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Although plenty of drugs are currently available for type 2 diabetes mellitus (T2DM), a subset of patients still failed to restore
normoglycemia. Recent studies proved that symptoms of T2DM patients who are unresponsive to conventional medications
could be relieved with mesenchymal stem/stromal cell (MSC) therapy. However, the lack of systematic summary and analysis
for animal and clinical studies of T2DM has limited the establishment of standard guidelines in anti-T2DM MSC therapy.
Besides, the therapeutic mechanisms of MSCs to combat T2DM have not been thoroughly understood. In this review, we
present an overview of the current status of MSC therapy in treating T2DM for both animal studies and clinical studies.
Potential mechanisms of MSC-based intervention on multiple pathological processes of T2DM, such as f3-cell exhaustion,
hepatic dysfunction, insulin resistance, and systemic inflammation, are also delineated. Moreover, we highlight the importance
of understanding the pharmacokinetics (PK) of transplanted cells and discuss the hurdles in MSC-based T2DM therapy

toward future clinical applications.

1. Introduction

Diabetes mellitus (DM) consists of an array of dysfunc-
tions characterized by hyperglycemia and has become
one of the most prevalent chronic diseases worldwide.
Diabetes has afflicted more than 436 million people in
2019, and this number is estimated to reach 700 million
by 2045. Type 1 diabetes mellitus (T1DM) is caused by a
deficiency of insulin production, while type 2 diabetes
mellitus (T2DM) is linked to insulin resistance. Precisely,
more than 90% of diabetic patients are affected by
T2DM and, to a large extent, associated with obesity, lack
of exercise, poor diet, and heredity [1, 2]. Insulin resis-
tance occurs when cells in the muscle, adipose tissue,
and liver insensitively respond to the action of insulin,
thus engendering numerous pathogeneses that encompass
the accumulation of ectopic lipid metabolites, activation
of unfolded protein response (UPR) pathways, and activa-
tion of innate immune pathways [2]. Insulin resistance is
primarily compensated by elevated insulin secretion, which
eventually leads to T2DM due to the exhaustion of pan-

creatic f3-cells [3]. Therefore, insulin resistance has become
the most prominent predictor of T2DM progression, as
well as a potential therapeutic target once hyperglycemia
is present [4].

Besides hyperglycemia, most diabetic patients are apt to
suffer from various life-threatening complications (e.g., car-
diovascular diseases and stroke) that reduce their quality of
life and could even inflict fatal outcomes, which further
highlights the necessity of suitable pharmacological inter-
vention for the prevention and treatment of diabetes. In con-
formity with the American Diabetes Association (ADA), the
regular treatment of T2DM is based on lifestyle interven-
tions, including a healthy diet, weight loss, and regular prac-
tice of physical activity [5]. Nonetheless, these efforts should
be performed in concert with antidiabetic drugs for consoli-
dated maintenance of normoglycemia. To date, eight classes
of antidiabetic drugs have been approved by the Food and
Drug Administration (FDA), including the first-line drug
metformin and newly developed glucagon-like peptide-1
receptor agonists (GLP-1RAs) [6], along with versatile med-
ication protocols such as monotherapy, dual therapy, and


https://orcid.org/0000-0002-1154-4711
https://orcid.org/0000-0002-4222-6302
https://orcid.org/0000-0002-4174-4853
https://orcid.org/0000-0003-2751-1962
https://orcid.org/0000-0003-2627-9727
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8637493
http://crossmark.crossref.org/dialog/?doi=10.1155%2F2022%2F8637493&domain=pdf&date_stamp=2022-08-22

multiagent therapy to improve the efficacy of T2DM treat-
ment [7]. However, certain pathologies of T2DM, such as
B-cell exhaustion, hepatic dysfunction, insulin resistance,
and systemic inflammation, remain refractory with the
employment of conventional medications. Besides, these
medications are associated with a myriad of risks and side
effects, including hypoglycemia, diarrhea, and liver damage,
signifying the indispensability of developing an antidiabetic
drug ideal for the augmentation of insulin sensitivity and
reversal of pancreatic 3-cell failure [7].

Recently, cell-based therapies have emerged as the next-
generation medicine to address intricate physiopathologies
of T2DM [8-10]. Mesenchymal stem/stromal cells (MSCs)
have demonstrated their therapeutic effects in both animal
studies and clinical studies, thus offering adept modalities
in treating T2DM. In brief, MSCs are capable of self-
renewal and differentiating into multiple mesenchymal line-
ages, such as adipogenic, chondrogenic, and osteogenic line-
ages in vitro. Moreover, they exhibit low immunogenicity
due to the intermediate expression of major histocompatibil-
ity complex (MHC) class I, as well as the absence of MHC
class II and costimulatory molecules on their cell surfaces
[11, 12]. Besides, the plethora of cytokines, growth factors,
and exosomes secreted by MSCs play a pivotal role in the
regulation of insulin sensitivity and -cell dysfunction [13,
14]. Most significantly, previous studies have indicated that
MSCs are capable of exerting certain antidiabetic effects, as
supported by the evidence that multiple infusions of MSCs
may reverse hyperglycemia instead of single-dose infusion
[15, 16]. In this review, we summarize various animal and
clinical studies of MSC therapy in treating T2DM. Next,
we shed light on the possibility of MSC-based therapy as a
novel antidiabetic treatment, with a focus on its potential
therapeutic mechanisms. Finally, critical challenges toward
the clinical translation of MSC therapy for T2DM are dis-
cussed through the viewpoint of cellular pharmacokinetics
(PK) and safety considerations.

2. Preclinical Studies of MSCs for
T2DM Treatment

The multiplexed ability of MSCs to ameliorate T2DM-
associated metabolic syndromes such as hyperglycemia,
insulin resistance, and systemic inflammation has heretofore
been delineated by numerous animal studies. The MSC
sources, animal models, delivery routes, and interventions
used in these research studies have been summarized in
Table 1. Briefly, the main sources of MSCs include the
umbilical cord, adipose tissue, and bone marrow from autol-
ogous, allogeneic, and xenogeneic origins [17-19]. Interest-
ingly, several publications that involved human-derived
MSCs revealed that xenogeneic cells conferred suboptimal
therapeutic effects in T2DM animal models and did not lead
to severe graft rejection [17, 19-21].

