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FRE, FH%L
PR — BB EEBE (7RI T 530021)

SERE B CALL) /20PE0F 0 30 25 5 AF
(ARDS) J&—F i WL 2 AL A1, FRILH
K 35%-46%" LA 0 S RE S5 o7 A v - 6 40 i A5
5 B A2 463 38 B R M i 0 5 Mt K ek Ay 2 R
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A B VBB 55 A WTFE# A L BALF H 4 4h
W EAHHLME R G (MHC) [ 26H1 12651
FFIRILHFL A>T CD86, X WA H SN A T BE
Z 5P | PR A I N S S A S A
PR e R R R ) S IR A HE AT AT 22 Bl G 1 7
G35 AR, 8 5 5 e R S PR Hh ) S A8 4
NEDIRE, A5 DR Skt Ok [ il E 45 4 24
i (PN B2 AR AN L B A0 ) A b e s (I ma 4 g A
PRI B SMIIR, TEIEFRE miRNA {2 2 40
LA 745, AR EE IR ZT e AL, DATITSE e i 7
18 PR ST Y K 0 B b, SN A REDS
AERp AR, WReh e R | e b Pl i, M
111255 915 JfT 38 S A E N 2

2 SMinES 5 ALI/ARDS & 5FHLE

2.1 Sk E R RS 1E

ALI/ARDS [YHRF i 22— Jili 6 B I 248 o 1 38
T, VI P 15 200 i o R SRS o P9 A i A o 5 A+
o7 A0 6 2 T 32 AR5, W S AR R 8 i At
YA, 2518 SORE SO RN FE ST G-

AN T) 24 A V5 114 4/ D A 7 i il 76 5 g 240 o 4
BUG, AT & RAE RN, FECEPEN . Chen
070N PR A B R R A 1 A A1 FE T I 4 i
P, HMIMA IncRNA CLMATS3 5 S5 80 i) 342 iR iy
454% M 2 (CtBP2) , CtBP2 FIZH K [ 2 Bk # il
p300 51 %% 5% [ 7-xB (NE-kB) 4 li#E 5% 2 AW
T W 0 i R B TL-1B. IL-6., TNFa 264 2k
T o A, TR A SN AR, T i 1L
miR-30d-5p ARG NF-xB i i M il 75 5 5 w2
PO ACFEE T2, Liu 500 % PR E R 20 i b il
& miR-92a-3p i 4 P ¥E NF-«B 18 e ik F v 41 i
TEAIEN FARAE . b R LA A] L4y TL-25 34
JIi e, 5 W 41 L P ) Rab27a 1 Rab27b FUFE 5, DA
0] L I 4 L A7 AR P R Ak % AL S5 F
F¥ Kk BRI 1 7 40 43 06 ) CD 74+ A b4 fii i
3 2 it EL AT R R AP R AR AL AR R, i I A5 P9 B2 40
JL 530 1) CD3 18X il 1 W3 200 i A e 48 A2
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AEAAER, X% i AR 1) miR-27b-3p il
miR-223 MBI S, BRI UL, MM TE it 45
bt B R AN e 2 ERE B R, L B O
YER, X B T A0 MR RS R & o

A UAMA T DA 5306 B 4 Fg AR b, AL dE I
WF9E & BAERG 20 (LPS) i S/ ALL /NRANE Il H
B ANIAMA, LT R IR B A UAMA miR-155, i)
] 55 SH2 S5kl i) LR 5-i AR 1 (SHIPL) FIZH D
K5 5% S 7 1 (SOCS1) 2 1F 5 I 41 it )
BEFH NSRRIV ™, T3 AR R, 7E 2R R
(AP) MG ALT ALHYrp | i 5 R VR 1 1 A 4 38 13
IO T IV 20 i PP G NILRP3 48 S /MR S 350 15 I 240 it
T, iR RAEBIR N>, iR A b
A BE A 00 o) i 96 55005 40 1777 5 | A A 5 A 4 L
SRR T M 5 &6 AR P 8 B0 SR VR 19 A B B, B
Bff 3 6 A1 A AR R 50K A Bh Ttk — 25 T i A s A
Z 5735 ALL AL
2.2 Skt R RERY1E A

i3 b iz A0 A 3=y T AU 3 | B 40 (AEC-
1) A1 AUt b 4 (AEC-1T) #H%,, AEC-I1E
SRS G RE T | KRB 58 S i % %
SEVER] . AEC-II 7] LAZEAR S yZe 3000 4 i T 7 Wb 2
PR MR MR JE K i, Eol, AEC-TT HA HiFH
KA AEC-T HBE T, HeA Bl i vl 3R o0 1% 2 4
AT AR R 1 K g e

