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Abstract

T/NK-cell neoplasms represent rare and highly diverse cancers, distinguished by variabil-
ity in their molecular architecture, local inflammatory milieu, and microenvironmental
composition, which collectively underpin the diversity of clinical presentations and out-
comes. The neoplastic tissue comprises malignant lymphoma/leukemic cells in concert
with a spectrum of stromal elements and the acellular extracellular matrix (ECM), collec-
tively constituting the lymphoma microenvironment (LME). These components engage in
dynamic, reciprocal interactions, forming a self-regulating ecosystem capable of responding
adaptively to both exogenous and endogenous stimuli. Historically, the LME was largely
neglected in considerations of lymphomagenesis; however, emerging evidence highlights
its pivotal role in driving core oncogenic processes, including sustained proliferative sig-
naling, angiogenesis, immune evasion, and apoptotic resistance. Deciphering the intricate,
multidirectional crosstalk among the cellular and acellular constituents of the T/NK-cell
neoplastic microenvironment promises to deepen our understanding of disease biology
and may inform the development of novel, mechanism-based therapeutic interventions.

Keywords: T/NK-cell neoplasms; lymphoma microenvironment; extracellular matrix;
cellular stroma; acellular stroma

1. Introduction
T/NK-cell neoplasms constitute a highly heterogeneous and rare group of cancers [1].

Their presumed cells of origin are mature T or NK-cells. It is hypothesized that oncogenic
transformation occurs early in the cellular life cycle, yet the malignant clone retains the
capacity for terminal differentiation and maturation. This phenomenon likely reflects
preservation of the cellular maturation program, in contrast to immature T/NK-cell coun-
terparts. Although these neoplastic cells are phenotypically mature, they harbor extensive
molecular abnormalities, which contribute to the marked histological and clinical hetero-
geneity observed across distinct entities. Clinically, T/NK-cell neoplasms may present as
nodal, extranodal, or leukemic disease, depending on the distribution and growth pattern
of the malignant cells, although overlapping patterns are frequently observed.
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T/NK-cell neoplasms account for approximately 10–15% of all non-Hodgkin lym-
phomas (NHL) in adults, classifying them as rare entities [1]. A prominent epidemiological
feature of these neoplasms is their association with viral infection, notably Epstein–Barr
virus (EBV) and human T-cell lymphotropic virus type 1 (HTLV-1), which underlies marked
geographic and racial variation in incidence [1]. The occurrence of T/NK-cell neoplasms
closely parallels the prevalence of these viral infections in endemic regions, including the
Eastern Hemisphere, with Japan, broader Asia, West Africa, and South America being most
heavily affected [2,3].

The two leading international consortia have recently issued updated classifications
incorporating the most current advances in the field: the 5th Edition of the World Health
Organization Classification of Haematolymphoid Tumors (WHO-HAEM5, 2022) and the
International Consensus Classification of Mature T/NK-Cell Neoplasms (ICC, 2022) [4–6].
A comparative synthesis of these frameworks is presented in Table 1.

Table 1. T/NK-cell neoplasms/disorders comparative table (WHO 2022 vs. ICC 2022).

WHO, 5th Edition (WHO-HAEM5) 2022 International Consensus Classification (ICC) 2022

Mature T-cell and NK-cell leukemias (primary leukemias)

T-prolymphocytic leukemia (T-PLL) T-cell prolymphocytic leukemia (T-PLL)

T-cell large granular lymphocytic leukemia (T-LGL) T-cell large granular lymphocytic leukemia (T-LGL)

NK-cell large granular lymphocytic leukemia (NK-LGL) Chronic LPD of NK-cells

Adult T-cell leukemia/lymphoma (ATLL) Adult T-cell leukemia/lymphoma (ATLL)

Sézary syndrome (SSy) Sézary syndrome (SSy)

Aggressive NK-cell leukemia (ANKL) Aggressive NK-cell leukemia (ANKL)

Primary cutaneous T-cell lymphomas (CTCL)

Primary cutaneous CD4+ small or medium T-cell LPD Primary cutaneous small/medium CD4+ T-cell LPD

Primary cutaneous acral CD8+ LPD Primary cutaneous acral CD8+ LPD

Mycosis fungoides (MF) Mycosis fungoides (MF)

Primary cutaneous CD30+ T-cell LPD: Lymphomatoid papulosis (LyP) Primary cutaneous CD30+ T-cell LPD: Lymphomatoid papulosis (LyP)

Primary cutaneous CD30+ T-cell LPD: Primary cutaneous anaplastic
large cell lymphoma

Primary cutaneous CD30+ T-cell LPD: Primary cutaneous anaplastic
large cell lymphoma

Subcutaneous panniculitis-like T-cell lymphoma Subcutaneous panniculitis-like T-cell lymphoma

Primary cutaneous γ/δ T-cell lymphoma Primary cutaneous γ/δ T-cell lymphoma

Primary cutaneous CD8+ aggressive epidermotropic cytotoxic T-cell
lymphoma

Primary cutaneous CD8+ aggressive epidermotropic cytotoxic T-cell
lymphoma

Primary cutaneous peripheral T-cell lymphoma, NOS Not included

Intestinal T-cell and NK-cell lymphoid proliferations and lymphomas (extranodal)

Indolent T-cell lymphoma of the gastrointestinal tract Indolent clonal T-cell LPD of the gastrointestinal tract

Enteropathy-associated T-cell lymphoma (EATL) Enteropathy-associated T-cell lymphoma (EATL)

Monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL) Monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL)

Intestinal T-cell lymphoma, NOS Intestinal T-cell lymphoma, NOS

Hepatosplenic T-cell lymphoma (extranodal)

Hepatosplenic T-cell lymphoma (HSTCL) Hepatosplenic T-cell lymphoma (HSTCL)

Anaplastic large cell lymphoma (nodal)

ALK+ anaplastic large cell lymphoma (ALCL, ALK+) Anaplastic large cell lymphoma, ALK+ (ALCL, ALK+)

ALK- anaplastic large cell lymphoma (ALCL, ALK-) Anaplastic large cell lymphoma, ALK- (ALCL, ALK-)

Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL)

Nodal T-follicular helper (TFH) cell lymphoma

Nodal TFH cell lymphoma, angioimmunoblastic-type (AITL) TFH-cell lymphoma, angioimmunoblastic type (AITL)
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Table 1. Cont.

WHO, 5th Edition (WHO-HAEM5) 2022 International Consensus Classification (ICC) 2022

Nodal TFH cell lymphoma, follicular-type TFH-cell lymphoma, follicular type

Nodal TFH cell lymphoma, NOS TFH-cell lymphoma, NOS

Other peripheral T-cell lymphomas

Peripheral T-cell lymphoma, NOS (PTCL-NOS) Peripheral T-cell lymphoma, NOS (PTCL-NOS)

EBV-positive NK/T-cell lymphomas

EBV+ nodal T or NK-cell lymphoma Primary nodal EBV+T/NK-cell lymphoma

Extranodal NK/T-cell lymphoma (ENKTCL) Extranodal NK/T-cell lymphoma, nasal type (ENKTCL)

EBV-positive T and NK-cell lymphoid proliferations and lymphomas of childhood

Severe mosquito bite allergy Severe mosquito bite allergy

Hydroa vacciniforme LPD Hydroa vacciniforme LPD

Systemic chronic active EBV disease Chronic active EBV disease, systemic (T or NK-cell phenotype)

Systemic EBV+ T-cell lymphoma of childhood Systemic EBV+ T-cell lymphoma of childhood

LPD—lymphoproliferative disease; NOS—not otherwise specified; ALK—anaplastic lymphoma kinase.

Regardless of the classification system employed, a simplified framework commonly
categorizes T/NK-cell neoplasms as nodal, extranodal, or leukemic, although overlapping
features are frequently observed. Both the WHO-HAEM5 and ICC 2022 have provided
integrative approaches to the classification of T/NK-cell neoplasms, incorporating genetics,
pathology, immunophenotype, and clinical presentation. A notable advancement in both
systems is the unification of nodal T follicular helper (TFH) lymphomas into a single entity
and the recognition of EBV+ nodal T/NK-cell lymphoma as a distinct entity [7].

Given their derivation from a common progenitor, T and NK-cell neoplasms are best
considered collectively rather than separately. Mature peripheral T-cells are characterized
by membrane CD3 expression, reflecting a fully developed T-cell receptor (TCR). Cyto-
toxic T-cells are further defined by CD8 expression in conjunction with CD3, along with
cytoplasmic cytotoxic granules, including perforin, T-cell restricted intracellular antigen
(TIA-1), and granzyme B. In the PTCL-NOS subtype, cytotoxic phenotypes are generally
associated with more aggressive clinical behavior, although this is not universal [8–11].
NK-cells, key effectors in innate immunity that also participate in adaptive responses,
consistently express CD16, CD57, and CD56. They typically display only the cytoplasmic
CD3 ε chain, while membrane CD3 is absent, a hallmark of ENKTCL [12–14]. T-helper cells
express membrane CD4 alongside CD3, whereas TFH cells are defined by co-expression of
biomarkers such as BCL6, CD10, CXCL13, PD-1, SAP, ICOS, and CCR5 [8,15,16]. Aberrant
biomarker expression is a central feature of T/NK-cell neoplastic transformation, while
EBV-infected neoplastic cells consistently express latent membrane proteins (LMP1/2) and
EBV-encoded RNA (EBER).