Furthermore, the most widely used T2DM models in
these studies can be stratified into the high-fat diet- (HFD-
) induced model, fat-fed/streptozocin- (STZ-) induced
model, and leptin receptor-deficient (db/db) model. How-
ever, the duration of obesity and T2DM induction varies
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between different studies, thus causing different pathological
stages of T2DM. Generally, a longer time is needed to induce
B-cell dysfunction than insulin resistance and hyperlipid-
emia, while 30 weeks were taken to induce nonalcoholic ste-
atohepatitis (NASH) syndrome in small animals [18].
Moreover, STZ is usually injected intrapancreatically into
animals after 10 weeks of HFD treatment in order to accel-
erate the induction of S-cell dysfunction [19, 22]. Besides,
the db/db model, which is characterized by the deficiency
in leptin receptors, is also well adopted owing to the steadily
high plasma glucose level [23].

According to Table 1, the majority of researchers deliver
therapeutic MSCs through the intravenous tail vein despite
the fact that MSCs would be trapped within the lung capil-
laries and eliminated rapidly within hours postadministra-
tion [18, 22-25]. On the other hand, a single
administration of MSCs has been proved to provide potent
therapeutic effects on glucose tolerance and insulin tolerance
in diabetic animals [18, 22]. However, only a limited number
of articles summarize the versatile therapeutic effects of
MSCs among diverse formulation and dosing regimens on
T2DM animal models. Therefore, further studies should be
carried out to establish the standard guidelines to be imple-
mented in MSC therapy.

In addition to optimizing the MSC sources, animal
models, administration routes, and dosages, cell engineering
strategies have been scrutinized to improve the therapeutic
outcomes of MSCs. In particular, genetically modified MSCs
were exploited to induce the secretion of rarely expressed or
nonnative therapeutic proteins with the advent of gene-
editing tools such as CRISPR-Cas9, viral and nonviral vec-
tors. For instance, Xu et al. have exemplified that the overex-
pression of insulin-producing genes in mouse MSCs
significantly sustained their antidiabetic effects in vivo after
intrahepatic administration [26]. Karnieli et al. also reported
that MSCs transfected with pancreatic and duodenal
homeobox-1 (PDX-1) can reduce blood glucose in STZ-
diabetic severe combined immunodeficient (SCID) mice
after 5 weeks [27], accompanied with some drawback as
the mice developed abnormal glucose tolerance after 6-8
weeks of transplantation. In addition, Milanesi et al. used
human bone marrow mesenchymal stem cells (hBM-MSCs)
to coexpress the vascular endothelial growth factor (VEGF)
and PDX-1 transiently and were able to reverse hyperglyce-
mia in more than half of the diabetic mice, denoting that
MSCs improved their overall survival and body weight
[28]. However, discrepant effects were observed between
mice treated with hBM-MSCs with dual and single gene
expressions. Aside from insulin-producing genes, PDX-1,
VEGEF, and interfering neurogenin 3 (Ngn3) have also been
integrated into MSCs to augment their antidiabetic effects
[29]. In our recent research, we genetically engineered MSCs
with Exendin-4 (MSC-Ex-4) and demonstrated their
boosted cellular function and antidiabetic efficacy in the
T2DM mouse model. The Exendin-4 secreted by MSC-Ex-
4 improved MSC survival under high glucose stress via auto-
crine activation of the GLP-1R-mediated AMPK signaling
pathway, as well as suppressed senescence and apoptosis of
pancreatic f-cells through endocrine effects. We also
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showed that the amplified secretion of bioactive factors (e.g.,
IGFBP2 and APOM) of MSC-Ex-4 paracrinely augments
insulin sensitivity and decreases lipid accumulation in hepa-
tocytes through PI3K-AKT activation [30]. Indisputably,
the functional proteins secreted by genetically modified
MSCs may be useful to mitigate NASH and metabolic-
associated fatty liver disease (MAFLD) concomitantly, con-
cerning that diabetes is intimately associated with these
complications. In concise detail, the antidiabetic GLP-1RA
commercialized by Novo Nordisk, namely, semaglutide,
has shown encouraging effects in resolving the symptoms
of NASH in phase 2 trials [31].

Nevertheless, these genetically engineered MSCs still
exhibited numerous setbacks, which lead to the under-
whelming therapeutic effects of MSCs. Firstly, transient
transfection is extremely unstable, thus resulting in short-
lasting therapeutic effects. Secondly, most viral vectors are
not desirable in clinical settings due to the possibility of
causing carcinogenesis and immune responses, which indi-
cates a demand for other cell engineering modalities in order
to enhance the MSC potency. Simultaneously, maintaining
the low generation of MSCs and reducing the cell damage
during cell transfection and chemical (e.g., puromycin)
selection are challenging tasks. Meanwhile, the ethical con-
cerns involving gene manipulation face a considerable
degree of skepticism. However, with the continuous
advancement of gene-editing tools with unprecedented spa-
tiotemporal control, we believe that the genetic manipula-
tion techniques are prompt to have enhanced precision,
efficacy, and safety [32, 33].

3. Clinical Studies of MSCs for
T2DM Treatment

According to the data published by the National Institutes of
Health (NIH), current clinical trials of MSCs involved in the
treatment of diabetes mainly focus on T1DM patients. In
2008, the University of Miami has started MSC therapy on
T2DM patients by using bone marrow stem cells (BM-
SCs), which were harvested from the patient’s iliac crest
bone marrow [38]. Although this study did not authenticate
the identity of isolated cells, most of these cells were claimed
to be MSCs according to the isolation method. The meta-
bolic panels showed significant improvement in T2DM
patients when comparing baseline data with 12 months of
follow-up data. Furthermore, combinatorial therapy of
intrapancreatically infused autologous stem cells (ASCs)
and hyperbaric oxygen therapy (HBO) can improve the met-
abolic and insulin control of T2DM patients. Still, further
randomized and controlled clinical trials are necessary to
validate these findings.

