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Abstract 

Alzheimer’s disease (AD) is a progressive neurodegenerative disease, characterized by 

the accumulation of amyloid beta (aβ) plaques and neurofibrillary tangles, along with 

progressive deterioration of cognitive function. AD is the most common form of dementia 

and affects over 55 million people worldwide. Current treatments for AD are sympto-

matic-based rather than curative, which calls for the development of new therapeutic 

strategies. Stem cell therapy has shown promising results for neurodegenerative diseases, 

including AD. Brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin 

receptor kinase B (TrkB), and their downstream signalling cascades play crucial role in 

modulating neuronal survival, development and synaptic plasticity, which are vital for 

cognitive functioning, and this pathway is dysregulated in AD. While the BDNF/TrkB 

signalling pathway dysregulation and stem cell therapy are each widely studied in AD, 

the interplay between those two remains underexplored. This review focuses on the 

mechanistic insights of the BDNF/TrkB signalling pathway in normal physiological con-

dition and AD, along with the effects of stem cell therapy on the pathway and its down-

stream cascades. The findings highlight the therapeutic outcomes in increasing 

BDNF/TrkB levels and functions, restoring synaptic plasticity, modulating downstream 

substrates activities and improving cognitive functions. In addition, challenges, limita-

tions and future directions of stem cell therapy are discussed, underscoring the therapeu-

tic benefits of this therapy for AD by modulating the BDNF/TrkB signalling pathway. 
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1. Introduction 

Neurodegenerative diseases (NDs) are progressive disorders that affect the human 

brain, particularly in the elderly. According to the Global Burden of Disease Study 2021, 

the number of people affected by neurological conditions in 2021 was estimated at around 

3.4 billion worldwide, accounting for 43.1% of the world population [1]. The incidence of 

NDs is expected to increase in parallel with the ageing population, as most of the NDs are 

strongly correlated with ageing [2]. NDs are defined by the gradual degeneration and loss 

of neurons in the central nervous system (CNS) or peripheral nervous system (PNS). The 

disruption to the structure and function of the neurons eventually leads to impairment in 

memory, cognition, behaviour, sensory and/or motoric functions [3]. Alzheimer’s disease 

(AD) is a prominent example of NDs. Among all NDs, AD is the most common, account-

ing for more than 55 million cases worldwide according to the World Health Organization 

(2023). 

Proteinopathy, or misfolding and abnormal aggregation of proteins, is a way to clas-

sify NDs and is one of the key hallmarks in the progression of diseases such as AD [4]. 

Aggregation and functional loss of specific proteins are common features in most NDs. 

Misfolded proteins tend to accumulate together and form large and insoluble aggregates. 

The causes of protein aggregation may be due to mutations, mislocalization, posttransla-

tional modifications or other factors [5]. In AD, aggregation of amyloid beta (aβ) protein, 

which is caused by abnormal cleavage of amyloid precursor protein (APP), and deposi-

tion of neurofibrillary tangles (NFT), which is caused by hyperphosphorylation of tau 

protein, can be observed [6]. In addition to proteinopathy, NDs like AD also exhibit other 

common hallmarks such as synaptic and neuronal network dysfunction, neuroinflamma-

tion, DNA and RNA defects, abnormal proteostasis, cytoskeletal abnormalities, altered 

energy homeostasis, neuronal cell death and cognitive impairments [3]. 

Current therapeutic strategies for AD mainly focus on alleviating the symptoms ex-

perienced by the patients. The current treatments for AD are primarily targeting neuro-

transmissions by mimicking neurotransmitters or by inhibiting/promoting neurotrans-

mitters [7]. The approved drugs by the Food and Drug Administration (FDA) for AD are 

acetylcholinesterase inhibitors (donepezil, rivastigmine and galantamine), N-methyl-D-

aspartate (NMDA) receptor antagonist (memantine) and anti-aβ immunotherapies (adu-

canumab and lecanemab) [8]. The blood–brain barrier (BBB), a protective barrier of the 

brain, remains as a major challenge in developing effective drug delivery to the brain, 

along with the complexity of the disease mechanisms, as administration of the drugs are 

mostly at the late stages of AD [9]. Promoting neuronal health and preventing neuro-

degenerative changes at the molecular level serve as the goal in exploring and developing 

treatments for NDs [10]. 

Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family 

and plays essential roles in maintaining neuronal health and synaptic function in the CNS. 

Synthesis of BDNF begins in the cell bodies of neurons and glia and is then transported 

and released at the neuron terminals. BDNF has a high affinity to bind to the tropomyosin 

receptor kinase B (TrkB) receptor. The BDNF receptor, TrkB, is a member of the receptor 

tyrosine kinase (RTK) superfamily. TrkB is an essential structure and widely expressed by 

all neurons. TrkB is located within the Golgi complex and endocytic vesicles of the neu-

rons and is then translocated to the plasma membrane after neuronal activation [11]. Upon 

binding of BDNF to TrkB, it will induce receptor homodimerization and activation, which 

will then further trigger signalling pathways, such as PI3K/Akt, MAPK/ERK and PLC-γ 

pathways. These pathways are crucial for neuronal developmental, survival and plastic-

ity. Dysregulation of the BDNF/TrkB signalling pathway in AD contributes to cognitive 

deficits such as learning impairment and memory loss [12,13]. 
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Over the past decades, stem cell studies have made a significant impact in developing 

regenerative medicine, on top of unravelling knowledge for the complex mechanisms in 

human development [14]. Regenerative medicine focuses on regenerating, repairing, im-

proving or replacing cells, organs or tissues impaired and/or providing trophic support 

in abnormalities such as ageing and diseases. The use of stem cells from different sources 

in regenerative medicine is focused on cellular therapy to replace the damaged cells [15]. 