The LME constitutes a dynamic, interdependent ecosystem comprising non-malignant
cellular components, ECM, and a milieu of cytokines, hormones, and exosomes. Within this
ecosystem, neoplastic lymphoma cells are intimately intermixed with stromal and acellular
elements, forming a unified neoplastic ensemble. The components of the LME engage
in complex, reciprocal interactions, providing both supportive and inhibitory signals to
malignant cells. Remarkably, the LME functions as an adaptive endogenous ecosystem,
capable of harmonizing its activities in response to continuous exogenous and endogenous
influences. Historically underappreciated, the LME is now recognized as a critical regulator
of core oncogenic processes, including sustained proliferative signaling, angiogenesis,
immune evasion, and apoptosis resistance, and is emerging as a compelling focus for
translational research. Advances in understanding these interactions are poised to inform
the development of targeted therapeutic strategies.
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2. The Concept of the Microenvironment in T/NK-Cell Neoplasms
In the classical sense, the LME comprises diverse accessory (non-malignant) cells

embedded within acellular matrix components, collectively forming a self-regulating en-
dogenous microecosystem that interacts intimately with malignant lymphoma cells. Func-
tionally, the reactive cellular components, including immune cells, stromal elements, and
angiogenic cells associated with the vasculature, together with acellular matrix compounds
and the cytokine milieu, establish a complex, dynamic network that modulates signaling
pathways, local metabolism, mechanical support, and immune responses, thereby exerting
profound influence on lymphoma cell behavior [17]. The LME facilitates malignant cell
survival through mechanisms such as sustained proliferative signaling, evasion of growth
suppressors, resistance to apoptosis, and immune escape [18]. Figure 1 illustrates the LME
as a discrete microenvironmental ensemble composed of its principal cellular and stromal
components.

Figure 1. Composition of the lymphoma microenvironment.

Furthermore, the concept of the matrisome, a functional ensemble of genes encoding
ECM and ECM-associated proteins, has been introduced to define the coordinated interac-
tions between cellular and acellular stromal components, highlighting the ECM as a living,
dynamic microecosystem (Table 2) [19].

Table 2. The matrisome composition.

Class Representative Molecules

Protein fibers Collagens, Elastin

Glycoproteins Fibronectin, Laminin, Tenascin

Proteoglycans Serglycin, GAGs, Syndecan, Agrecan

Affiliated proteins Annexins, Hemopexin, Galectins

ECM regulators MMPs, TIMPs, Cathepsins, Serpins

Secreted proteins Growth factors, Cytokines

The heterogeneity in the composition of the LME, determined by the diversity of its
cellular constituents and acellular compounds, gives rise to distinct protein transcriptomic
topography which serves as a critical determinant of the clinical heterogeneity observed
among T/NK-cell neoplasms. Moreover, architectural variability within the LME may exert
a profound influence on disease prognosis and outcome.
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A substantial subset of T/NK-cell neoplasms is associated with EBV infection, affecting
either the neoplastic or the stromal compartment. Such infection may induce transcriptomic
perturbations in both cellular groups, culminating in altered antigenic expression and
reprogrammed cytokine secretion. These processes contribute to dynamic remodeling
of the LME, which may consequently modulate the trajectory of lymphomagenesis in
either a facilitative or suppressive manner. Analogous mechanisms are implicated in
HTLV-1–associated T/NK-cell neoplasms, particularly in ATLL [20].

Given the pronounced micromorphological diversity of T/NK-cell neoplasms, encom-
passing differences in morphological appearance, growth architecture, neovascularization
patterns, immune checkpoint receptor expression, and stromal cell composition, it is plau-
sible to infer that the LME exhibits both structural and functional heterogeneity across
disease subtypes. In this context, delineating the precise LME profiles of individual entities
represents an increasingly intricate and challenging endeavor. Ultimately, this complexity
may underlie the marked variability in clinical behavior and outcome observed not only
across distinct T/NK-cell neoplasms but also among nodal, extranodal, and leukemic
counterparts of the same nosological category.

In Table 3, we summarize the principal characteristics of T/NK-cell neoplasms, accom-
panied by an integrative overview of their corresponding LMEs.

Table 3. T/NK-cell neoplasms/disorders composition overview.

WHO-HAEM5 Cell of Origin Immunophenotype Specific LME

NODAL

PTCL-NOS Variabile, mostly T-helper cell
CD4 > CD8, frequent antigen loss
CD5, CD7, CD30+/−, CD56−/+, subset
FTH features, cytotoxic granules+/−

Classical stromal cells but highly
heterogenous composition

ALCL, ALK− Cytotoxic T-cell ALK−, CD30+, EMA+, CD25+,
cytotoxic granules+, CD4+/−, CD3+/−

Reactive histiocytes, fibrosis, immune
evasion via PD-L1

ALCL, ALK+ Cytotoxic T-cell ALK+, CD30+, EMA+, CD25+,
cytotoxic granules+, CD4+/−, CD3+/−

Inflammatory background, activated
TME

BIA-ALCL Undefined, Suggested T-cell of
Th17/Th1 immune response

CD30+, ALK−, EMA+/−, variable
T-cell markers

Fibrous capsule-related
microenvironment, Th17 cytokines

AITL

Follicular helper T-cell (TFH)

Pan T+, CD4+, CD10+/−, bcl6+/−,
CXCL13+, PD1+, ICOS+/−, SAP+/−,
CCD5+/−, hyperplastic FDRC, EBV+

B blasts

Prominent angiogenesis (HEV),
proliferating stromal cells, EBV+ B
cells

Nodal TFH
follicular-type Similar to AITL Expanded FDC meshworks,

angiogenesis

Nodal TFH NOS Similar to AITL Variable stromal and immune
infiltration

Other PTCLs Variable Depends on subtype Heterogeneous

EBV+ nodal T/NK-cell
lymphoma Cytotoxic T or NK EBV+, cytotoxic phenotype EBV-driven microenvironment with

high immune infiltration

EXTRANODAL

ENKTCL NK, rarely cytotoxic T-cells
CD2+, CD56+, sCD3−, cCD3ε+,
granzyme B+, TIA-1+, perforin+,
EBV+, LMP1+

Highly immune stroma,
angiodestructive, necrosis

HSTL Cytotoxic T-cell of the innate
immune system

CD3+, CD56+, CD4−, CD8+, CD5−,
TIA1+, granzyme M+, B−, perforin Low level of stromal cells

MEITL
Intraepithelial T cells or NK,
monomorphic, no preexisting
enteropathy

CD3+, CD7+, CD5−, CD8+, CD56+,
MATK+, HLA DQ2/DQ8 Sparse stroma, epithelial interaction

EATL
Intraepithelial T cells (αβ),
pleomorphic, preexisting
enteropathy

CD3+, CD7+, CD5−, CD8−/+, CD56−,
HLA DQ2/DQ8

Inflammatory background,
enteropathy-related
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Table 3. Cont.

WHO-HAEM5 Cell of Origin Immunophenotype Specific LME

LEUKEMIC

T-PLL Post-thymic T-cell
TdT−, CD1a−, CD2+, CD3+, CD7+,
sCD3 week, CD52+, CD4/CD8
variable

Leukemic spread, minimal LME

T-LGL Cytotoxic T-cell CD3+, CD8+, CD57+, TIA1+ Reactive marrow environment,
immune dysregulation

NK-LGL Cytotoxic NK-cell CD2+, CD3−, CD56+, CD57+, CD16+ Reactive marrow niche

ATLL Peripheral CD4+ reg cells Pan-T-cell, CD4+, CD25+, CD7− HTLV-1 driven microenvironment,
immune suppression

SSy Central memory T-cell CD4+

TH2 cytokine profile expression,
CCR7/L-selectin+, CD27+, CD3+,
CD4+, CD8−, CD7−, PD1+, bcl6+,
CXCL13+

Skin homing microenvironment,
immune suppression

ANKL Mature, cytotoxic NK-cells

CD2+, CD3−, CD3ε+, CD56+, CD57−,
cytotoxic phenotype, CD16+

frequently, CD11b expressed in some
cases

Hemophagocytic environment,
cytokine storm prone

CUTANEOUS

Primary cutaneous CD4+

small or medium T-cell
LPB

CD4+ T-cell CD3+, CD4+, CD8−, CD30− Reactive infiltrate, low stromal
response

Primary cutaneous acral
CD8+ LPD CD8+ T-cell CD3+, CD8+, CD4−, CD30− Indolent, localized stroma

Mycosis fungoides (MF) Mature CD4+ T-cell
CD2+, CD3+, CD4+, CD45RO+,
TCRβ+, CD5+/−, CD7−, CD8−,
CD45RA−, CD45 variable CD30

Skin microenvironment with
Langerhans cells, fibroblasts

Lymphomatoid
papulosis (LyP) type A,
B, C, D, E, w/6p25

Activated T-cell (Reed-Sternberg
like, cerbriform) CD30+, CD4+, CD8−/+, variable

Inflammatory infiltrate, spontaneous
regression

Primary cutaneous ALCL Cytotoxic T-cell CD30+, ALK− Dense dermal infiltrate, reactive
stroma

Subcutaneous
panniculitis-like T-cell
lymphoma

Cytotoxic T-cell (αβ) CD3+, CD8+, TIA1+/βF+, granzyme
B+, Ki67 elevated

Adipocyte-rich environment,
macrophage infiltration

Primary cutaneous γ/δ
T-cell lymphoma γ/δ T-cell CD3+, CD4−, CD8−, CD56+, TIA-1+,

TCRγ+, Ki67 elevated
Ulcerating lesions, inflammatory
milieu

Primary cutaneous CD8+

aggressive
epidermotropic cytotoxic
T-cell lymphoma

Cytotoxic CD8+ T-cell
CD3+, CD7+, CD8+, TIA-1+,
CD45RA+, βF-1+, CD45RO−, CD56−,
CD4−, EBER−

Epidermal infiltration, inflammatory
background

Primary cutaneous
peripheral T-cell
lymphoma, NOS

Variable T-cell Heterogeneous phenotype Aggressive, heterogeneous stroma

3. Cellular Stroma Composition in T/NK-Cell Neoplasms
The cellular stroma represents a complex assemblage of non-neoplastic cells intimately

admixed with malignant lymphoma cells, collectively establishing the characteristic cytoar-
chitectural organization of T/NK-cell neoplasms. In conjunction with the ECM, the cellular
stroma constitutes the LME, a highly dynamic and functionally diverse compartment.

