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Therapeutic efficacy of mesenchymal stem cells (MSCs) is determined by biodistribution and engraftment in vivo.
Compared to intravenous infusion, biodistribution of locally transplanted MSCs are partially understood. Here, we
performed a pharmacokinetics (PK) study of MSCs after local transplantation. We grafted human MSCs into the brains
of immune-compromised nude mice. Then we extracted genomic DNA from brains, lungs, and livers after trans-
plantation over a month. Using quantitative polymerase chain reaction with human Alu-specific primers, we analyzed
biodistribution of the transplanted cells. To evaluate the role of residual immune response in the brain, MSCs express-
ing a cytosine deaminase (MSCs/CD) were used to ablate resident immune cells at the injection site. The majority
of the Alu signals mostly remained at the injection site and decreased over a week, finally becoming undetectable
after one month. Negligible signals were transiently detected in the lung and liver during the first week. Suppression
of Ibal-positive microglia in the vicinity of the injection site using MSCs/CD prolonged the presence of the Alu signals.
After local transplantation in xenograft animal models, human MSCs remain predominantly near the injection site
for limited time without disseminating to other organs. Transplantation of human MSCs can locally elicit an immune
response in immune compromised animals, and suppressing resident immune cells can prolong the presence of trans-
planted cells. Our study provides valuable insights into the in vivo fate of locally transplanted stem cells and a local
delivery is effective to achieve desired dosages for neurological diseases.
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Mesenchymal stem cells (MSCs), also known as mesen-
chymal stromal cells, are fibroblast-like multipotent adult
stem cells with the capacity to self-renew. In recent deca-
des, MSCs has gained significant attention due to their
potential to regenerate damaged tissues by secreting para-
crine factors (1). The therapeutic effects of MSCs are driv-
en by complex mechanisms, such as their ability to differ-
entiate into specific tissues, release active substances that
contribute to their efficacy, and modulate an immune sys-
tem (2-4). The investigation of the pharmacodynamics
(PD) aspect of MSCs is challenging due to the intricate
nature of these cells. However, preclinical pharmacoki-
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netics (PK) studies, which aid in optimizing the necessary
dosage regimen to attain therapeutic effects and determine
cell distribution post-transplantation, are feasible.

Several delivery strategies have been employed to deliv-
er MSCs to the central nervous system (CNS) (5-7).
Intravenous injection is the least invasive method, but it
is also the least efficient (8, 9) because the cells are largely
trapped in the lung where they undergo cell death shortly
(10, 11). More direct routes such as intra-cerebral, in-
tra-ventricular, and intra-thecal injections have been test-
ed to deliver therapeutic agents into the CNS (12, 13).
However, the PK aspects of MSCs following intra-cranial
transplantation remain poorly understood.

In this study, we systematically conducted a preclinical
study to assess the biodistribution of MSCs that were lo-
cally transplanted into the brain, an immune privileged
organ, in animal models with compromised immune res-
ponses. We also employed a regimen involving the use of
cytosine deaminase (CD) and S-fluorocytosine (5-FC) to
eliminate resident immune cells at the injection site. The
CD enzyme converts non-toxic 5-FC into a cytotoxic an-
ti-cancer drug, S-fluorouracil (5-FU). MSCs expressing
CD (MSCs/CD) can induce cell death in the neighboring
bystander cells while simultaneously undergoing self-in-
duced cell death (14-16). We examined the impact of 5-FC
on local immune cells after local transplantation into the
brain as well as the biodistribution of MSCs/CD.

The findings from our PK study focusing on the bio-
distribution of MSCs following transplantation into the
brain will contribute to advancement of stem cell-based
therapies for the treatment of neurological diseases in cli-
nical applications.