SIE bR SRS FEABE 5 — B B 2k, ok
MR, 75 ALL &R, AMMAT] L5
SIE L TIREIC M . N, MEEEAEASC AL BRE 1Y
HNUMA miR-1298-5p i, i il 3 A T R 4
L ) 348 8 R T B 200 60 3 1 34 n 5 | kil 4%
JECY, Yuan 257 M\ LPS 15 S ALL /)N FRUASE A FRfig
££ BALF, W% & P BALF R IEAMMARL & T2
S RAE A miRNA 400 R 1, H X 2esh ik
Al DL o 5 e SR B A b B A
(ZO-1) MR RMEIREEFY BB . X nT B S5 7F
TR | TR SRS W PN G A K B R AN A
KRB SIEFR M, PRI R ™, TEkE
FEAH G ALT K RS A, il 5 s 4 R s fr 0
M it HE KB N (APN) 5 | iz 2 {& TLR4
A FHCEAE DA REERLY . WEEER
T, TPE AN MR A S I AT SERE TR B8 1 48
XU o —TAFFE 4, il I 40 88 ke 1) &/
PRI A SOCST 1 SOCS3, SOCS EH
FIGIe JAK-STAT {5530 s A IS il 570, 24 Ailiifa
b Rz AR SN IMAS , i SOCST BHIE STAT 15

145

3 U DT At vt B A ) R S B
2.3 HMMEST P R 4R AR RO 4E

KR TG EVs Al 0K N Bz 4 ffd, 30 T (s
53 B, TN PN R A A L AR R R 4 Y O
T, FEWIMAE &S, i —2INE ALL, Gao
SR B R R - ALL K B ZMMAMA 533 miR-1-
3p EN AN, FIRAY miR-1-3p 81 # i Py 5 R
N AR SEEE 1 (SERPL) fE i2E 20 B 9 T Fn 40 B i 4
WCAE 388 0 BRL 2 DR 200 L ) 3 o PR R A, Fe 2
FEALL, B miRNAs 4b, EVs #5474 MR 2
BRI . WS AR T A G R 1 Gasdermin
D (GSDMD ) 2 24 B liicH: 30kDa N A i 25 74
(p30) , GSDMD-p30 1] LATEAH I B iALER, S
SN K AN 2 NS T, AR R T
AR KR EVs AN E] GSDMD-p30 3%,
EVs 51 2 AR B PY, 75 & T M i A5 PN Rz A
FET-FIRAE N Y, HAh, Gambim 95 #ff 57 &
i i A5 I /N AR A S U A B R S A A T
PE, 0 BOE TS PR (ROS) L TR PEA (RNS) A2 ),
5 T PN 2 A0 > I S R B M1l -3 (Caspase-3) T fb
FEARIE N AN T X SERFIE 3R, SMMA T B
SEN R OIRERER, IR IMAE AR, b A
Yy o L R R T DG, R A M
PLHR M8 miRNA B80T LUK P4 Rz 41 i 2 1] 1)
BCRGEE, WD N R A BT RE ZE L 5 | R A i 45
BRI Ak, ANIA IR 15— S ) T2 PN e 20 i
IR . ZEURE IR AE-1 (syndecan-1)
FLA AR P B B A0 ) g% 0 R R v T, B ER
syndecan-1 [JFMBAT] LIS LPS HIlUE {2 96 40 i
T 3k, elost/IN BRI RN 457 P B 200 L ) 38 i
PEea,
2.4 SR R 0 B A 4 R

FE AR PR B T R v o 240 i 3
L2 WAL, b A0 T B i 2 B B
Ji, G045 HE B . ROS A MR 41 it it 71375 4 9
(NETs) , X %64 57 75 B A0 J A4 (%) [m] Bsf e 2> e R
ANt Rl i | 5 AL AR M R T A s il A, A
WF9E K R, e MLBEA SA0 /MR EVs il ad B34 H
T NETs, S AHICH) AL, M\ LPS Ja38 A9 il
ANHR A3 B AR A A A, 3 O R R R R
1 (HMGB1) . miR-15b-5p., miR-378a-3p I 1% Hitk ki
P WA G ) Akt/mTOR 3@ %, %55 NETs &
A, PR IEMEEIE A SC I ALIY, X SURIFSE 2 B i/
AT R 3 ak AP MAMA 5 T Ak 1 rh PR A AR AR
H, %55 NETs JE A, Mt —25 maE flififs .
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AT R — TR 5 A B, AR50 25 ) EVs 728
REPFER, FERIEAMT, Ifidl EVs 8 i 1538 AU
DNA TEVR PRI S M 8 - rh M 28 B R sk 1k
[AF CXCL1 Il CXCL2, 338 v M 4 it ka1 s
PR H PR A e S Ak DXk, T IR Y/ R
AT R B 25 5, X RIANG EVs AN EEAS
s S Ry v}t DB 2RSS e (1P T Ry v L
N RAEAR 5 (A o I F R s — BRI T il
HLUEVs PYZEARLRML, 8 ad X i 2R E R EVs
PEATER I BT AL 2= R A RNA U5 534, S5 5R3%
Bl ZH 2 EVs 19 FEBRIEZ 1T RUGIE T K 240 .