Based on predominant cellular constituents and biological functions, the LME can be
broadly delineated into three principal stromal categories: an angiogenic stroma, composed
mainly of endothelial cells and pericytes; a classical stromal compartment, encompassing
dendritic cells (DCs), lymphoma-associated macrophages (LAMs), mesenchymal stromal
cells (MSCs), myeloid-derived suppressor cells (MDSCs), cancer-/lymphoma-associated
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fibroblasts (CAFs), and mast cells (MCs); and an immune-cellular stroma, characterized by
reactive immune elements including T, B, and NK-cells.

The cellular stromal composition varies significantly among T/NK-cell lymphoma
subtypes, highlighting that these differences contribute to distinct clinical characteristics
and treatment outcomes for each T/NK-cell neoplasm.

3.1. Angiogenic Stroma (Angiogenesis-Neovascularisation)

Angiogenesis is a fundamental process in lymphoma growth and progression. The
formation of new blood vessels is driven by pro-angiogenic factors, which are produced
by both lymphoma cells and various stromal infiltrating cells, primarily LAMs [21]. In
PTCL-NOS, a profile of cytokine expression promotes the polarization of LAMs into M2
macrophages, which stimulate angiogenesis via production of vascular endothelial growth
factor (VEGF) and other vasculogenic factors [22]. In fact, in PTCL-NOS, AITL, and
ATLL, the majority of the LAMs have been demonstrated to be macrophages with M2
phenotype [23]. T/NK-cell lymphomas with a markedly cellular inflammatory background
show more prominent vascular proliferation, which is particularly emphasized in AITL,
PTCL, or ENKTCL [24].

The morphologic hallmark of AITL is striking arborized vascularity caused by a CD4+

T follicular helper tumor cell clone in orchestration with a robust microenvironment. The
proliferation of high endothelial venules (HEV), follicular dendritic cells, and polymor-
phous reactive cell infiltrate often obscures the minor tumor cell population, rendering
the diagnosis quite challenging [25,26]. Increased expression of VEGF type A, a major
angiogenic stimulator, was detected in both the tumor cells and endothelial cells, indicating
an active role of microvasculature in AITL progression [27].

PTCL-NOS is characterized by histologically unremarkable moderate angiogenesis;
however, high VEGF expression has been linked with poor prognosis [28,29]. The major
histologic feature of ENKTCL is angiocentric and angiodestructive growth, together with
necrosis. The gene expression profiling study in this aggressive lymphoma revealed alter-
ations in angiogenic pathways and overexpression of VEGF-associated genes [30]. A recent
study suggested that silencing of IL-33 inhibited ENKTCL angiogenesis by inactivating
the Wnt/β-catenin signaling pathway, and identified IL-33 as a prospective therapeutic
target [31].

Studies in B-cell NHL indicated an association with increased microvessel density
(MVD) and aggressiveness of the disease [32]. In CTCL, microvascular density was signifi-
cantly higher compared to normal skin with a benign lymphoid infiltrate, which indicated
a possible role of angiogenesis in the development of CTCL [33].

The addition of antiangiogenic agents, including bevacizumab and VEGF inhibitors,
to conventional therapeutic strategies has yielded conflicting results in several types of
T/NK-cell lymphoma [34,35]. A recent study in a high-grade B-cell lymphoma animal
model suggested that the activation of angiogenesis in lymphomas differs significantly from
that in solid tumors [36]. It was found that non-canonical signaling pathways exerted via
VEGFR-3 and LTβ-receptor drive a distinct morphogenic pattern of vasculature formation,
while classic, major signaling pathways (HIF-1α or Notch) are not activated. This may have
profound implications for anti-angiogenic therapy in lymphoma and certainly warrants
further studies.

3.2. Stromal Cells

DCs are professional antigen-presenting cells (APCs) that bridge innate and adaptive
immunity by recognizing tumor or viral antigens and activating naïve CD8+ and CD4+

T-cells [37]. In ENKTCL, DCs are exposed to tumor, and EBV-derived immunosuppressive
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factors, acquiring a tolerogenic phenotype that impairs antigen presentation and weakens T-
cell priming, enabling immune evasion and tumor progression [38]. The absence of immune
pressure accelerates tumor proliferation and the accumulation of additional oncogenic
alterations.

Within the ENKTCL microenvironment, cytokines such as IL-10, TGF-β, and PGE2
inhibit DC maturation, maintaining them in an immature state that promotes immune toler-
ance rather than activation [39–41]. Tolerogenic DCs secrete IL-10, TGF-β, and indoleamine
2,3-dioxygenase (IDO), leading to tryptophan depletion, T-cell arrest, Treg expansion, and
apoptosis, creating a profoundly immunosuppressive niche [42–44]. Tumor-derived and
EBV-associated factors (e.g., LMP1) further downregulate MHC I/II and co-stimulatory
molecules CD80/CD86, preventing effective T-cell priming [37,45].

Functionally, ENKTCL-associated DCs fail to secrete cytotoxic lymphocyte-recruiting
chemokines (CXCL9, CXCL10, CCL5) and may instead attract Tregs or MDSCs, resulting
in reduced CD8+ T-cell and NK-cell infiltration, an “immune-cold” phenotype resistant to
checkpoint blockade [46–48].

Therapeutically, reversing DC dysfunction through vaccines, TLR agonists, FLT3 lig-
ands, or combination with immune checkpoint inhibitors may enhance antitumor immunity
and improve treatment efficacy in ENKTCL.

LAMs are myeloid-lineage cells derived from circulating monocytes, which are re-
cruited into the LME by tumor, and EBV-derived factors such as CCL2, colony-stimulating
factor 1 (CSF-1), and inflammatory cytokines [21,49]. Within the LME, LAMs predom-
inantly adopt an M2-like (alternatively activated) phenotype, expressing markers such
as CD163, CD206, and arginase-1, and producing anti-inflammatory cytokines including
IL-10 and TGF-β [50–52]. This polarization is further reinforced by hypoxia, metabolic
stress, and signals from malignant T/NK-cells [50]. M2-type LAMs promote angiogenesis,
lymphangiogenesis, tissue remodeling, and tumor cell proliferation, while suppressing
adaptive immune responses, contributing to drug resistance, aggressive histology, and
poor clinical outcomes [21,53,54].

A key immunosuppressive mechanism of LAMs involves the induction and mainte-
nance of regulatory T-cells (Tregs). IL-10 inhibits effector T-cell activation and proliferation
and promotes the differentiation of naïve CD4+ T-cells into inducible Tregs, while TGF-β
drives FOXP3 expression and stabilizes Treg suppressive function. LAMs also express
indoleamine 2,3-dioxygenase (IDO), which depletes tryptophan and generates kynurenine
metabolites, arresting T-cell proliferation, inducing apoptosis, and further promoting Treg
expansion. In addition, chemokines such as CCL17 and CCL22 selectively recruit Tregs via
CCR4, creating a profoundly immunosuppressive niche that inhibits CD8+ cytotoxic T-cells
and NK-cells and facilitates immune escape [55].

In EBV-driven neoplasms such as ENKTCL, LAMs not only secrete immunosuppres-
sive cytokines but also express PD-L1, induced by EBV-mediated oncogenic signaling (e.g.,
LMP1) and inflammatory mediators such as IL-10 and IFN-γ [56]. PD-L1+ macrophages
reinforce T-cell dysfunction and contribute to resistance to PD-1/PD-L1 checkpoint block-
ade [57]. Beyond immunosuppression, LAMs promote tumor growth through secretion of
vascular endothelial growth factor (VEGF) and epidermal growth factor (EGF), support-
ing angiogenesis, extracellular matrix remodeling, and recruitment of additional stromal
elements [53,54].

Clinically, high densities of CD68+ or CD163+ LAMs in the LME are strongly associated
with poor progression-free survival (PFS) and overall survival (OS) in patients with mature
T/NK-cell lymphomas [58,59]. T/NK-cell neoplasms are typically characterized by hyper-
inflammatory stroma with hyperactive macrophages. The characteristic cytokine spectrum
of M2-type macrophages is high expression of IL-10 and low expression of IL-12. Increased
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LAM infiltration correlates with B symptoms, extranodal involvement, chemoresistance,
and impaired response to immunotherapy [60]. In PTCL-NOS, malignant T-cells drive
LAM proliferation via the JAK/CSF1R signaling axis, and experimental dual inhibition of
these pathways reduces macrophage expansion, decreases disease burden, and prolongs
survival in preclinical models [61].

Taken together, LAMs represent central regulators of the LME in T/NK-cell lym-
phomas, integrating tumor-promoting, immunosuppressive, and stromal-supportive func-
tions. Therapeutic strategies targeting LAM-mediated mechanisms, including cytokine
blockade (IL-10, TGF-β), metabolic inhibition (IDO), PD-L1 blockade, and disruption of
JAK/CSF1R-driven proliferation offer promising avenues to restore antitumor immunity,
enhance the efficacy of immunotherapies, and improve clinical outcomes in these aggressive
malignancies.