Materials and Methods

Animals

All experimental procedures using animals were ap-
proved by the Institutional Animal Care and Use Committee
of Ajou University School of Medicine, Korea (No.
2020-0009). Equal numbers of male and female nude mice,
aged 8 weeks old (Hsd: Athymic Nude-Foxnl™; Envigo)
were used for stereotactic administration of MSCs or
MSCs/CD cells in brain. The mice were housed with ad
libitum access to food and water and maintained in a
12:12 hours light-dark cycle until being euthanized.

Human MSCs and MSCs/CD cells

Human MSCs were derived from the iliac crest’s bone
marrow of a 19-year-old healthy donor as described pre-
viously (17) with approval from the Institutional Review

Board of Ajou University Medical Center (No. AJIRB-
BMR-KSP-20-040) with the informed consent of the patient.
Briefly, mononucleate cells were maintained as adherent
cultures in Dulbecco’s Modified Eagle’s Medium (Cat. No.
LM 001-05; Welgene) supplemented with 10% fetal bovine
serum (FBS, Cat. No. 16000-044; Gibco), 100 U/ml pen-
icillin, 100 zg/ml streptomycin (Cat. No. 15140-122;
Gibco) and 10 ng/ml basic fibroblast growth factor (Cat.
No. 100-18B; PeproTech). MSCs/CD cells were prepared
by transducing MSCs with retroviral vector encoding a
bacterial CD gene as described previously (14).

Characteristics of MSCs and MSCs/CD

Mesodermal differentiation was carried out as described
previously (18). Briefly, for adipogenic and osteogenic dif-
ferentiations, naive MSCs and MSCs/CD cells were plated
at a density of 5x10* in a 24-well plate and allowed to
grow to confluence. Then, the media was replaced every
2~3 days with StemPro™ osteogenesis differentiation me-
dia (Cat. No. A1007201; Thermo Fisher Scientific) and
StemPro™ adipogenesis differentiation media (Cat. No.
A1007001; Thermo Fisher Scientific), respectively. After
14 days, the differentiated cells were washed with phos-
phate buffered saline (PBS) and then fixed with 10% neu-
tral buffered formalin (Cat. No. 015SMIRAO1; BBC Bioche-
mical). For adipogenesis, Oil Red O staining was performed.
For osteogenesis, alizarin red S staining was performed.
For chondrogenic differentiation, 3x10° cells were washed
with PBS and centrifuged at 500 Xg for 5 minutes. The
cell pellet was induced to undergo chondrogenic differ-
entiation in StemPro™™ chondrogenesis differentiation me-
dia (Cat. No. A1007101; Thermo Fisher Scientific) for 4
weeks, with media replacement every 2~3 days. After com-
pletion of chondrogenic induction, the pellet was washed
with PBS, fixed in 10% neutral buffered formalin for 30
minutes at room temperature, washed again, and em-
bedded in paraffin. The chondrogenic pellet was sectioned
at a thickness of 5 x#m, and the mid-section was deparaffi-
nized and stained with Alcian blue solution for 1 hour at
room temperature. After counterstaining with nuclear red
for 3 minutes at room temperature, the sample was mou-
nted using Shandon Synthetic Mountant'™ (Cat. No.
6769007; Thermo Fisher Scientific). The images of Oil
Red O positive adipocytes, alizarin red positive osteocyte
and Alcian blue positive chondrocyte were taken using an
EVOS M5000 imaging system (Thermo Fisher Scientific).

To measure the expression of surface antigens in MSCs
and MSCs/CD, fluorescence-activated cell sorting (FACS)
analysis was performed as described previously (19). Brie-
fly, cells were stained for 15 minutes at 25°C with fluo-
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rochrome-conjugated antibodies against CD29 (Cat. No.
303003; BioLegend), CD90 (Cat. No. 559869; BD Bioscie-
nces), CD105 (Cat. No. 323205; BioLegend), CD34 (Cat.
No. 343505; Biolegend), CD45 (Cat. No. 304011; BioLegend),
HLA-DR (Cat. No. 560896; BD Pharmingen™™), and the
isotype control. The cells were washed with PBS and sus-
pended in flow cytometry staining buffer. Cells were ana-
lyzed using an Attune NxT Acoustic Focusing Cytometer
(Thermo Fisher Scientific) with Attune™ NxT software.