According to Table 2, although human umbilical cord
mesenchymal stem cells (hUC-MSCs), BM-MSCs, and bone
marrow mononuclear cells (BM-MNCs) are the mostly used
cell types in clinical trials, some infrequently used cell types
or conditions, such as hypoxia preconditioned mesenchymal
stem cells (HP-MSCs) and bone marrow-derived mesenchy-
mal precursor cells (BM-MPCs), also show their therapeutic
effects. Besides, MSC therapy was applied as an adjuvant to
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strengthen the efficacy of antidiabetic drugs. In a Chinese
clinical trial, 12 T2DM patients who failed to reinstate nor-
mal glycemic control after liraglutide treatment were treated
with 1x10° cells/kg of hUC-MSCs via pancreatic artery
infusion on the first day, with another 1x 10° cells/kg of
cells infused through the peripheral vein on days 8, 15, and
22. On the contrary, control subjects were infused with
saline, while both groups were treated with liraglutide for
24 weeks. The result demonstrated that the fasting plasma
glucose (FPG), postload glucose (2hPG), and hemoglobin
Alc (HbAlc) levels were significantly decreased in subjects
who received MSC therapy in comparison with control
groups [39], indicating that MSCs can improve glucose
metabolism and f-cell function in T2DM patients in combi-
nation with other medications or therapies.

In addition, intrapancreatic and intravenous infusion
methods are generally used in clinical studies due to safety
concerns. In 2014, Liu et al. found that subcutaneous hema-
toma was developed at the injection site of a patient during
the first day of intrapancreatic injection, which was resolved
subsequently after seven days. Besides, nausea, vomiting,
and headache also occurred in another patient, who recov-
ered spontaneously within one week. Therefore, although
previous clinical trials showed that intravenously injected
MSCs can cause pulmonary microembolism, no serious
adverse reactions have been indicated so far [40]. In addi-
tion, the therapeutic effects of MSCs can be enhanced when
combined with biological materials, such as collagen and
hydrogels. A clinical study that was aimed at improving
the erectile function of men with diabetes by the injection
of collagen hydrogel and hUC-MSC mixture into the cav-
ernous body was recruiting in 2015. Since a collagen scaffold
has been demonstrated to prolong the lifetime and maintain
the stemness of MSCs, we can assume that the combination
of stem cell therapy and tissue engineering can further aug-
ment the therapeutic efficacy of MSCs.

4. The Mechanisms of MSC Therapy in T2DM

Although the therapeutic efficacy of MSC therapies for
T2DM has been postulated decades ago, their underlying
mechanisms remain elusive. Therefore, multiple potential
mechanisms of MSCs in various pathological processes of
T2DM, such as f-cell exhaustion, hepatic dysfunction,
insulin resistance, and systemic inflammation, are envis-
aged here.

4.1. 3-Cell Regeneration. MSCs promote insulin production
by facilitating the regeneration of endogenous pancreatic
islet B-cells, and several hypotheses about their fundamental
mechanisms have been reported. Although previous studies
have proved that MSCs can differentiate into p-cells or
insulin-producing cells in vitro [48-50], it is increasingly
evidenced that limited transdifferentiation of the infused
MSCs could occur in vivo to facilitate the process of pan-
creas regeneration and ameliorate hyperglycemia in T2DM
models. For example, Hess et al. discovered that despite
the elevated insulin production of streptozotocin- (STZ-)
induced mice at 42 days after the intravenous injection of
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FIGURE 1: (a) Possible mechanisms of action for MSCs to promote islet regeneration. MSCs might initiate endogenous insulin production
and stimulate the proliferation of S-cells. Various bioactive molecules secreted by MSCs, such as VEGF, TGF-p, and IL-6, can lead to
enhanced vascularization and islet function. Besides, mitochondria of MSCs could be transferred to f-cells under hypoxia conditions to
enhance the insulin secretion rate. MSCs show their antiapoptotic effect by downregulating ROS, caspase 3, caspase 8, and p53 and
upregulating Bcl2. MSCs are capable of enhancing the formation of phagosomes, leading to the improved clearance of impaired
mitochondria and the increased number of insulin granules. (b) Possible mechanisms of action for MSCs to influence hepatic metabolic
homeostasis. MSCs can reduce the number of impaired mitochondria and systemic ROS levels to prevent liver metabolic imbalance.
Upon MSC administration, PPAR-«a was upregulated while PPAR-y was downregulated. The expression of enzymes involved in hepatic
glycolysis (GCK, L-PK, and PFK) is elevated, while the enzymes involved in gluconeogenesis (PGC-1la, PEPCK, and G6Pase) are
reduced. In addition, MSCs can activate AKT and AMPK signaling pathways, which play a key role in cell metabolism. MSCs could
significantly lower disordered biochemical markers of liver function caused by HFD, for instance, AKP, LDH, ALT, and AST, as well as
reduce hepatic lipid accumulation and ameliorate insulin sensitivity. Abbreviations: VEGF: vascular endothelial growth factor; TGF-p:
transforming growth factor-f; IL-1Ra: interleukin-1 receptor agonist; ER: endoplasmic reticulum; ROS: reactive oxygen species; AKT:
protein kinase B; AMPK: AMP-activated protein kinase; HFD: high-fat diet; GCK: glucokinase; L-PK: liver pyruvate kinase; PFK: 6-
phosphofructo-1-kinase; PGC-la: peroxisome proliferator y-activated receptor coactivator 1-a; PEPCK: phosphoenolpyruvate
carboxykinase; G6Pase: glucose-6-phosphatase; AKP: alkaline phosphatase; LDH: lactate dehydrogenase; ALT: alanine aminotransferase;

AST: aspartate aminotransferase.

hBM-MSCs, the majority of the transplanted cells migrated
to ductal and islet structures, and only a minority of trans-
planted cells are labeled with insulin [51]. Therefore,
although MSCs can initiate endogenous insulin production
and stimulate the proliferation of 3-cells, transdifferentiation
of MSCs into f3-cells and transplantation engraftment may
not significantly contribute to the restoration of pancreas
function.