The MSCs are multipotent cells found in various tissues, including bone marrow, adi-
pose tissue, and the stroma of lymphoid organs and could exhibit both anti-inflammatory,
and immunosuppressive properties [49,62]. MSCs within the ENKTCL microenvironment
can inhibit anti-tumor immune responses through multiple mechanisms. They secrete im-
munosuppressive cytokines such as IL-10, TGF-β and PGE2, which impair DCs maturation,
reduce cytotoxic T lymphocyte and NK-cell function, and promote Treg expansion [63].
These factors create an immunosuppressive milieu that enables EBV-infected NK/T-cells to
evade immune surveillance. Furthermore, MSCs may express or induce the expression of
immune checkpoint ligands, including PD-L1, on themselves or on other immune and stro-
mal cells, thereby contributing to T-cell exhaustion, and resistance to immune checkpoint
inhibitors [63].

ENKTCL-derived or tumor-educated MSCs can produce a range of growth factors
and extracellular matrix components that facilitate tumor cell proliferation, invasion and
survival, such as VEGF, hepatocyte growth factor (HGF) and stromal-derived factor 1
(SDF-1/CXCL12). The interaction between MSCs and malignant lymphoma cells may
also involve exosome-mediated communication, in which MSC-derived exosomes carry
microRNAs, cytokines, and other molecules that alter gene expression and promote tumor
progression [64]. MSCs have been implicated in the development of chemoresistance in
various hematological malignancies, including lymphoma. In ENKTCL, MSCs may protect
tumor cells from apoptosis by secreting soluble anti-apoptotic factors (e.g., IL-6, CXCL12),
altering drug metabolism in the LME and physically shielding tumor cells through the
formation of protective stromal niches [65,66]. These mechanisms reduce the efficacy of
cytotoxic agents and contribute to the refractory nature of ENKTCL.

Tumor cells and the inflammatory microenvironment can actively recruit MSCs from
bone marrow or surrounding tissues. This recruitment is mediated by chemokines such as
CCL2, CXCL8 and CXCL12, as well as factors secreted by EBV-infected cells [67]. Once in
the LME, MSCs may differentiate into CAFs or other supportive stromal phenotypes that
further enhance tumor growth, and immune escape [68].

In ENKTCL, mesenchymal stromal cells are key contributors to the establishment and
maintenance of an immunosuppressive and tumor-supportive microenvironment. Through
cytokine secretion, immune modulation, metabolic support, and physical interactions
with tumor cells, MSCs help drive disease progression, immune evasion, and treatment
resistance [69]. Targeting MSC-tumor interactions or reprogramming stromal cell functions
may offer new therapeutic avenues to improve outcomes in this aggressive lymphoma.

MDSCs are a heterogeneous population of immature myeloid cells that expand under
pathological conditions such as cancer, chronic infection, and inflammation, and possess
potent immunosuppressive activity [70]. In ENKTCL, MDSCs are recruited and activated
within the tumor microenvironment (TME) by EBV- and tumor-driven factors, including
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GM-CSF, IL-6, TGF-β, CCL2, and CXCL8, which promote both monocytic (M-MDSC) and
granulocytic (PMN-MDSC) subtypes and enhance their suppressive phenotype [71–73].

MDSCs inhibit antitumor immunity through multiple mechanisms. Arginase-1 (ARG1)
depletes extracellular L-arginine, downregulating the CD3ζ chain of T-cell receptors and
arresting T-cell proliferation [74–76]. Inducible nitric oxide synthase (iNOS) produces
nitric oxide, disrupting TCR signaling and inducing T-cell apoptosis [77]. IDO degrades
tryptophan into kynurenine, suppressing T-cell responses and promoting Treg differentia-
tion [72,78]. Additionally, reactive oxygen species (ROS) generated by MDSCs induce oxida-
tive stress in CD8+ T-cells and NK-cells, impairing cytotoxic function [79]. MDSC-derived
IL-10 and TGF-β further suppress dendritic cell maturation, reduce pro-inflammatory
cytokine production, and expand FOXP3+ Tregs, reinforcing immunosuppressive networks
within the LME [80,81].

CAFs, although primarily studied in solid tumors and B-cell lymphomas, are in-
creasingly recognized in T/NK-cell neoplasms as modulators of the microenvironment.
CAFs remodel the ECM, secrete IL-6, CXCL12, and TGF-β, and cooperate with malig-
nant cells to establish pro-inflammatory and immunosuppressive niches, intersecting with
key pathways such as JAK/STAT and NF-κB and enhancing immune evasion via PD-L1
upregulation [82–85].

Although direct functional data for T/NK-cell neoplasms are limited, the EBV-driven
cytokine milieu, characterized by IL-6 and IL-10, likely amplifies CAF-like mechanisms,
linking stromal remodeling, inflammation, and immune suppression. WHO-HAEM5 for-
mally recognizes stroma-derived neoplasms, underscoring the clinical and biological rele-
vance of fibroblastic elements in lymphoid malignancies [4]. Collectively, MDSCs and CAFs
represent central stromal hubs where immune escape, inflammation, and tissue remodeling
converge, highlighting potential therapeutic targets in T/NK-cell lymphomas [82].

MCs are clearly significant in certain T/NK-cell lymphomas (especially AITL, CTCL)
where they help drive inflammation, angiogenesis, Th17 cell presence, and worse disease
behavior. For NK/T-cell lymphomas specifically, there is little direct evidence so far for
mast cell involvement, so this is an open area. MCs actively contribute to angiogenesis
and induce neovascularization by releasing the classical proangiogenic factors including
VEGF, FGF-2, PDGF, and IL-6, and nonclassical proangiogenic factors mainly proteases
including tryptase and chymase. MCs support tumor invasiveness by releasing a broad
range of matrix MMPs [86].

3.3. Immuno-Cellular Stroma (Reactive T, NK and B Lymphocytes)

The LME of T/NK-cell lymphomas comprises reactive immune cells: CD8+ cytotoxic
T-cells, Tregs, reactive NK-cells, TFH, and CD4+ helper T-cells, forming the immune-cellular
stroma. Malignant tissue mainly consists of neoplastic T/NK-cells, while data on reactive
counterparts remain scarce. Immune subtyping divides these neoplasms into “inflamed” and
“immune-suppressed” categories, with T-cell exhaustion linked to poor outcomes [87,88].

Reactive CD8+ T-cells exhibit antitumor activity mainly in early disease, whereas Th2
polarization suppresses cytotoxicity via IL-4, IL-5, and IL-13, and reduced IFN-γ/IL-12 [89].
High CD8+ T-cell counts correlate with better prognosis in some CTCLs.

Tregs foster immunosuppression by secreting IL-10, IL-35, TGF-β, expressing PD-1,
CTLA-4, LAG-3, and depleting IL-2 [90]. They suppress multiple immune subsets. Wang
et al. identified four Treg subsets, suppressor, tumor-killing, malignant, and incompetent,
with their proportions influencing prognosis; e.g., in AITL, incompetent or tumor-killing
Tregs correlate with better outcomes [91].

TFH cells, expressing CXCL13, PD-1, ICOS, and BCL6, are diagnostic for AITL and
related PTCL-NOS variants [92]. The roles of TFH and CD4+ helper cells remain unclear.
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Reactive NK-cells, difficult to distinguish from malignant counterparts, can be eval-
uated by KIR repertoire diversity (polyclonal = reactive) [93,94]. In T/NK neoplasms,
reactive NK-cells often exhibit functional exhaustion, sometimes EBV-infected, losing
cytotoxic capacity [93–95].

Among T/NK-cell neoplasms, ENKTCL is best characterized. It displays high
stromal heterogeneity shaped by EBV, which enhances PD-L1 expression and alters cy-
tokine/chemokine signaling [57]. T and NK-cells show exhaustion (PD-1, TIM-3, LAG-3
expression) and are functionally depleted. Malignant NK-cells secrete dipeptidyl peptidase-
4 (DPP4), suppressing chemotaxis of normal NK/T-cells and eosinophils; DPP4 inhibition
may restore Th1 activity and synergize with PD-1 blockade [96].

Antigen presentation is impaired by defective DC maturation and PD-L1–high DCs,
promoting T-cell anergy [97]. JAK3/STAT3 mutations further induce PD-L1, reinforcing
immune evasion [38,88]. Immune checkpoint inhibitors show durable but limited efficacy
in ENKTCL [98–100]; combining them with DPP4 or JAK inhibitors or adoptive T-cell
therapy may improve outcomes.

Bystander B-cells represent non-malignant (reactive) B lymphocytes residing within
the LME of T/NK-cell lymphomas. These cells are frequently infected by EBV, facilitating
complex interactions with neoplastic lymphoma cells and other immune constituents.
Through these interactions, bystander B-cells may modulate the biological behavior of
the malignancy, influencing both disease progression and therapeutic responsiveness,
although their precise functional role remains to be fully elucidated [101]. It has been
demonstrated that reactive B-cells secrete anti-inflammatory cytokines, including IL-10
and TGF-β, thereby fostering a pro-tumorigenic microenvironment via suppression of
T-cell–mediated immune responses [102].

Among T-cell lymphomas, AITL constitutes a prototypic example characterized by a
distinctive microarchitectural organization enriched with scattered EBV+ bystander B-cells
within a reactive background. This histopathological feature is associated with a propensity
toward secondary aggressive B-cell lymphomagenesis, particularly diffuse large B-cell
lymphoma (DLBCL), during the clinical course of long-standing AITL [103]. Analogous
observations have been reported in peripheral T-cell lymphoma, not otherwise specified
(PTCL-NOS), in which the presence of EBV+ bystander B-cells correlates with similar
disease evolution culminating in DLBCL transformation [104].

In the context of CTCL, infiltration by reactive B-cells appears to exert a biologically
relevant impact, demonstrating significant associations with advanced disease stages
and reduced PFS [105]. In contrast, within ENKTCL, a high density of bystander B-
cell infiltration has been paradoxically linked to favorable clinical outcomes, including
improved OS, observed in approximately 40% of affected patients [106].

