform allows CAR T-cells to secrete bispecific T-cell engagers
(BiTEs), thereby recruiting and activating bystander T-cells. This strategy has shown efficacy
in preclinical models of solid tumors with heterogeneous antigen expression, including
glioblastoma [176].

3.1.5. Boolean and Conditional Logic in CAR T-Cells

Boolean logic has been increasingly applied to CAR T-cell engineering to enhance
specificity and safety. In “AND-gate” designs, full activation requires recognition of
two antigens, thereby restricting cytotoxicity to dual-positive tumor cells. “OR-gate” con-
structs, such as tandem, loop, or bicistronic CARs, trigger activation upon recognition of
either target, reducing the risk of antigen escape. “NOT-gate” circuits employ inhibitory
CARs that suppress activation when encountering antigens expressed on healthy tissues,
thus mitigating on-target/off-tumor toxicity. Beyond these classical Boolean rules, condi-
tional IF/THEN circuits based on SynNotch receptors enable sequential decision-making:
engagement with a priming antigen (“IF”) induces expression of a secondary CAR or
effector program (“THEN”), thereby confining activity to cells with the correct antigenic
context. More recently, an “IF-BETTER” logic has been proposed, in which CAR recognition
of a primary antigen is potentiated—but not strictly dependent—on a secondary input
delivered through a costimulatory chimeric receptor. Overall, both Boolean-logic-based
and conditional signal CAR designs have demonstrated promising activity in preclinical
models, showing enhanced specificity, cytokine production, persistence, and tumor control
across different tumor settings [177]. Notably, despite encouraging preclinical results,
no clinical trials evaluating Boolean- or conditional-logic-based CAR T-cell designs are
currently ongoing.

3.2. T-Cell Collection, Selection, and Manufacturing

Significant differences in CAR T-cell performance and manufacturing outcomes appear
to depend not only on the underlying disease but also on the timing and method of
collection, as well as on the characteristics of the transduced T-cell population.

As discussed before, commercially available CAR T-cell products are typically derived
from unfractioned (TBULK) T-cell populations [22]. Failed manufacturing batches often
contain more mature and differentiated T-cells, whereas higher success rates are associated
with larger quantities of less mature or differentiated T-cells expressing elevated levels of
CD25. Selecting differentiated T-cells negatively impacts antitumor efficacy, while early
memory and naïve T-cells are considered optimal due to their enhanced persistence and
reduced propensity for exhaustion. Among these, TSCM are particularly promising thanks
to their plasticity and self-renewal capacity. Although rare in peripheral blood, TSCM can be
enriched in vitro by stimulating naïve T-cells with IL-7 and IL-15. In preclinical models, a
CAR T-cell product generated from pre-selected naïve/stem memory T-cells (CAR TN/SCM)
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demonstrated superior antitumor activity, a more favorable toxicity profile, and a reduced
acquisition of exhausted-like phenotypes compared to the CAR TBULK product [23,178,179].
Joedicke et al. [180] demonstrated that selecting specific T-cell populations, though tech-
nically challenging and resulting in smaller yields, allows for the successful generation
of anti-BCMA CAR T-cells enriched in TSCM and central memory phenotypes. Enhanced
activation and effector function have been linked to higher risks of toxicities such CRS
and ICANS; however, TSCM and naïve T-cells support increased expansion with lower
intracellular activation signaling, potentially offering a more balanced activity with strong
antitumor effects and reduced toxicity [23].

Other studies have shown that prior chemoimmunotherapy can negatively affect
T-cell quality, with patients collected after ≥2 treatment lines displaying greater exhaustion
and reduced proliferative capacity despite similar lymphocyte counts [181,182]. Adequate
chemotherapy washout before leukapheresis is therefore critical. In particular, recent
bendamustine exposure has been linked to impaired T-cell collection, lower proliferative
potential, and reduced manufacturing success, leading current recommendations to advise
its avoidance—together with other lymphotoxic agents such as fludarabine, cladribine, and
pentostatin—whenever feasible [183–185]. Corticosteroid washout is also required, as their
immunosuppressive and pro-apoptotic effects can transiently impair collection efficiency.
Expert consensus suggests discontinuing systemic steroids at least 72 h, and ideally 7 days,
before leukapheresis, with recovery of absolute lymphocyte count ≥0.2 × 109/L [185].
By contrast, T-cell-sparing bridging strategies—such as monoclonal antibodies, brief corticos-
teroid courses with adequate washout, or low-intensity chemotherapy—are considered more
compatible with subsequent leukapheresis. Whenever possible, early leukapheresis prior to
extensive salvage therapy may further optimize T-cell quality for CAR T-cell manufacturing.

An alternative strategy involves transducing marrow-infiltrating lymphocytes (MILs),
which are polyclonal autologous T-cells derived from the bone marrow. MILs exhibit lower
expression of exhaustion markers and greater stemness, polyfunctionality, and cytolytic
activity in vitro [186,187].

A major hurdle in CAR T-cell therapy remains the long vein-to-vein time, typically
spanning 14–21 days or more. Reducing manufacturing time is critical, particularly for
patients with rapidly progressing disease. Notably, shorter manufacturing times have been
associated with less differentiated T-cells. As a consequence, in vivo expansion is improved
even at lower infusion doses, as previously reported [188,189]. Li et al. [190] reported
encouraging results from a non-viral CAR T-cell manufacturing process completed within
3 days, achieving complete responses in three out of four patients using relatively low
cell doses while maintaining expansion peaks comparable to approved products. Other
examples include CD5-knockout CAR T-cells for nodal T-NHL produced in 5 days [191]
and GLPG5101/GLPG5201 CAR T-cells, featuring early memory phenotypes and 7-day
vein-to-vein times, currently under evaluation in R/R NHL and CLL [192,193]. Likewise,
an anti-CD19 Fast-CAR-T therapy achieved MRD negativity in over 90% of B-ALL patients
within one month, albeit with some high-grade CRS and ICANS events [194]. Finally, Stadel
et al. [195] developed an ultra-fast manufacturing platform capable of producing CAR
T-cells in under 24 h, with comparable CAR expression, strong expansion, and favorable
preclinical efficacy. Their product, UF-Kure19, is now being evaluated in a phase I trial.
Similar manufacturing times were also recently obtained with a novel platform starting
from whole blood [196].