Quantitative polymerase chain reaction

The gPCR (quantitative polymerase chain reaction) was
performed on the StepOnePlus Real-Time PCR System
(Applied Biosystem) using 100 ng of genomic DNA (gDNA)
in a 20 xl reaction mixture containing 10 x«l of
PowerSYBR® Green PCR Master Mix (Cat. No.4367659;
Applied Biosystem) and 0.5 #M each of the forward and
reverse primer. The human Alu specific primers were 5-
CACCTGTAATCCCAGCACTTT-3’ (forward) and 5°- CCC
AGGCTGGAGTGCAGT-3* (reverse). The PCR protocol
consisted of 10 minutes of denaturation at 95°C followed
40 cycles of 95C for 15 seconds, 65C for 30 seconds, and
72°C for 30 seconds. A standard curve was generated by di-
luting refence samples of human gDNA from MSCs in
mouse gDNA, spanning a range of 0.01~100 ng. To main-
tain a consistent total amount of DNA (100 ng/reaction),
human gDNA samples were mixed with mouse gDNA.

Assessment of /n vivo distribution of transplanted cells

MSCs or MSCs/CD were harvested, washed twice, and
then resuspended in PBS at a density of (0.5x10° cells/ «1
PBS). The 6 «1 of cell suspension was injected into stria-
tum (anteroposterior, +0.05 cm; mediolateral, —0.18 cm;
dorsoventral, —0.3 cm) of nude mouse using stereotaxic de-
vice (Stoelting Co.) at a rate of 0.3 x1/min. On day 0~28
after the transplantation, gDNA was prepared from the ip-
silateral and contralateral cerebral hemisphere, lung, and
liver of the animals using the ReliaPrep™ gDNA Tissue
Miniprep System (Cat no. A2051; Promega) following the
manufacturer’s suggestion and 100 ng gDNA was used for
gPCR. The cycle threshold (Ct) value was extrapolated to
estimate the amount of human gDNA using a standard
curve and then normalized to the total gDNA amount ob-
tained from each organ/tissue. The male nuclear diploid ge-
nome spans for 6.27 gigabase pairs and weighs 6.41 pg (20).
We calculated the number of cells by dividing the gDNA
amount with 6.41 pg DNA/cell. Data from ten animals per
group are presented as mean+SEM.

To assess the effect of 5-FC administration, MSCs/CD
cells instead of naive MSCs were injected to the right

striatum as mentioned above. Then the animals were ran-
domly assigned to two groups. 5-FC (Archimica) was or-
ally given to one group at a dose of 1,000 mg/kg/day for
a week. On day 0, 1, 3, 8, 14, and 28 after the trans-
plantation, gDNA was isolated from the ipsilateral hemi-
sphere from the animals with and without 5-FC and used
for gPCR analysis. Data from 5~7 animals per group are
presented as mean+SEM.

