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Abstract

Multiple myeloma (MM) is a clonal malignancy of plasma cells that remains largely in-
curable despite major advances in proteasome inhibitors, immunomodulatory drugs, and
monoclonal antibodies. Chimeric antigen receptor (CAR)-engineered immune cells have
transformed the therapeutic landscape, but CAR-T cell therapy faces challenges such as
severe cytokine release syndrome (CRS), neurotoxicity, limited persistence, and logistical
complexity. In recent years, natural killer (NK) cells have emerged as a promising platform
for next-generation cellular immunotherapy, offering innate antitumor activity, a reduced
risk of graft-versus-host disease (GvHD), and the feasibility of “off-the-shelf” allogeneic
production. This review summarizes current advances in CAR-NK cell therapy for MM,
focusing on two major aspects: the diversity of cell sources—including NK-92, peripheral
(PB) and cord blood (CB), and induced pluripotent stem cell (iPSC)-derived NK cells—and
the expanding repertoire of target antigens such as BCMA (B-cell maturation antigen),
NKG2D, CD38, CD70, SLAMF7, CD138, and GPRC5D. We highlight preclinical and early
clinical studies demonstrating potent cytotoxicity, favorable safety profiles, and innovative
multi-targeting strategies designed to overcome antigen escape and enhance persistence.
Emerging clinical data suggest that CAR-NK cell therapy may combine the specificity of
CAR recognition with the inherent safety and versatility of NK biology, offering a potential
paradigm shift in the treatment of relapsed or refractory MM. Further clinical validation will
determine whether CAR-NK cell therapy can achieve durable remission and complement
or surpass current CAR-T modalities.

Keywords: CAR-NK cells; multiple myeloma; immunotherapy; BCMA; GPRC5D; NKG2D;
CD38; SLAMF7; CD138; iPSC-derived NK cells; allogeneic cell therapy

1. Introduction
MM is a hematologic malignancy of clonal plasma cells [1–3] that remains largely

incurable despite major therapeutic advances in proteasome inhibitors, immunomodulatory
drugs, and monoclonal antibodies [4]. Although these agents have extended survival, most
patients eventually relapse, highlighting the need for novel and durable immunotherapeutic
strategies [5].

CAR-T cell therapies targeting BCMA have achieved remarkable responses in re-
lapsed/refractory MM [6,7]. However, their use is constrained by severe CRS, immune
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effector cell–associated neurotoxicity syndrome (ICANS), prolonged cytopenia, and manu-
facturing constraints [8,9]. Furthermore, the emergence of antigen loss variants and the
immunosuppressive tumor microenvironment often result in relapse, underscoring the
demand for safer, “off-the-shelf”, and more persistent cellular platforms.

NK cells offer a compelling alternative. As innate cytotoxic lymphocytes capable of
killing malignant cells independently of antigen presentation, NK cells can be engineered
with CAR constructs to combine intrinsic tumor surveillance with antigen-specific target-
ing. Compared with CAR-T cells, CAR-NK products exhibit a reduced risk of CRS and
GvHD, and can be generated from allogeneic sources, enabling scalable “off-the-shelf”
therapies [10–12]. Recent preclinical and early clinical data demonstrate that CAR-NK cells
targeting antigens such as BCMA, SLAMF7, CD38, and GPRC5D effectively eliminate MM
cells while maintaining a favorable safety profile. These findings position CAR-NK therapy
as a promising next-generation approach in the evolving immunotherapy landscape of MM.

In this review, we summarize the current state of CAR-NK cell therapy in MM, empha-
sizing diverse cell sources and target antigens, and discuss the translational opportunities
and challenges shaping their future clinical application.

2. Biological Distinctions Between NK Cells and T Cells
Although both T cells and NK cells derive from common lymphoid progenitors [13],

they belong to distinct arms of the immune system and exhibit fundamentally different
modes of activation and persistence. T cells are hallmarks of the adaptive immune system,
requiring antigen presentation via major histocompatibility complex (MHC) molecules
for activation [14]. Upon stimulation, T cells undergo clonal expansion and can acquire
long-lived central and effector memory phenotypes, enabling robust proliferation and
durable immune surveillance in vivo [15]. These stem-like memory properties underlie the
potent and sustained responses observed with CAR-T therapies [16].

In contrast, NK cells are innate cytotoxic lymphocytes that do not rely on antigen-
specific priming [17]. They recognize and eliminate transformed or stressed cells through a
dynamic balance of activating and inhibitory receptor signals [18], allowing rapid, antigen-
independent cytotoxicity [19]. However, NK cells generally display limited proliferative
capacity and a relatively short lifespan after infusion, which may restrict the persistence
and long-term efficacy of CAR-NK products [20].

These intrinsic biological differences explain why CAR-NK therapies are typically
associated with improved safety profiles—including reduced CRS and GvHD—yet may
exhibit lower in vivo expansion and durability compared with CAR-T cells. Understanding
these fundamental distinctions provides essential context for optimizing CAR design, cell
engineering, and manufacturing strategies tailored to the NK platform.

3. Chimeric Antigen Receptor Technology as One of the Strategies to
Improve NK Cell Anti-Multiple Myeloma Response

CARs are synthetic fusion proteins composed of several functional modules, designed
to specifically recognize antigens expressed on the surface of target cells (Figure 1). They
include an extracellular antigen-recognition region that binds tumor-associated antigens
(TAA), typically represented by a single-chain variable fragment (scFv) of an immunoglob-
ulin; a hinge region that provides structural flexibility; a transmembrane domain (TMD)
anchoring the receptor to the cell membrane; and intracellular signaling domains that
initiate immune cell activation and subsequent tumor cell elimination [21]. Thus, CAR
technology enables the ex vivo reprogramming of immune effector cells, combining, on
the one hand, the advantages of a monoclonal antibody with high affinity and MHC class
I–independent recognition, and, on the other hand, the cytotoxic potential of lymphocytes
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capable of proliferation and sustained antitumor activity. Applied to NK cells, this strategy
provides an alternative form of adoptive immunotherapy, in which CAR-NK cells retain
their intrinsic ability to recognize and eliminate malignant cells while gaining an additional
layer of antigen specificity through CAR-mediated targeting.

Figure 1. CAR-NK construct design.

3.1. Intracellular Signaling Domain

To date, five generations of CAR constructs have been described, differing primarily
in the design of the intracellular signaling domain [22]. Within the intracellular region of
CARs, the signaling architecture consists of a primary stimulatory domain, responsible
for initiating effector cell activation, and may also incorporate secondary costimulatory
domains that enhance and sustain cellular responses. As the primary stimulatory domain,
CAR-NK engineered to target MM antigens most commonly utilize CD3ζ, which contains
immunoreceptor tyrosine-based activation motifs.

It should be noted that the concept of CAR “generations” is largely conceptual. While
all of these designs have been described, their practical application in CAR-NK cell devel-
opment remains uneven, with much of the current knowledge originating from CAR-T
research. The extent to which such findings can be directly extrapolated to CAR-NK
platforms has yet to be conclusively demonstrated, and examples specifically addressing
MM models are especially limited. Accordingly, in this review we have aimed to focus
on evidence derived directly from CAR-NK studies, highlighting cases relevant to MM
where available.

First-generation CARs consist of a hybrid receptor comprising an extracellular domain
for tumor antigen recognition, a TMD, and an intracellular signaling domain capable of
triggering NK cell activation. Due to the absence of costimulatory domains, first-generation
CARs demonstrated inefficient for clinical application. An exception is represented by
NKG2D-based CARs, which, through interaction with their natural ligands, provide intrin-
sic costimulatory signaling that operates independently [23].

Second- [24] and third-generation CARs [25] incorporate one or two additional intra-
cellular costimulatory domains, respectively, such as CD28 or 4-1BB (CD137), enhancing NK
cell effector functions such as cytokine production and target MM cell lysis. Furthermore,
the intracellular signaling modules of CARs can be engineered to incorporate more specific
costimulatory regions such as DNAX-activating protein 10 (DAP10), DNAX-activating pro-
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tein 12 (DAP12) and 2B4. DAP12 serves as the essential adaptor for several activating NK
receptors, including NKG2C, NKp44, and certain activating KIRs [26], whereas DAP10 is
specifically required to mediate the costimulatory signaling of NKG2D [27]. These adaptors
naturally associate with activating receptors on NK cells and initiate downstream signaling
cascades tailored to NK effector functions, including cytotoxicity and cytokine production.
Incorporating DAP10 or DAP12 into CAR constructs may therefore enhance NK cell activa-
tion more physiologically than CD3ζ alone, potentially improving anti-myeloma efficacy
and persistence while maintaining NK-specific functional programs [28]. For instance, in
the context of solid tumor models, CAR constructs incorporating NK-specific costimulatory
domains, such as 2B4, DAP10, or DAP12, are characterized by increased cytotoxic activity
and elevated IFN-γ secretion, compared with conventional CAR architectures originally
tailored for T cells [29]. Besides that, evidence from models of hematologic malignancies
has demonstrated that incorporation of the NK-specific costimulatory domain 2B4 into
CAR constructs markedly enhances NK cell performance. Specifically, 2B4-based CAR-
NK cells exhibited accelerated proliferation, improved antigen-specific cytotoxicity, and
superior antitumor efficacy both in vitro [30] and in vivo [31].