3.3. Allogeneic CAR T-Cells

As discussed before, conventional CAR T-cells require a complex manufacturing
process in terms of timing and technical difficulties, leading to a significant risk of manu-
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facturing failure. Allogeneic (allo) CAR T-cells could be a valuable off-the-shelf alternative
that poses less logistic problems, as they are derived from a healthy donor instead of from a
usually heavily pretreated patient. The main source of allogeneic lymphocytes for allo CAR
T-cells is the pool of the peripheral blood mononuclear cells, while other possible sources
include isolated stem cells from peripheral blood after CD34+ mobilization, umbilical cord
blood, or induced pluripotent stem cells (iPSCs) [197].

The main obstacles of this approach are the risk of graft-versus-host disease (GVHD),
since the TCR of the donor’s lymphocyte can recognize the healthy tissue of the patient, and
the host-versus-graft phenomenon (HvG), where the patient’s immune system rejects the
donor lymphocyte, thus hindering the allo CAR T-cells’ efficacy, expansion, and persistence.
Different cellular sources offer variable degrees of HLA matching, potentially minimizing
these complications [197].

Among the strategies to overcome allo CAR T-cell limitations, gene editing via different
methods shows promising results. TCR-knockout-based approaches are widely used and
have revealed GVHD rate reductions but not HvG risk mitigation [198]. Alternatively,
elimination of both TCR- and MHC-class molecules can protect from both processes [199].
Other studies include CD47 overexpression as a way to reduce macrophage and NK
activation towards allo CAR T-cells, CD52 knockout in combination with anti-CD52 mAb
in order to suppress HvG and increase allo CAR T-cells persistence, and HLA-II molecule
suppression via removal of the CIITA gene, protecting allo CAR T-cells form alloreactive
T-cells of the host. Another approach for minimizing HLA-incompatibility is selecting
specific T-cell populations that are less reliant on HLA recognition in their activity such as
γδ T-cells, mucosal-associated invariant T (MAIT)-cells, cytokine-induced killer (CIK)-cells,
invariant NK T-cells (iNKTs), and double-negative T-cells (DNTs) [200–204]. A notable
example of this strategy is represented by CARCIK-CD19, an allogeneic CAR T-cell product
engineered using the non-viral Sleeping Beauty transposon system. In a recent phase
I/II clinical trial, CARCIK-CD19 demonstrated robust safety and efficacy in 36 patients
with B-ALL relapsed after allogeneic hematopoietic stem cell transplantation. The product
incorporated a CD28/OX40 third-generation CAR and showed high rates of durable CR
and MRD negativity, with no cases of GVHD reported [205].

Compared to autologous CAR T-cell products, allo CAR T-cell development is lag-
ging behind, with no products approved to date; nevertheless, several allo CAR T-cell
products are being investigated. The most experience has been developed with anti-CD19
UCAR19/ALLO-501, in which gene editing was used to remove TCRα and CD52, thus
adding in the lymphodepleting regimen the anti-CD52 mAb alemtuzumab. The product
was evaluated in two multicenter studies, in which twenty-one B-ALL patients were treated,
with only two cases of skin acute GVHD reported. Most patients received alemtuzumab,
which enabled effective in vivo expansion. The global ORR was 67% (71% of which were
MRD-negative), with a median duration of response (DOR) of 4.1 months. Two out of
three patients receiving a second dose achieved a second CR [206]. Two multicenter phase I
(ALPHA) and I/II (ALPHA2) studies were conducted on 33 LBCL patients. Lymphodeple-
tion included ALLO-647, an anti-CD52 mAb. No GVHD or ICANS were reported. Globally,
the CR rate was 58%, with a median duration of CR of 23.1 months and median PFS of
3.9 months (24 months in patients achieving CR) [207]. A similar product is being evalu-
ated in B-ALL and acute myeloid leukemia (AML) patients targeting CD22 and CD123,
respectively [208,209]. An interim analysis is available for a phase I trial investigating the
anti-BCMA allo CAR T-cell ALLO-715 for R/R MM patients. The ORR was over 70%, with
a mDOR of 8.3 months. A good safety profile in terms of CRS and neurotoxicity and no
cases of GVHD were reported. [210]. Albeit with a different genome-editing technology,
good responses were seen with the anti-CD19 allo CAR-T-cell PBCAR0191 (azercabtagene
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zapreleucel) following an enhanced lymphodepletion chemotherapy regimen in B-ALL
and B-NHL. Among the twenty-one enrolled patients, the CR was 62% in B-NHL and 80%
in B-ALL, with no GVHD reported, and there was only one grade 3 CRS [211]. A similar
manufacturing process was used for PBCAR19B, a product able to evade immune rejection
via suppression of HLA I and expression of HLA-E, which has recently been tested in R/R
B-NHL with low toxicity rates and promising response rates [212]. CTX110 is an anti-CD19
allo CAR T-cell produced with the CRISPR/Cas9 technology that achieved good results
in a phase I study conducted on B-NHL patients both in terms of toxicity and treatment
response rates [213]. CB-010 is an anti-CD19 allo CAR T-cell which is being evaluated in
the multicenter phase I ANTLER study in B-NHL and features PD1 knockout as a way to
reduce cellular exhaustion [214]. Allo CAR T-cells produced with non-gene-editing tech-
nologies showed promising results both in R/R MM and B-NHL patients [215,216]. Finally,
a good safety profile was also reported in the phase I trial for the iPSC-derived anti-CD19
allo CAR T-cell FT819 [217]. Of particular interest is allo CAR T-cell development for T-ALL,
where autologous product development is hindered by the concern of transducing blast
cells. Early data from trials testing anti-CD7 allo CAR T-cells edited with CRISPR/Cas9 in
patients with R/R T-ALL have been promising, with CR rates up to 91% [218,219].

3.4. Other Effector Cells
3.4.1. CAR NKs

As an alternative to T-cells, CAR NK-cells (CAR NKs) have been tested in various
settings, including hematological malignancies. NK-cells belong to the innate immune
system and offer many advantages over T-cells, such as reduced CRS and ICANS rates,
tumor targeting without pre-sensitization or HLA-matching, and independence from major
histocompatibility complex (MHC) recognition [13,220]. These characteristics grant an
easier availability, tumor killing in case of MHC downregulation, and the possibility of
using allogeneic sources without triggering GVHD.