Immunohistochemistry

The animals were deeply anesthetized with 2,2,2 tri-
bromoethanol (200 mg/kg; i.p., Sigma-Aldrich), and then
perfused transcardially with 10% neutral buffered formal-
in (BBC Biochemical). The brain was extracted, post-
fixed in 10% neutral buffered formalin overnight at 4°C
and embedded in paraffin. The sections were prepared
with 5 xm thickness. For immunostaining, antigens were
unmasked by exposure to microwave radiation in 10 mM
sodium citrate buffer (pH 6.0) and exposed to 0.3% HO,
in distilled water for 30 minutes to block endogenous per-
oxidase activity. The sections were incubated with anti-hu-
man mitochondria antigen (hMT, mouse, 1 : 100; Millipore)
and anti-Ibal for microglia (rabbit, 1 : 3,000; WAKO) and
then with biotinylated anti-mouse or -rabbit secondary an-
tibodies (1 : 200; Vector Laboratories). After incubation
with avidin-biotin complexes generated using a VECTA-
STAIN ABC Kit (Vector Laboratories), immunoreactive
proteins were visualized with 3,3’-diaminobenzidine (Sigma-
Aldrich) as substrate to detect horse-radish-peroxidase
activity. For fluorescence immunostaining, antigen retri-
eval was performed by boiling with 0.05% citraconic anhy-
dride in distilled water. The sections were incubated an-
ti-CD antibody (CD, rabbit, 1 : 200; Young In frontier) and
then with Alexa Fluor 488 or 568 conjugated secondary
antibodies. Terminal deoxynucleotidyl transferase dUTP
nick end labeling (TUNEL) staining was performed using
a In Situ Cell Death Detection Kit, TMR red (Cat. No
12156792910; Roche) following the manufacturer’s
protocol. The sections were counter stained with Hoechst
33258, Pentahydrate (bis-Benzimide) (Cat. No H3569;
Invitrogen' ") to show the nuclei. The sections were mou-
nted and scanned at 20Xresolution using a Scanscope CS
digital slide scanner (Aperio Technologies) for bright im-
ages or Zeiss Axio Scan Z1 slide scanner (Carl Zeiss) for
fluorescent images.

Statistical analysis

Statistical analyses were performed using SigmaPlot v14
software (Systat Software). Data were analyzed using the
Student’s t-test or one-way ANOVA. Significant differ-
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ences were further evaluated using Holm-Sidak method.
p-value<0.05 was considered statistically significant. All
data are expressed as the mean+SEM.

Results

PK study of naive MSCs in nude mice

We investigated PK aspect of human MSCs after local
transplantation into a rodent model by qPCR analysis. To
establish the standard curve for gPCR, reference samples
(ranging 0.01~100 ng) were prepared by serial dilution
of human gDNA in mouse gDNA. The qPCR reaction was
performed using human Alu-specific primers and then the
standard curve was established using Ct values (Fig. 1A).
The lower limit of quantification (LLOQ) was found 0.005
ng/ml in 3 sets of experiments with 5 replicates per assay.
The slope and Y-intercept of the curve were —3.53+0.17
and 13.79+0.31, respectively. R? value of 0.99 indicated
the accuracy and precision of the assay were acceptable
(Fig. 1B, 1C).

Next, we transplanted 3x10° MSCs in the brain of nude
mice and extracted gDNA at different time points (0, 1,
3, 8, and 28-day) (Fig. 2A). The human Alu-specific sig-

Mouse Brain gDNA

Mixture
100 ng DNA

—> \

MSCs

Yar e
—> § 0.4 007395 // .
4.';

0.01

nals were found in the ipsilateral hemisphere but not in
the contralateral hemisphere. The signals declined sub-
stantially by 70% on day 3 and dropped below the LLOQ
between day 8 and 28. The signals in the lung and liver
were negligible at levels below LLOQ during the first
week and were considered statistically insignificant (Fig.
2B). It is noteworthy that no signals were detected in the
blood samples or any other organs (including spleen, lymph
node, heart, kidney, pancreas, bone marrow, and gonads)
throughout the entire period (data not shown). The results
indicated that transplanted MSCs were confined to the in-
jection site and did not migrate to the contralateral brain,
lung, and liver. The data also suggest that disappearance
of the xenografted human cells might be attributed to the
residual immune response in the brain of nude mice.