4. Acellular Stroma-Extracellular Matrix Composition in
T/NK-Cell Neoplasms

The acellular stroma comprises amorphous substances and protein fibers secreted
by stromal (accessory) cells in concert with lymphoma cells, together forming the ECM.
Figure 1 has illustrated the composition of the ECM in earlier section. In this context, the
terms acellular stroma and ECM are largely synonymous. The amorphous component
consists primarily of glycoproteins and proteoglycan complexes, while collagen and elastin
fibers provide structural support, creating a three-dimensional scaffold. Incorporation
of functionally active biomolecules—including remodeling enzymes and their inhibitors,
cytokines, hormones, exosomes, and other mediators—completes the fully functional ECM
architecture.
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The ECM represents a complex, dynamic, and interactive medium in which stromal
and lymphoma cells form an inseparable ensemble essential for tissue homeostasis. It
provides structural support and regulates cell behavior through biochemical and mechani-
cal cues, mainly via interactions with integrins [107]. Acting as a reservoir for bioactive
molecules, the ECM releases growth factors and cytokines upon disruption, influencing the
local microenvironment [108].

Tissue development depends on the ECM’s control of proliferation, migration, differ-
entiation, and apoptosis [107]. Its major structural proteins, collagens and elastin, ensure
tensile strength and elasticity. Collagen, comprising about 30% of total body protein,
includes at least 28 subtypes, while elastin maintains tissue extensibility [109].

Glycoproteins—such as fibronectin, laminin, tenascin, and thrombospondin—mediate
adhesion, migration, and signaling between cells and the ECM. Fibronectin provides
scaffolding for ECM assembly; laminin stabilizes basement membranes; and tenascins and
thrombospondin modulate adhesion and cell–matrix interactions [110,111].

Proteoglycans consist of core proteins linked to glycosaminoglycan (GAG) chains
that confer compressive resistance and interact with growth factors. Large proteoglycans
include aggrecan and versican, while small leucine-rich proteoglycans (decorin, biglycan,
fibromodulin, lumican) regulate tissue integrity and ECM organization.

Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that remodel
the ECM in physiological and pathological contexts [112,113]. They release growth and
angiogenic factors, cleave receptors, and modulate cytokines [114,115]. Their activity
is controlled by tissue inhibitors of metalloproteinases (TIMPs), which also have MMP-
independent roles in proliferation and apoptosis. Dysregulation of the MMP–TIMP balance
may drive excessive ECM degradation, offering potential therapeutic targets [109].

Altogether, ECM components critically shape the LME and influence the lymphoma-
genesis of T/NK-cell neoplasms, emphasizing the need to clarify their individual and
collective functions.

4.1. Role of Extracellular Matrix Protein Fibers in T/NK-Cell Lymphomagenesis

Data on the precise role of collagens and other ECM fibers in the pathogenesis of
T/NK-cell neoplasms remain limited. Most available evidence derives from studies across
diverse malignancies rather than T/NK-cell lymphomas specifically. In general, tumor-
specific ECM is characterized by increased collagen density, resulting in greater tissue
stiffness, which has been correlated with poor prognosis in multiple cancer types, although
the mechanistic basis for this association remains incompletely understood. Notably,
enhanced collagen fibrosis is infrequently observed in T/NK-cell neoplasms, with the
possible exception of ENKTCL.

Studies suggest that collagen may facilitate cancer cell proliferation and migration
while simultaneously modulating the function and phenotype of tumor-infiltrating immune
cells, including lymphoma-associated macrophages (LAMs) and T-cells. This indicates that
tumor-associated collagen may exert immune-regulatory effects within the tumor microen-
vironment, influencing both disease progression and responsiveness to immunotherapy.
The ability of the ECM to shape immune cell behavior has given rise to the emerging field
of matrix immunology.

Current evidence largely focuses on type I collagen, the most abundant collagen
isoform, though other collagen types may exert distinct effects on immune cells [116].
Both transmembrane and extracellular collagens produced by tumor and stromal cells
can engage leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1, CD305), acti-
vating inhibitory signaling pathways. Overexpression of collagen type XVII on target
cells has been shown to reduce NK-cell cytotoxicity. Collectively, these findings suggest
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that tumor-expressed collagens contribute to immune evasion by directly modulating T
and NK-cell activity or indirectly affecting other microenvironmental components such as
macrophages [117].

Excessive collagen deposition contributes to ECM stiffness, which may enhance tissue
fibrosis and impair drug delivery to lymphoma cells [118]. In ENKTCL, fibrosis can pro-
mote necrosis and angio-destructive processes, occasionally leading to pseudo-epithelial
hyperplasia—a characteristic histopathologic feature—and may contribute to treatment
resistance [119,120]. Collagen can also impede NK-cell-mediated cytotoxicity by promot-
ing a shift toward cytokine production and by facilitating the formation of a protective
glycocalyx on cancer cells, further enabling immune evasion. Moreover, cancer cells can
remodel collagen to reinforce tumor progression, enhancing adhesion and migration. Con-
sequently, targeting collagen deposition in the tumor microenvironment may augment
NK-cell cytotoxicity and represent a potential therapeutic strategy. Clinically, the density
and composition of collagen within tumors often correlate with prognosis, with higher
collagen levels generally indicating poorer outcomes.

The role of elastin fibers in T/NK-cell lymphomagenesis has not been systematically
investigated. Available data pertain primarily to ENKTCL, where lymphoma cells exhibit
angiocentric growth patterns that disrupt and destroy elastic fibers within blood vessel
walls. This process, accompanied by fibrinoid deposition and ischemia, contributes to
the characteristic necrosis observed histologically. Widespread infiltration of lymphoma
cells into the elastic lamina of small arteries further defines the distinctive histopathologic
landscape of ENKTCL [121].

4.2. Role of Extracellular Matrix Glycoproteins in T/NK-Cell Lymphomagenesis

Glycoproteins are among the most dysregulated components of the cancer matrisome.
Certain glycoproteins are consistently up or downregulated across multiple malignancies
compared with normal tissues, suggesting their involvement in general mechanisms of
tumor progression [19].

Fibronectin, for instance, exhibits altered expression in T/NK-cell neoplasms as well
as in other cancers, promoting tumor growth, migration, invasion, and resistance to
therapy [122]. Within the lymphoid system, fibronectin is typically absent in healthy
lymph nodes but is overexpressed in neovasculature associated with tumors, including
lymphomas. Notably, the extra domain B (ED-B) isoform is frequently localized to the
lymphoma-associated subendothelial ECM and serves as a recognized angiogenic marker.
Overexpression of ED-B fibronectin has been documented across various lymphoma types,
representing a potential therapeutic target. In a xenograft model of B-cell NHL, Schlie-
mann et al. demonstrated that a fusion protein, L19-IL2, in combination with rituximab,
could achieve complete eradication of lymphoma cells [123]. Accordingly, ED-B fibronectin
constitutes a promising target for monoclonal antibody-based therapies aimed at both visu-
alization and treatment of lymphomas. In T/NK-cell neoplasms, fibronectin contributes to
tumor aggressiveness and survival by modulating the microenvironment, facilitating cell
adhesion, migration, and resistance to therapy [122]. While direct targeting of fibronectin is
not yet standard practice, disruption of fibronectin–integrin interactions may represent a
viable translational approach to compromise the survival niche of T/NK lymphoma cells.

Data on laminin involvement in T/NK-cell lymphomagenesis are limited. Gene
expression analyses (e.g., LAMB2, LAMC2) suggest potential roles in the T-cell lymphoma
microenvironment, and ECM studies confirm its presence, albeit to a lesser extent relative
to other matrix proteins. Laminin isoforms are established modulators of T-cell behavior
within lymphoid tissues and may indirectly influence lymphoma biology. Some evidence
indicates laminin can inhibit NK-cell-mediated tumor cytotoxicity through interactions with
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both NK cells and tumor cells, while other studies suggest NK cells can produce laminin,
contributing to regulation of tumor invasion [124]. The oncofetal antigen immature laminin
receptor protein (OFA-iLRP) is highly conserved, expressed in fetal tissues and various
cancers, including hematopoietic malignancies, but absent in physiologically differentiated
adult cells. OFA-iLRP represents a potential target for T-cell-based immunotherapy in
hematologic malignancies [125]. Similarly, the laminin receptor (LR) is overexpressed in
neoplastic cells relative to normal counterparts and may serve as a biomarker of metastatic
aggressiveness across multiple cancers, including leukemia and lymphoma [126].

Tenascin-C is overexpressed in both embryonic and adult ECM, particularly in tumor
tissues [127,128]. Its expression correlates spatially and temporally with tumor neovas-
cularization and may confer anti-adhesive and immunosuppressive properties, thereby
promoting lymphoma cell survival, migration, and angiogenesis [129–132]. In a study using
the monoclonal antibody tenatumomab across 100 patients with T/NK-cell neoplasms
(75 PTCL; 25 CTCL), tenascin-C expression was observed in multiple subtypes, including
ALCL, ALK-negative (n = 21), ALCL, ALK-positive (n = 19), PTCL-NOS (n = 20), MF
(n = 13), AITL (n = 9), CD30+ primary CTCL (n = 6), and other subtypes (n = 12). While
expression intensity varied, no statistically significant differences were observed (p = 0.334).
A high proportion of tenascin-C expression (>50%) was noted in ALCL, ALK− (81%), AITL
(78%), and ALCL, ALK+ (58%), whereas PTCL-NOS (30%) and CTCL (24%) showed lower
expression (p = 0.0019). Gene expression datasets confirmed significant tenascin-C overex-
pression in T/NK-cell neoplasms compared to normal tissues [128]. Histologic subtypes
such as ALCL and AITL exhibited strong, diffuse tenascin-C staining, whereas MF/SSy
and primary cutaneous ALCL displayed less intense, sparse staining. These differences
likely reflect tissue remodeling and neoangiogenesis characteristic of aggressive PTCL.
Notably, vascular-associated tenascin-C expression may influence survival outcomes, high-
lighting its potential as a therapeutic target, as evidenced by the activity of radiolabeled
tenatumomab [133,134].