Stem cells, with their ability to self-renew and differentiate into various cell types, have 

seen a substantial growth in studies over the years, focusing on multiple diseases includ-

ing AD [16,17]. Neural stem cells (NSC), mesenchymal stem cells (MSC), induced pluripo-

tent stem cells (iPSC) and embryonic stem cells (ESC) are examples of stem cells that are 

studied for the treatment of AD. In clinical trials, the primary focus is on the use of adult 

stem cells such as NSC and MSC, together with iPSCs and their derivatives [18]. The ther-

apeutic potentials of stem cell therapy in AD are mainly attributed to the improvement of 

cognitive functions, regulation of paracrine and neurotrophic signalling, modulation of 

neuroinflammation, enhancement of autophagy and promotion of endogenous repair 

mechanisms to the compromised nervous system [19]. 

While the findings of stem cell therapy for AD are promising, the influence of stem 

cells specifically on the BDNF/TrkB signalling pathway and its downstream cascades has 

not been thoroughly analyzed. This paper presents a review of stem cell therapies for AD 

focusing on its action on the BDNF/TrkB signalling pathway and its downstream cas-

cades, particularly the PI3K/Akt, MAPK/ERK and PLC-γ signalling pathways. We will 

provide an overview of the BDNF/TrkB signalling pathway and its dysregulation in AD, 

followed by the key preclinical and clinical findings of stem cell therapy and the evidence 

of its mechanistic action via the BDNF/TrkB signalling pathway. Research gaps and future 

prospects of stem cell therapy for AD will be discussed toward the end. 

The articles included for the effects of stem cell therapy on the BDNF/TrkB signalling 

pathway were selected based on their specific investigations of stem cell transplantation 

on the BDNF/TrkB axis and its downstream cascades in in vivo and in vitro models of AD. 

Studies on other disease models and those that did not directly address the therapeutic 

effects of the engrafted stem cells on the BDNF/TrkB signalling and its downstream cas-

cades were excluded. 

2. Overview of BDNF/TrkB Signalling Pathway 

BDNF is a member of the neurotrophin family and was first discovered and purified 

by [20]. BDNF is widely expressed in various parts of the brain such as the hippocampus, 

amygdala, cerebral cortex and cerebellum, with the highest expression detected in the 

hippocampus followed by the cerebral cortex [21]. Other than BDNF, other neurotrophins 

are nerve growth factor (NGF), neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4). 

Among all neurotrophins, BDNF is the most abundant and thoroughly studied [22]. The 

three-dimensional structure of BDNF consists of two pairs of antiparallel β-strands and 

cysteine residues in a cystine knot motif, same as NGF, NT-3 and NT-4. About 50% of 

BDNF’s amino acid identity is also shared with other neurotrophins. Each neurotrophin 

binds to its specific receptor(s), also known as tropomyosin-related kinase (Trk) receptors. 

For BDNF, it has high affinity for TrkB and lower affinity for p75 neurotrophin receptor 

(p75NTR) which all neurotrophins also bind to [23,24]. 

BDNF is firstly synthesized in the form of its precursor known as preproBDNF (32–

35 kDa), which has three sequences: signal sequence, prodomain and mature domain in 

the endoplasmic reticulum. The signal sequence is rapidly cleaved after translocation to 

the Golgi apparatus, which forms proBDNF (28–42 kDa). proBDNF is then cleaved to form 

active isoforms, which are BDNF pro-peptide and mature BDNF (mBDNF) (13 kDa). The 

cleavage of BDNF occurs intracellular and extracellularly. Both proBDNF and mBDNF are 
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released following cell membrane depolarization in neuronal cells and bind to TrkB and 

p75NTR, respectively [25,26]. 

TrkA, TrkB and TrkC make up the Trk family, which belongs to the receptor tyrosine 

kinase (RTK) superfamily. TrkA was the first to be discovered as the receptor for NGF, 

followed by TrkB as a receptor for BDNF, NT-3 and NT-4, and also TrkC as the receptor 

for NT-3 [27–29]. TrkB is a single-pass transmembrane protein which has extracellular 

domain (ECD) for binding of neurotrophins, a transmembrane domain (TMD) for trans-

mission of signal across the cell membrane and an intracellular tyrosine kinase domain 

(TKD) for activation of intracellular signalling pathways. The structures of each individ-

ual domain have been described, but the full-length TrkB structure is yet to be resolved 

[11]. The NTRK2 gene located on the chromosome 9q22.1 is responsible for encoding full-

length TrkB (TrkB.FL) and three truncated forms (TrkB.T1, TrkB.t2 and TrkB-T-Shc). The 

truncated forms of TrkB lack TKD [30,31]. 

In the absence of neurotrophin signalling, Trk receptors are mainly retained within 

intracellular vesicles. Their translocation to the plasma membrane is triggered by stimuli 

such as calcium influx, elevated cyclic adenosine monophosphate (cAMP), or neuronal 

depolarization, which promote the exocytosis of these vesicles. Specifically, for the TrkB 

receptor, neuronal activity drives calcium entry through AMPA and NMDA receptors. 

This calcium signal stimulates adenylyl cyclase to increase intracellular cAMP, which in 

turn activates both the PKA and PI3K pathways. These coordinated signalling events fa-

cilitate the microtubule-dependent mobilization of intracellular TrkB receptors to the cell 

surface. Beyond this vesicular trafficking, the downstream signalling capacity of Trk re-

ceptors is further modulated by several mechanisms: alternative splicing of Ntrk2 that 

generates truncated isoforms, Ca2+ and cAMP regulated vesicular insertion, and interac-

tions with the p75NTR [32,33]. p75NTR regulates the activity of Trk receptors by binding 

to the non-preferred neurotrophin. For TrkB, it has been found that co-expression with 

p75NTR increases the specificity of TrkB activation through binding with BDNF com-

pared to binding with NT-3 and NT-4 [34]. 