Effect of /n vivo ablation of neighboring cells on
transplanted MSCs/CD fate in the brain

In order to investigate the role of residual immune sys-
tem in the xenograft model, we employed a chemical abla-
tion method involving CD and 5-FC. We introduced a
bacterial CD gene to MSCs to obtain MSCs/CD cells (Fig.
3A). MSCs/CD convert 5-FC to 5-FU that can interfere
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with DNA and RNA metabolism. Consequently, MSCs/
CD undergo self-induced cell death while simultaneously
inducing cell death to nearby bystander cells in the pres-
ence of 5-FC (Fig. 3A). The cellular properties of MSCs/
CD cells were similar to those of naive, unmodified MSCs.
Both MSCs and MSCs/CD could undergo adipogenic, os-
teogenic and chondrogenic differentiation, as shown by
Oil Red positive adipocytes, alizarin red-positive osteo-
cytes, and Alcian blue-positive chondrocytes, respectively
(Fig. 3B). FACS analysis indicated that surface antigens
including CD29, CD90, CD105 (positive), CD34, CD45,
and HLA-DR (negative) were similar in both cell types
(Fig. 3C, 3D). These findings suggest that genetic mod-
ification with the bacterial CD gene do not alter the mul-
tilineage differentiation potential and surface antigenicity,

which are the characteristics defined for MSCs by the
International Society for Cellular Therapy (21).

After transplantation of 3x10° MSCs/CD in a similar
manner, 5-FC was orally administered at a dose of 1,000
mg/kg/day for one week (Fig. 3E). The animals were sacri-
ficed immediately after transplantation (day 0) and on day
8 for gPCR and immunohistochemical analyses. The ani-
mals that did not receive 5-FC administration were used
as controls. Surprisingly, immunohistochemistry revealed
that the presence of MSCs/CD was prolonged as seen by
hMT- and CD-immunoreactivity at the injection site on
day 8 (Fig. 3F). Consistently, the Alu signals robustly de-
creased on day 8 but persisted at a higher level with 5-FC
administration than the control without 5-FC (Fig. 3G).

To further evaluate the effect of 5-FC, we transplanted
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Fig. 3. Generation and characterization of mesenchymal stem cells expressing a cytosine deaminase (MSCs/CD), and effect of in vivo ablation
of neighboring cells on the cell fate of transplanted MSCs/CD in the brain. (A) Schematic diagram of 5-fluorocytosine (5-FC) induced suicidal
effect and bystander effect in MSCs/CD. (B) Mesodermal differentiation of MSCs and MScs/CD. Adipogenic differentiation showing Oil
Red positive lipid droplets in bright field images of MSCs and MSCs/CD (B1, B2). Osteogenic differentiation showing alizarin red S stained
precipitates in bright field images of MSCs and MSCs/CD (B3, B4). Chondrogenic differentiation of MSCs and MSCs/CD showing Alcian
blue positive chondrocytes in bright field image (B5, B6). Scale bar=200 «m. (C) FACS analysis showing the surface antigen expression
in MSCs and MSCs/CD. Isotype controls were used to determine the backgrounds. Black dotted peaks indicate the results obtained from
cells stained with isotype control antibodies and red peaks indicate the results of cells stained with the indicated specific target antibodies.
(D) Summary of FACS analysis showing the similar phenotype of MSCs and MSCs/CD: positive for CD29, CD90, and CD105 and negative
for CD34, CD45, and HLA-DR. Data are mean+SEM from 3 independent experiments. (E) Experimental plan for 5-FC treatment to mice
after MSCs/CD transplantation. (F) Representative immunofluorescence images show the detection of human mitochondrial-positive cells
(a-hMT) with and without 5-FC administration. Scale bar=50 m. (G) Comparison of relative rates of human cells detected at day O
(do) and day 8 (d8) with or without 5-FC administration. Data are mean+SEM of at least 10 animals per group. **p<0.001, compared
to dO without 5-FC administered group; ***p<0.001, compared to d8 without 5-FC administered group; Student’s t-test.