Fourth-generation CARs, analogous to second-generation constructs, are further engi-
neered to include transgenes encoding cytokines, thereby enhancing NK cell proliferation,
persistence, and cytotoxicity [32]. This strategy has already been validated in preclini-
cal models of MM. For instance, BCMA-CD28-IL15 CAR-NK cells demonstrated more
sustained cytotoxic activity and superior control of tumor growth in vivo compared with
CAR-NK cells lacking IL-15 [24]. Moreover, the concept of “armored” CAR-NK cells has
been clinically demonstrated in the case of CB-derived CD19-CAR-NK cells engineered
to express IL-15, where infusions proved safe and resulted in both clinical responses and
prolonged cellular persistence in patients with lymphoproliferative disorders [33]. Taken
together, these findings indicate that fourth-generation CAR-NK cells represent not only a
theoretical advancement but also a feasible therapeutic platform, with clear potential for
application in MM treatment.

Fifth-generation CARs also build upon second-generation scaffolds but integrate a
cytoplasmic domain derived from IL-2Rβ with STAT3/5 recruitment motifs, further fine-
tuning intracellular signaling and promoting NK-specific functional responses. These
design principles remain predominantly at the conceptual stage in the context of MM,
underscoring their status as an emerging and still largely unexplored avenue within CAR-
NK-cell-based immunotherapy.

3.2. Transmembrane Domain

The TMD is a single-pass lipophilic α-helical segment of CAR within the NK cell
membrane. It serves as a structural bridge between the extracellular and intracellular
regions of the CAR. It contributes to the proper expression, anchoring, and stabilization of
the receptor within the cell membrane, while also ensuring effective signal transmission
required for CAR-mediated activation. The choice of transmembrane element significantly
impacts receptor stability and the magnitude of downstream signaling. Similarly to CAR-T
designs, the most widely applied TMDs in CAR-NK constructs are derived from CD3ζ,
CD8α, and CD28 [25]. In addition multiple CAR configurations have been tested in NK
cells, incorporating a range of transmembrane regions from NK cell receptors such as
CD16, NKp44, NKp46, and NKG2D [34]. Evidence suggests that NK-specific domains,
for example, those derived from NKG2D, can enhance degranulation, as reflected by in-
creased CD107a expression, and promote cytotoxic activity, with these effects confirmed in
both in vitro and in vivo models of CD19+ lymphoma [30]. These observations point to a
potential functional advantage of NK-adapted transmembrane elements in CAR design.
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However, the extent to which such domains provide clear benefits over conventional coun-
terparts has not been systematically examined [34], and examples specifically demonstrated
in MM models remain very limited.

3.3. Hinge Region

The hinge region, also referred to as the spacer, is a short extracellular segment
that connects the antigen-recognition domain to the TMD in CAR-NK constructs. Its
primary function is to provide sufficient spatial flexibility to the antigen-recognition region,
enabling optimal engagement with target antigens such as BCMA, which is frequently
employed in CAR-NK designs for MM. Notably, in NK cells, the choice of hinge can
significantly affect immune synapse formation, as NK effector functions depend on precise
receptor clustering and signaling. For instance, overly long IgG-derived hinges may
introduce unintended interactions via Fcγ receptor binding. This is particularly relevant
because, unlike T cells, NK cells express FcγRIII (CD16), potentially leading to off-target
activation. Therefore, optimizing hinge length and origin is crucial when designing CAR
constructs [35]. More rigid hinges, such as those derived from CD8α or CD28, promote
effective synapse formation and enhance target engagement in CAR-NK cells. For example,
BCMA-CD28-IL15 CAR-NK cells demonstrated superior cytotoxic activity and secreted
significantly higher levels of IFN-γ compared with BCMA-hIgG1-IL15 CAR-NK cells [24].

Similarly to CAR-T cells, CAR-NK cells adopt a modular architecture consisting of an
antigen-binding domain, a hinge, a TMD, and intracellular signaling domain, with each
module offering opportunities for targeted design and optimization. Over the years, CAR
architecture has been refined through advances in molecular engineering and immunother-
apy, and strategies tailored to the unique signaling machinery of NK cells have emerged
as particularly promising. Such approaches aim to enhance cytotoxic activity, cytokine
secretion, and in vivo persistence, thereby increasing the therapeutic potential of CAR-NK
cells in MM. In this context, the genetic engineering of NK cells with CARs has gained
growing attention and has been investigated extensively in vitro and in vivo over the past
two decades. These efforts encompass the use of different NK cell sources, varied methods
for culture, expansion, and transduction, as well as diverse plasmid constructs and vector
systems. As a result, a number of CAR-NK cell candidates for MM are currently advancing
through preclinical studies and have already entered early-phase clinical trials.

However, most of these studies still rely on receptor architectures originally developed
for CAR-T cells. While such constructs are functional in NK cells, they do not fully
exploit NK-specific signaling pathways. Given the broad repertoire of activating receptors
and adaptor protein domains that regulate NK cell responses, the development of NK-
tailored CAR designs—through innovative combinations of extracellular, transmembrane,
and intracellular domains—offers a rational strategy to improve therapeutic potency and
specificity, thereby enhancing the overall efficacy of CAR-NK immunotherapy.

4. NK Cells Versus T Cells: Distinct Advantages for CAR-Based
Immunotherapy

CAR T-cell therapy has transformed the landscape of cancer treatment, with several
products gaining regulatory approval and demonstrating clinical benefit, including in
patients with MM [36,37]. Nevertheless, there are notable limitations that challenge its
broader application. Autologous CAR-T products require complex and costly manufactur-
ing and may fail due to prior therapies, patient lymphopenia, or high tumor burden. In
addition, the autologous production process takes valuable time, which can delay treatment
for patients with aggressive disease. While universal allogeneic CAR-T approaches are
under development, they necessitate extensive gene editing [38] to eliminate endogenous
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T-cell receptor signaling and mitigate the risk of GvHD, thereby increasing manufacturing
complexity and raising safety concerns regarding genomic stability.

Current evidence indicates that clinical outcomes of allogeneic CAR-T-based therapies
are encouraging but still lag behind the efficacy achieved with FDA-approved autologous
CAR-T products [39]. For example, the first BCMA-directed CAR-T therapy, idecabtagene
vicleucel (Abecma), approved in 2021, demonstrated an overall response rate of 72%
and a stringent complete response rate of 28% in a pivotal study of 100 patients with
relapsed/refractory MM [36]. Allogeneic CAR-T platforms have yet to reach similar efficacy
benchmarks (NCT04093596). Ongoing efforts focused on optimizing cell engineering,
enhancing persistence, and reducing alloreactivity are expected to improve their therapeutic
durability and clinical impact.

In addition to logistical and manufacturing barriers, CAR-T therapy is often associated
with serious adverse events. CRS and ICANS occur in the majority of patients treated
with CAR-T products [40–42] and are driven by elevated levels of proinflammatory cy-
tokines, including those secreted by activated T cells, such as IL-2, TNF-α, and IL-6 [43,44].
Other complications, including hemophagocytic lymphohistiocytosis [6], prolonged cy-
topenia [45,46], and GvHD in the allogeneic setting [47], further limit the safety profile of
CAR-T therapy.

By contrast, CAR-NK cells offer several distinct advantages. First, NK cells do not rely
on antigen recognition via MHC presentation, allowing them to exert cytotoxicity without
prior antigen priming. Once modified with CARs, they retain their innate killing ability
through germline-encoded activating receptors. This dual mechanism—CAR-dependent
and CAR-independent cytotoxicity—provides a safeguard against antigen escape, a major
limitation of CAR-T therapy [48,49]. CAR-T cells require relatively high levels of TAA
expression for effective activation via their CARs [50,51], making them vulnerable to TAA
downregulation or loss; CAR-NK cells can overcome this barrier through their intrinsic
cytotoxic pathways. This capacity enables them to eliminate malignant cells even in the
context of reduced or absent CAR target expression, underscoring their potential to mitigate
one of the key challenges of CAR-T therapy. A notable example of CAR-NK engineer-
ing is FT576, a product designed for MM therapy. FT576 integrates a BCMA-targeting
CAR with an engineered high-affinity, non-cleavable CD16 (hnCD16) receptor, enabling
dual functionality: direct CAR-mediated recognition of BCMA-positive tumor cells and
antibody-dependent cellular cytotoxicity (ADCC) in combination with therapeutic mono-
clonal antibodies. Importantly, preclinical evaluation demonstrated that FT576 exhibited
BCMA targeting activity comparable to that achieved with primary BCMA-directed CAR-T
cells, while additionally providing the potential for multiantigen targeting through its
hnCD16-mediated mechanism [52]. This combinatorial design underscores the therapeutic
promise of CAR-NK platforms to match or even expand upon the functional capabilities
of CAR-T cells. Nonetheless, direct comparative studies of CAR-NK and CAR-T effi-
cacy remain limited, particularly in the context of MM, highlighting the need for further
systematic investigation.

Second, NK cells inherently carry a minimal risk of GvHD, enabling the develop-
ment of allogeneic CAR-NK therapies [53–55]. Multiple cellular sources, including blood,
stem and progenitor-cell-derived populations, and cell lines, can be exploited, improving
accessibility and scalability compared with patient-derived CAR-T cells.