The ECD of TrkB consists of cysteine clusters, leucine-rich repeats and immuno-

globulin-like domains (Ig). The binding of BDNF to TrkB occurs at the ECD, specifically 

at the second immunoglobulin-like domain (Ig2), which is the major ligand binding inter-

face for TrkB [33]. Following BDNF binding, the BDNF-TrkB complex is internalized from 

the plasma membrane via two primary pathways: clathrin-mediated endocytosis and 

macropinocytosis mediated by cell surface ruffles. After internalization, the complex is 

subsequently localized to endosomal compartments. The binding of BDNF to TrkB initi-

ates the dimerization and autophosphorylation of the tyrosine regions [33,35–37]. 

The autophosphorylation of TrkB forms a docking site for the protein (Src-homology 

2) domain containing adaptor protein (Shc) and phospholipase-C (PLC). Docking of Shc 

to the activated receptor is followed by interaction to other adaptor proteins such as (Grb2). 

The Shc/Grb2 complex then recruits Son of Sevenless (SOS), a guanine nucleotide ex-

change factor of Ras. Another protein that is recruited and interacts with the complex is 

known as GAB1 or the Grb2-associated-binding protein 1. The recruitment of these adap-

tor proteins is important in the activation of the downstream pathways such as the 

PI3K/Akt and MAPK/ERK pathways as shown in Figure 1 [38–42]. 
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Figure 1. Overview of BDNF and TrkB signalling pathways. Upon binding of BDNF to TrkB, it will 

induce receptor homodimerization and activation which will then further trigger signalling path-

ways, such as PI3K/Akt, MAPK/ERK and PLC-γ pathways. These pathways are crucial for neuronal 

survival and developmental and synaptic plasticity. Image(s) adapted from Servier Medical Art 

(https://smart.servier.com/), licensed under CC BY 4.0 (https://creativecommons.org/li-

censes/by/4.0/). 

Postendocytic movement of TrkB is mainly through either a degradative pathway by 

lysosomes or a recycling pathway to the plasma membrane. Ubiquitination of TrkB is as-

sociated with a reduction in receptor number at the cell surface and ligand response. Re-

cycling of TrkB receptors is dependent on the types of TrkB. TrkB.FL requires involvement 

of hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs), while the truncated 

forms of TrkB, such as TrkB.T1, mainly go through the default recycling mechanism with 

involvement of the Rab family GTPase [43,44]. 

2.1. PI3K/Akt Signalling Pathway 

The PI3K/Akt signalling pathway is important in growth, differentiation, survival 

and apoptosis of neurons and regulation of metabolism. Phosphoinositide 3-kinase (PI3K) 

is a member of the intracellular lipid kinase family and is composed of p55 and p85 regu-

latory subunits and p110 catalytic subunit [45]. PI3K is divided into three categories ac-

cording to the different subunits and substrates with Class 1 of the PI3K, which consists 

of p85 and p110 subunits, being the most important in signalling among others [46]. PI3K 

is recruited to the series of receptor-associated adaptor proteins (Shc-Grb2-SOS-GAB1) 

attached to the activated TrkB receptor. Upon signal transduction from upstream, the p110 

catalytic subunit of PI3K catalyzes the plasma membrane lipid, phosphatidylinositol-4,5-

bisphosphate (PIP2), to generate phosphatidylinositol-3,4,5-triphosphate (PIP3). PIP3 ena-

bles the recruitment of phosphoinositide-dependent kinase (PDK1) to the membrane 

which will then phosphorylate Akt. Phosphorylation of Akt enhances its kinase activity, 

resulting in phosphorylation of downstream signalling molecules [47–49]. Activated Akt 

and its downstream substrates play crucial roles in regulating various cellular functions 
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such as growth, proliferation, survival and apoptosis of cells, gene transcription, protein 

synthesis, angiogenesis and metabolism [50]. One of the substrates targeted by Akt is gly-

cogen synthase kinase 3β (GSK-3β), where its activity is inhibited by Akt through phos-

phorylation at the Ser21 and Ser9 residues [51]. Phosphorylated Akt has also been shown 

to regulate gamma-aminobutyric acid (GABA) receptor type A, which is vital for fast in-

hibitory synaptic transmission [52]. Partial activation of Akt has also been shown to result 

in memory formation and synaptic plasticity via induction of long-term potentiation (LTP) 

[53]. One of the Akt downstream substrates, mammalian target of rapamycin (mTOR), is 

the key mediator in the regulation of autophagy and neuroprotective effects of BDNF 

through autophagy is associated with PI3K/Akt/mTOR signal transduction [54]. 

2.2. MAPK/ERK Signalling Pathway 

The MAPK/ERK signalling pathway is important in regulating the gene transcription 

important for neuronal growth, differentiation and survival, and synaptic plasticity for 

memory formation and learning. The MAPK/ERK pathway is the primary pathway insti-

gated by the MAPK signalling. The mitogen-activated protein kinase (MAPK) is part of 

the serine/threonine protein kinases family that plays a crucial role in cellular signalling 

processes. The initiation of this pathway begins with activation of a G protein known as 

Ras by the adaptor protein SOS, attached together at the activated TrkB with the other 

adaptor proteins such as Grb2. Ras is activated through the exchange of guanosine di-

phosphate (GDP) to guanosine triphosphate (GTP) promoted by SOS [55]. Activated Ras 

will then further trigger the kinase cascade involving other molecules, starting with acti-

vation of B-raf (also known as MAPKKK). B-raf then phosphorylates MEK1/2 (also known 

as MAPKK), a dual-specificity kinase that is a known activator of ERK. ERK stands for 

extracellular signal-regulated kinase and is also known as MAPK [56,57]. ERK can trans-

locate to the nucleus upon its activation to regulate cell cycles’ important factors for tran-

scription and translation such as E26 transformation-specific (ETS)-like transcription fac-

tor 1 (Elk-1), cAMP response element-binding protein (CREB), ribosomal protein S6, eu-

karyotic initiation factor 4E (eIF4E) and eIF4E-binding protein 1 (4E-BP1). These factors 

play important roles in neuronal activity, synaptic plasticity, gene transcription and pro-

tein translation [58–60]. 