3 SMMEZE ALI/ARDS 2B &

K i 41 ZURT A0 I B A0 I A A S R A
53T AR BRAC R T, A4 ) B3 i ol 4 R
SRR, XA T DIE R ALI/ARDS [4#E
G 5 FE M EL BALF g2, s 753 sh ik 2 A7
BCAPIRIZ WA DI ST T -

% H BALF [/MNIA LS ARDS (il B 6145 7™ B
FRBEAFTE—E AR OCHE . 53 )\ 158 44 ARDS
FEE BALF 4y Hh AR, 38 3 73 A1 SN A 7K S
Sl REE Z IR A Sk, KB E S5EAH8E (PaOy/
FiO,) A, B tE F 51 ARDS %
BALF AMIMATK -5 T3 A B R B R, ik 3R
B BALF ZMUAMA I 5 1855 DRLRT S0k B 2 DA DG
] ARDS 3 BALF A9 0 b EwENR G A,- T A
I (sPLA,- [T A) 7KV T i 5 0 A I R ™ HL 72
SIEASE, 1 sPLA,- T A fX7EH.1 ARDS i BALF
SRR I R, X R T REVE S ARDS 112
Wi bR, AE—T0 5 F I S BA miRNAs T
I A X SR AT A 28 (SCAP) H& Y ARDS Ay

RAFFEH, ARDS HAY/MMA miR-146a, miR-27a.

miR-126 Fl miR-155 [ FRik/KF i 2 5 TIE ARDS
4, B4 miRNA T TR (AUC) fETE 0.592
F10.779 Z A1 A 4 1~ miRNA ) AUC KFA4E
fA] B4~ miRNA (AUC=0.909, P<0.001, 95% & {[X
8] 4 0.815 ~ 1) , X #2&/8 miR-126, miR-27a, miR-
146a 1 miR-155 YEEGZFRIA AT H ARDS®, 1
Ab, TEMERRIE B ML A MNBA T hsa_circRNA_104484
F1 hsa_circRNA_104670 F# 5158, circRNA 7] g
YER ALL ZARIFRED . T3 A IF 58 AMEGREAE (o
HNES T IR ANIMA, & BRAMIBMA CD63 KF-1 T
e e R I P AR AN OC, I ELRE TR i
FIEREMAET R FIRIBFIE R, SR K&
H AW Al i FH T ALI/ARDS 535152 e F1 ) b 75
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Jei, R AU, SR A IS A bR
4 HNMETE ALI/ARDS 3897 _FHIE RN B

4.1 ZRAASRIERISMNAETE AT R RI1EH

HTi, ARDS [IGYT 20 S RpPEf i, (H2
FAHMNBRFRATF C & I T 8 a5, Hd,
FEIR TN (MSCs) KI8T 7Z , HABR A MR TE
ALI/ARDS Il RETAFFE o 2 7s H R A AR I R0CR .
B4R, MSCs A Y &M IAMA T 4 3k W AT LA il fii 20
U R M Y SR A, AR IL-27 (43, BRI
ZH LU 4 P A1 IR 7 8 7K S 5 2 i /N BROAG AE A7
sl Wei 250 I MSCs A 115 AR 4
W, AT LA RAAR 9 AT P 7 9 7K SF =300 1 Bl 0 4 i 4
R, BEAh, 78 AL /N AL, MSCs #h b A&
¥ miR-30b-3p #8211 By b Rz 4, @it
VA LT FERAE S 11 A3 (SAA3) {2 FE4H M35 -4
il 1 Bz 4R M TS, MSCs 43 W Bl A I A T i
PI3K/ Akt {55538 & 7 AR SN RN A A 7R s 2D 1 Y
B AR AR TR TN Y =Bl e, X
YL A LR