4.3. Role of Proteoglycans in T/NK-Cell Lymphomagenesis

Proteoglycans are key effectors within the pericellular zone in both healthy and
malignant tissues. In lymphoid malignancies, increased mRNA and protein expression
of serglycin has been detected in malignant cells, suggesting that proteoglycan synthesis
accompanies lymphoid transformation [135]. Syndecan-4 is overexpressed in malignant
T cells from patients with SSy, implicating it in disease pathogenesis and representing a
potential therapeutic target [136]. Similarly, aberrant upregulation of versican isoform V1
by Sézary cells has been associated with enhanced migration and cutaneous tropism, while
potentially sensitizing cells to chemotherapeutics [137,138].

Proteoglycans exhibit context-dependent effects in cancer progression and metastasis.
Certain proteoglycans, such as syndecan-1 and glypican-1, promote tumor growth and
dissemination by enhancing growth factor signaling and cell migration, whereas others, in-
cluding decorin and lumican, inhibit tumor progression by modulating immune responses
and collagen fibrillogenesis. Collectively, proteoglycans contribute to the regulation of
microenvironmental inflammation and immunity, influencing both lymphoma biology and
therapeutic responses [139].

4.4. Role of MMPs and TIMPs in T/NK-Cell Lymphomagenesis

Dysregulated activity of matrix metalloproteinases (MMPs) has been recognized
as a key contributor to cancer dissemination by degrading the ECM components and
facilitating cellular migration. Both MMPs and their endogenous inhibitors, tissue inhibitors
of metalloproteinases (TIMPs), play critical roles in the development and progression of
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various lymphomas. Specifically, MMP-2 and MMP-9 are central to ECM remodeling across
multiple lymphoma subtypes. Elevated expression and activation of these enzymes are
associated with tumor invasion, metastasis, and poor clinical outcomes. Mechanistically,
MMP overexpression may be induced by interactions with endothelial cells, accelerating
lymphoma progression.

Among T/NK-cell neoplasms, evidence indicates that MMP dysregulation signif-
icantly impacts disease behavior in select entities. MMP-9 overexpression is particu-
larly characteristic of ENKTCL, where it degrades multiple ECM substrates—including
fibronectin, laminin, collagen, elastin, and casein—contributing to the tumor’s high propen-
sity for dissemination and the extensive necrosis commonly observed [140,141]. ENKTCL
is typified by vascular invasion and ECM destruction; elevated MMP-9 may exacerbate
tissue necrosis via enhanced angiodestruction and may contribute to chemoresistance by
impairing drug delivery [140,142]. Additional proteolytic activity by MMP-1 and MMP-11
may be linked to EBV-driven mechanisms. High expression levels of MMP-26 and MMP-9
have also been associated with disease invasiveness and progression, and these enzymes
may serve as biomarkers to distinguish ENKTCL from reactive lymphoid hyperplasia,
highlighting their potential prognostic value [143].

In contrast, expression of MMP-2 and MMP-9 in other lymphoma subtypes appears
less pronounced than in epithelial malignancies, likely reflecting differences in stromal
composition; fibroblasts dominate ECM remodeling in carcinomas, whereas lymphoid
stroma is more cellularly heterogeneous. Synthetic agents that modulate TIMP activity or
inhibit cytotoxic granule secretion have been proposed as therapeutic alternatives, though
the dual and context-dependent functions of TIMPs have limited their clinical utility to
date [144].

Dysregulated ECM contributes to lymphoma progression through both direct and
indirect mechanisms. Directly, ECM alterations influence malignant cell transformation,
expansion of cancer stem cells, and disruption of tissue polarity, facilitating invasion
and metastasis. Indirectly, ECM remodeling affects stromal cells, promotes angiogenesis
and inflammation, and establishes a tumor-permissive microenvironment [145–147]. In
lymphomas, ECM dysregulation is characterized by vascular disorganization, enlarged
vessel pores driven by VEGF, PDGF-β, and TGF-β overexposure, hypoxia, and impaired
systemic immune cell infiltration. Locally, immune cells secrete pro-proliferative cytokines:
M2-polarized macrophages produce IL-10, TFH cells secrete IL-21, and Th17 and CD8+

T-cells produce IL-6, collectively supporting lymphoma cell survival and invasion.
Despite the limited success of early-phase clinical trials with broad-spectrum MMP

inhibitors, dysregulated MMP activity—particularly in early disease stages—remains an
area of active investigation. Future therapeutic strategies are likely to focus on the selective
inhibition of individual MMP family members to mitigate off-target effects and improve
clinical outcomes [148].

4.5. Role of Cytokines, Cytokine Receptors, Growth Factors in T/NK-Cell Lymphomagenesis

Cytokines constitute pivotal intercellular mediators that orchestrate communication
among the diverse cellular constituents of lymphomas. Their expression patterns are highly
heterogeneous and frequently correspond to specific T/NK-cell neoplasm subtypes. In-
triguingly, such heterogeneity may also manifest within tumors of identical histological
classification. Functionally, cytokines critically influence the inflammatory microenviron-
ment, a topic that will be elaborated in the dedicated section on inflammation. Among
these, most notably IL-6 play a central role in establishing and maintaining an inflammatory
milieu that supports lymphoma cell survival and progression.
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4.6. Role of Exosome or Lymphoma Cell Extracellular Vesicles in T/NK-Cell Lymphomagenesis

Lymphoma cell–derived extracellular vesicles (LCEVs) have been assigned a multifaceted
role in the regulation of lymphoma homeostasis. Structurally, similar to other exosomes,
LCEVs possess a bilayer lipid membrane enriched with surface-targeting molecules such as
tetraspanins (CD9, CD63, and CD81), major histocompatibility complex (MHC) class I and II
proteins, and integrins. Their internal cargo includes various nucleic acids, DNA harboring
fusion genes (e.g., EML4-ALK), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs),
and microRNAs (miRNAs), as well as proteins such as soluble NSF attachment protein
receptor (SNARE), annexin, flotillin, ALG-2–interacting protein X (Alix), tumor susceptibility
gene 101 (TSG101), and mutated variants including mutMYD88 [149–151].

Historically, exosomes were regarded as cellular waste products released into the ECM.
However, current evidence attributes to LCEVs a broad modulatory function within the
LME, where they influence immune evasion, therapeutic response, and drug resistance,
and may also serve as novel “multi-omic vesicles” for disease detection [152]. Increasing
attention has been directed toward LCEV-mediated interactions between malignant cells,
immune cells, and other LME constituents as pivotal drivers of lymphoma progression and
treatment outcomes [153].

In EBV+ NK-cell lymphoproliferative disorders (LPDs), it has been proposed that
EBV+ memory B-cells continuously secrete exosomes that potentiate the immunosuppres-
sive effects of infected cells, promote clonal proliferation of EBV+ T/NK-cells to variable
extents, and thereby contribute to the heterogeneous clinical course and prognosis of these
entities [154]. Cumulative evidence indicates that lymphoma-derived exosomes critically
contribute to lymphomagenesis, disease progression, and treatment resistance [155–157].
Among the best-characterized immune evasion pathways, the programmed cell death
protein 1/programmed death ligand 1 (PD-1/PD-L1) axis plays a central role [158]. Ele-
vated levels of circulating and membrane-bound PD-L1 have been identified as adverse
prognostic indicators and potential diagnostic and prognostic biomarkers in ENKTCL [159].

In summary, the extensive release of exosomes by lymphoma and immune cells
represents a key mechanism in sustaining lymphoma progression and shaping the im-
munoregulatory landscape of the LME.

5. Role of the Biological Agencies (EBV and HTLV-1) in T/NK-Cell
Lymphomagenesis

It has long been established that EBV primarily infects B lymphocytes as well as
various stromal components surrounding neoplastic T or NK-cells. More recent evidence,
however, has demonstrated that EBV is also capable of directly infecting T and NK-cells
themselves. This phenomenon contributes to the molecular reprogramming of these cells
within the context of the surrounding LME, thereby influencing lymphoma pathobiology.
In parallel, HTLV-1 exhibits a distinct CD4+ T-cell tropism, leading to direct infection of
these lymphocytes. The resultant molecular alterations closely parallel those observed
in EBV-mediated transformation, highlighting convergent mechanisms of virus-driven
lymphomagenesis.

5.1. EBV as the T/NK-Cell Lymphoma Promoting Agent

EBV is nearly ubiquitous, with serologic evidence of prior infection detected in more
than 90% of adults worldwide. Despite this widespread exposure, the incidence of T/NK-
cell lymphomas remains low, indicating that EBV infection alone is insufficient to induce
malignant transformation. Rather, EBV likely acts as an initiating event that increases
susceptibility to oncogenesis in a permissive host environment.
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The significantly higher prevalence of T/NK-cell malignancies in EBV-endemic re-
gions further supports the contribution of additional cofactors. The interplay between
extrinsic (environmental) and intrinsic (genetic) determinants appears critical in driving
tumorigenesis, reinforcing the concept of cancer as a multifactorial disease process.

Histologic and molecular analyses of paraffin-embedded tumor specimens have
strengthened the evidence for a viral role in oncogenesis. Detection of EBER transcripts by
ISH remains a diagnostic hallmark for identifying EBV-associated T/NK-cell neoplasms.
Cumulative molecular data now support EBV as an early oncogenic driver in a subset of
nodal, extranodal, and leukemic T/NK-cell entities. Moreover, EBV genome sequencing
has revealed two major viral strains and several variants of the LMP1, each exhibiting
distinct oncogenic potentials that may contribute to the biological and clinical heterogeneity
of these lymphomas [2].