The CAR structure and mechanism of transduction are similar to CAR T-cells, while the
sources of NK-cells are multiple: banked NK-cell lines, peripheral blood mononuclear cells,
umbilical cord blood, and iPSCs [221]. Despite these advantages, many challenges remain
in developing an efficient CAR NK, including reduced expansion potential of the selected
cell source, reduced cellular persistence, antigen expression and ability to mediate innate
immune response, exhaustion, and sensibility to inhibitory signals mediated by the immune
system and TME [222]. Similarly to CAR T-cells, CAR NKs able to release mediators such
as IL15 or target multiple antigens are being developed and tested [223,224]. Liu et al. [225]
conducted a phase I/II trial on B-NHL and CLL patients using HLA-mismatched, cord-
blood-derived anti-CD19 CAR NKs, showing no CRS, ICANS, or GVHD and consistent
response rates, especially in indolent diseases. Bachanova et al. [226] obtained similar
promising safety and efficacy results utilizing an IPSC-derived CAR NK product. Another
way to optimize CAR NKs’ efficacy in lymphoma is to combine them with monoclonal
antibodies (mAbs) such as anti-CD20 and anti-CD79 or targeting different antigens such as
CD22, potentially overcoming antigen loss [227].

CAR NKs have also been evaluated against MM. FT576 is an IPCS-derived CAR NK tar-
geting BCMA with the coexpression of a recombinant IL-15 signaling complex (IL15RF) for
autonomous persistence and a functionally enhanced high affinity. This construct showed
interesting results in pre-clinical and phase I studies both in monotherapy and in combina-
tion with anti-CD38, anti-SLAMF7, and anti-CD19 monoclonal antibodies [228–230]. Other
explored CAR NK targets in MM with preliminary encouraging activity include CS1 and
GPRC5D [231–233]. Pre-clinical studies suggest that CAR NK efficacy against MM may
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be further enhanced by targeting multiple neoplastic receptors such as GPRC5D/CD38 or
GPRC5D/BCMA or focusing on other targets such as CD70 [234,235].

3.4.2. CAR Macrophages

CAR macrophages (CAR Ms) are a novel construct that can mediate an antitumor
effect via antigen-dependent phagocytosis [236]. Among the advantages of CAR Ms
compared to CAR T-cells are enhanced tumor infiltration, better immune cell trafficking,
and reduced susceptibility to an immunosuppressive microenvironment with less tendency
to exhaustion [237]. Beyond their cytotoxic and phagocytic roles, CAR Ms offer further
unique advantages including the capacity to prime and activate T-cells through antigen
spreading and to mitigate antigen escape mechanisms. [238].

The structure of CARs in engineered macrophages mirrors that of CAR T-cells, with
the incorporation of a costimulatory domain enhancing their functional activity. CAR
Ms not only exhibit phagocytic capabilities but also secrete a variety of mediators and
cytokines, depending largely on their polarization phenotype, which can vary from pro-
inflammatory M1—characterized by anti-tumoral activity—to M2, which is associated
with immunoregulatory functions and generally considered pro-tumoral. One of the
major challenges in the development of effective CAR M therapies lies in promoting and
maintaining the M1 phenotype while resisting polarization toward the M2 state. Other
critical factors include achieving robust cellular proliferation and persistence, challenges
also encountered in other CAR-based therapies [239,240]. At present, no clinical trials have
evaluated CAR Ms in hematologic malignancies, while the first in-human phase I trial
with the anti-HER2 CAR-M product CT-0508 (NCT04660929) is ongoing in HER2-positive
solid tumors.

Ongoing clinical trials evaluating novel CAR T-cell products in hematological malig-
nancies are summarized in Table 1.

Table 1. Recent phase 1–2 clinical trials involving novel CAR products in hematological malignancies.