2.3. PLC-γ Signalling Pathway 

The phospholipase C-γ (PLC-γ) signalling pathway is important in regulating cal-

cium signalling, neuronal survival and gene transcription, and promoting synaptic plas-

ticity. PLC-γ is part of the PLC enzyme family and is recruited and phosphorylated by 

activated TrkB. Tyrosine residue 785 (Tyr785) on activated TrkB acts as the docking site 

for PLC-γ via its SH2 domain [35]. Activated PLC-γ hydrolyzes PIP2 at the inner leaflet of 

the plasma membrane to generate second messengers which are inositol 1,4,5-triphos-

phate (IP3) and diacylglycerol (DAG). IP3 travels to the endoplasmic reticulum (ER) where 

it binds with the IP3 receptor on ER and facilitates the release of Ca2+ ions into the cyto-

plasm [61,62]. The released Ca2+ ions can further bind to calmodulin, activating cal-

cium/calmodulin-dependent protein kinases (CaMK). The CaMKs play important physi-

ological roles, including modulation of LTP by increasing the synaptic strength, activation 

of CREB for transcription, neuronal memory and many more [63]. The other second mes-

senger, DAG, remains in the plasma membrane and activates protein kinase C (PKC). PKC 

can modulate synaptic plasticity by regulating α-amino-3-hydroxy-5-methyl-4-isoxa-

zolepropionic acid (AMPA) and NMDA receptors at postsynaptic levels, regulate cyto-

skeleton dynamics by controlling the phosphorylation of tau protein and GSK-3β, and 

promote actin depolarization through phosphorylation of myristoylated alanine-rich C-

kinase substrate (MARCKS) and axonal membrane protein GAP-43 [64,65]. 
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3. Dysregulation of BDNF/TrkB Signalling Pathway in AD 

3.1. Pathophysiology of AD 

AD is the most common form of dementia, and the main hypothesized pathophysi-

ology of AD is the accumulation of aβ plaques and NFT [66,67]. The aβ plaques are formed 

due to the abnormal cleavage of amyloid precursor protein (APP) by the β- and γ-secre-

tases instead of α- and γ-secretases in normal condition [68]. The cleavage forms aβ oligo-

mers that tend to aggregate together, forming senile plaques. The aβ plaques formed can 

trigger immune activation that leads to neuroinflammation and damage to the tissue and 

also cause impairment of synaptic transmission [69,70]. The aβ plaques also trigger hy-

perphosphorylation of tau proteins [71]. Tau proteins are important in maintaining the 

cytoskeletal integrity of neurons as they hold and stabilize the microtubules. Hyperphos-

phorylation of the tau proteins causes them to be detached from the microtubules struc-

ture, clump together and form aggregates inside the neurons, also known as NFT. The 

NFT causes damage to the neurons and eventually leads to degeneration of neurons 

[72,73]. Other hallmarks of AD include cognitive deficits, neuronal loss, dysfunction of 

mitochondrial and autophagy, neuroinflammation and cholinergic insufficiency [74,75]. 

3.2. Reduction in BDNF and TrkB Levels in AD 

Studies have shown reduced expressions of BDNF and TrkB in AD [76–78]. The re-

duction in pro-BDNF and mature BDNF levels occurs from the preclinical stage of the 

disease [79]. The cell death mechanisms of ferroptosis and pyroptosis are also linked to 

alteration of BDNF level in neurological conditions and neurodegeneration including AD 

[80]. Epigenetic factors such as DNA methylation, histone modification and miRNA reg-

ulation also contribute to altering BDNF levels [81]. The BDNF promoter exhibits hyper-

methylation, which correlates negatively with cognitive test scores, indicating transcrip-

tional silencing [82]. Besides that, downregulation of miR-132 in AD is also associated 

with BDNF, as BDNF can induce the expression of miR-132. Another miRNA involved in 

the epigenetic mechanism of BDNF in AD is miR-206, a direct post-transcriptional re-

pressor of BDNF. In AD, miR-206 is upregulated, further driving BDNF deficiency [83]. 

Impaired BDNF has also been found to cause memory impairment in cells and animal 

models [84]. Reduced levels of BDNF and TrkB will also cause disruption to the down-

stream cascades activated by the BDNF/TrkB pathway. 

3.3. BNDF/TrkB Dysregulation Effects on Downstream Cascades—PI3K/Akt  

Signalling Pathway 

One of the downstream cascades affected is the PI3K/Akt signalling pathway. Re-

duced Akt in AD can lead to lifted inhibition of GSK-3β. GSK-3β is then able to promote 

the phosphorylation and aggregation of tau which contributes to the progression of AD 

[85,86]. GSK-3β activity can be induced by aβ plaques which will further impair the acti-

vation of Akt and also contribute to the accumulation of aβ plaques [87,88]. GSK-3β also 

facilitates the activation of apoptotic signalling cascades [89]. Dysregulation of PI3K/Akt 

signalling in AD has also been shown to contribute to inflammation through modulation 

of cytokines, increase in oxidative stress through mitochondrial dysfunction, and dysreg-

ulation of cholinergic neurotransmission through modulation of acetylcholine (Ach) ac-

tivity [90–92]. Disruption of PI3K/Akt also interferes with autophagy through regulation 

of mTOR, where altered mTOR is linked to GSK-3β and autophagy functions, and facili-

tates tau pathology in AD [93]. 
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3.4. BNDF/TrkB Dysregulation Effects on Downstream Cascades—MAPK/ERK  

Signalling Pathway 

Dysregulation of the BDNF/TrkB pathway also disrupts MAPK/ERK signalling. ERK 

has been found to negatively modulate β-secretase expression. However, under condi-

tions like oxidative stress, the neuroprotective effect of ERK fails, which leads to overpro-

duction of aβ [94]. It has also been proven that the aβ oligomers are able to reduce ERK 

and CREB activities which can contribute to cognitive decline in AD, as those components 

are important in learning and memory formation [95]. Deprivation of ERK activation has 

been shown to be associated with negative effects on synaptic plasticity directly caused 

by aβ plaques [96]. The MAPK/ERK pathway is also correlated with hyperphosphoryla-

tion of tau, where increased ERK activation can be observed related to progression of tau 

tangles in AD [97,98]. ERK alteration and overactivation is linked to memory deficits 

where inhibition of ERK results in reversal of memory impairment seen in AD models 

[99]. 