EBV displays a strong tropism for B-cells and epithelial cells, with the complement
receptor 2 (CD21) serving as the principal entry receptor. However, the mechanism by
which T-cells and NK-cells become infected has long remained unclear. One proposed
explanation is that EBV infects common lymphoid progenitor cells expressing CD21, which
subsequently differentiate into NK-cell and T-cell lineages. This hypothesis provides a plau-
sible basis for the presence of EBV within non–B-cell compartments and may account for
the clonal EBV genomes observed in EBV-associated T/NK-cell lymphomas. Nevertheless,
recent findings have demonstrated that the type 2 EBV strain possesses a unique tropism
enabling infection of mature T-cells, a process that critically depends on the interaction
between viral glycoprotein gp350 and the cellular receptor CD21 [160]. Following infection,
EBV-transformed T or NK-cells undergo proliferation supported by viral oncoproteins,
most notably LMP1, which functions as a constitutive mimic of CD40. Through this mecha-
nism, LMP1 persistently activates multiple signaling cascades, including the AKT, MAPK,
JNK, STAT, and NF-κB pathways, thereby enhancing cell-cycle progression, inhibiting
apoptosis, and modulating immune responses [161].

These EBV-infected cellular clusters also exhibit elevated expression of immune check-
point molecules, including PD-L1 and CD86, which mediate profound immunosuppressive
interactions with T cells via PD-L1/PD-1 and CD86/CTLA4 signaling axes. This observa-
tion suggests that LMP1 may represent a central driver of oncogenic transformation and
tumor maintenance within EBV-associated T/NK-cell neoplasms. Furthermore, genomic
instability induced by EBV infection contributes to the accumulation of somatic mutations
in oncogenes and tumor suppressor genes, thereby promoting the emergence and evolution
of EBV-driven T/NK-cell lymphomas [162].

Single-cell transcriptomic analyses have recently delineated at least three major LME
phenotypic clusters with distinct immune compositions [163]. The LME1 cluster exhibits
an immune-desert phenotype characterized by the absence of T and myeloid dendritic cells
(MDCs). The LME2 cluster corresponds to an immune-deficient phenotype, displaying the
presence of T and stromal cells but lacking MDCs, indicative of impaired innate immunity.
In contrast, the LME3 cluster represents an immune-inflamed phenotype, distinguished by
increased infiltration of both T cells and MDCs and associated with signatures of immune
activation and exhaustion [163].

Across all three phenotypic clusters, dysregulation of G protein–coupled receptor
(GPCR) signaling pathways has been observed, a process modulated by EBV that con-
tributes to the remodeling of cancer immunity and promotes lymphoma progression.

Notably, overexpression of chemokine receptor 1 (CCR1) has been identified in LME1
and LME3, where it contributes to the modulation of immunosuppressive cell populations
within the virus–cancer interface of the LME. These findings highlight CCR1 and related
pathways as potential targets for therapeutic intervention.
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EBV-infected lymphoma cells, together with surrounding stromal components, co-
operatively remodel the ECM. This reorganization transforms the ECM into a permissive
scaffold that fosters lymphoma cell survival, proliferation, and progression, thereby rein-
forcing the complex interplay between viral oncogenesis and the tumor microenvironment.

5.2. HTLV-1 as the T/NK-Cell Lymphoma Promoting Agent

In contrast to EBV, HTLV-1 is less ubiquitous and exhibits a geographically re-
stricted endemic distribution, with high-prevalence clusters (>5% of tested individuals)
in southwestern Japan, West Africa, Central and South America (notably Brazil), and the
Caribbean [164]. Surrounding these clusters are intermediate (<5%) and low (~1%) preva-
lence regions, including the USA, Canada, Australia, Chile, Argentina, India, Iran, and
several European countries [165]. These high-prevalence regions demonstrate unusually
elevated incidence of ATLL across all four disease subtypes, reflecting a strong causal
relationship between HTLV-1 infection and oncogenesis.

HTLV-1 encodes the viral transcriptional transactivator Tax in the pX region of its
genome, which plays a central role in malignant transformation. Tax interacts with host
cell proteins, modulates intracellular signaling pathways, regulates gene transcription,
and drives proliferation of HTLV-1-infected T-cells [166,167]. In asymptomatic carriers,
a balance exists between proliferation of infected T-cells and immune clearance by cyto-
toxic CD8+ T-cells. Expression of viral proteins renders HTLV-1-infected cells antigenic,
provoking host immunity and necessitating multiple immune escape mechanisms during
ATLL development [168,169]. Tax contributes to this immune evasion by modulating
immune-related pathways that enhance survival.

Genetic alterations affecting the MHC class I complex (HLA-A, HLA-B, and β2-
microglobulin) have been reported in 54% of ATLL cases, indicating that loss of MHC
class I–mediated immune recognition is a critical step in pathogenesis [170]. ATLL cells
retaining both MHC class I and β2-microglobulin exhibit better clinical outcomes compared
to cases lacking these molecules [171]. MHC class II expression, regulated by the class II
transactivator, is higher in indolent ATLL than in aggressive subtypes, suggesting a role in
disease progression and serving as an independent favorable prognostic marker [172–174].
Interaction between MHC class II on tumor cells and CD4+ tumor-infiltrating lymphocytes
(TILs) may further contribute to immune evasion [168].

Profound immunodeficiency is characteristic of ATLL, facilitating the accumulation of
genetic abnormalities in immune-related genes and selection of clones capable of escaping
host immunity. The ATLL LME demonstrates reduced cytotoxic CD8+ T cells and B cells,
impaired NK-cell function, and expansion of myeloid populations [169]. Infiltration by
lymphoma-associated macrophages (LAMs) supports malignant cell proliferation, inva-
sion, angiogenesis, and immunosuppression, particularly in acute and lymphoma-type
ATLL, correlating with poor prognosis [175]. CD47 expression on ATLL cells inhibits LAM
phagocytosis via SIRPα signaling (“don’t eat me” signal), though its prognostic signifi-
cance remains unclear; paradoxically, SIRPα expression on stromal cells is associated with
favorable outcomes [176,177].

PD-L1 expression exhibits compartment-specific effects: PD-L1 on ATLL cells, particu-
larly in nodal lesions, is linked to poor prognosis, whereas PD-L1 on stromal macrophages
and dendritic cells correlates with improved outcomes, although its precise role in the
LME remains undefined [178]. Peripheral blood analyses reveal decreased invariant NK-T,
NK, and dendritic cell populations in ATLL patients [179], while single-cell studies show
reduced B cells, increased myeloid cells, dendritic cells, and atypical monocytes with
upregulated activation markers (CD64) and immune checkpoint molecules (PD-1) [180].
Despite B-cell reduction, interferon signaling is enhanced in myeloid cells, and cytotoxic
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CD8+ T-cell decline is associated with PD-L1 genetic alterations, which further modulate
immune microenvironment composition [180]. Functional NK-cell defects are observed
in both HTLV-1 carriers and ATLL patients, underscoring the critical role of immune
microenvironment remodeling in HTLV-1–driven carcinogenesis [169,180].

6. Inflammation as a Significant Factor in T/NK-Cell Neoplasms
Inflammation in mature T/NK-cell neoplasms is not a secondary consequence of malig-

nant transformation but a fundamental driver of disease pathogenesis. The WHO-HAEM5
and ICC 2022 classifications highlight the biological distinctiveness of EBV+ NK/T-cell lym-
phomas and HTLV-1–associated ATLL, both shaped by chronic antigenic stimulation [4,5].
Malignant cells exploit the inflammatory cytokine milieu—particularly IL-15, IL-6, and
IL-21—to sustain proliferation and evade apoptosis within a deregulated microenviron-
ment [181,182].

Key inflammatory pathways, including JAK/STAT and NF-κB, are activated either
by somatic mutations (JAK3, STAT3, STAT5B) or by viral proteins. LMP1, encoded by
EBV, induces PD-L1 expression through both JAK/STAT and NF-κB signaling, whereas
the HTLV-1 Tax protein serves as a potent NF-κB activator in ATLL [8,9,183]. The immune
microenvironment, actively remodeled by these interactions, fosters tumor progression via
immune checkpoint upregulation and inflammatory cell recruitment [182].

Clinically, this inflammatory phenotype often manifests as hemophagocytic lymphohis
tiocytosis–like episodes, hyperferritinemia, and elevated soluble IL-2 receptor levels, par-
ticularly in EBV-driven diseases [184,185]. Collectively, the convergence of inflammatory
mediators, viral oncogenic factors, and microenvironmental reprogramming defines a
recurrent pathogenic theme in T/NK-cell malignancies, positioning the JAK/STAT and
PD-L1 pathways as promising therapeutic targets [4,5,7,56,83–85,181–185].

6.1. Leukemic Entities

In NK-LGL, the bone marrow microenvironment exhibits a highly inflamed phenotype
characterized by close interactions between DCs and NK-cells, which underpin persistent
antigen presentation [186,187]. Cytokines play a dual role in this setting—not only sustain-
ing inflammation but also supporting leukemic cell survival. For instance, IL-15, secreted
by stromal and DCs, promotes NK-cell persistence, while IL-6 and TNF-α produced by
leukemic cells reinforce JAK/STAT and NF-κB signaling [188,189]. Moreover, IFN-γ and
TNF-α can induce apoptosis of hematopoietic progenitors, contributing to cytopenias such
as neutropenia, further exacerbated by IL-8 and IL-10 [13–15]. The hyperactive immune
milieu frequently manifests with autoimmune phenomena, including rheumatoid arthri-
tis and pure red cell aplasia, strengthening the link between chronic inflammation and
leukemogenesis [187–189].