Despite their inherent safety in the allogeneic setting, a key challenge for CAR-NK
therapies remains their limited in vivo persistence, partly due to immune rejection by the
host. Unlike allogeneic CAR-T platforms, which require extensive gene editing to remove
the endogenous T-cell receptor and prevent GvHD, allogeneic CAR-NK cells primarily
need strategies to enhance survival rather than to ensure safety [56]. Recent studies have
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explored targeted modifications to prolong CAR-NK persistence, such as β2-microglobulin
(B2M) knockout to reduce HLA-I expression and the co-expression of non-classical HLA
molecules (e.g., HLA-E or HLA-G) to avoid host NK-cell recognition. Such strategies are
conceptually analogous to those being developed for allogeneic CAR-T platforms but are
generally simpler due to the absence of endogenous TCR-mediated alloreactivity in NK
cells. These refinements aim to mitigate host-versus-graft rejection while preserving the
simplicity and safety of NK-based platforms [57]. Additional approaches include deletion
of adhesion ligands such as CD54 (ICAM-1) and CD58 (LFA-3) to reduce recognition
and attack by host immune effectors [58], co-expression of IL-15 or membrane-anchored
cytokines to boost survival and proliferation, and expression of anti-phagocytic “don’t-
eat-me” signals like CD47 [59]. These combinatorial strategies have shown promise in
preclinical and early clinical studies for improved in vivo durability.

Building on these engineering advances, several allogeneic CAR-NK platforms have
already demonstrated clinical activity with favorable safety profiles, supporting the notion
that NK-based therapies may offer reduced toxicity compared with CAR-T approaches. For
instance, iPSC-derived CAR-NK products such as FT596 and FT576 have achieved objective
responses in patients with relapsed or refractory lymphomas and MM, respectively, while
exhibiting only low-grade CRS and no reported neurotoxicity [60,61]. These findings align
with the intrinsic biology of NK cells, which predominantly secrete IFN-γ and GM-CSF [62]
rather than high levels of IL-6 or TNF-α, cytokines strongly associated with cytokine storm
and neurotoxicity. Supporting this, a clinical trial with cord-blood-derived CAR-NK cells
for B-cell malignancies reported no increase in IL-6 or TNF-α levels above baseline after
infusion [33]. Similarly, studies employing CAR-engineered invariant natural killer T
cells (CAR iNKT) in MM models demonstrated significantly lower IL-6 induction in vitro
compared with CAR-T counterparts [63]. Together, these data highlight that, even with
limited in vivo persistence, allogeneic CAR-NK cells can mediate meaningful antitumor
responses with a more favorable safety profile and may serve as a readily deployable
alternative to autologous CAR-T therapy.

Finally, cost is another important factor favoring NK-based therapies. A single infu-
sion of an approved CAR T-cell product currently amounts to several hundred thousand
dollars [64], and when additional pre- and peri-infusion healthcare expenses are taken
into account—for example, exceeding $150,000 in patients with relapsed or refractory
MM [65]—the overall economic burden becomes even greater. The possibility of standard-
ized, allogeneic CAR-NK products promises a more cost-effective and broadly accessible
immunotherapy approach.

Taken together, CAR-NK cells combine innate safety, accessibility, and a unique dual
killing mechanism, distinguishing them from CAR-T cells. While comparative antitumor
efficacy remains an active area of investigation—with some studies favoring CAR-T and others
suggesting benefits for CAR-NK in specific contexts—the accumulating evidence supports
CAR-NK as a promising alternative platform for next-generation cellular immunotherapy.

5. Sources for CAR-NK-Cell-Based Adoptive Immunotherapy in
Multiple Myeloma

To date, current clinical applications of NK cell therapy for MM include both autolo-
gous and allogeneic NK-cell-based approaches. A study by Nahi et al. demonstrated the
safety and potential efficacy of repeated infusions of activated and expanded autologous
NK cells following autologous stem cell transplantation in patients with MM [66]. However,
in patients with MM, NK cells frequently exhibit a dysfunctional phenotype, characterized
by altered transcriptional profiles and markedly reduced cytotoxic capacity [67–69]. The
majority of clinical trials utilizing NK cells require high infusion doses, commonly between
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5 × 106 and 1 × 108 NK cells per kilogram of body weight [70]. At the same time, the
production of autologous NK cells remains technically challenging and resource-intensive,
often complicated by the limited availability of patient-derived cells for ex vivo expansion
and genetic engineering. Such functional deficiencies significantly constrain the therapeutic
potential of autologous NK-cell-based approaches.

The rationale for utilizing allogeneic NK cells has initially stemmed from insights
into the molecular specificity of NK cell recognition, particularly their ability to mediate
missing-self reactivity [18]. Due to a low risk of GvHD induction, allogeneic NK cells have
emerged as the preferred platform in contemporary NK cell therapy programs, thereby
bypassing the limitations inherent to autologous strategies [71,72]. Moreover, NK cells
from healthy allogeneic donors may exhibit superior functionality compared to autologous
NK cells obtained from heavily pretreated patients, lymphodepleting therapy in particular.
To address the restricted availability of NK cells from individual donors, several large-scale
expansion strategies are under investigation, with the theoretical potential to generate
sufficient therapeutic doses to treat thousands of patients from a single source. Within this
context, three major categories of allogeneic NK cell sources have been explored, including
blood, stem- and progenitor-cell-derived populations, and cell lines [73] (Figure 2). PB [74]
and CB [75,76] have long served as primary sources for NK cell expansion. In parallel,
robust protocols have been developed to produce NK cells from embryonic stem cells
(ESCs) [77] and iPSCs [78,79], as well as from CD34-expressing hematopoietic stem and
progenitor cells (HSPCs) derived from umbilical CB and placenta blood [80]. An alternative
strategy involves the use of NK-92, an immortalized NK cell line that can be irradiated prior
to administration to prevent uncontrolled proliferation in vivo [81]. These expansion and
manufacturing approaches enable the production of multiple doses of allogeneic NK cells,
which are relatively short-lived and thus may require repeated administration. Notably,
these cells can be used fresh or cryopreserved after being prepared in advance, offering a
flexible “off-the-shelf” therapeutic platform for clinical application in MM and solving the
one-donor, one-patient limitation.

 

Figure 2. Different sources of CAR-NK cells for the treatment of multiple myeloma.

All of the aforementioned allogeneic NK cell sources are capable of generating thera-
peutically relevant cell doses and amenable to CAR engineering. At the same time, each
source presents distinct advantages and limitations, and may exhibit unique scalability,
transcriptional landscapes, phenotypic characteristics, and functional profiles. As of now,
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ten clinical trials exploring CAR-NK cell therapy for MM have been registered. Among
them, at least five are based on allogeneic NK cells: two trials relied on CB-derived NK cells,
one study reported the use of iPSC-derived NK cells, another utilized NK-92-derived cells,
and one trial involved NK cells of unspecified origin. For the remaining studies, the source
of NK cells has not been made publicly available. Of note, among these ten registered
clinical trials, seven are currently ongoing, while the current status of the remaining three
has not been updated in official registries, as summarized in Table 1. This distribution
underscores the dynamic and still-evolving landscape of CAR-NK-cell-based approaches
in MM.

Table 1. Current landscape of CAR-NK cell therapy trials in multiple myeloma: ongoing studies,
unknown status trials, and distribution by cell source and antigen target.

NCT Organization Phase Status of Study Study’s Official Title NK Cell Source Target

Ongoing clinical trials

NCT05092451

M.D. Anderson
Cancer Center
(Houston, TX,

USA)

Phase 1/2 Recruiting

Phase I/II Study of
CAR.70-Engineered

IL15-transduced
Cord Blood-derived

NK Cells in
Conjunction With
Lymphodepleting
Chemotherapy for
the Management of
Relapse/Refractory

Hematological
Malignances

Allogenic Cord
Blood NK cells CD70

NCT05182073

Fate
Therapeutics

(USA,
multi-center

trial)

Phase 1 Active, not
recruiting

A Phase I Study of
FT576 as

Monotherapy and in
Combination With
Daratumumab in

Subjects With
Relapsed/Refractory
Multiple Myeloma

Allogenic iPSCs BCMA

NCT06594211

RenJi Hospital
(Shanghai,
Shanghai

Municipality,
China)

Not Applicable Not yet
recruiting

A Single-Arm,
Open-Label Study of

Allogeneic Anti-
BCMA/GPRC5D

Bispecific CAR-NK
Cells (ACT-001) in

Patients With
Relapsed or

Refractory Multiple
Myeloma

Allogeneic
unknown

BCMA/
GPRC5D

NCT06045091

Hrain
Biotechnology

Co., Ltd.
(Shanghai,
Shanghai

Municipality,
China)

Early Phase 1 Recruiting

An Early Phase 1
Clinical Trial to

Evaluate the Safety
and Efficacy of
Human BCMA

Targeted CAR-NK
Cells Injection for

Subjects With
Relapsed/Refractory
Multiple Myeloma or

Plasma Cell
Leukemia

Unknown BCMA
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Table 1. Cont.