Moreover, MSCs demonstrate their repairing potential
through the secretion of versatile cytokines and growth fac-
tors, including transforming growth factor- (TGF-) S, inter-
leukin- (IL-) 6, and VEGF, which participate through both
the paracrine and autocrine actions to enhance the islet
function [52] and facilitate the vascularization process
(Figure 1) [53]. In addition, some researchers correlated
the islet repairing potential of MSCs to their antiapoptotic
effects. Briefly, Borg et al. proved that BM-MSCs could
reduce islet cell apoptosis as decreased cleavage of caspase

3 in vivo was observed after MSC treatment [54]. Chandra-
vanshi and Bhonde further proved the antiapoptotic effect
of MSCs by downregulating reactive oxygen species (ROS),
nitric oxide, superoxide ions, caspase 3, caspase 8, and p53
and upregulating Bcl2 under hypoxia circumstances [55].
Besides, BM-MSCs are able to alleviate endoplasmic reticu-
lum stress- (ERS-) induced apoptosis by overexpressing
Myc through stromal cell-derived factor- (SDF-) 1 signaling
or cell-cell interaction (Figure 1) [56].

Besides, MSCs are capable of enhancing the formation of
autophagosomes by clearing impaired mitochondria and
increasing the number of insulin granules (Figure 1) [22].
Mitochondria are key players in energy production, signal-
ing, and apoptosis in cells, and their dysfunction has become
the hallmark of various diseases, including diabetes, ische-
mia, inflammation, and aging. An increasing number of
studies have revealed that MSC-mediated mitochondrial
transfer is a mainstay to rescue injured cells and restore
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mitochondrial functions [57, 58]. Rackham et al. demon-
strated that mitochondria of MSCs could be transferred to
B-cells under hypoxia conditions for replenishment. Conse-
quently, the oxygen consumption rate and insulin secretion
rate of islet cells were enhanced after being cultured with
MSCs, indicating that mitochondrial transfer could respond
to and alleviate hypoxic and oxidative stress caused by exces-
sive. ROS production from damaged mitochondria [59].
Considering that mitochondria play a central role in energy
metabolism, their intercellular transfer may partially explain
the therapeutic mechanism of MSCs in improving f-cell
regeneration. Besides, an increasing number of studies have
postulated that mitochondrial donation by MSCs can also
ameliorate other diabetic complications, including diabetic
nephropathy and inflammation [58, 60, 61].

4.2. Hepatic Metabolic Homeostasis. T2DM is strongly asso-
ciated with hepatic dysfunction, provided that around 57%
to 80% of T2DM patients are suffering from MAFLD. In
short, the relationship between MAFLD and T2DM is intri-
cate and bidirectional, as they share similar features and
metabolic syndromes, such as the accumulation of hepatic
lipids, oxidative stress, and glucose tolerance [62]. In 2012,
Ezquer et al. found that intravenously transplanted MSCs
could significantly lower a panel of disordered biochemical
markers of liver function caused by HFD, for instance, alka-
line phosphatase (AKP), lactate dehydrogenase (LDH),
alanine aminotransferase (ALT), and aspartate aminotrans-
ferase (AST), implying that MSCs could improve liver func-
tion of T2DM patients (Figure 1) [18].

PPARs are the major regulators of lipid metabolism,
which help to control the balance of fatty acid uptake, adipo-
genesis, and -oxidation. After MSC administration, PPAR-
o was upregulated while PPAR-y was downregulated in the
liver of HFD mice, denoting that PPAR signaling pathways
modulated by MSCs implicitly influence hepatic metabolism
[17]. Besides, the expression of enzymes associated with
hepatic glycolysis, including glucokinase (GCK), liver pyru-
vate kinase (L-PK), and 6-phosphofructo-1-kinase (PFK),
was greatly elevated. Meanwhile, enzymes involved in gluco-
neogenesis, such as peroxisome proliferator y-activated
receptor coactivator 1-a (PGC-1a), phosphoenolpyruvate
carboxykinase (PEPCK), and glucose-6-phosphatase
(G6Pase), were reduced [24]. Evidence shows that the infu-
sion of MSCs will activate protein kinase B (AKT) and
AMP-activated protein kinase (AMPK) signaling pathways,
which play indispensable roles in cell metabolism
(Figure 1) [24, 25].

Furthermore, oxidative stress caused by mitochondrial
dysfunction will also lead to liver metabolic imbalance
[63]. The glutathione (GSH)/oxidized glutathione (GSSG)
ratio was reduced, and the amount of superoxide dismutase,
which is inversely proportional to systemic ROS levels, was
increased after MSC treatment (Figure 1) [64, 65], postulat-
ing that the therapeutic effect of MSCs is highly associated
with metabolic homeostasis. Meanwhile, treatment using
an MSC-conditioned medium exhibited similar effects, sug-
gesting that paracrine effects significantly contribute to the
reparation process in T2DM [25]. In our recent work, we
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demonstrated that the intravenously injected MSCs resided
in the liver on day 5 postadministration and persisted for
15 days. Besides, bioactive factors (e.g., IGFBP2 and APOM)
secreted by MSCs paracrinely augmented insulin sensitivity
and decreased lipid accumulation in hepatocytes through
PI3K-AKT activation [30].