3.5. BDNF/TrkB Dysregulation Effects on Downstream Cascades—PLC-γ Signalling Pathway 

Dysregulation in the PLC-γ signalling pathway is linked with tau proteins, where 

tau and arachidonic acid have been found to activate PLC-γ, and the interaction of tau 

and the SH3 domain of PLC-γ suggests the involvement of tau in PLC-γ signal transduc-

tion [100,101]. PLC-γ level is also significantly lower in AD cortical tissue compared with 

controls [102]. The level and activity of PKC, one of the substrates activated through this 

axis, have been found to be significantly decreased in AD [103,104]. The accumulation of 

aβ plaques in AD has been observed to downregulate PKC [105]. As the PLC-γ signalling 

pathway is involved in the regulation of Ca2+ signalling in ER through activity of IP3, 

dysregulation of this axis can cause alteration and disruption to the Ca2+ signalling, which 

further contribute to the AD pathology. Interference with APP proteolytic activity, dis-

turbance of unfolded protein receptors, involvement in apoptotic cascades, alteration of 

local circuit activity and disruption of neuronal activity and synaptic plasticity caused by 

altered Ca2+ regulation contribute to AD pathology [106]. 

3.6. BDNF/TrkB Dysregulation Effects on Neuroinflammation and Neuronal Apoptosis 

The downregulation of BDNF/TrkB signalling in AD is also associated with the pro-

motion of neuroinflammation and neuronal apoptosis. BDNF has been shown to exert 

neuroprotective effects through suppression of microglia and astrocytes activation, down-

regulation of pro-inflammatory cytokines and upregulation of anti-inflammatory cyto-

kines [107,108]. The mechanism of the BDNF/TrkB axis in neuroinflammation is also as-

sociated with the activation of the JAK-STAT pathway. The JAK-STAT pathway also in-

creases the expression and activity of δ-secretase in turn through the upregulation of its 

transcription factor, C/EBPβ, which leads to the cleavage of APP and tau that contributes 

to the formation of aβ plaques and NFT [109]. Reduced TrkB level also gives rise to BDNF-

mediated activation of p75NTR which can mediate neuronal apoptosis [110,111]. 

4. Effects of Stem Cell Therapy on BDNF/TrkB Signalling  

Pathway in AD 

4.1. Upregulation of BDNF/TrkB Levels and Enhanced Cognitive Functions 

Enhanced BDNF level in AD is closely linked to improved cognitive functions, par-

ticularly learning and memory formation through behavioural assessments such as novel 

object recognition test (NORT), open field test (OFT), Y-Maze test, Morris water maze test 

(MWM), elevated plus maze test (EPM), tail suspension test (TST) and many more. The 

underlying mechanisms involved were further clarified through biochemical analyses of 
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genes, proteins or substrates of interest. Multiple studies have observed the enhancement 

of BDNF level post transplantation of stem cells in AD models, which contributes to cog-

nitive function repair and trophic support effects mediated by BDNF [112–116]. These 

pieces of evidence clearly show that upregulation of the BDNF/TrkB pathway improves 

cognitive functions in AD models. 

A study was conducted by Liu et al. [117], where lateral ventricle administration of 

exosomes derived from bone marrow MSCs (BMSC-exos) into the STZ-injected AD mice 

model increased the BDNF level and improved behavioural performance. It was also 

worth noting that caudal vein injection or intravenous injection (IV) of BMSC-exos was 

also performed in that study; however, no significant differences in BDNF level and be-

havioural performance compared with the lateral ventricle injection or intracerebroven-

ticular injection (ICV) of the BMSC-exos could be observed, which highlights the im-

portance of the administration route of the stem cells for in vivo models. BDNF/TrkB ex-

pressions were found to be significantly increased post transplantation of NSCs into 

APP/PSI transgenic mice via stereotactic delivery in a study by Zhang et al. [118]. The 

cognitive deficit was also significantly restored in the NSC-treated group in the study. It 

could be observed that improvement in cognitive ability is linked to the increase in 

BDNF/TrkB, as this pathway plays a crucial role in memory acquisition and consolidation 

by promoting synaptic plasticity and neuronal growth and survival. 

In a study by Blurton-Jones et al. [119], NSCs were transplanted via stereotactic de-

livery into the hippocampus of the transgenic model of AD (3xTg-AD). It has been found 

that the NSC-treated group performed better in MWM and NORT compared to the vehicle 

group, which indicates improvement in memory formation. Interestingly, the study also 

found that there is no significant improvement in ameliorating the aβ and tau pathology, 

indicating that cognitive improvement was not due to alteration of aβ plaques and NFT. 

Instead, it was noted that there were significant differences in BDNF levels and synaptic 

density of the NSC-treated mice where both levels were elevated. It was further confirmed 

that cognitive effects of the NSC treatment were associated heavily with NSC-derived 

BDNF, as the knockdown of BDNF in NSCs before transplantation did not result in cog-

nitive rescue in the AD model. This further emphasizes the importance of BDNF regula-

tion in memory enhancement for AD. 