MSCs/CD cells (3x10° cells) and randomly divided the mg/kg/day for one week and then the mice were sacrificed
animals into two groups on day 0. From the next day, at various time points (day 0, 1, 3, 8, 14, and 28) (Fig.
S-FC was orally given to one group at a dose of 1,000 4A). Genomic DNA was extracted from the ipsilateral
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cells expressing a CD (MSCs/CD) (3x10° cells) transplantation. Animal were sacrifice and genomic DNA (gDNA) extracted from injected
brain at day 0 (d0), d1, d3, d8, d14, and d28 after cell transplantation. The 5-FC non administered group was used as a control. (B)
Data are mean+SEM of at least 5 animals per group. *p<0.05, **p<0.01, ***p<0.001, compared to data without 5-FC administered
group; Student’s t-test. Comparison of human cells detected by quantitative polymerase chain reaction in the ipsilateral brain at do, d1,
d3, d8, d14, and d28 with or without 5-FC administration. (C) Representative immunohistochemical images with anti-human mitochondrial
antigen (hMT) showing the human cells at the injection site of the animals. Scale bar=100 zm.
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Fig. 5. In vivo ablation of injected and neighboring cells with cytosine deaminase (CD) and 5-fluorocytosine (5-FC) differentially modulates
immune response at the injection site. (A) Serially sectioned brains were stained for cell death at the injection site with Terminal deoxy-
nucleotidyl transferase dUTP nick end labeling (TUNEL, red). The sections were counter-stained with Hoechst 33258 to show the nuclei
(blue). The TUNEL-positive cells were detected at the injection site at day 1 (d1) in the control group, whereas they were dramatically
increased at day 3~8 (d3~d8) in the 5-FC treated animal. (B) Serial sections were stained with an anti-lbal antibody to identify activated
microglia at the injection site. Note dramatic increases of Iba-1 positive microglia only in the control group but not in the 5-FC treated
group. Scale bar=100 z#m. A minimum of two animals per group were utilized in our study. The representative one is shown.
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hemisphere and subject to JPCR analysis. The remaining
MSCs/CD cells were quantitated by qPCR in a similar
manner shown in Fig. 1 (using the Ct values for human
Alu-specific signal). The animals not receiving 5-FC were
used as the controls. The number of MSCs/CD cells in
both the control and 5-FC treated groups decreased sig-
nificantly during the first week, but the rate of decline was
slower with 5-FC treatment (Fig. 4B). Consistently, im-
munohistochemistry also revealed a prolonged presence of
the hMT-immunoreactivity in the 5-FC treated group
than in the control (Fig. 4C).

TUNEL staining revealed that the signal was evident
from day 1 in the control group, suggesting that the trans-
planted cells underwent spontaneous cell death (Fig. SA).
The signal persisted until day 3 but disappeared by day
8. Interestingly, during day 3 to day 8, there was a sig-
nificant increase in the Ibal-immunoreactivity, indicating
robust activation of microglia (Fig. 5SB). In contrast, in the
5-FC treated group, the TUNEL signal continued to in-
tensify until day 8 (Fig. 5A), indicating MSCs/CD pro-
duce 5-FU in vivo. Simultaneously, 5-FU also induced cell
death in resident microglia near the injection site through
bystander activity, consequently suppressing Ibal-immu-
noreactivity (Fig. 5B). Eventually the TUNEL-positive sig-
nals disappeared by dl4 regardless of 5-FC treatment.

Discussion

Optimizing candidate selection for target therapeutic
areas is an essential goal of preclinical PK and PD studies
in drug discovery and development. While PD aspects of
MSCs can depend on the inherent nature of therapeutic
cells, their PK aspects is largely determined by the admin-
istration route. Unlike intravenous administration, the PK
studies of MSCs after local transplantation is limited.

In this study, we investigated the biodistribution of xen-
ografted human MSCs in a rodent model. To accurately
quantify the remaining human MSCs in the animal, we
employed three strategies. Firstly, we used immune com-
promised nude mice, which are commonly used for evalu-
ating tumorigenicity due to their ability to facilitate effi-
cient engraftment. Secondly, we targeted the brain as the
transplantation site, taking advantage of its well-known
immune privileged nature. Lastly, we implemented a
gPCR method using human Alu-specific primers as a sur-
rogate marker. This approach enabled us to precisely track
and quantify the transplanted MSCs, providing an un-
biased estimation of the remaining human cells within the
mouse organ context.