4.3. Alleviation of Insulin Resistance. Insulin resistance,
which is a distinctive hallmark of T2DM, describes the fail-
ure of cells to respond to insulin during disease progression.
Lately, Si et al. revealed that intravenously injected BM-
MSCs could increase GLUT expression and elevate phos-
phorylation of insulin receptor substrate-1 (IRS-1) and
AKT in the target tissues of insulin [66], delineating that
MSC:s are capable of alleviating insulin resistance of diabetic
patients. Furthermore, Deng et al. also showed that Mitsugu-
min 53 (MG53), an E3 ligase that promotes the ubiquitinoy-
lation of IRS-1 in skeletal muscles, was inhibited by MSCs
(Figure 2) [67]. Akin to the skeletal muscle that accounts
for 70%-80% of insulin-stimulated glucose disposal, inhibi-
tion of the IRS-1 ubiquitin pathway may also engage in alle-
viating insulin resistance [68]. Moreover, insulin resistance
in MAFLD and subsequent hepatic diseases is associated
with the overproduction of inflammatory mediators and
their downstream signaling molecules, with evidence sug-
gesting that NOD-like receptor protein 3 (NLRP3) inflam-
masomes play an important role in obesity-induced insulin
resistance [21]. The application of MSCs in T2DM treat-
ment exemplifies that NLRP3 formation was inhibited
through immune response regulation of MSCs, thus enhanc-
ing the function of IRS-1 and GLUT4 in hepatic cells
(Figure 2) [35].

Besides, exosomes, which are nanoscale extracellular
vesicles, also show broad prospects in tissue regeneration
and damage reparation. In vivo experiments have further
demonstrated the therapeutic effects of intravenously
injected MSC exosomes in reducing the blood glucose
level, as well as restoring the phosphorylation of IRS-1
and AKT signaling pathways in insulin target tissues
[20]. The latest study confirmed that exosomal miR-29b-
3p can regulate cellular insulin sensitivity via sirtuin-
(SIRT-) 1 (Figure 2) [14], which is a class III histone
deacetylase deeply involved in apoptosis, genomic stability,
and gene expression regulation, indicating that histone
modification related to insulin resistance is one of the
treatment approaches of MSCs. Moreover, the clearance
of dysfunctional mitochondria, alleviation of ERS, and
diminishment of ROS may ameliorate insulin resis-
tance [69].

4.4. Regulation of Systemic Inflammation. It is notorious that
the pathogenesis of obesity-related insulin resistance
includes chronic low-grade inflammation and activation of
the immune system [21, 70]. Therefore, overexpression of
systemic inflammatory cytokines, such as tumor necrosis
factor- (TNF-) «, interleukin- (IL-) 183, and IL-6, is accom-
panied by the pathogenesis of metabolic syndromes, includ-
ing insulin resistance, atherosclerosis, and MAFLD
(Figure 2). Likewise, the abnormal changes in peripheral or
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FIGURE 2: (a) Possible mechanisms of action for MSCs on insulin target organs to alleviate insulin resistance. Exosomal miR-29b-3p can
regulate cellular insulin sensitivity via SIRT-1. Furthermore, NLRP3 formation can be inhibited through immune response regulation
mediated by MSCs, thus enhancing the function of IRS-1 and GLUT4 in hepatic cells. MSCs also facilitate the inhibition of MG53,
which is an E3 ligase that promotes the ubiquitinoylation of IRS-1 in skeletal muscles. (b) Possible mechanisms of action for MSCs to
regulate systemic inflammation. IL-13 and TNF-« secreted by the T2DM islet will stimulate MSCs to secrete IL-1Ra, which in turn
ameliorates islet inflammation. MSCs can also promote the proliferation of Treg cells, and IL-10 and IL-13 secreted by Treg seem to play
a key role in islet regeneration by reducing systemic inflammation. Besides, classically activated macrophages (M1) could stimulate MSCs
to overexpress IL-6 and MCP-1, thus converting M1 into an alternatively activated phenotype (M2) to reduce systemic inflammation.
Abbreviations: SIRT-1: sirtuin-1; NLRP3: NOD-like receptor protein 3; IRS-1: insulin receptor substrate-1; GLUT4: glucose transporter
4; MG53: Mitsugumin 53; Treg: regulatory T; TGF-f3: transforming growth factor-; MCP-1: monocyte chemoattractant protein-1; IL:

interleukin; TNF-a: tumor necrosis factor-a.

tissue-resident immune cells and their regulatory function
always accompany the development of diabetes, indicating
that immune cells such as T lymphocytes (T cells), macro-
phages, and natural killer cells (NK cells) are considered to
participate in the progression of T2DM concomitantly [21].

It has been a prevailing dogma that MSCs have immune
privilege properties. This is exemplified by the immunomod-
ulatory effects of MSCs on T cells, B lymphocytes (B cells),
dendritic cells (DCs), and NK cells, mainly via paracrine
effects that involve the secretion of enzymes, chemokines,
cytokines, anti-inflammatory mediators, growth factors,
and extracellular vesicles [71, 72]. Briefly, MSC activation
is subjected to the stimulation of a multitude of inflamma-
tory cytokines, including TNF-« and interferon- (IFN-) y,
which in turn shift to an immunosuppressive phenotype by
inducing the secretion of soluble factors that mediated
immunomodulatory activities, such as prostaglandin E2
(PGE2), hepatocyte growth factor (HGF), indoleamine-
pyrrole 2,3-dioxygenase (IDO), and IL-10 [73, 74]. Addi-
tionally, the paracrine immunomodulatory properties of
MSCs are highly mediated by versatile signaling pathways
like the telomerase-associated protein Rap1/NF-«B pathway

[75]. Although we do not have a comprehensive understand-
ing of the precise mechanism of MSC-based immunomodu-
lation, MSCs have been harnessed for the treatment of
immune-mediated disorders [76, 77], including graft-
versus-host disease (GvHD) and diabetes.