NCT Organization Phase Status of Study Study’s Official Title NK Cell Source Target

Ongoing clinical trials

NCT06242249

Shahid Beheshti
University of

Medical
Sciences

(Tehran, Iran)

Phase 1, Phase 2 Not yet
recruiting

Determining Safety
and Maximum
Tolerated Dose

(MTD) of
Anti-BCMA CAR-NK
Therapy in Relapsed

or Refractory
Multiple Myeloma

Unknown BCMA

NCT05498545

Second
Affiliated

Hospital of
Xi’an Jiaotong

University
(Xi’an, Shaanxi,

China)

Phase 1 Not yet
recruiting

Universal
BCMA-targeted

LUCAR-B68 Cells in
Patients With

Relapsed/Refractory
Multiple Myeloma

Unknown BCMA

NCT06379451

Changzhou
No.2 People’s

Hospital
(Changzhou,

Jiangsu, China)

Early Phase 1 Not yet
recruiting

An Exploratory
Clinical Study of the
Safety and Efficacy of

NKG2D Chimeric
Antigen Receptor NK
Cell Injections for the

Treatment of
Refractory Recurrent
Multiple Myeloma

Unknown NKG2D

Clinical trials with unknown status

NCT05008536

Xinqiao
Hospital of
Chongqing
(Chongqing,
Chongqing

Municipality,
China)

Early Phase 1 Unknown

Phase I Study to
Evaluate the Safety
and Effectiveness of

Anti-BCMA CAR-NK
Therapy in Relapsed

or Refractory
Multiple Myeloma

Allogenic
Umbilical and

Cord Blood NK
Cells

BCMA

NCT03940833

Asclepius
Technology
Company

Group (Suzhou)
Co., Ltd. (Wuxi,
Jiangsu, China)

Phase 1, Phase 2 Unknown

Clinical Research of
Adoptive BCMA
CAR-NK Cells on

Relapse/Refractory
MM

NK-92 BCMA

NCT05652530

Shenzhen
Pregene

Biopharma
Co., Ltd.

(Zhenghou,
Henan, China)

Early Phase 1 Unknown

Clinical Study of the
Safety and Efficacy of

Chimeric Antigen
Receptor NK Cell
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of CAR-NK-cell-based studies in MM.

5.1. Blood

NK cells can be isolated from apheresis products of PB (PB-NK cells) or from CB
(CB-NK cells) using cell sorting techniques or immunomagnetic cell separation platforms.
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Enrichment of highly pure NK cell populations is essential to optimize subsequent expan-
sion and to minimize impurities in the final cell product. This is particularly important
for ensuring patient safety by reducing the risk of residual allogeneic T cells, which could
induce GvHD.

5.1.1. Peripheral Blood

PB represents a readily accessible and clinically valuable source of mature NK cells
for adoptive immunotherapy. Mature phenotype of PB-NK cells enhances their functional
activity but limits their proliferative capacity [82]. PB-NK cells are classically defined
by their expression profile—CD3−, CD14−, CD19−, CD56+, CD16+/− [83]—and can be
further divided into two major phenotypic subsets: CD56bright and CD56dim cells, with
the latter being predominant in circulation (approximately 90%) [84]. NK cells typically
represent 5–10% of circulating lymphoid cells in PB [85], although their frequency can
vary substantially between individuals, with reported values ranging from 0% to 60%
CD56+CD3− cells in certain cohorts [86]. Despite their relatively short lifespan—estimated
at around two weeks [87]—adult individuals typically harbor more than 2 billion NK cells
at any given time [88]. In fact, PB-NK cells were instrumental in the early development of
CAR-NK cell therapies. The first successful delivery of a CAR construct into NK cells was
conducted using PB-derived NK cells in 2005 by Dario Campana’s group [89].

The efforts are currently underway to use PB-NK cells in the development of CAR-
engineered therapeutic platforms targeting MM. In a study by Ng et al. PB-NK cells were
expanded by co-culturing with feeder cell line K562 that express membrane-bound IL-15,
membrane bound IL-21, and CD137L. After stimulation for 14 days, PB-NK cells with a
final purity of >90% were collected and used for mRNA-transfection with downstream
experiments [90]. A similar approach enabled an approximate 4000-fold rapid expansion of
high-purity PB-NK cells [24]. At the same time, PB-NK cells display notable phenotypic and
functional variability among donors, which appears to be driven by both genetic factors
and environmental stimuli. Such donor-dependent heterogeneity along with low baseline
NK cell counts and limited proliferative capacity pose challenges for dose standardization
in clinical protocols, and hence generating consistent and scalable therapeutic products.
These limitations are especially relevant in the context of CAR-NK cell therapy in MM,
where genetic modification and ex vivo expansion are required.

Nevertheless, several preclinical studies are investigating different strategies for CAR-
engineered PB-derived NK cells in MM models. These include double-modified NK cells
designed to mitigate the risk of antigen escape [90], as well as non-antibody approach
that exploit CAR constructs based on the NKG2D receptor [23]. Furthermore, there is
information suggesting that BCMA/GPRC5D dual-targeted CAR-NK cells, which have
demonstrated efficacy in both in vivo and in vitro models of MM [91], are derived from
PB [92]. At present, publicly available registries do not provide conclusive information
indicating that clinical trials have been initiated with PB-derived CAR-NK cells for the
treatment of MM.

5.1.2. Cord Blood

NK cells isolated from CB, which is readily available from global CB banks, represent
another potential source material for CAR-NK cell therapies in MM. In contrast PB on
average 30% of the total lymphocytes in CB are NK cells [93]. The phenotypic profile of
CB-NK cells is characterized by elevated expression of CD56bright, NKG2A, CD94, c-kit
(CD117), Trail, CD62L, and CD27 [94], along with reduced levels of KIRs, NKG2C, NKp46,
and DNAM-1 [95]. At the transcriptomic level, CB-NK cells exhibit lower expression
of maturation-associated markers such as T-bet, eomesodermin, perforin, granzyme A,
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and granzyme B [94]. This phenotypic and transcriptional profile reflects the relatively
immature state of CB-NK cells, which is associated with lower immediate cytotoxic capacity
but enhanced proliferative potential and cytokine responsiveness. These features make
CB-NK cells a suitable candidate for ex vivo expansion and genetic engineering in adoptive
immunotherapy in MM.

CB-NK cells can be effectively expanded and driven toward a more mature profile
through cytokine stimulation. Compared to PB-NK cells, CB-NK cells are less responsive
to IL-2, and 5 times more IL-2 is required to activate them [95], which is attributed to lower
expression of IL-2 receptors and reduced induction of the p-STAT5 pathway [96]. However,
stimulation of CB-NK cells with a combination of IL-15 and IL-18 resulted in the most robust
proliferative response and increased secretion of IFN-γ and TNF-α, whereas activation
with a combination of IL-15 and IL-2 promoted enhanced cytotoxicity [96]. Additionally
the expansion of CB-NK cells can be enhanced through co-culture with feeder cells, such as
genetically modified K562 expressing membrane-bound IL-21, 4-1BB ligand, and CD48,
resulting in a proliferation rate increase exceeding 900-fold [97].

Preclinical studies have demonstrated the feasibility and therapeutic potential of using
CB-NK cells to develop CAR-engineered platforms targeting MM. Castellano et al. aimed to
develop a cord-blood-derived CAR-NK product using CRISPR/Cas9 technology to disrupt
the expression of NK receptors involved in some dominant immunosuppressive signals in
the tumor microenvironment [98]. In 2023, Lin et al. reported the generation and evaluation
of clinical-grade CAR-NK cell products derived from umbilical CB [99]. Based on these
findings, a Phase I/II clinical trial (NCT05092451) was initiated and is currently recruiting
participants. Another clinical trial is also known to be using CAR-engineered NK cells
derived from umbilical and CB in patients with relapsed or refractory MM (NCT05008536).
At the same time, as with PB-NK cells, limitations of this source of NK cells for CAR-NK
cell therapy in MM are still that their phenotype and yield exhibit considerable inter-donor
variability, and they lack a uniform, renewable source.

5.2. Stem and Progenitor Cells

While human CD56+ NK cells isolated from blood can be expanded ex vivo, NK cells
can also be derived from pluripotent stem cells, as well as from CD34-expressing HSPCs,
upon differentiation and then can be expanded in a stepwise fashion. This approach enables
the generation of a more homogeneous and well-defined NK cell product compared with
NK cells that develop in utero.

5.2.1. CD34+ Hematopoietic Stem and Progenitor Cells

NK cells can be differentiated in vitro from CD34+ HSPCs derived from umbilical
cord and placenta blood. HSPCs are typically isolated through immunomagnetic positive
selection targeting the CD34 surface antigen, using a process similar to that employed for
leukapheresis-derived products [100].