NCT Number Ref. (See Below) Intervention Disease

1. CT1190B CAR-T R/R B-NHL

2. IL-6-silenced CD19 CAR-T R/R B-cell lymphoma

3. Rapid production CD19 CAR-T R/R B-ALL and B-NHL

4. CD19 CAR-NK R/R B-ALL

5. CD19 CAR-T secreting IL18 R/R B-ALL

6. CD19 CAR-T with TLR2 R/R B-cell lymphoma

7. CD19 CAR-NK R/R CNS lymphoma

8. CD19 CAR-T/CAR-NK R/R B-cell malignancies

9. CD19/22 CAR-T R/R B-ALL

10. CD19/22 CAR-T R/R pediatric B-ALL

11. Sequential CD19 and CD22 allogeneic CAR-T R/R B-ALL

12. Metabolically armored CD19 CAR-T R/R B-cell malignancies

13. Persistence-enhanced CD19 CAR-T R/R B-NHL

14. BCOR and ZC3H12 KO CD19 CAR-T R/R B-cell lymphoma and B-ALL

15. CD20 CAR-T R/R B-NHL

16. Sequential CD19 CAR-NK and CD7/19 CAR-T B-NHL

17. CD19/22 CAR-T R/R B-cell leukemia and lymphoma

18. CD19/CD22 TLR2 CAR-T R/R B-ALL and B-NHL
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Table 1. Cont.

NCT Number Ref. (See Below) Intervention Disease

19. DuoCAR20.19.22-D95 R/R B-Cell malignancies

20. C402-CD19-CAR R/R B-NHL

21. CIK cell therapy R/R B-ALL

22. CD19/CD20 CAR-T R/R B-cell malignancies

23. CD19/TGF-beta CAR-T R/R LBCL

24. CD19/79b CAR-T R/R B-NHL

25. CD19/IL10 CB CAR-NK R/R B-NHL

26. CD19/BAFF CAR-T R/R B-cell malignancies

27. CD22 CAR-T R/R B-cell leukemia and lymphoma

28. CD20/CD30 CAR-T R/R lymphomas

29. CD5 CAR-T R/R T-cell leukemia and lymphoma

30. CD5 KO CD5 CAR-T R/R T-NHL

31. CD5 CAR-NK R/R T-ALL or T-cell lymphoma

32. CD5 CAR-NK secreting IL15 R/R NK/T-cell malignancies

33. Sequential CD5/7 CAR-T R/R T-cell leukemia and lymphoma

34. CD7 CAR-T R/R T-ALL or T-cell lymphoma

35. CD7 CAR-T R/R NK/T-cell malignancies

36. CD7 CAR NK R/R T-ALL

37. Autologous and allogeneic CD7 CAR-T R/R T-cell leukemia and lymphoma

38. Dual-epitope BCMA CAR-T R/R MM

39. BCMA CAR-NK R/R MM and PCL

40. BCMA/CD19 CAR-T R/R aggressive B-NHL

41. BCMA/CD19 CAR-T R/R MM

42. BCMA/CD19 CAR-T R/R MM, B-ALL, and B-NHL

43. BCMA/GPCR5D CAR-T (RD140) R/R MM and PCL

44. BCMA/GPCR5D CAR-T R/R MM

45. BCMA/TGF-beta CAR-T R/R MM

46. BCMA/FcRL5 CAR-T R/R MM

47. CD19/22/BCMA CAR-T R/R B-NHL

48. LCAR-M61S and LCAR-M61D R/R MM

49. CD27 armored BCMA CAR-T R/R MM

50. UF-KURE-BCMA CAR-T R/R MM

51. GPRC5D CAR-T R/R MM

52. GPRC5D/CD19 CAR-T R/R MM

53. CD30 CAR-T R/R CD30+ lymphoma

54. CD70 CAR-T R/R hematological malignancies

55. CD70 CAR-NK T-cell leukemia and lymphoma

56. CD38/CS1 CAR-T R/R MM

57. iC9/CAR19/IL15 CB CAR-NK High-risk lymphoma patients with
primary Sjogren’s syndrome

58. CD19/CD22/BCMA CAR-T R/R MM

59. FcR L5 CAR-T R/R MM
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Table 1. Cont.

NCT Number Ref. (See Below) Intervention Disease

60. BAFFR-based CAR-T R/R B-NHL

61. CS1 CAR-T R/R MM

62. IL7R-modified CD30 CAR-T R/R CD30+ lymphoma

63. APRIL-BAFF-Bicephali CAR-T R/R MM

64. EGFRt/19-28z/IL-12 CAR T R/R CD19+ malignancies

65. NKG2 CAR-NK R/R MM

66. BAFF CAR-T R/R NHL

67. CAR-T co-expressing IL15 R/R hematological malignancies

68. BAFF CAR-T R/R MM

69. Allogeneic CD19 CAR-T R/R B-ALL and B-NHL

70. Allogeneic CD20 CAR-T R/R B-NHL

71. Allogeneic CD19/20 CAR-T R/R B-cell malignancies

72. Allogeneic CD19/22 CAR-T R/R B-ALL and B-NHL

73. Allogeneic BCMA CAR-T R/R MM

74. Allogeneic CD19/BCMA CAR-T R/R B-cell malignancies

75. Allogeneic BCMA/GPCR5D CAR-T R/R MM

76. Allogeneic CAR-T (CT0596) PCL

77. TRAC and SPPL3 KO allogeneic CD19 CAR-T R/R B-NHL

78. Allogeneic BCMA or CD138 or CD38 or
CD19 CAR-T R/R MM

79. TmCD19-IL18 CAR T R/R CD19+ malignancies

Abbreviations: ALL (acute lymphoblastic leukemia), BAFF (B-cell activating factor), BAFFR (B-cell activating
factor receptor), BCMA (B-cell maturation antigen), CAR (chimeric antigen receptor), CIK (cytokine-induced killer
cells), CNS (central nervous system), FcRL5 (Fc Receptor-Like 5), GPRC5D (G-protein coupled receptor family
C group 5 member D), IL (interleukin), KO (knockout), MM (multiple myeloma), NCT (national clinical trial),
NHL (non-Hodgkin’s lymphoma), NK (natural killer), PCL (plasma cell leukemia), ref. (reference), R/R (relapsed
or refractory), SPPL3 (Signal Peptide Peptidase-Like 3), TGF (tumor growth factor), TLR2 (toll-like receptor 2),
TRAC (T-cell receptor alpha constant). NCT references: (1) NCT07032324; (2) NCT06987916; (3) NCT05779930,
NCT06561425; (4) NCT06631040; (5) NCT06287528; (6) NCT06486051; (7) NCT06827782; (8) NCT06596057;
(9) NCT06927466; (10) NCT06752785, NCT06777979; (11) NCT06326008; (12) NCT06716164, NCT06393335;
(13) NCT06544265; (14) NCT07009002, NCT07008885; (15) NCT06364852, NCT06326463, NCT06002659,
NCT06248086, NCT06539338; (16) NCT06464861; (17) NCT06735495, NCT06445803, NCT06213636, NCT06081478,
NCT06078306, NCT06880913, NCT06834529, NCT06559189, NCT06559189; (18) NCT06879262; (19) NCT06879340;
(20) NCT06830031; (21) NCT06389305; (22) NCT07024147, NCT06703892, NCT06508931, NCT06503094,
NCT06395870, NCT06295549; (23) NCT06047197; (24) NCT06026319; (25) NCT06707259; (26) NCT06346912;
(27) NCT06340737, NCT06285422, NCT06208735; (28) NCT06532643, NCT06519344; (29) NCT06874946,
NCT06633341, NCT06633354, NCT06316856, NCT07022964; (30) NCT06420089; (31) NCT06909474, NCT06514794;
(32) NCT06699771; (33) NCT06420076; (34) NCT06934382, NCT06136364, NCT07008872, NCT06064903,
NCT05979792, NCT06925464; (35) NCT06732492; (36) NCT06849401; (37) NCT06316427; (38) NCT06503107;
(39) NCT06045091; (40) NCT06097455; (41) NCT07003555, NCT06235229, NCT06235229, NCT06986434;
(42) NCT06961669; (43) NCT06655519; (44) NCT06644443, NCT06515262, NCT07003568, NCT06644118,
NCT06153251, NCT05998928; (45) NCT05976555; (46) NCT06759181; (47) NCT06446128; (48) NCT06472479;
(49) NCT06705725; (50) NCT06698744; (51) NCT06407947, NCT06333509, NCT06297226, NCT06271252,
NCT06084962, NCT06615479; (52) NCT06298266; (53) NCT06850285; (54) NCT06492304, NCT06345027,
NCT05948033; (55) NCT06696846, NCT06633341; (56) NCT06574958; (57) NCT06967038; (58) NCT06732232;
(59) NCT06196255; (60) NCT06191887; (61) NCT06185751; (62) NCT06176690; (63) NCT06132711;
(64) NCT06343376; (65) NCT06379451; (66) NCT06916767; (67) NCT06783816; (68) NCT05546723;
(69) NCT06481735, NCT06323525, NCT06314828, NCT06304636, NCT06256484, NCT06080191, NCT04881240,
NCT06503211, NCT06838832, NCT06793241, NCT06696833, NCT06662227; (70) NCT06313957; (71) NCT06014762;
(72) NCT06009107, NCT06005649; (73) NCT06663046; (74) NCT06976437; (75) NCT06594211; (76) NCT06988059,
NCT06730256; (77) NCT06014073; (78) NCT06006741; (79) NCT05989204.
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3.5. CAR T-Cells Plus X: Complementary Molecular Agents
3.5.1. PD-1/PD-L1 Blockade