To date, experimental results showed that the inflamma-
tory status of STZ-diabetic animal models contributes to the
modification of the pancreatic microenvironment, while the
administration of MSCs promoted the proliferation of regu-
latory T cells (Tregs) to provide long-term immunoregula-
tory effects [78]. Consequently, Th2 cytokines (IL-10 and
IL-13) secreted by Tregs seem to play a key role in fS-cell
activation and survival through their anti-inflammatory
effects, where the definitive mechanism of action remains
to be an enigma (Figure 2) [19]. Besides, the mobilization
of MSCs by inflammatory factors under specific microenvi-
ronments has been demonstrated, illustrating that MSCs
can elicit the transition of macrophages into an anti-
inflammatory phenotype to alleviate insulin resistance in
T2DM rats [34, 36]. In brief, classically activated macro-
phages (M1) could stimulate MSCs to overexpress IL-6
and MCP-1, thus converting M1 into an alternatively
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activated phenotype (M2) (Figure 2). Meanwhile, IL-4R
expression was upregulated in macrophages, which sensi-
tizes them to the IL-4 stimulus. Moreover, MSCs can down-
regulate the systemic inflammatory cytokines to impair
insulin receptor action and respective downstream signaling
pathways by preventing the formation of NLRP3 in the adi-
pose tissue and liver [35]. Wang et al. demonstrated that IL-
13 and TNF-«a secreted by the T2DM islet could stimulate
MSCs to secrete IL-1Ra, which could ameliorate islet inflam-
mation (Figure 2) [37]. In conclusion, the above mechanistic
investigation provides a theoretical basis for the clinical
application of MSCs in the treatment of T2DM along with
its associated complications.

5. Pharmacokinetics of MSCs in T2DM

Although MSCs have shown their potential in treating
T2DM both in vitro and in vivo, we have not thoroughly
understood their in vivo behavior, which hampers further
progress for clinical investigation in the field of MSC-based
T2DM therapy [79]. It is generally known that there is often
a discrepancy in the kinetics of MSCs among different cell
sources, T2DM models, and routes of administration [80].
Therefore, the ability to determine the dose, in vivo distribu-
tion, and extended viability of MSCs in patients is crucial in
developing MSC-based therapies and elucidating the in vivo
therapeutic mechanism of administered MSCs for T2DM
treatment [81]. Furthermore, increased knowledge of MSC
distribution after delivery could allow researchers to esti-
mate cellular pharmacokinetics, thus identifying the dosing
scheme required to achieve optimal therapeutic effects [82].
Akin to the use of a PK model for drug development, which
delineated the time course of drug absorption, distribution,
metabolism, and excretion (ADME), an effective in vivo
kinetic model of administered MSCs and their released fac-
tors should be adapted and applied to allow clinical transla-
tion of therapeutic MSCs in treating T2DM. If robust
pharmacokinetic models of MSCs can be developed, the
therapeutic efficacy of MSCs in various treatment conditions
can be predicted, thus informing the optimal administration
regimes of the cells and hastening the progression of clinical
research [80].

5.1. In Vivo Kinetics of Systematically Applied MSCs. Despite
the rapid progress in using MSCs as a safe and effective
treatment of T2DM, the in vivo PK of administered MSCs
is rarely reported. Sood et al. labeled BM-MNCs with a pos-
itron emission tomography (PET) tracer, namely, fluorine
18-fluorodeoxyglucose (‘*F-FDG), to track the biodistribu-
tion of cells in vivo. BM-MNCs were administered to dia-
betic patients through three different routes—peripheral
intravenous, superior pancreaticoduodenal artery, and
splenic artery injection—with the in vivo biodistribution of
cells tracked and quantified at 30 and 90 minutes after
administration. More BM-MNCs were retained in the pan-
creas after being administered through the superior pancrea-
ticoduodenal artery, while no discernible cell was observed
after splenic artery and intravenous injection. Besides the
pancreas, the spleen also showed an intense FDG signal after
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splenic artery injection. On the contrary, the lung showed
retention of cells within 30 minutes, with a significant clear-
ance in 90 minutes after intravenous injection [83]. The
study by Sood et al. did not track the BM-MNC:s for a longer
time. Furthermore, Yaochite et al. generated adipose-
derived- (AD-) MSCs™" that expressed luciferase and
administered the cells to STZ-induced diabetic mice through
intrasplenic or intrapancreatic injection. Following intras-
plenic transplantation, AD-MSCs"“* were mainly observed
in the liver and pancreas until day 8 after intrasplenic and
intrapancreatic injection, respectively. However, these injec-
tion routes are rarely used in clinical trials, denoting that the
long-term distribution of MSCs after intravenous injection
should be further compared with the above administration
routes in diabetic mice and patients [84].

5.2. Modeling the In Vivo Kinetics of MSCs. Although the
biodistribution of cells can be quantified by various experi-
ment techniques, the PK of administered cells has not been
studied systematically through a PK model. During the past
30 years, many PK models have been developed to describe
the ADME of conventional drugs, which were successfully
applied to predict the safety and efficacy of therapeutic
agents, including biologics and small-molecule drugs [80].
Studying the PK aspects of MSCs is difficult but critical in
the development of MSC therapy, which could assist in the
optimization of the cell dosage, mode of injection, course
treatment, and targeting strategies to achieve maximum effi-
ciency with the lowest risk [85]. To simplify the explanation
of the in vivo kinetics of therapeutic cells, the dynamics of
systematically administered cells have been considered sim-
ilar to those of inert micrometer-scale particles injected into
the bloodstream of animals [83, 86, 87]. To date, the only
published PK model of MSCs was developed in 2016 [79].
Wang et al. established a physiological-based (PB) PK model
based on the anatomical structure of the body, which sepa-
rates every important organ in the body as an individual
compartment, and each of them is interconnected by blood
vessels. In this simplified model, the whole body was divided
into eight interconnected compartments, which were the
arterial blood, lungs, liver, spleen, kidneys, heart, venous
blood, and the rest of the human body (Figure 3) [37]. Once
administered intravenously, most of the MSCs were rapidly
transferred to the blood vessels of each organ through sys-
temic blood flow. MSCs that reached the organs were either
passively entrapped in the microvessels or actively adhered
to the endothelial cells. The entrapped MSCs were either
released back into the blood circulation or eliminated after
depletion (Figure 3). Therefore, K, .. Kieesser and
Kgepletion Were used to represent the rate constants of the

arrest, release, and depletion processes, respectively, along
with other key parameters, including species-specific physio-
logical parameters (body weight, organ volume, and blood
flow) and MSC-specific parameters (partition coefficient,
arrest rate constant, release rate constant, and depletion rate
constant). Through this PBPK model, the time course of
MSC concentration in blood and individual organs can be
predicted across species, such as mice, rats, and humans.
However, the model only predicts a fast distribution process
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FIGURE 3: Structures and the mathematical equations of the available PK model of MSCs. (a) Schematic diagram of the PK model for the
administered MSCs in vivo. Solid arrows indicate the blood flow, dashed grey arrows indicate the depletion of MSCs, and grey boxes
indicate the arrested MSCs isolated from blood circulation as in the extravascular space of the organ. (b) The equations to calculate MSC

concentration in the respective organs [79].