NK cells generated through this approach are characterized by elevated expression
of CD56, NKG2A, and CD94, along with variable levels of KIRs, and therefore exhibit a
less mature phenotype compared to PB-NK cells [101]. As was reported, this fact offers a
potential advantage by mitigating the risk of functional exhaustion and ineffective killing
of cancer cells after infusion in the recipient that typically affects more mature PB- and
CB-derived NK cells after extended cytokine-driven expansion [80]. At the same time
although these CD56+ cells demonstrate cytotoxic activity against MM cell line [102], they
exhibit low expression of CD16a (FcγRIIIA) compared to CB-NK cells, which limits their
ADCC [103,104].
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Celularity Incorporated (USA) has developed a large-scale GMP-compliant expansion
and differentiation process of UCB-CD34+ cells into PNK-007 NK cells. PNK-007 is the first
fully allogeneic CD34+ derived NK cell product in MM clinical trials (NCT02955550). A
single infusion of PNK-007 at doses of up to 30 × 106 cells/kg, administered with or without
rhIL-2, was well tolerated in the post-autologous stem cell transplantation setting [105].
Translational findings from a Phase I study further demonstrated that administration of
PNK-007 at doses of up to 3 × 107 cells/kg, given either 14 or 7 days post-transplant, did
not adversely affect engraftment or immune reconstitution [106]. Later, in 2020, a study
with CYNK-001, which is cryopreserved successor of the previous fresh UCB-CD34 product,
PNK-007, was also registered (NCT04309084).

With respect to CAR-NK cell therapy for MM based on CD34+ HSPCs, this strategy
has not yet been translated into clinical practice. Despite significant advancements at
the preclinical stage and in the development of candidate product—such as PNK-CAR38,
which has demonstrated potent cytotoxic activity against MM cell line in vitro without
evidence of on-target, off-tumor toxicity against healthy donor-derived cells [102]—these
therapies have not yet been evaluated in patients with MM.

5.2.2. iPSCs

As previously noted, human ESCs can be used to generate a homogeneous population
of functional NK cells exhibiting strong cytotoxic activity in vitro and potent antitumor
efficacy in vivo [77,78]. At the same time, in recent years, the most significant advances in
the development of CAR-NK-cell-based therapies for MM have been achieved through
the use of the iPSC platform. This may be attributed to the fact that, unlike clinical trials
targeting degenerative eye diseases, neurodegenerative disorders, and type 1 diabetes,
studies investigating immunotherapies for malignancies are, in principle, predominantly
based on iPSC-derived approaches [107].

Derived from reprogrammed somatic cells, such as fibroblasts or PB cells, as a rule,
iPSCs are readily obtainable and retain pluripotency, enabling extensive expansion and
efficient differentiation into NK cells. The establishment of iPSC master cell banks ensures a
continuous supply of genetically uniform donor material [108] and provides opportunities
for product standardization and manufacturing consistency [109].

NK cells derived from iPSCs express key NK cell markers such as CD56, CD117,
CD94, NKp46 [110], as well as DNAM-1, CD69, NKG2A and NKG2D, NKp44, NKp30 [111].
Goldenson et al. found that iPSCs-derived NK cells exhibit heterogeneous KIR expres-
sion profiles, with some populations displaying high levels of KIRs (KIR2DL3, KIR2DL1,
KIR2DL2, and KIR2DL1), whereas others show minimal or absent KIR expression. At the
same time, despite variations in KIR expression, both iPSC-KIR+ and iPSC-KIR− NK cell
populations demonstrate comparable cytotoxic activity overall [103].

A potential limitation of iPSC-derived NK cells lies in the fact that iPSCs may re-
tain DNA methylation patterns reflective of their somatic cell of origin. This “epigenetic
memory” could influence lineage specification and result in phenotypic differences com-
pared to the donor-derived cells, highlighting the need for careful consideration when
employing iPSC-based platforms [112]. It was shown that blood-derived iPSCs exhibited
more robust in vitro hematopoiesis compared to their neural-derived counterparts [113].
Nevertheless, an increasing number of genetically engineered iPSC-NK cell candidates
have demonstrated promise in preclinical studies, with several advancing into early-phase
clinical trials.

Woan et al. developed a clonal iPSC line incorporating triple-gene edits and subse-
quently differentiated it into NK cells, designated as iADAPT. iADAPT NK cell product
demonstrates in vivo persistence without the need for exogenous cytokine support, exhibits
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potent antitumor activity, and can be effectively combined with daratumumab to enhance
the cytotoxic elimination MM cells in both in vitro and in vivo models [114]. Collectively,
these preclinical findings have provided a strong rationale for advancing iADAPT NK
cells to phase I clinical trials for the treatment of patients with advanced malignancies
(NCT04614636) sponsored by Fate Therapeutics.

Recent research has described the development of iPSC-derived NK cells with four inte-
grated functional edits designed to dual-target MM by incorporating an NK cell-optimized
BCMA-specific CAR and a high-affinity, non-cleavable CD16 (hnCD16) receptor, termed
as iDuo-MM CAR-NK cells. Across multiple preclinical models, including xenogeneic
adoptive transfer systems, these cells have consistently exhibited sustained antitumor
activity against MM and enhanced ADCC in the presence of therapeutic anti-CD38 anti-
bodies [115,116]. These findings strongly support the clinical translation of this platform
(FT576) as a promising therapeutic strategy for the treatment of MM (NCT05182073).

5.3. NK Cell Lines

To overcome the challenges associated with primary NK cell sources—including donor-
to-donor variability, difficulties in large-scale purification and expansion, and resistance to
genetic modification—researchers have turned to the development of immortalized NK
cell lines as a reliable alternative for adoptive immunotherapy. These cell lines represent
homogeneous NK cell populations that can be readily maintained and expanded in vitro,
providing a consistent and scalable source of therapeutic NK cells. To date, at least ten NK
cell lines have been established, including NK-92, YT (also referred to as YT-S), KHYG-1,
NK3.3, NK-YS, NKL, NKG, SNK-6, and IMC-1. Among these, NK-92, established from
a patient with malignant non-Hodgkin’s lymphoma, remains the only line that closely
resembles primary blood-derived NK cells and exhibits strong cytotoxic and cytostatic
activity. Consequently, NK-92 has been successfully adapted for CAR NK-cell-based
therapy in hematologic malignancies, including MM, with both preclinical studies and
clinical trials already confirming its therapeutic promise.

NK-92

According to the American Type Culture Collection (ATCC, Manassas, VA, USA), NK-
92 cells display a phenotypic profile characterized by the expression of CD2, CD7, CD11a,
CD28, CD45, CD54, and CD56bright, while lacking surface expression of CD1, CD3, CD4,
CD5, CD8, CD10, CD14, CD16, CD19, CD20, CD23, CD34, and HLA-DR [117]. The broad
cytotoxic potential of NK-92 cells is attributed to their expression of the full repertoire
of currently identified activating receptors [118], while exhibiting only a limited set of
inhibitory receptors, including LIR/ILT, CD94/NKG2A, and KIR2DL4 [119,120].

In addition to their lack of most inhibitory KIRs, which reduces the likelihood of
functional inhibition, NK-92 cells also do not express CD16a (FcγRIIIa), a critical receptor
responsible for mediating ADCC and acting as a major activator of NK cell cytotoxicity.
Nevertheless, genetic engineering approaches have successfully introduced high-affinity
recombinant IgG Fc receptor (FcγR) [121] or reactivated endogenous CD16 expression [122]
in NK-92 cells, thereby enhancing their antitumor efficacy in combination with various
monoclonal antibodies.

Irradiation, while necessary to mitigate the risk of uncontrolled proliferation, has a
detrimental impact on NK-92 cell survival and cytotoxic function, rendering these cells
highly susceptible to Fas-mediated apoptosis and killing by primary blood NK cells. Con-
sequently, innovative strategies are indicated to replace irradiation as an antiproliferative
measure, including genetic disruption of Fas and other NK cell activation ligands, with



Int. J. Mol. Sci. 2025, 26, 11224 15 of 31

the goal of enhancing the persistence and therapeutic efficacy of NK-92-derived cell prod-
ucts [123].

A review of the literature indicates that, to date, three preclinical studies have eval-
uated CAR-NK cell therapy targeting MM utilizing the NK-92 cell line as an effector
platform [124–126]. In addition, a multicenter, phase I dose-escalation clinical trial was
registered China to evaluate a second generation anti-BCMA CAR construct utilizing the
NK-92 cell line (NCT03940833).

6. Targets for CAR-NK Cell Therapy in Multiple Myeloma
Given the heterogeneity of available NK cell sources and their distinct biological prop-

erties, the design of CAR constructs must be carefully aligned not only with the expansion
potential and safety profile of the selected NK population but also with the therapeutic
target in MM. While the optimization of NK-specific signaling domains represents one
critical step toward maximizing efficacy, an equally important consideration is the choice
of TAA. In MM, where clonal evolution and antigen escape pose major challenges, the
rational selection of appropriate targets such as BCMA, GPRC5D, NKG2D, CD38, CD70,
CD138, and SLAMF7 has become a central focus in advancing CAR-NK therapy (Figure 3).

Figure 3. Current targets for CAR-NK Cell therapy in Multiple Myeloma.

6.1. BCMA

BCMA (also known as TNFRSF17) is a well-validated target for MM therapy due to
its highly restricted expression on normal and malignant plasma cells. This selectivity
minimizes the risk of off-tumor toxicity while ensuring broad coverage across MM clones.
However, BCMA shedding by γ-secretase can decrease surface antigen density [127] and
lead to therapeutic resistance, motivating the development of strategies such as γ-secretase
inhibition and dual-targeting constructs to enhance antigen availability and durability
of response.