4.2. Enhanced Downstream Cascades of BDNF/TrkB Signalling Pathway 

Transplantation of human NSCs via lateral ventricle into NSE/APPsw transgenic 

mice reported a significant increase in BDNF, TrkA/B and Akt levels [120]. A decrease in 

tau phosphorylation observed in that study is linked with Trk-dependent Akt/GSK-3β 

signalling, where an increase in Akt facilitates the inhibition of GSK-3β, which promotes 

tau phosphorylation. Downregulation of aβ production due to reduced BACE1 expres-

sions mediated via Akt/GSK-3β signalling, together with reduced neuroinflammation, en-

hanced synaptic plasticity and anti-apoptotic functions via trophic support, also contrib-

ute to the improvement of spatial memory. However, it was also mentioned that the trans-

plantation ameliorated the impaired spatial memory but did not prevent long-term pro-

gressive cognitive impairment in the transgenic model. 

A study by Gaber et al. [121] also focused on the Akt/GSK-3β pathway, where it 

showed that IV of bone marrow-derived MSCs (BMSCs) into Aβ25-35-induced AD rat 

dams during pregnancy was able to reverse the downregulation of BDNF and upregula-

tion of GSK-3β levels at postnatal age, which contribute to the mitigation of AD. An in 

vitro study of MSC’s effects on aβ-treated neural cells showed positive effects through 

modulation of mTOR, AMPK, GSK-3β and Wnt/β-catenin pathways which are related to 

AD pathology, suggesting therapeutic potential of MSC therapy on AD [122]. Downreg-

ulation of GSK-3β activity which is linked to PI3K/Akt and Wnt3a-βcatenin signalling, 
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along with enhanced neurogenesis and cognitive functions, are observed through trans-

plantation of BMSCs together with CX3C motif ligand 1 (CX3CL1), a neuron secreted 

chemokine, and Wnt3, principal regulator of hippocampal neurogenesis into APP/PS1 

transgenic mouse via lateral ventricle, as reported by Li et al. [123]. 

Xiong et al. [124] reported that human dental pulp stem cells (hDPSCs) exert neuro-

protective effects focusing on oxidative stress likely attributable to the Akt/GSK-3β-medi-

ated Nrf2 activation in both in vitro and in vivo models of AD. Suppression of GSK-3β 

was also able to ameliorate neuroinflammation through conversion of microglia and 

downregulation of pro-inflammatory mediators’ secretion [125]. These studies highlight 

the therapeutic potential of the stem cell therapy in AD and its role in the modulation of 

the PI3K/Akt pathway, particularly in the suppression of GSK-3β expression. 

Modulation of PI3K/Akt/mTOR signalling by MSC-derived exosomes in AD has been 

studied recently by [126]. One of the mechanisms of AD amelioration by the exosomes in 

the study is through regulation of autophagy. The hyperactivation of PI3K/Akt/mTOR 

resulted in decreased autophagy in the aluminum-induced AD rats’ brains, and the find-

ings showed the restoration of this axis in MSC-derived exosomes together with the 

mTOR inhibitor group, as can be seen through increased autophagy activity along with 

decreased APP cleavage, increased proteolytic degradation of aβ and improved memory 

performance. Yu et al. [127] reported that transplantation of BMSCs was able to enhance 

the Selective Alzheimer’s disease indicator-1 (Seladin-1), the neuroprotective effector and 

specific AD marker, and nestin, the cell proliferation marker, in the aluminum-induced 

AD rat model. The increase in these two components was mentioned to be possibly linked 

to the activation of PI3K/Akt and MAPK/ERK signalling pathways, as the finding showed 

that transplantation of BMSCs managed to increase Akt and ERK expressions. 

Neuroprotection effects of BMSCs against aβ-induced apoptosis through enhanced 

MAPK/ERK signalling in hippocampal neurons were observed through increased levels 

of ERK and CREB in a study by Lee at al. [128]. In the same study, the effects of BMSC 

transplantation were also investigated in the aβ-induced mice model. Transplantation of 

BMSCs was able to mitigate AD through reduced oxidative stress and neuroinflammation 

and improved cognitive functions. Another study by Banik et al. [129] reported that trans-

plantation of human umbilical-cord-blood-derived lineage negative stem cells was able to 

exert the neuroprotective mechanism through upregulation of BDNF and CREB along 

with improved spatial memory function observed in the aβ-induced mouse model. 

From the evidence presented, stem cell therapy has shown to exert beneficial modu-

lation effects on the BDNF/TrkB signalling pathway and its downstream cascades in mit-

igating AD by mainly upregulating BDNF and TrkB levels, suppressing GSK-3β activity, 

increasing autophagy and CREB activity, reducing neuroinflammation and oxidative 

stress, and improving cognitive functions as summarized in Table 1 and Figure 2. 

Table 1. Summary of stem cell therapy effects on BDNF/TrkB signalling pathway and brief proto-

cols of studies included. 

Model Stem Cell Type 
Dose and Route of Ad-

ministration 

Key Findings 

(BDNF/TrkB and Downstream Cascades) 
Ref. 

In vivo 

C57BL/6 transgenic 

mice 

NSCs isolated from mice (un-

treated + treated with BDNF) 

1 × 106 cells/μL 

Stereotactic transplanta-

tion 

NSC+BDNF group significantly improved memory and learn-

ing ability; 

BDNF pretreatment improved NSC transplantation effects  

[112] 

In vivo 

Tg2576 

transgenic mice 

NSCs isolated from mice (un-

treated + treated with BDNF 

and knockdown BDNF) 

5 × 104 cells/μL 

Stereotactic transplanta-

tion 

NSC and NSC+BDNF groups improved cognitive deficits 

with better performance from NSC+BDNF group; 

BDNF pretreatment improved NSC transplantation effects; 

BDNF knockdown blocked cognitive improvement 

[113] 