of MSCs in the body within 24 hours, implying that optimi-
zation of the current model is imperative, as the slow biolog-
ical process such as proliferation, senescence, and
differentiation of the arrested MSCs should be incorporated
into the model [88].

Besides, it is well established that MSCs can play their
therapeutic roles beyond what is conveyed by the trans-
planted cells alone, mainly through the secretion of bioactive
products, namely, the secretome [89]. Therefore, the PK of
these factors, which are constantly secreted by MSCs, should
be considered in a similar way to common pharmaceutical
drugs [80]. Salvadori et al. used the approach described by
Parekkadan and Milwid [86] to establish a new
pharmacokinetic-pharmacodynamic ~ (PK-PD)  model,
namely, the “two-functional-compartments PK-PD model”
[82]. In this model, the cell-related biomarkers released by
MSCs, which are capable of influencing bystander cells
(e.g., macrophages), can secrete specialized bioactive sub-
stances that play a main role in the PD of administered cells
[90]. Accordingly, they described that MSCs can attenuate
sepsis by releasing PGE2, which binds to PGE2 receptors
of activated macrophages and provokes the release of IL-10
that in turn reduces inflammation by acting on immune cells
[86]. Moreover, other supporting data on this concept have
been reported [91]. Nevertheless, the present models are still
unable to represent the long-term in vivo kinetics of MSCs
and their secretomes adequately.

In short, understanding the in vivo kinetics of adminis-
tered drugs can be challenging, especially for nontraditional
drugs such as MSCs. A functional PK-PD model may begin
to predict the pharmacokinetics of MSC therapies through a
specific formulation and administration pathway by utilizing
both in silico modeling and empirical analysis. Besides, stud-
ies of the pharmacokinetic model have the ability for inter-
species scaling, allowing us to predict the in vivo kinetics
of therapeutic MSCs in humans through animal data. How-
ever, it is indefinite how well the findings in animals can be
quantitatively transferred to humans. Despite the use of
MSCs in clinical trials, many details still need to be discussed
as their biodistribution varies under different treatment con-
ditions. Therefore, combined PK-PD modeling describing
both the biodistribution and the functional secreted factors
of MSCs should be unraveled to achieve more efficacious
MSC therapeutics in the future.

6. Conclusions and Future Perspectives

According to the summarization of preclinical and clinical
results in the aforementioned studies, MSC-based therapy
has made tremendous progress in T2DM treatment in
both animal studies and clinical trials. Aside from the
necessity of developing a robust PK-PD model, there are
still many encumbrances for MSCs to transit out of the
laboratory stage and be launched as therapeutic products
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in the pharmaceutical industry. Some of these impedi-
ments have become a mutual subject in the field of cell
therapy, but some necessitate particular considerations
due to the special characteristics of T2DM that are distinct
from other diseases. Therefore, various challenges in the
clinical development of MSC therapy for T2DM are dis-
cussed here, which include but are not restricted to the
limited therapeutic effects caused by the lung barrier, the
capillary blockage caused by microthrombus, and the
selection of diverse cell sources.

6.1. Potential Risks of Intravenously Administered MSCs. The
delivery routes of MSCs have been shown to dramatically
influence the therapeutic effects of MSCs. In small animal
and clinical studies, intravenous injection is the most fre-
quently used administration route and the biolumines-
cence imaging system is widely accepted to track the
in vivo biodistribution of MSCs. Impoverished cell survival
was discovered as most of the MSCs were trapped within
the lung capillaries and eliminated within hours posttail vein
injection [92]. Still, the fate of MSCs in the lung is controver-
sial as the fluorescence signal gradually disappeared during
long-term tracking [93]. Furthermore, microthrombus that
contributes to the blockages in lung capillaries also arises as
a potential safety issue in cell therapy. According to previous
studies, intravenous infusion of MSCs will lead to a reduced
blood flow velocity in the lung capillaries, which resulted in
the formation of local thrombus in the blood vessels [94]. In
order to resolve this drawback, heparin was mixed with cell
suspension by Liao et al. during systemic injection [95], while
MSCs were pretreated with hypertonic solution by Leibacher
et al. to reduce the cell size [96]. Besides, Leibacher et al. also
suggested that the size of MSCs would gradually increase with
prolonged culture passage [96], indicating that the infusion of
MSCs with lower passage will reduce the formation of
microthrombus.