Blockade of the PD-1/PD-L1 axis may represent a viable strategy to mitigate TME-
mediated effector T-cell exhaustion. In the phase I/II ZUMA-6 trial, axi-cel followed by the
anti-PD-L1 atezolizumab was evaluated in R/R LBCL. The results of the phase I cohort
showed a best ORR and CR of 75% and 46%, respectively, and the CAR T-cell expansion,
as measured by area under the curve in the first 28 days, was over 2-fold higher than
the median observed in the pivotal ZUMA-1 trial. The results of the phase II part of
the trial are pending [241]. In a cohort of 14 patients with R/R B-NHL, the combination
of CAR T-cells and the anti-PD1 mAb nivolumab resulted in a CR rate of 45.5%, with a
median PFS of 6 months [242]. Moreover, nivolumab has been shown to enhance cyto-
toxicity and cytokine secretion in anti-CD19 CAR NKs [243]. In the phase Ib PORTIA
trial, 12 patients received tisa-cel on day 0 and pembrolizumab every 21 days for up to
six doses, initiating its administration on day -1 or after CAR T-cell infusion in different
cohorts. The combination was safe and effective, and the cohort initiating pembrolizumab
on day -1 appeared to show more favorable outcomes. Pembrolizumab did not lead to
increased CAR T-cell expansion but delayed peak expansion if initiated on day -1 [244].
Preliminary data from the PLATFORM study describe 11 patients with B-NHL treated with
liso-cel and receiving monthly infusions of durvalumab (an anti–PD-L1 mAb) for up to
12 cycles, achieving 7 CR [245]. In another clinical trial, the combination of anti-CD19 CAR
T-cells with durvalumab was investigated in patients with R/R LBCL, administered for
up to 10 monthly doses. Patients receiving durvalumab immediately before CAR T-cell
infusion appeared to have lower response rates compared those treated after CAR T-cell
infusion. Furthermore, retrospective comparison with a prior trial using the same CAR
T-cell product without PD-L1 blockade (NCT01865617) yielded mixed results regarding
the benefit of the combination therapy. Notably, patients receiving durvalumab after
CAR T-cell infusion showed even lower ORR and CR rates compared to patients treated
with CAR T-cells alone. Nevertheless, the DOR was longer among patients receiving
combination therapy, suggesting that optimal timing of anti-PD-1/PD-L1 mAbs admin-
istration may be critical to enhancing CAR T-cell efficacy [246]. In a phase I/II clinical
trial, 12 patients with B-NHL, who were either refractory to or relapsed after anti-CD19
CAR-T-cell therapy, received pembrolizumab every 21 days for up to 1 year. For the entire
cohort the first pembrolizumab dose was administered at median of 3.3 months post-CAR
T-cell infusion, and the median number of pembrolizumab doses was 2 (range 1–9). Inter-
estingly, re-expansion of CAR T-cells in response to the first dose of pembrolizumab was
observed in 10 patients, although ORR remained low. Of note is the fact that the authors
reported that CAR T-cell expansion occurred in multiple waves in responding patients
after pembrolizumab initiation, suggesting a correlation between expansion kinetics and
response quality [247].

Pembrolizumab was also explored in combination with the anti-CD19/CD22 dual-
targeting CAR T-cell AUTO3 In the ALEXANDER study. The ORR was 66.0%, including a
CR rate of 48.9%. The median DOR was 8.3 months, with most patients in CR remaining
relapse-free for over 12 months [248].

3.5.2. Bruton Tyrosine Kinase Inhibitors

Bruton tyrosine kinase inhibitors (BTKis) may support CAR T-cell functionality by
modulating the TME, the surface expression of target antigens, and cytokine secretion
profiles. An in vitro study of cells derived from liso-cel demonstrated that prolonged
exposure to two different BTKi compounds ibrutinib and acalabrutinib led to enhanced
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expansion and increased secretion of pro-inflammatory and immunostimulatory cytokines,
without impairing cytotoxic T-cell function [249,250].

In patients with CLL, pre-leukapheresis exposure to ibrutinib improved the quality of
collected cells by reducing surface expression of PD-1 and CD200. In murine models, post-
infusion administration of ibrutinib enhanced CAR T-cell expansion and survival [249,251,252].
Encouraging results have emerged from the concurrent administration of CD19-directed
CAR T-cells and ibrutinib in patients with R/R CLL. Compared to a matched cohort of
19 patients receiving CAR T-cell monotherapy, the combination group experienced lower
rates of CRS, with comparable efficacy [253]. A phase II trial aimed to provide a more defini-
tive therapeutic approach in CLL patients who had been on ibrutinib for at least 6 months
without achieving CR. In this study, 19 patients continued BTKi therapy during CAR
T-cell administration. Despite the 3-month CR rate being 44%, 72% of patients achieved
undetectable MRD at 12 months [254]. In the phase II TARMAC study, 20 patients with
R/R MCL received ibrutinib combined with tisa-cel starting 1 week prior to leukapheresis
and continuing for a minimum of 6 months post-CAR T-cell infusion. The 4-month CR
rate was 80%, and MRD negativity was achieved in 70% and 40% of patients tested by
flow cytometry and molecular methods, respectively. Efficacy was consistent regardless of
prior BTKi exposure or TP53 status, and longer ibrutinib exposure displayed lower levels
of exhaustion markers and higher expansion peaks [255]. In a subset of patients relapsing
after CAR T-cell and refractory to salvage ibrutinib (three FL and four MCL), a second
infusion of anti-CD19 CAR T-cells combined with ibrutinib resulted in six CRs and one
PR [256].

The use of BTKis as maintenance after CAR T-cell treatment has been investigated
with encouraging results. In retrospective and prospective studies conducted in China,
the use of BTKis (ibrutinib, Zanubrutinib, or orelabrutinib) following anti-CD19 CAR
T-cells in R/R B-NHL resulted in prolonged treatment responses, with a potential benefit
compared to CAR T-cell monotherapy. While peak CAR T-cell expansion was not markedly
affected by BTKis, co-treatment was associated with improved persistence and reduced
exhaustion [257–259].