In vivo 

Tg2576 

transgenic mice 

Human UC-MSCs 
2 × 106 cells 

Intravenous injection 

hUC-MSCs improved cognitive function and increased BDNF 

level significantly 
[114] 
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In vivo 

5xFAD 

transgenic mice 

Induced neural progenitor/stem 

cells (iNPCs)  

5 × 104 cells/μL 

Stereotactic transplanta-

tion 

iNPCs improved cognitive function and increased BDNF 

level in hippocampus 
[115] 

In vivo 

C57BL/6 transgenic 

mice 

BMSC-exos isolated from 

mouse BMSCs 

0.5 μg BMSC exos (dis-

solved in 2 μL ACSF) for 

ICV 

25 μg BMSC exos (dis-

solved in 100 μL PBS) for 

IV 

BMSC-exos via ICV group improved AD-like behaviours and 

significantly increased BDNF expression compared to BMSC-

exos via IV group 

[117] 

In vivo 

APP/PS1 double 

transgenic mice 

NSCs isolated from mice 

5  ×  105 to 1  ×  106 in 5 μL 

Stereotactic transplanta-

tion 

NSCs significantly restored spatial learning and memory defi-

cits; 

NSCs increased the levels of BDNF and TrkB proteins and 

mRNA 

[118] 

In vivo 

3xTg-AD trans-

genic mice 

NSCs isolated from mice 

1 × 105 cells/μL 

Stereotactic transplanta-

tion 

NSCs improved AD-related cognitive dysfunction; 

NSCs increased BDNF level significantly, without altering aβ 

and tau levels; 

BDNF knockdown within NSCs abolished cognitive recovery 

[119] 

In vivo 

NSE/APPsw trans-

genic mice 

Human NSCs (hNSCs) 

1 × 105 cells/μL 

Stereotactic transplanta-

tion 

hNSCs improved spatial memory; 

hNSC reduced tau phosphorylation via Trk-induced 

Akt/GSK3β signalling; 

hNSCs expressed BDNF that induce Trk-dependent Akt acti-

vation; 

hNSC induced significantly higher phosphorylation levels of 

TrkA/B and Akt and markedly elevated the level of GSK3β 

phosphorylation 

[120] 

In vivo 

Aβ25-35-induced 

during pregnancy 

Wistar rat dam  

BMSCs isolated from rat’s bone 

marrow 

1 × 106 cells 

Intravenous injection 

BMSCs significantly increased serum BDNF and BDNF 

mRNA and decreased serum GSK-3β levels 
[121] 

In vivo 

APP/PS1 double 

transgenic mice 

BMSCs (isolated from mice’s 

bone marrow) + adenovirus 

carrying GFP-CX3CL1-Wnt3a 

(CX3CL1-Wnt3a-MSC) 

5 × 104 cells/μL 

Stereotactic transplanta-

tion 

CX3CL1-Wnt3a-MSC significantly alleviated cognitive im-

pairments, increased p-Akt and PI3K levels and elevated 

phosphorylation of GSK-3β at Ser9; 

CX3CL1-Wnt3a-MSC inhibited GSK-3β via PI3K/Akt path-

way 

[123] 

In vivo 

3xTg-AD trans-

genic mice 

Human DPSCs (hDPSCs) 
1  ×  105 in 5 μL PBS 

ICV injection 

hDPSCs promoted the upregulation of p-AKT (ser473) and p-

GSK-3β (ser9); 

hDPSCs ameliorated LPS-induced oxidative stress and apop-

tosis in BV2 cells by activating Nrf2 via the AKT/GSK-3β 

pathway 

[124] 

In vivo 

aluminum-induced  

Wistar rat 

BMSCs isolated from rat’s bone 

marrow 

1 × 106 cells 

Intravenous injection 

BMSCs ameliorated the downregulation of p-PI3K level; 

BMSCs inhibited GSK-3β via increasing the expression of the 

p-GSK-3β  

[125] 

In vivo 

aluminum-induced  

Albino rat 

BMSC-exos isolated from rat’s 

BMSCs 

0.5 mL of BMSC-exos 

(100 μg protein/mL) 

Intraperitoneal injection 

BMSC-exos improved memory function; 

BMSC-exos effectively reduced the elevated levels of p-

Akt/Akt and p- GSK-3β; 

MSC-exos together with autophagy inhibitors significantly re-

duced cerebral p-Akt/Akt and p- GSK-3β levels; 

BMSC-exos modulated AKT/mTOR signalling in the AD rat 

brain by decreasing mTOR expression and increasing AMPK 

expression 

[126] 

In vivo 

aluminum-induced  

Sprague-dawley rat 

BMSCs isolated from rat’s bone 

marrow 

3 × 106 cells 

Intravenous injection 

BMSC transplantation significantly enhanced p-Akt protein 

expression; 

BMSC transplantation significantly increased p-ERK1/2 pro-

tein expression  

[127] 

In vivo and in vitro 

aβ-induced AD 

mice and hippo-

campal cell culture 

BMSCs isolated from mice’s 

bone marrow and hippocampal 

neurons from E18 C57BL/6 

mice 

1 × 105 cells 

Stereotactic transplanta-

tion (in vivo) 

Co-incubation with 

BMSCs for 24 h (in vitro) 

In vivo: 

BMSCs treatment improved learning and memory 

In vitro: 

BMSCs significantly increased CREB and ERK phosphoryla-

tion;  

BM-MSCs mediated protection against aβ-induced apoptosis 

via activation of the MAPK/ERK pathway 

[128] 

In vivo 

aβ-induced Swiss 

albino mice 

Lin− stem cells were isolated 

from mono-nucleated cell pop-

ulation of human UCB samples 

5 × 104 or 1 × 105 cells 

Stereotactic transplanta-

tion 

hUCB Lin− stem cells could potentially reverse aβ-induced 

cognitive impairment through a neuroprotective mechanism 

mediated by CREB and BDNF 

[129] 