6.2. MSC Sources in Clinical Applications. Although MSCs
derived from various sources such as the umbilical cord, adi-
pose tissue, and bone marrow have shown efficacy in reliev-
ing T2DM in preclinical and clinical studies, the clinical
success of MSC therapy is still facing great challenges due
to their compromised expansion potential and age-
associated functional decline, as well as the setbacks in the
standardized and large-scale manufacture of therapeutic
MSCs [97, 98]. Primary MSCs isolated from different
donors, tissue sources, cell separation methods, or culture
conditions show natural heterogenicity, which causes
batch-to-batch variation and diverse differential and thera-
peutic efficacy [97, 98]. Therefore, the production of MSCs
complying with the current good manufacturing practice
(cGMP) standards becomes a prerequisite to ensure the
standardization and reproducibility, as well as the quality
and safety of MSCs for clinical use [99]. Besides, although
MSCs have been considered safe with minimal tumorigenic-
ity after transplantation, genetically modified MSCs are fac-
ing safety concerns, including the immunogenic toxicity of
viral vectors, insertional oncogenesis, and mutational inte-
gration [97].
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To date, there are insufficient studies that have com-
pared the therapeutic effects of MSCs from different sources
and engineering methods systematically. Therefore, the
selection of MSCs that can achieve the best prognosis effect
under diverse clinical circumstances remains an arduous
task to be investigated concertedly. Particularly, the ability
of AD-MSCs to improve glucose tolerance effectively is
evidenced by both animal studies and preclinical studies.
However, despite the lower production cost, higher feasi-
bility, and superior in vitro expansion ability of AD-MSCs,
research shows that adipose tissue in T2DM patients is in
an inflammatory state and is accompanied by a certain
degree of cell aging [100]. Aging cells will disrupt tissue
function through their senescence-associated secretory
phenotype (SASP), which contains a large number of
inflammatory factors, thus contributing significantly to
systemic inflammation in T2DM patients [101]. Further-
more, SASP can cause insulin resistance in liver cells and
apoptosis of islet cells, given that transplanting senescent
adipose tissue will affect the animal’s behavioral ability
and accelerate the aging of mice [102]. Therefore, it is still
questionable whether autologous AD-MSCs are suitable
for the treatment of T2DM, concerning that the adipocytes
in diabetic patients are in an inflammatory state. Besides,
autologous cells are hard to be developed as oft-the-shelf
products due to their longer processing duration after
being extracted from patients. On the other hand,
although studies have shown that MSCs exhibit immuno-
regulatory effects, it remains elusive as to what degree
the allogeneic cells trigger immune responses in vivo after
the administration [103].

Aside from primary tissue-derived MSCs, the employ-
ment of MSCs differentiated from human pluripotent stem
cells (PSCs), including embryonic stem cells (ESCs) and
induced pluripotent stem cells (iPSCs), may potentially
be more desirable choices as safer and more effective
MSC medications against T2DM [104]. In particular,
iPSCs based on cell reprogramming technology have pro-
vided unprecedented opportunities to expedite the devel-
opment of human cell therapies, without involving the
ethical issues of ESCs. Briefly, the advantages of iPSC-
derived MSCs (iMSCs) include their potential to produce
infinite donor-related sources of specific stem cells with
improved homogeneity, stability, controllability, and scal-
ability, thus becoming a preferential commercial candidate
for clinical applications [97, 98]. Besides, it is increasingly
appreciated that human iMSCs exhibit higher proliferative
potential and display potent immunomodulatory proper-
ties [105, 106]. To date, Cymerus™ MSCs (CYP-001),
which are derived from adult iPSCs produced by an opti-
mized GMP-compliant manufacturing process, have been
characterized by Cynata Therapeutics and received
approval to launch the world’s first formal trial for the
treatment of acute steroid-resistant GvHD [107, 108].
However, it is worth noting that there are still a few hur-
dles, such as potential tumorigenicity, immunogenicity,
and heterogeneity, which remain to be overcome when
using iMSCs for downstream applications, including
T2DM therapy in the future [104].
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6.3. Unidentified Therapeutic Mechanisms of MSCs In Vivo.
Although the therapeutic success is substantiated by MSCs
in preclinical and clinical studies, their mechanisms of action
in the progression of T2DM become the foremost issue to be
thoroughly elucidated. Meanwhile, although researchers reach
a consensus on the immunosuppressive effect of MSCs [32],
the mechanism that describes how MSCs can affect systemic
inflammation has not been thoroughly clarified. Galleu et al.
investigated the therapeutic effects of MSCs on GvHD and
suggested that those MSCs that resided in the lung were
attacked by cytotoxic T cells and NK cells, thus leading to cell
apoptosis [109]. Consequently, fragments produced by apo-
ptotic MSCs are phagocytosed by macrophages to produce
indoleamine 2,3-dioxygenase, which helps to mediate systemic
inflammation inhibition. However, it remains unclear whether
apoptotic MSCs contribute to the same therapeutic mecha-
nism in treating T2DM. In addition, Akiyama et al. believe
that MSCs can induce T cell apoptosis through their produc-
tion of the Fas ligand, and the apoptotic fragments are swal-
lowed by macrophages to trigger systemic immune
regulation [110], suggesting that the diverse roles of MSCs
might lead to potential safety risks in clinical use. Therefore,
uncovering the fate of MSCs in vivo will pave the way for the
understanding of therapeutic mechanisms to accelerate the
progress of their clinical translation.

Despite the complexity involved in the pathological
process of diabetes, various conventional drugs are capable
of lowering blood sugar levels through different mecha-
nisms. However, it is uncertain whether antidiabetic drugs
can reverse the pathological progression of T2DM. Thia-
zolidinedione, which possesses the potential to increase
liver insulin sensitivity, has a risk of inducing heart failure
or hepatic dysfunction [111]. GLP-1RAs have shown a
broad range of therapeutic effects in various diseases aside
from their antidiabetic effects. Recent studies have proved
that liraglutide, exenatide, and semaglutide show promises
in treating cardiovascular diseases [112, 113], MAFLD
[114], obesity [115], ischemic stroke [112, 116, 117], Par-
kinson’s disease [118, 119], and Alzheimer’s disease
[120]. Therefore, combinatory administration of GLP-
1RAs and MSCs is expected to augment the therapeutic
efficacy of both the antidiabetic drugs and the MSCs.

In conclusion, the therapeutic effects of MSCs on T2DM
are multifaceted [121] and the possible therapeutic mecha-
nisms have been summarized here. MSCs can improve the
systemic inflammatory state through their immunosuppres-
sive functions, reduce the apoptosis of islet f-cells to aug-
ment insulin secretion, and improve the metabolic state of
the liver. However, further in-depth clarifications regarding
the mechanisms of action of MSCs in treating T2DM are still
a requisite. Therefore, whether it is possible for MSCs or
novel MSC-assisted therapeutics to surpass traditional med-
icines in reversing the progression of T2DM remains an
engrossing question to be explored in the future.
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