A retrospective study included 54 patients with R/R LBCL who received response-
adapted zanubrutinib plus tislelizumab (anti–PD-1 mAb) after CAR T-cells. With a median
follow-up of almost 2 years, the 6-month ORR was 80% (CR 76%), and median PFS and OS
were not reached [260].

3.5.3. Immunomodulatory Agents

Lenalidomide has demonstrated the ability to enhance the therapeutic efficacy of
anti-CS1 or anti-BCAM, anti-CD19, anti-CD23, and anti-WT1 CAR T-cells in preclin-
ical models of MM, DLBCL, CLL, and AML, respectively. This enhancement occurs
through several mechanisms, including the dose-dependent preferential expansion of CD8+

T-cells, increased production of proinflammatory cytokines, promotion of Th1 polarization,
extended persistence of CAR T-cells, and overall improved effector functions [261–266]. In
a clinical setting of MM patients, the safety and efficacy of a sequential treatment regimen
consisting of autologous stem cell transplantation followed by anti-CD19 and anti-BCMA
CAR T-cell infusion plus lenalidomide maintenance until disease progression was investi-
gated. Seven out of ten patients maintained MRD negativity for over 2 years, and neither
median OS nor median PFS were reached with a median follow-up of 42 months. Only low
grades of CRS occurred, and no ICANS events were reported [267]. In another study, Garfall
et al. [268] enrolled patients with MM and low tumor burden across two cohorts. Patients
responding to first-line treatment were allocated to receive either anti-BCMA CAR T-cells
or a sequential combination of anti-BCMA and anti-CD19 CAR T-cells. All subgroups
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received maintenance therapy with either pomalidomide or lenalidomide. Interestingly,
the kinetics of CAR T-cell re-expansion appeared temporally associated with the initiation
of maintenance therapy, suggesting a delayed in vivo reactivation of CAR T-cells that was
seemingly independent of their initial expansion.

3.5.4. BCR/ABL Inhibitors

Among the approved BCR/ABL inhibitors, dasatinib exerts multiple effects on the
TME. It binds to and inhibits SRC family kinases, thereby preventing T-cell activation
following antigen encounter and modulating the T-cell epigenome. This mechanism may
serve a dual purpose: mitigating CAR T-cell-therapy-related toxicities and preventing
functional exhaustion of CAR T-cells, resulting in a reversible dose- and time-dependent
adjuvant effect [269–271]. In a non-randomized phase II trial enrolling 28 adults with
Philadelphia-chromosome-positive (Ph+) B-ALL, dasatinib was administered as part of
the induction regimen, followed by sequential CD19 and CD22 CAR T-cells, and this was
continued as maintenance. Among 27 evaluable patients, 25 responses were observed
(21 complete molecular responses) and the 2 y OS and leukemia-free survival rates were
over 90%. Only grade 1 CRS events and no neurological toxicities were observed [272].

3.5.5. Bcl-2 Inhibitors

In malignant B-cell cultures, including B-ALL and lymphoma lines, pre-treatment of
CD19-directed CAR T-cells with Bcl-2 inhibitors such as venetoclax resulted in enhanced
cellular longevity, increased cytokine secretion, and improved cytotoxic function. This
was accompanied by higher surface expression of CD19 and increased levels of the pro-
apoptotic protein BAK. However, concurrent or post-infusion administration of Bcl-2
inhibitors elicited adverse effects on CAR T-cells, including reduced expansion, functional
exhaustion, and long-term cytotoxic impairment [273]

3.5.6. γ-Secretase Inhibitors

BCMA is cleaved by γ-secretase, reducing its surface expression and increasing sol-
uble BCMA (sBCMA), which may act as a decoy receptor for CAR T-cells. Inhibition of
γ-secretase enhances BCMA surface density and CAR T-cell efficacy in vitro, though high
doses of γ-secretase inhibitors (GSIs) can impair CAR T-cell expansion [274]. In a first
in-human trial, the GSI crenigacestat combined with BCMA CAR T-cells increased surface
BCMA and reduced sBCMA, with a median PFS of 11 months. Stratification showed
significant differences between anti-BCMA-naïve and previously anti-BCMA-exposed
patients (median PFS was 28.8 and 2.6 months, respectively). No correlation was found
between CAR T-cell dose and clinical outcomes, suggesting antigen density may play
a compensatory role. However, ICANS occurred in 38% of patients [275]. Single-cell
analysis revealed that prior exposure to BCMA-targeted therapies attenuated the BCMA
upregulation induced by GSI [276].

3.5.7. Other Approaches

Several other compounds have been investigated in preclinical and phase I studies,
showing promising results in enhancing CAR T-cell activity through various mechanisms,
including upregulation of death ligands and stress-related proteins; downregulation of class
I HLA molecules and increased expression of target antigens on neoplastic cells; modulation
of gene expression promoting naïve and memory T-cell differentiation; improved cytotoxic
and secretory functions; reduced CAR T-cell exhaustion; enhanced recruitment of anti-CD19
CAR T-cells; and promotion of a CD8+ phenotype. These treatment categories include
proteasome inhibitors, hypomethylating agents, EZH2 inhibitors, FLT3 inhibitors, and
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all-trans retinoic acid [277–288]. In addition, novel emerging agents are under investigation
in order to further empower CAR T-cell efficacy [76,289–293]

CD20xCD3 bispecific mAbs have demonstrated high efficacy in the treatment of R/R
B-NHLs and recently received approval in this setting [294–297]. Based on their encour-
aging activity, phase I–II trials are currently underway evaluating their combination with
CAR T-cell therapy, with the aim of further improving cure rates in high-risk patients.

A summary of the large array of clinical trials currently underway to evaluate novel
combinations aimed at overcoming resistance to CAR T-cell therapy is provided in Table 2.

Table 2. Ongoing phase 1–3 clinical trials evaluating CAR T-cells plus X combinations in hematologi-
cal malignancies.