In vitro 
BMSCs isolated from rat’s bone 

marrow 

Co-culture with BMSCs 

with ratio of cells 1:1 

BMSCs significantly decreased protein expression levels of p-

AMPK, mTOR, p-mTOR and GSK-3β; 
[122] 
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aβ1−42-treated neu-

ral cells 

BMSCs significantly increased levels of p-GSK-3β, Wnt3, and 

β-catenin; 

BMSCs’ effects on aβ-treated neural cells showed positive ef-

fects through modulation of mTOR, AMPK, GSK-3β and 

Wnt/β-catenin pathways 

 

Figure 2. Pathophysiology of AD, dysregulation of BDNF/TrkB signalling pathway and the effects 

of stem cell therapy on BDNF/TrkB signalling pathway in AD. Image(s) adapted from Servier Med-

ical Art (https://smart.servier.com/), licensed under CC BY 4.0 (https://creativecommons.org/li-

censes/by/4.0/). 

5. Challenges and Limitations 

A major challenge in establishing a therapeutic approach for AD is the disease mod-

elling in the preclinical study phase. The discrepancy in translating and reflecting the pre-

clinical findings into clinical trials is due to the complexity of the disease and the inability 

of replicating the human’s brain environment and its multifaceted relationship with other 

factors such as ageing, genetic and environmental factors in the AD models [125]. Devel-

oping a good and sustainable model of NDs is also challenging due to the complexity of 

the brain itself. On top of that, the diagnosis of AD is mostly confirmed after manifestation 

of multiple cognitive deficits that interfere with daily functioning of the patients for late-

onset AD. By then, the molecular pathology of AD has been progressively developed over 

the years, complicating disease management. This highlights the importance in address-

ing the root causes of the disease by targeting molecular pathways or mechanisms. 

In the case of stem cell therapy for AD, one of the major challenges is the delivery of 

stem cells into the brain itself due to the presence of BBB that selectively controls and 

limits the passage of molecules in and out of the brain [126]. Systemic delivery such as IV 

is less effective compared to direct delivery such as ICV, and most of the studies discussed 

above used ICV for the route of stem cell administration. However, it is still important to 

note that systemic delivery of intended drugs or therapeutic components is more advan-

tageous for translation into clinical applications. Long-term survival of engrafted cells is 

also a key point to take into account to ensure the stability and efficacy of the treatment 
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while evading the host’s immune response [127]. Decline graft optimization of engrafted 

cells in hosts could potentially be a serious issue as it may cause unpredictable interactions 

that might be harmful to the host. Potential tumorigenesis initiated by engrafted cells also 

possesses a major concern in cell-based therapy [128]. 

Precise targeting and homing of engrafted cells to the target area is also one of the 

challenges identified due to the progressive and widespread nature of AD that affects 

multiple brain regions, primarily the hippocampus and cerebral cortex, making it even 

harder to localize the engrafted cells into the target area. Apart from that, cell-based ther-

apy has always been linked to ethical concerns, and optimization of donor cells as certain 

types of stem cells such as NSCs are limited [129]. In translating the use of stem cells in 

clinical settings, it is also important to have a standardized system and strict control in 

terms of cell production by following the current good manufacturing practice (cGMP) to 

ensure high quality and safe products for human use [130]. 

6. Future Directions 

Detailed explorations focusing on the BDNF/TrkB pathway and its downstream cas-

cades specifically is a good approach in elucidating the underlying mechanisms involved 

in AD progression and to design a holistic approach targeting this pathway. The use of 

BDNF mimetics and TrkB agonists such as 7,8-dihydroxyflavone (7,8-DHF) and ENT-

A011 are also being explored in studies targeting the BDNF/TrkB signalling pathway as a 

therapeutic approach for AD [130,131]. In developing a robust model for NDs, there are 

emerging studies of using iPSC in developing brain organoids technology for ND model-

ling as it can provide closer mimicry to human brain architecture and functions [132]. 

In improving the effects of stem cell-based therapy for AD models, studies have 

proven that pre-treatment, modification or overexpression of BDNF into the engrafted 

stem cells pre-transplantation exhibit enhanced positive outcomes for cognitive functions 

and neuronal effects compared to traditional stem cell transplantations [112,113,133–135]. 

Integration of other beneficial molecules, substrates or functional genes into the stem cells 

or combining other treatments with stem cell therapy to create synergistic effects on the 

BDNF/TrkB pathway may enhance therapeutic outcomes in ameliorating AD. Nanopar-

ticles, natural products such as curcumin, microRNAs, Nrf2 activator, asparaginyl endo-

peptidase and many more are examples of integrative treatments for AD [136–141]. 

The advancement of stem cell therapy by using extracellular vesicles such as exo-

somes in enhancing the targeted delivery for therapeutic interventions is also anticipated, 

as they possess the potential to augment cell proliferation, differentiation, migration and 

tissue regeneration, in addition to acting as an effective vehicle for transporting bioactive 

molecules [142]. These prospective developments of stem cell therapy are anticipated in 

developing a novel and effective therapeutic approach for AD. On top of that, intranasal 

delivery is also being explored as a route of administration to improve the distribution of 

the engrafted stem cells for treatment of AD [143–148]. 

7. Conclusions 

The BDNF/TrkB pathway is a key regulator of other important downstream cascades 

that are crucial in neuronal survival, synaptic plasticity and learning and memory acqui-

sition. The overview and dysregulation of the BNDF/TrkB signalling pathway and its 

downstream cascades, particularly the PI3K/Akt, MAPK/ERK and PLC-γ pathways, in 

AD are discussed in this review. Pieces of evidence from the studies of stem cell therapy 

have been shown to achieve therapeutic effects through upregulation of the BDNF/TrkB 

signalling pathway and enhancement of its downstream cascades, which lead to 
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neuroprotective mechanisms and improved cognitive functions that contribute to mitiga-

tion of AD. 
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