Preclinical studies have consistently demonstrated that NK cells engineered with
anti-BCMA CARs exert potent cytotoxic effects against MM cells in vitro and in vivo. Two
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recent series of studies used NK cell platforms derived from the NK-92 cell line and from
iPSC-derived NK cells. NK-92-based platforms expressing anti-BCMA CARs (includ-
ing constructs that co-express pro-apoptotic payloads such as soluble TRAIL) showed
enhanced killing of MM cell lines and primary samples, increased secretion of IFN-γ
and granzyme B, and significant antitumor efficacy in xenograft models [25,128]. When
combined with agents such as bortezomib or γ-secretase inhibitors, these CAR-NK cells
exhibited synergistic effects, highlighting the translational potential of rational combination
approaches [25,128].

A major advancement has been the development of iPSC-derived CAR-NK prod-
ucts, exemplified by the FT576 platform. This product integrates multiple edits—an opti-
mized anti-BCMA CAR, a high-affinity non-cleavable CD16 receptor to augment ADCC, a
membrane-bound IL-15/IL-15R fusion to support in vivo persistence, and CD38 knockout
to prevent fratricide during combination with daratumumab. These iNK cells with four
integrated functional edits demonstrated sustained, cytokine-independent antitumor ac-
tivity in MM xenograft models, supporting an “off-the-shelf” allogeneic approach with
enhanced functionality and persistence [61,115,116]. Complementary CRISPR/Cas9-based
multiplex gene editing strategies have been explored to remove inhibitory receptors and
improve metabolic fitness, aiming to further potentiate NK-cell effector function within the
suppressive tumor microenvironment [98].

Preclinical activity has been assessed using cytotoxicity assays, cytokine profiling, se-
rial restimulation experiments, and both localized and disseminated xenograft models. The
absence of uncontrolled cytokine release or off-target cytotoxicity across studies reinforces
the favorable safety profile of CAR-NK platforms.

Translational progress is reflected in several ongoing early-phase clinical trials, in-
cluding the evaluation of FT576 in the Phase I study (NCT05182073). Twelve patients
received treatment following a three-dose schedule, administered either as monotherapy
or in combination with CD38-targeted monoclonal antibody therapy. Patients were treated
with doses of 1 × 109 cells (n = 6) or 2.5 × 109 cells (n = 6) per infusion. Interim clinical
reports have shown biological activity in low-dose cohorts with decreases in serum BCMA
levels, alongside a complete absence of CRS, ICANS, or GvHD, supporting the favorable
safety profile predicted from preclinical studies. Among the six heavily pretreated patients
who received FT576 at a dose of 1 × 109 cells per infusion, five (83%) achieved a clini-
cal response. Notably, two penta-exposed patients treated with FT576 as monotherapy
achieved very good partial responses [129]. Additional trials (NCT05008536, NCT03940833,
NCT05652530, NCT06045091, and NCT06242249) are investigating diverse CAR constructs
and NK-cell sources, including umbilical- and cord-derived and NK-92-based products, pri-
marily focusing on safety, persistence, and preliminary efficacy in relapsed/refractory MM.

Despite encouraging progress, several challenges remain. BCMA loss and shedding
continue to drive escape mechanisms, and the persistence of CAR-NK cells in vivo remains
a key area for optimization. Advances in NK-specific CAR design, cytokine engineering,
and multiplex genomic editing hold promise for improving potency, durability, and resis-
tance to antigen escape. Collectively, current data position BCMA as the most advanced
and clinically validated target for CAR-NK therapy in MM, bridging potent anti-myeloma
activity with a favorable safety profile that may ultimately complement or extend the
success of BCMA-directed CAR-T approaches.

6.2. BCMA-Based Dual-Target

Despite the significant progress achieved with BCMA-directed immunotherapies,
including CAR-T and CAR-NK products, therapeutic resistance remains a major clinical
challenge. Mechanisms such as antigen loss, heterogeneous BCMA expression, and soluble
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BCMA-mediated neutralization can lead to relapse following initially successful responses.
To overcome these limitations, researchers have explored dual-targeting CAR-NK cell
strategies, integrating BCMA recognition with additional TAA to broaden tumor coverage,
enhance trafficking, and reduce antigen escape. This section discusses the main BCMA-
based dual-target CAR-NK approaches reported to date, each designed with distinct
biological rationales and engineering concepts.

6.2.1. BCMA and CD19

The combination of BCMA and CD19 targets aims to address tumor heterogeneity
across different stages of B-cell maturation. While BCMA is highly expressed on mature
plasma cells, CD19 is retained on earlier B-lineage cells and in certain myeloma stem-
like subsets [130]. Thus, BCMA—CD19 dual-target CAR-NK cells were developed to
simultaneously eradicate plasma cells and precursor populations, potentially preventing
relapse arising from residual CD19+ myeloma progenitors.

A representative study by Roex et al. demonstrated that dual BCMA/CD19 CAR-NK
cells effectively lysed tumor B-cell lines and primary patients samples while maintaining
selective recognition of malignant cells, even at low effector to target ratios [131]. Dual-
CAR NK-92 cells have been shown to retain their functional activity following gamma
irradiation, supporting their potential as an “off-the-shelf” platform for clinical application.
The CAR constructs in this model contained scFvs recognizing BCMA and CD19, and
utilized CD8α hinge and transmembrane regions coupled to 4-1BB and CD3ζ signaling
domains, optimized for NK activation [131].

6.2.2. BCMA and GPRC5D

GPRC5D, a G protein–coupled receptor of unknown physiological ligand, has recently
gained prominence as a promising antigen for immunotherapy in MM [132]. Its expression
is largely restricted to malignant plasma cells, with minimal presence in normal tissues apart
from limited hair follicle keratinocytes, suggesting a favorable safety window. Importantly,
GPRC5D expression often persists in MM clones that have lost or downregulated BCMA,
making it an attractive complementary or independent therapeutic target. Thus, combining
BCMA and GPRC5D recognition is a rational strategy to mitigate antigen escape and
maintain efficacy in tumors with heterogeneous antigen profiles.

Recent preclinical and early clinical investigations (NCT06594211), including those
presented at American Society of Hematology (ASH) 2022 and American Association
for Cancer Research 2023, explored allogeneic BCMA/GPRC5D dual-target CAR-NK
constructs [91,133]. These CAR-NKs employed tandem or bicistronic architectures enabling
recognition of both targets. Early preclinical data demonstrated potent cytotoxicity against
diverse MM cell lines regardless of BCMA or GPRC5D expression levels, and improved
disease control in xenograft models compared to single-antigen CAR-NKs.

A clinical program (NCT06594211) is now evaluating this dual-target CAR-NK therapy
in patients with relapsed/refractory MM. The rationale for this program underscores
redundant antigen targeting to prevent clonal escape and enhanced durability through
combined antigen coverage.

6.2.3. BCMA and CXCR4

Incorporation of CXCR4 into CAR-NK constructs does not represent a second anti-
genic target but rather a homing modification to enhance NK-cell migration toward the
bone marrow niche—where MM cells predominantly reside. Since NK cells often exhibit
limited trafficking to the marrow microenvironment, CXCR4 co-expression restores their
responsiveness to stromal CXCL12 gradients.
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Ng et al. engineered BCMA-CAR PB-NK cells co-expressing CXCR4 and demonstrated
improved in vivo tumor localization and prolonged survival in MM-bearing mice com-
pared to unmodified BCMA-CAR NK cells [90]. This strategy effectively addressed a key
barrier to NK-based immunotherapy: insufficient tumor homing. The CAR construct itself
was a conventional second-generation design with anti-BCMA scFv–CD8α hinge–CD8α
TMD–CD3ζ (or DAP12) signaling domain, while the additional CXCR4 transgene provided
chemotactic advantage without altering target specificity. This “homing-enhanced” de-
sign represents a promising direction for increasing the translational efficacy of BCMA
CAR-NKs.

BCMA-based dual-target strategies illustrate the logical progression of CAR-NK ther-
apy from single-antigen precision to multi-dimensional tumor recognition. Each secondary
component—CD19, GPRC5D or CXCR4—addresses a distinct biological challenge: CD19
extends recognition to early progenitor clones; GPRC5D mitigates BCMA heterogeneity
and escape; CXCR4 improves bone marrow homing.

Collectively, these approaches demonstrate how rational CAR design can integrate
antigen coverage, localization, and functional persistence to optimize therapeutic outcomes.
As the field advances, future constructs may incorporate logic-gated or tandem CAR
architectures and gene edits that dynamically modulate NK activation in response to
complex MM microenvironments.

6.3. GPRC5D

A recent study presented at the ASH 2023 [134] described the development and preclin-
ical evaluation of human iPSC-derived CAR-NK cells targeting GPRC5D. These NK cells
were engineered to express a GPRC5D-specific CAR optimized for NK signaling using a
piggybac transposon system. In vitro assays demonstrated potent antigen-specific cytotoxic
activity against BCMA+/GPRC5D+ MM cell line (NCI-H929), showing an overwhelming
advantage of the engineered CAR-NK cells, with approximately 90% tumor cell lysis com-
pared to minimal activity observed in CB-NK cells (no detectable killing) and wild-type
iPSC-derived NK cells (around 10% killing rate). Moreover, cryopreserved GPRC5D tar-
geting CAR-engineered NK cells retained comparable antigen-specific cytotoxicity in vitro
and demonstrated the capacity to reduce tumor burden in an antigen-dependent manner
in the xenograft model.