NCT Number Intervention Disease

NCT05310591 CD19 CAR-T + Nivolumab B-ALL

NCT05385263 CD19 CAR-T + Nivolumab DLBCL

NCT04205409 (Post CAR-T) Nivolumab R/R B-NHL, R/R MM

NCT05352828 CD30 CAR-T + Nivolumab R/R cHL

NCT04134325 CD30 CAR-T + Nivolumab OR Pembrolizumab R/R cHL

NCT06767956 (Post CD19 CAR-T) Nivolumab + Golcadomide, R/R B-NHL

NCT06523621 (Post idecabtagene Vicleucel) Nivolumab R/R MM

NCT05934448 CAR-T + Pembrolizumab R/R PMBCL

NCT06242834 (Post CAR-T/ASCT) Pembrolizumab + Tazemetostat R/R B-NHL

NCT05659628 CD19 CAR-T + Tislelizumab R/R DLBCL

NCT06876688 Relmacabtagene autoleucel + Tislelizumab ± BTKi R/R PCNSL

NCT04539444
(Uknown status) CD19/22 CAR-T + Tislelizumab R/R B-NHL

NCT00586391 CD19 CAR-T + Ipilimumab R/R B-NHL R/R ALL, R/R CLL

NCT03331198 Lisocabtagene maraleucel + Ibrutinib or Venetoclax R/R CLL/SLL

NCT03960840 Rapcabtagene autoleucel + Ibrutinib R/R CLL/SLL

NCT06482684 Brexucabtagene autoleucel + Ibrutinib MCL

NCT04234061 Tisagenlecleucel + Ibrutinib R/R MCL

NCT05672173 Lisocabtagene maraleucel + Ibrutinib + Nivolumab Richter’s Syndrome

NCT05744037
(Uknown status) CD19 CAR-T + Ibrutinib R/R B-NHL

NCT05202782 CAR-T + Zanubrutinib R/R B-NHL

NCT05873712 Lisocabtagene maraleucel + Zanubrutinib Richter’s Syndrome

NCT06646666 CAR-T + ATRA + Zanubrutinib ± radiotherapy ± PD-1 inhibitor R/R B-NHL

NCT06695013 Zanubrutinib ± radiotherapy + CAR-T ± Zanubrutinib and Tislelizumab R/R B-NHL

NCT05871684 CAR-T + Zanubrutinib + Tislelizumab R/R B-NHL

NCT06167785 (Post CD19 CAR-T) Zanubrutinib + Tislelizumab R/R B-NHL

NCT05020392 CD19 CAR-T + Zanubrutinib/Ibrutinib/Orelabrutinib R/R B-NHL

NCT05495464 Acalabrutinib + Rituximab + Brexucabtagene autoleucel MCL

NCT05256641 CD19 CAR-T + Acalabrutinib R/R B-NHL

NCT04257578 Axicabtagene ciloleucel + Acalabrutinib R/R B-NHL

NCT04484012 CD19 CAR-T + Acalabrutinib R/R MCL
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Table 2. Cont.

NCT Number Intervention Disease

NCT05990465 CD19 CAR-T + Pirtobrutinib R/R B-NHL

NCT06553872 Brexucabtagene autoleucel + Pirtobrutinib R/R MCL

NCT06553872 CD19 CAR-T Brexucabtagene autoleucel + Pirtobrutinib MZL

NCT06336395 CAR-T
If high risk: + Imatinib/Dasatinib B-ALL Ph+

NCT05523661 CD19/CD22 CAR-T + Dasatinib ALL Ph+

NCT05993949 Brexucabtagene autoleucel + Dasatinib R/R B-ALL

NCT04603872 CD19/BCMA CAR-T + Dasatinib R/R ALL, R/R B-NHL, R/R MM

NCT06940297 Ciltacabtagene Autoleucel + Dasatinib + Quercetin R/R MM

NCT05934838 CAR-T + Tazemetostat R/R B-NHL

NCT06793475 BCMA/GPRC5D CAR-T + Thalidomide+ Apornemin R/R MM

NCT03070327 BCMA CAR-T + Lenalidomide MM

NCT05840107 BCMA/CD19 CAR-T + Lenalidomide MM

NCT06913192 ASCT + BCMA CAR-T + Lenalidomide ± Bortezomib MM

NCT04196491 Idecabtagene vicleucel + Lenalidomide MM

NCT06762431 CD19 CAR-T + Lenalidomide R/R CLL

NCT04935580
(Uknown status) BCMA/CD19 CAR-T + Lenalidomide R/R MM

NCT05860036
BCMA CAR-T
Consolidation: Lenalidomide + Bortezomib
Maintenance: Lenalidomide

MM

NCT05850286 BCMA CAR-T + Consolidation + ASCT + BCMA
CAR-T + Lenalidomide MM

NCT07045909 Anitocabtagene Autoleucel + Lenalidomide MM

NCT04133636 Ciltacabtagene autoleucel + Lenalidomide MM

NCT03601078 Idecabtagene vicleucel + Lenalidomide MM

NCT05257083 Ciltacabtagene autoleucel + Lenalidomide vs. SoC MM

NCT06045806 (Post ASCT) Idecabtagene vicleucel + Lenalidomide MM

NCT05870917

Induction: Lenalidomide + Bortezomib + first infusion of BCMA CAR-T
Consolidation: Lenalidomide + Bortezomib + ASCT + second infusion of
BCMA CAR-T
Maintenance: Lenalidomide

PCL

NCT05979363
Induction: Lenalidomide + Bortezomib + BCMA CAR-T
Consolidation: Lenalidomide + Bortezomib
Maintenance: Lenalidomide + Bortezomib

PCL

NCT06414148 (MRD+ post CD19 CAR-T) Epcoritamab or
Lenalidomide + Epcoritamab + Rituximab R/R LBCL

NCT06179888 (Post-idecabtagene vicleucel) Iberdomide R/R MM

NCT06121843 Arlocabtagene Autoleucel + Alnuctamab or Mezigdomide or Iberdomide R/R MM

NCT06048250 Idecabtagene vicleucel + Mezigdomide R/R MM

NCT06209619 CD19 CAR-T + Golcadomide + Rituximab R/R B-NHL

NCT06271057 CD19 CAR-T + Golcadomide R/R LBCL

NCT04850560
(Uknown status) CD19 CAR-T + Decitabine R/R B-NHL
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Table 2. Cont.