The gPCR analysis revealed that the MSCs predom-

inantly remained at the injection site within the ipsilateral
hemisphere. However, their presence substantially de-
clined over a week and eventually became undetectable af-
ter a month (Fig. 2B, 4C, without 5-FC). TUNEL staining
revealed that these cells underwent cell death during day
1~3 (Fig. S5A, without 5-FC) and then their presence be-
came minimal at the injection site on day 8. Interestingly,
this timeframe coincided with the peak activation of mi-
croglia, the residential immune cells in the brain (Fig. 5B,
without 5-FC). The findings indicate that xenografted
MSCs have a relatively short lifespan of less than a month
due to the immune response elicited by the residual im-
mune cells in the immune compromised animal. Further-
more, the MSCs do not spread to other organs after local
transplantation in the brain.

To investigate the role of the residual immune system,
we employed a chemical ablation method using the CD
enzyme capable of exerting both suicide and bystander ef-
fects (Fig. 3A). Both human-Alu specific signals and hMT-
immunoreactivity persisted longer in the S5-FC treated
group than in the control (Fig. 4B). This observation was
reliable as two independent approaches consistently proved
the presence of more hMSCs in the presence of 5-FC, al-
though the TUNEL-positive signals were higher during
day 3~8 in the 5-FC treated group (Fig. 5A, compare
without and with 5-FC). Interestingly, during this period,
the activation of microglia remained minimal in the 5-FC
group (Fig. SB, with 5-FC). This finding suggests that mi-
croglia also undergo cell death via bystander functions of
MSCs/CD, leading to delayed immune response to apop-
totic MSCs/CD cells. This inverse correlation between the
degree of remaining human cells and the activation of mi-
croglia suggests that the absence of microglia prolongs the
presence of MSCs/CD in the 5-FC treated group. It
should be noted that PK results were similar in animals
with naive MSCs and the animals with MSCs/CD cells
without 5-FC in the control (compare Fig. 2B, 4B, without
5-FC), further validating that our approach of using gPCR
analysis is reliable.

Nude mice have been extensively used in preclinical
studies for evaluating the tumorigenic potential of stem
cells and establishing xenograft tumor models for testing
anticancer drugs. However, the findings of this study have
limitations in terms of generalizing the biodistribution of
MSCs in disease models. The biodistribution of MSC-
based therapeutics in disease animal models may differ
from what has been observed in normal animals, consider-
ing the high tropism of MSCs towards damaged tissues
or cancer (22, 23).

Nevertheless, our study focusing on the PK of MSCs in
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the brain reveals potential benefits that can be translated
to clinical applications. Recently, the CD gene has recently
emerged as a promising therapeutic tool to treat the solid
tumors in both preclinical and clinical studies (15, 24-26).
However, the presence of suppressive immune cells, such
as regulatory T cells, myeloid-derived suppressor cells,
and tumor-associated macrophages, within the tumor mi-
croenvironment can hinder the effectiveness of anticancer
therapies. Consequently, targeting these cells has become
a major focus in cancer immunotherapy (27, 28). It would
be interesting to investigate whether intra-tumoral trans-
plantation of MSCs carrying the CD gene can modulate
the suppressive immune cells in the vicinity, thereby en-
hancing the efficacy of anti-cancer treatments.

In conclusion, our study on the PK of MSCs in the
brain provides promising results that have the potential
to enhance therapeutic efficacy in clinical settings. Fur-
thermore, our findings regarding immune modulation by
MSCs/CD and 5-FC in the brains of nude mice offer val-
uable insights for optimizing therapeutic regimens involv-
ing the CD gene and 5-FC for solid tumors.
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