These results provide strong preclinical validation for GPRC5D as a standalone CAR-
NK target in MM and complement emerging dual-target strategies that include BCMA.
The consistent efficacy across MM models highlight GPRC5D’s translational promise for
future clinical development of allogeneic CAR-NK therapies aimed at overcoming antigen
escape and improving long-term disease control.

6.4. NKG2D

NKG2D is an activating receptor broadly expressed on NK cells and subsets of T cells
that recognizes stress-induced ligands such as MICA, MICB, and ULBP family proteins,
frequently upregulated on malignant plasma cells but largely absent from normal tissues.
This ligand multiplicity makes NKG2D an attractive target for CAR engineering in MM,
offering the potential to overcome antigen heterogeneity and escape that limit single-
antigen approaches. Preclinical studies have demonstrated that NKG2D-based CAR-NK
cells can efficiently recognize and lyse MM cells in vitro and control tumor progression
in vivo [23,135].

Leivas and colleagues generated NKG2D-CAR-modified NK cells derived from pa-
tient PB, using a construct in which the NKG2D ectodomain was fused to intracellular
4-1BB and CD3ζ signaling domains [135]. These CAR-NK cells exhibited robust cytotoxi-
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city against various MM cell lines and primary MM plasma cells, while sparing healthy
cells. In xenograft models, treatment significantly reduced tumor burden and improved
survival without evidence of toxicity. The same group’s earlier work presented at ASH 2018
confirmed efficient gene transfer, stable CAR expression, and selective killing of BCMA-
positive and BCMA-negative MM populations, highlighting the advantage of NKG2D
CARs in addressing clonal diversity [23]. A comparative analysis using NK-92 cells further
supported these findings, showing that NKG2D CAR-NK cells achieved comparable or
superior anti-myeloma activity relative to BCMA-CAR constructs, reflecting their broader
recognition of stress ligands expressed on tumor cells [126].

Safety assessment in preclinical models revealed minimal off-target reactivity and
no genomic instability following NK cell expansion, indicating a favorable profile for
clinical translation. The first clinical trial investigating NKG2D-CAR-NK therapy in re-
lapsed/refractory MM is currently underway, aiming to evaluate safety, tolerability, and
early efficacy endpoints (NCT06379451). Although detailed CAR construct features have
not been publicly disclosed, existing preclinical data strongly support the translational
potential of this approach.

Overall, NKG2D-directed CAR-NK cells represent a promising strategy that broadens
target coverage and may mitigate the challenge of antigen escape in MM. Their favorable
safety profile, together with evidence of potent anti-myeloma activity, low cytotoxicity
against healthy cells (lung, PBMCs), with a basal expression of NKG2D ligands, and
absence of GvHD in preclinical models, positions NKG2D as a compelling complement to
lineage-specific targets such as BCMA. Ongoing clinical evaluation will determine whether
the pleiotropic ligand engagement of NKG2D can be harnessed effectively and safely in
patients with MM.

6.5. CD38

CD38 is a transmembrane glycoprotein widely expressed on malignant plasma cells
in MM, as well as on various hematopoietic and non-hematopoietic cell types, which
introduces both opportunities and challenges for targeted immunotherapy. While its broad
expression supports robust antigen accessibility, it also raises concerns about on-target,
off-tumor cytotoxicity. Nevertheless, the clinical success of monoclonal antibodies such as
daratumumab and isatuximab [136,137] has validated CD38 as a therapeutically actionable
target and encouraged exploration of CD38-directed cellular therapies.

Preclinical studies have demonstrated that NK cells engineered with anti-CD38 CARs
can effectively recognize and eliminate MM cells while maintaining an acceptable safety
profile through the use of optimized receptor design and regulated expression. One of
the earliest and most detailed reports used CD34+ HSPCs-derived allogeneic NK cells
transduced with a retroviral vector carrying second generation CD38-specific CAR (PNK-
CAR38 cells), which showed significant cytotoxic activity against MM cell lines both in vitro
and in a disseminated lymphoma murine xenograft model [102].

Building on these findings, more recent work has developed NK-92-derived and PB-
derived CAR-NK platforms incorporating CD38-directed receptor. PB-NK cells expressing
anti-CD38 CAR demonstrated potent anti-myeloma cytotoxicity while exhibiting controlled
activation to minimize fratricide and off-target toxicity [138].

An emerging strategy further expands the scope of CD38 targeting by combining it
with other antigens to prevent immune escape. A dual-target construct co-recognizing
GPRC5D and CD38 has been developed in the FT555 platform—a multiplex-engineered
iPSC-derived CAR-NK product that integrates an anti-GPRC5D CAR, a second anti-CD38
CAR, a IL-15/IL-15 receptor fusion protein for cytokine-independent persistence, and a
high-affinity CD16 receptor for enhanced ADCC. Preclinical data have shown that this dual-



Int. J. Mol. Sci. 2025, 26, 11224 20 of 31

target approach preserves robust killing of MM cells with heterogeneous antigen expression,
mitigating the risk of single-antigen loss and supporting a path toward more durable
responses. The FT555-mediated antitumor activity further enhances when combined with
daratumumab, resulting in deeper tumor growth inhibition and improved survival [139].

Together, these findings position CD38 as a valuable yet complex target for CAR-NK
therapy in MM. While antigen expression on the surface of cells of myeloid and lymphoid
lineage and cells of nonhematopoietic origin remains a potential limitation, the evolution
of NK-specific CAR constructs, controlled signaling designs, and multiplex antigen target-
ing strategies—exemplified by the GPRC5D + CD38 dual CAR-NK platform—may enable
effective and safe exploitation of CD38-directed immunotherapy in future clinical applications.

6.6. CD70

CD70, a member of the tumor necrosis factor family, is a type II transmembrane
protein that interacts with its receptor CD27 to regulate lymphocyte activation and survival.
Under physiological conditions, CD70 expression is transient and tightly restricted to
activated immune cells. In MM, however, CD70 is aberrantly and persistently expressed on
malignant plasma cells, while CD27 may be downregulated during disease progression,
suggesting that CD70 signaling contributes to tumor proliferation, immune evasion, and
resistance to apoptosis. This expression pattern, together with its limited presence on
normal tissues, makes CD70 an attractive target for cellular immunotherapy in MM.

Recent preclinical work published in Blood [99] has explored the feasibility of CD70-
directed CAR-NK cell therapy. CD70 expression was detected in all evaluated patients
(10/10) who had relapsed following BCMA-targeted treatments, indicating its promise
as an alternative antigen in cases of BCMA therapy resistance. CD70-specific CAR-NK
cells demonstrated potent cytolytic activity against CD70+ MM cell lines, while showing
the same cytotoxicity toward the CD70− H929 myeloma line as non-engineered NK cells,
confirming their antigen specificity. In a murine MM model, CD70 CAR-NK cells achieved
superior tumor control and significantly prolonged survival, underscoring their therapeutic
potential in relapsed or refractory MM.

Building on these findings, a first-in-human Phase I/II clinical trial (NCT05092451) is
currently recruiting, which aims to evaluate the safety and preliminary efficacy of allogeneic
CB-derived CD70-directed CAR-NK cells in patients with relapsed or refractory MM. This
trial represents one of the earliest clinical efforts to assess CD70 as a viable NK-based
therapeutic target in plasma cell malignancies. The study design includes dose escalation
with multiple administration cycles, monitoring for CRS, ICANS, and GvHD.

Altogether, these data highlight CD70 as a promising and biologically rational target
for CAR-NK therapy in MM. The combination of restricted antigen expression demon-
strated in vivo efficacy, and early clinical translation supports further development of
CD70 CAR constructs, particularly those incorporating NK-optimized signaling motifs
to maximize cytotoxicity while minimizing off-tumor reactivity. Continued refinement of
CAR architecture and exploration of dual-target strategies may further enhance the clinical
potential of CD70-directed CAR-NK approaches in MM.

6.7. CD138

CD138 (syndecan-1) is a heparan sulfate proteoglycan abundantly expressed on the
surface of normal and malignant plasma cells, playing a key role in cell adhesion, pro-
liferation, and interaction with the bone marrow microenvironment. In MM, CD138
expression is not only a diagnostic hallmark but also contributes to disease pathogenesis
by mediating tumor–stroma interactions and protecting myeloma cells from apoptosis.
Its restricted expression in terminally differentiated plasma cells and minimal presence
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on other hematopoietic cells make CD138 an appealing therapeutic target for cellular
immunotherapy in MM [40,140,141].

Early preclinical studies provided proof of concept for CD138-directed CAR-based
approaches. A seminal investigation by Jiang and colleagues [125] demonstrated that
NK-92MI cells (IL-2-independent derivative cell line of NK-92) engineered to express a
CD138-specific CAR effectively recognized and killed CD138+ MM cell lines (RPMI8226,
U266 and NCI-H929). The construct incorporated a CD138-binding scFv fused to a CD8α-
based hinge and a CD3ζ cytoplasmic tail, which was sufficient to trigger NK activation
and cytotoxic degranulation. In xenograft mouse models, CD138 CAR-NK-92MI cells
significantly inhibited tumor progression and prolonged survival compared with control
NK-92MI cells, without inducing overt toxicity in non-hematopoietic tissues. These data
established CD138 as one of the earliest validated targets for CAR-NK therapy in MM.