NCT Number Intervention Disease

NCT04337606 (Post CAR-T) Decitabine + Chidamide or Decitabine + Camrelizumab R/R B-NHL

NCT04553393
(Uknown status)

Decitabine-primed CD19/CD20 CAR-T ± Chidamide or Decitabine or
Chidamide + Decitabine R/R B-NHL

NCT04093596 Anti-BCMA Allogeneic CAR-T ± Nirogacestat R/R MM

NCT06464185 CD19 CAR-T + Glofitamab R/R B-NHL

NCT06567366 CAR-T + Glofitamab R/R LBCL

NCT04703686 (Post CD19 CAR-T) Obinutuzumab + Glofitamab R/R B-NHL

NCT07003295 (Post CD19 CAR-T) Obinutuzumab + Glofitamab R/R MCL

NCT06552572 (PR post CD19 CAR-T): Obinutuzumab + Glofitamab R/R DLBCL

NCT06071871 (Post CAR-T): Obinutuzumab + Glofitamab + Polatuzumab vedotin R/R LBCL

NCT06015880 (Post CAR-T): Mosunetuzumab + Polatuzumab vedotin + Lenalidomide R/R B-NHL

NCT04889716 (Post CD19 CAR-T): Mosunetuzumab or Obinutuzumab + Glofitamab R/R LBCL

NCT05260957 CAR-T + Mosunetuzumab + Polatuzumab vedotin R/R B-NHL

NCT05633615 CD19 CAR-T + Mosunetuzumab or Polatuzumab vedotin or
Mosunetuzumab + Polatuzumab vedotin R/R B-NHL

Abbreviations: ALL (acute lymphoblastic leukemia), ASCT (autologous stem cell transplant), ATRA (all-trans
retinoic acid), B-ALL (B-cell acute lymphoblastic leukemia), B-NHL (B-cell non-Hodgkin’s lymphoma), BCMA
(B-cell maturation antigen), CAR-T (chimeric antigen receptor T-cell), CD (cluster of differentiation), cHL (classical
Hodgkin’s lymphoma), CLL (chronic lymphocytic leukemia), CR (complete response), DLBCL (diffuse large
B-cell lymphoma) LBCL (large B-cell lymphoma), MCL (mantle cell lymphoma), MM (multiple myeloma),
MRD (minimal residual disease), MZL (marginal zone lymphoma), NCT (national clinical trial), PCL (plasma
cell leukemia), PCNSL (primary central nervous system lymphoma), PD-1 (programmed cell death protein 1),
PMBCL (primary mediastinal B-cell lymphoma), PR (partial response), R/R (relapsed or refractory), SLL (small
lymphocytic lymphoma).

4. Discussion
CAR T-cell therapy has profoundly reshaped the treatment of hematologic malignancies,

yet resistance and relapse remain frequent and multifactorial. Antigen escape is among
the most common mechanisms and has prompted the development of dual-target CARs,
such as anti-CD19/CD22 or anti-CD19/CD20, designed to reduce the risk of relapse due
to single-antigen loss. Beyond target selection, low-affinity CARs have been engineered to
attenuate tonic signaling and delay exhaustion, thereby improving persistence. Other next-
generation platforms, including CAR TRUCKs and armored CARs, aim to remodel the tumor
microenvironment by secreting cytokines or providing additional costimulatory signals.

T-cell intrinsic quality is equally important. Early harvesting, performed before multi-
ple cytotoxic therapies, preserves naïve and stem-like memory subsets, improving both
manufacturing success and long-term persistence. Better T-cell selection and the explo-
ration of novel fast manufacturing platforms are also being investigated to optimize the
starting material and product composition. In parallel, the development of allogeneic
CAR T-cells derived from healthy donors offers a potential solution to the limitations of
autologous approaches, providing more rapid and standardized availability, though issues
of rejection and long-term safety remain to be addressed.

The tumor microenvironment represents a further critical barrier, imposing metabolic
restrictions, fostering suppressive immune populations, and upregulating inhibitory path-
ways. In this setting, combining CAR T-cells with immune checkpoint inhibitors—particularly
PD-1/PD-L1 blockade—appears one of the most clinically translatable strategies, supported
by extensive oncologic experience. Additional “CAR T plus X” combinations, including BTK
inhibitors, immunomodulatory drugs, and other small molecules, have also shown encourag-
ing synergistic effects, enhancing expansion, activity, and persistence through complementary
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mechanisms. Finally, host-related factors such as the intestinal microbiota have been associ-
ated with CAR T-cell expansion, persistence, and toxicity, although their clinical application
remains largely exploratory compared with other, more directly applicable strategies.

5. Conclusions
Resistance to CAR T-cell therapy arises from tumor-intrinsic alterations, intrinsic

properties of the CAR T-cell product, and extrinsic host- and microenvironment-related
influences. To overcome these challenges, multiple complementary strategies are be-
ing developed. Dual-target constructs reduce the likelihood of antigen escape, while
low-affinity CARs can mitigate exhaustion and improve persistence. CAR TRUCKs and
armored CARs represent rational approaches to remodel the tumor milieu and sustain
function under suppressive conditions. Early harvesting and improved T-cell selec-
tion enhance the quality of the autologous starting material, and novel manufacturing
platforms may further refine product composition. Allogeneic CARs may eventually
provide off-the-shelf solutions, potentially shortening treatment delays and standardiz-
ing availability. Combination strategies—particularly with checkpoint inhibitors, but
also with BTK inhibitors, immunomodulatory drugs, and other agents—hold promise
for enhancing persistence and durability of response. Even host-related modulators,
such as the microbiome, have been implicated in influencing CAR T-cell efficacy, though
their role is still largely exploratory.

Altogether, these approaches highlight the multifaceted nature of resistance and the
need for integrative solutions that simultaneously address antigen escape, product quality,
and extrinsic barriers, thereby progressively moving the field toward more effective and
accessible therapies.

6. Future Directions
Looking forward, the evolution of CAR T-cell therapy is likely to progress along

two complementary tracks. On the one hand, futuristic innovations such as logic-gated
CARs, advanced armored constructs, and genome-edited platforms promise to enhance
specificity, persistence, and resistance to immunosuppression, although their broad
implementation in clinical practice will require further validation and long-term follow-
up. On the other hand, several strategies appear readily translatable to current care.
The combination of CAR T-cells with checkpoint inhibitors or other small molecules,
the implementation of dual-target constructs, the design of low-affinity CARs, and the
adoption of early harvesting approaches represent interventions that can feasibly be
integrated into practice in the near future.

The panorama of CAR T-cell therapy is rapidly evolving, and the best is yet to come.
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