T-LGL similarly arises in a state of sustained inflammation, wherein immune cells
secrete IL-15, IL-2, and IL-6, perpetuating malignant T-LGL survival through continuous
STAT3/5 and NF-κB activation [190,191]. IL-15 and its receptor complex are markedly
upregulated, while JAK/STAT signaling is amplified via overexpression of IL-2R [190].
Concurrently, the PI3K/Akt/MAPK cascade is activated through autocrine IL-6/gp130 and
PDGF signaling loops, and anti-apoptotic mediators such as c-FLIP inhibit Fas-induced cell
death [191]. This cytokine-driven inflammatory network underlies the anemia, neutropenia,
and autoimmune manifestations characteristic of T-LGL, reinforcing the notion that chronic
inflammation sustains leukemic persistence [187,192].

A unifying hallmark across mature T/NK-cell neoplasms is their capacity for self-
sustaining proliferation coupled with immune evasion, both orchestrated through inflam-
matory mechanisms. In T-PLL, dysregulation of the IL2RG–JAK1/3–STAT5B axis results in
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constitutive STAT activation, generating a permissive environment for clonal expansion
and survival within an immunologically imbalanced milieu [193,194].

In ANKL, a prototypical EBV-associated malignancy, patients frequently develop
hemophagocytic lymphohistiocytosis (HLH) with profound macrophage activation, hyper-
ferritinemia, and consumptive coagulopathy. This cytokine storm not only causes tissue
injury but also supports the proliferation of leukemic NK-cells [121,194,195]. Immune
escape in ANKL is further promoted by PD-L1 upregulation mediated through NF-κB and
STAT3 activation [194,196,197].

Finally, in ATLL viral oncoproteins Tax and HBZ activate the NF-κB and AP-1 path-
ways, profoundly altering host immune regulation. Elevated IL-2 and IL-15 levels foster
a pro-inflammatory microenvironment, whereas increased IL-10 drives a STAT3/IRF4-
dependent positive feedback loop in leukemic T-cells, enhancing proliferation and immune
evasion [198,199].

6.2. Nodal Lymphomas

Nodal TFH-cell lymphomas share a characteristic inflammatory microenvironment,
where immune dysregulation drives both local and systemic inflammatory symp-
toms [200,201]. Affected lymph nodes display dense infiltrates of T cells, plasma cells,
dendritic cells (DCs), and macrophages, supported by extensive follicular DC and endothe-
lial venule networks [200]. Neoplastic TFH cells secrete IL-21 and CXCL13, stimulating
germinal-center B-cell and follicular DC expansion, leading to polyclonal plasmacytosis,
hypergammaglobulinemia, and Treg depletion [200,201]. IL-6 provides additional pro-
survival signaling, while the accompanying cytokine storm manifests clinically with fever,
rash, and weight loss [202].

PTCL-NOS and ALK+/ALK− ALCL exhibit highly reactive microenvironments domi-
nated by LAMs, which support tumor growth and suppress cytotoxic responses [203,204].
IL-10 activates STAT3 and inhibits DC maturation, while TGF-β reinforces immunosup-
pression [203,205]. In ALK+ ALCL, the nucleophosmin (NPM)-ALK fusion constitutively
activates STAT3, inducing IL-6, IL-10, and TGF-β secretion and promoting PD-L1 expres-
sion [32–34,206–208]. In ALK− ALCL, JAK1/STAT3 mutations drive similar effects, with
PD-L1 expression also present on LAMs [34]. CD30-TRAF-NF-κB signaling and IRF4
cooperatively sustain cytokine production and tumor persistence [209].

PTCL-NOS comprises distinct molecular subgroups: GATA3-driven cases produce
IL-4, IL-5, IL-13, and IL-10, with eosinophil/macrophage-rich infiltrates and poorer out-
comes, whereas TBX21-high cases, marked by abundant IFN-γ, are associated with a more
favorable prognosis [30,36,202,204].

6.3. Extranodal Lymphomas

Primary cutaneous acral CD8+ lymphoproliferative disorder is an indolent condition
characterized by a localized proliferation of CD8+ T cells, typically affecting acral skin
sites [210]. Histology reveals dense dermal infiltrates enriched in dendritic cells (DCs),
macrophages, plasma cells, and eosinophils [38]. CD8+ T cells secrete IFN-γ and TNF-α,
activating macrophages, while IL-2 supports local proliferation [211]. Macrophage-derived
IL-10 suppresses DC activity, fostering immune tolerance and explaining the disease’s
indolent, skin-limited course and lack of EBV association [210–213].

Intestinal T- and NK-cell lymphoid proliferations and lymphomas encompass enti-
ties driven by inflammatory mechanisms and mucosal immune activation [214]. EATL is
closely linked to celiac disease, where gluten-induced IL-15 elevation, Treg suppression,
and IFN-γ–mediated mucosal injury drive JAK/STAT activation [214,215]. MEITL, in
contrast, arises de novo, features monomorphic epitheliotropism with minimal inflam-
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mation, and may exhibit necrosis [216]. Indolent intestinal T-cell proliferations occur in
the context of IBD or immunosuppression, while their NK counterpart, indolent NK-cell
enteropathy, remains EBV-negative, non-destructive, and mucosa-confined [10,217]. Shared
mechanisms—IL-2, IL-15, TNF, and IFN-γ signaling—promote immune dysregulation and
clonal persistence [10,214,215].

Indolent T-cell lymphoma of the gastrointestinal tract similarly shows a slow course
with prominent mucosal inflammation. IBD and immunosuppression sustain small
CD4+/CD8+ T-cell expansion via IL-15 and IFN-γ signaling, supporting chronic prolifera-
tion without systemic spread [218].

ENKTCL, by contrast, is an aggressive EBV-driven neoplasm marked by a cytokine-
rich microenvironment and chronic inflammation [141]. Elevated serum IL-6, IL-10, sur-
vivin, and VEGF correlate with poor prognosis [219–221]. EBV induces a cytokine storm
dominated by IFN-γ, IL-6, and IL-10, fostering systemic inflammation and PD-L1 expres-
sion that enhances immune evasion. A pathogenic feedback loop between viral activity
and inflammatory mediators underlies ENKTCL progression [85,222].

6.4. Provisional/Childhood EBV-Driven Entities

Among EBV-driven malignancies, hydroa vacciniforme–like lymphoproliferative dis-
order (HV-LPD) represents a prototypical example [4,5]. Lesions contain EBV-infected
CD8+ T and NK-cells, as well as type I and γδ T-cells [223]. The microenvironment is highly
inflamed, with elevated IFN-γ and TNF-α driving keratinocyte apoptosis and recruitment
of lymphocytes via chemokines CXCL9 and CXCL10 [223]. High IL-10 levels, secreted
by macrophages and infected cells, confer local immunosuppression that counterbalances
cytotoxic activity. Activation of the JAK/STAT and NF-κB pathways within this pro- and
anti-inflammatory equilibrium underlies the chronic course of HV-LPD and the long-term
survival of EBV-infected cells.

Systemic chronic active EBV disease (CAEBV) is another EBV-driven T/NK-cell dis-
order classified under EBV+ T/NK-cell lymphoid proliferations in WHO-HAEM5 [4]. It
primarily involves the liver and lymph nodes, where EBV-infected cells form granulomas
and portal infiltrates, resulting in chronic immune activation [224]. Elevated IL-6, TNF-α,
and IFN-γ drive systemic inflammation and hemophagocytic episodes, while IL-10 pro-
motes immune evasion and EBV persistence [225,226]. Upregulation of PD-1 and PD-L1
further contributes to immune escape [224]. Clinically, cytokine storm–mediated manifes-
tations include cytopenia, hepatosplenomegaly, hyperferritinemia, and increased soluble
IL-2 receptor levels [226,227].

7. Conclusions
Based on this comprehensive overview, a substantial paradigm shift is emerging in

our understanding of neoplastic tissue homeostasis, particularly within the context of
T/NK-cell neoplasms. The accumulating evidence indicates that these malignancies should
no longer be regarded merely as aggregates of neoplastic lymphoid cells, but rather as
complex, multicellular ecosystems composed of a heterogeneous admixture of stromal and
immune elements intimately interwoven with lymphoma cells and the extracellular matrix.
Accordingly, T/NK-cell neoplasms ought to be conceptualized as dynamic, interactive, and
adaptable biological systems, responsive to a spectrum of endogenous and exogenous cues
that collectively shape their behavior and evolution.

This reconceptualization provides critical insight into the pronounced clinical hetero-
geneity observed among T/NK-cell lymphomas, underscoring the pivotal role of LME
composition in determining disease course and therapeutic response. Current data sug-
gest that lymphomas characterized by an immune-rich stroma and elevated PD-L1/PD-1
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expression are more likely to benefit from immune checkpoint inhibition (ICI), whereas
those exhibiting an immune-desert phenotype may instead require therapeutic strategies
directed against specific oncogenic drivers.

Advances in matrix biology are expected to catalyze the development of an expanding
repertoire of targeted anti-lymphoma therapies. Beyond conventional cytotoxic regimens,
the emerging vision encompasses the selective modulation of multiple molecular and cellu-
lar pathways, representing a transformative step toward personalized treatment paradigms
in T/NK-cell lymphomas. While considerable progress has been made in elucidating the
molecular biology of these tumors, the field remains unbalanced, and additional time and
research are needed for full clinical applicability. Ultimately, the integration of high-quality,
evidence-based molecular and microenvironmental markers into standard prognostic mod-
els and therapeutic algorithms promises to establish them as robust and clinically actionable
tools in routine practice [228].
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