More recently, an updated study by Jo et al. in Frontiers in Immunology [142] further
explored the potential of CD138 CAR-NK therapy, evaluating PB-NK cells. The study
confirmed potent and selective cytotoxicity against CD138+ myeloma cells (MM1.R and
MM1.S) and demonstrated enhanced production of IFN-γ. Moreover, treatment with the
histone deacetylase inhibitor entinostat (ENT) was shown to significantly enhance and
sustain CAR expression in NK cells. ENT-treated CAR-NK cells demonstrated prolonged
in vivo persistence and achieved greater tumor reduction in a MM xenograft model, high-
lighting the potential of epigenetic modulation to improve the efficacy and durability of
CAR-NK cell therapy.

Together, these findings indicate that CD138 is a promising target for CAR-NK ther-
apy, supported by its consistent overexpression in MM and favorable safety profile. The
evolution of CAR constructs from NK-92 to primary NK systems may further improve
persistence, in vivo expansion, and cytotoxic potency. While no clinical trials have yet been
reported for CD138 CAR-NK cells, the robust preclinical data underscore their translational
potential as part of the next generation of allogeneic, “off-the-shelf” immunotherapies for
relapsed or refractory MM.

6.8. SLAMF7

SLAMF7 (also known as CS1) is a surface glycoprotein highly expressed on normal and
malignant plasma cells [143] and is the target of the clinically approved monoclonal anti-
body elotuzumab; its consistent presence on myeloma cells and limited expression on most
non-hematopoietic tissues make SLAMF7 an attractive antigen for cell-based therapies.

Early preclinical work demonstrated that a viral construct encoding a second-
generation CS1-specific CAR, comprising CD28-CD3ζ intracellular signaling domains,
can be expressed in human NK cells to produce CAR-NK effectors with markedly en-
hanced anti-myeloma activity. CS1-CAR NK cells exhibited increased cytotoxicity and
IFN-γ production against MM cell lines and primary patient samples in vitro, and signifi-
cantly reduced tumor burden in xenograft models relative to unmodified NK cells [124].

Reviews and subsequent analyses place these findings in context, noting that SLAMF7-
directed approaches benefit from a well-characterized safety profile in humans (from
antibody therapy) and are biologically rational for combination strategies that harness
innate and adaptive immunity [40]. Taken together, the available evidence supports
SLAMF7 as a viable target for CAR-NK development in MM, with robust preclinical
activity and a translational rationale anchored by existing clinical experience with SLAMF7-
directed antibodies. However, a major limitation of this strategy lies in the fact that CS1
is also expressed on normal lymphocytes and NK cells, which may lead to fratricide
both in vitro and in vivo, thereby reducing NK cell viability and compromising their anti-
myeloma activity.
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7. Translation Barriers
To facilitate clinical translation of CAR-NK approaches for MM, several key transla-

tional barriers remain.
First, manufacturing scalability and product consistency are major challenges: donor-

to-donor variability [12], low and variable expansion yields of primary NK cells [144],
and lack of fully automated, closed-system processes [145] complicate large-scale GMP
production and batch reproducibility.

Second, logistics and supply-chain constraints—including cryopreservation effects
on potency, cold-chain distribution, and the need for rapid centralized or decentralized
manufacturing networks—add operational complexity and cost that may limit broad access.

Third, regulatory and quality-control hurdles are nontrivial: standardizing robust potency
assays, ensuring consistency among different manufacturing batches and gene-edited NK cell
lines, and addressing safety aspects associated with multiplex genome editing or immortalized
platforms require early and continuous interaction with regulatory authorities.

Beyond manufacturing challenges, the evolving regulatory framework for NK-cell
therapies constitutes a further critical hurdle. In both the United States and Europe, manu-
facturers must comply with rigorous guidelines for cell-product identity, manufacturing
control, and batch reproducibility. For example, in the U.S., therapies derived from human
cells or tissues fall under regulations such as 21 CFR Part 1271 [146], and FDA requires
validated identity assays and reproducible manufacturing across sites as a prerequisite
for market authorization [147]. In Europe, the European Medicines Agency (EMA) via its
Committee for Advanced Therapies (CAT) guideline emphasizes a risk-based approach
with rigorous traceability, standardized testing, and critical-quality-attribute monitoring
for cell-based medicinal products [148]. International harmonization efforts—for example,
through the International Council for Harmonisation of Technical Requirements for Phar-
maceuticals for Human Use (ICH) and the International Society for Cell & Gene Therapy
(ISCT)—remain nascent, and the absence of unified global standards further increases
cost, complexity, and time to market. Thus, regulatory-manufacturing interplay remains a
significant translational barrier to scalable, “off-the-shelf” CAR-NK therapies.

Finally, while scalable platforms such as iPSC-derived [149,150] and well-characterized
cell banks offer a promising route to “off-the-shelf” CAR-NK products, they also introduce
additional manufacturing and regulatory demands—including master-cell-bank character-
ization [148], long-term genomic stability [151], and demonstrable control of differentia-
tion [109,152]—which must be addressed to realize cost-effective, widely available therapies.

Collectively, these bottlenecks argue for prioritized investment in process automation,
harmonized potency and release criteria, cryopreservation-compatible formulations, and
early regulatory dialogue to enable the safe and scalable clinical deployment of CAR-NK
therapies in MM. A concise summary of the principal translational bottlenecks is presented
in Table 2.

Table 2. Key translational barriers in the clinical development of CAR-NK cell therapies for multi-
ple myeloma.

Category Representative Barriers Translational Impact

Manufacturing scalability
and consistency

Donor-to-donor variability; limited
expansion yields of primary NK cells;

absence of fully automated,
closed-system processes

Batch-to-batch inconsistency and limited
large-scale GMP production capacity

Logistics and supply-chain constraints

Cryopreservation effects on viability and
potency; complex cold-chain distribution;

need for rapid, decentralized
manufacturing networks

Increased cost and reduced accessibility
of therapy
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Table 2. Cont.

Category Representative Barriers Translational Impact

Regulatory and quality-control hurdles

Lack of standardized potency and
identity assays; variability across

manufacturing sites; evolving oversight
of multiplex gene-edited NK lines

Delayed clinical translation and higher
Chemistry, Manufacturing, and Controls

(CMC)/regulatory burden

Technological platform limitations

iPSC-derived and immortalized NK
sources require master-cell-bank

characterization, genomic-stability
monitoring, and differentiation control

Added safety and validation demands
before “off-the-shelf” application

Global standardization gaps
Fragmented regulatory expectations
between U.S., EU, and Asia; limited

ICH/ISCT harmonization

Increased development cost and longer
time to market

8. Conclusions
Over the past two decades, the concept of enhancing NK cell functionality through

CAR engineering has gained remarkable traction. A broad range of preclinical studies
have explored diverse NK cell sources, culture conditions, and vector platforms, leading
to the emergence of several CAR-NK candidates currently being evaluated in early-phase
clinical trials for MM. These developments have firmly established CAR-NK therapy as a
promising and distinct modality within the landscape of cellular immunotherapy.

However, most CAR constructs used to date were initially designed for T cells and only
partially exploit NK-cell-specific signaling pathways. Given that NK cells rely on unique
activating receptors and adaptor molecules to regulate their cytotoxic responses, rational
CAR redesign—incorporating NK-tailored extracellular, transmembrane, and intracellular
domains—may substantially enhance therapeutic potency and disease specificity. This
optimization is particularly relevant in MM, where tumor heterogeneity and antigen escape
pose major challenges to durable disease control.

Preclinical and early clinical evidence demonstrates that CAR-NK cells targeting MM-
associated antigens such as BCMA, GPRC5D, NKG2D, CD38, CD70, CD138, and SLAMF7
can mediate potent, selective cytotoxicity with minimal toxicity. The development of iPSC-
derived and multiplex-edited NK platforms has also mitigated key limitations related to
persistence, cytokine dependence, and manufacturing scalability. Early clinical data show
encouraging safety and biological activity without severe cytokine release or neurotoxicity,
distinguishing these therapies from CAR-T cell approaches.

Nevertheless, important challenges remain, including limited in vivo expansion, po-
tential antigen loss, and the need for sustained efficacy in heavily pretreated patients.
Continued refinement of CAR design, incorporation of autocrine cytokine support, and im-
plementation of multi-target or combination strategies are expected to enhance therapeutic
performance. Collectively, current evidence supports CAR-NK cells as a safe, versatile, and
scalable platform with the potential to redefine the immunotherapeutic paradigm for MM.
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GvHD Graft-versus-host disease
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CB Cord blood
iPSC Induced pluripotent stem cell
BCMA B-cell maturation antigen
ICANS Immune effector cell–associated neurotoxicity syndrome
TAA Tumor-associated antigens
MHC Major histocompatibility complex
scFv Single-chain variable fragment
TMD Transmembrane domain
DAP10 DNAX-activating protein 10
DAP12 DNAX-activating protein 12
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ADCC Antibody-dependent cellular cytotoxicity
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