Bifi 5 BT R R EE I R (COVID-19) [ER &,
EEEREAERAL DARSE M, MEM
COVID-19 Jg&ge Al S HOBUm [a] S v it 48, i e
ARDS FI=EAFH WMl EFdifb . ek, ERINEH
AIAFFJ'é T MSCs #MisA H Fi697 COVID-19 il
IREFZEIF HYF 20 2 o fE— I Rk s rh, EAE
COVID-19 #4252 1 BUCGH K 5B R IR i A
WARIRTY , 45 R AN T B 1Y B AUE
AR, TRIBT R T 40 i PR 7 XU RN e e e, JF
HIEA R RN RAS, Jo8 s i AR ERERH
ZALW AR TR, K COVID-19 B HEAT T BT )
FET T A AN MARRIIGTT, SMBAIG T AR HE T R
Jpa A% B I WO 46 T #2 B COVID-19 fR3 1A B
IFE], 298 3R IR B 554k MSCs SR IR % 51
WMATRIT AT REX R A 5. A, kA=A
B 2% B0 S A b, A R T 25
TR, 1A A AR 5 55 Ak A MSCs KU 1)
G IAAR ) R AR R U N, RI2E R L gE AT 5K
HEATAMIMATRTT B I RIF S SR L T S 5.

BR8] 05T T4 A, A 20 A Y S s
W7E ALI/ARDS AR YER . AR ZIN
AL (EPC) SR mT LA ik ik 2 Jay 350 4 i 200 i
PRI 7~ | T8 U il 308 175 R 00 1) v P A 200 B % R i
/b LPS 521 ALI®, 5 —JbF5E LB EPC 4h il
PAT] DLTE i 595 RAF/ERK {5538 BR 1 2535 DU 1
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W AR T RE PR &2, #F i s ALI/ARDS % i
JEt, Jiang S & PN Bz 20 M A DA A4 E 1 B B
miR-125b-5p A LU # 4 b 57 A4 i 11a (TOP2A) )
ik, WM g Mi4n, %% 44 miR-125b-5p #ifi
FU 5T AR —FE R

R SE 25 SRR SMMA 2 ALI/ARDS 5
BIT M AEE L 2 Y, SRR T LK mRNA |
miRNA , & 15 S0 A0 i Al 4, AR 5t
PRIk, A R4y T R, DA% ALI/ARDS 1Y
PRAE SN AL T, 2o N R AL D e L R g R
b 4545, 7E AL/ARDS H & AR R
4.2 {EAYREKEISNMETE ST P EIER

HMIMAIRTUIN, H HAT Dbkt 7 | 25 5 25
W 3 PN B2 AR, AT AR A I 350 24 40 % 22 1) 2%
A, SEEE M 25 ik . SR Z R O STk
T AN 253856 16 1R YT KW, miR-223-3p &
PRAE I — A RO 5 4%, 78 LPS JllJ# Y BALF
HRUMA T miR-223-3p FRIKAKF- T, A a1
#k miR-223-3p MYSMLIA, 7T LA B il 22 2402/ 95
SR 39 (STK39) BYZRIA, & iy i w2 ifd
I W T 2R A 45 . MR UL LR P ) 32 IR 25
A K (RBP) & —Fh i ik, &3 F RBP 54MAA
R AR ZE [ Lamp2b 3E 4%, BRI 2 E R
RSN, MM RBP MIZEH ) TRk
GNIMA, SN ARTT LLBE Bl IR I, B T 2R
RBP LSRR RO, B F B 4y
7E miRNA 4 L0 2% B RR R B BT 1Y 9Kk £
B G IR PRSI , S MAR ALY
AT DA RS S8 08 7 DR AP P e 20 B . 40 98 T
I FI AR e TERE S AR TN T 19 245 4k 126 L
FAREEME ARG T R PE A, TARE M AR A ]
DATE DG I 2 5 25 ) ke iR ) | e
PESE, o TAESMBA T ALI/ARDS (9021 i 4
AT & —FI AT AT S

A1 IS A0 [ 3 TR A T A B, S A s
5% (miRNA, 2 5. mRNA 55) SCELAH A A (1)
L, SNMAT ST IR1EN ALI/ARDS M 7E
WA B SR T Bk ARG, 2 00 F
FHREZ—,

K I R T AAF 2 U B 1] 70 5 400 R R Y
AP AR B T G | 9 KT B R AU AE
. XF ALLSERBA G780 . s, i Toh
WA AT IR B M | I f P28 T S R 1) 2 2
PR, SMBATT DUH TR Bk 258, A TR
ARG SN 258, v L T AR B

147«

RS SZAR LUK SN IR B S SR 20 M, XA A A
WMAEB IR TRY T 25T T i AE B2 AT BRI S

SR, Bk — 25 S I T AN LA 1 ¥R 7 5R ek
£ ALI/ARDS " il R % A0 AT BA PR, &%,
HMIMATZ I ALI/ARDS WAL A E 252, 12
MLURIEA FHRER . 8, S AL A S A 4 25
FoR G BRBHEE, 75 B AR SN I AR i
AR B ] A5 LA PR SN PR 1 5 B IR TR . 55 =,
PR BE G T ANMATE ALI/ARDS HRIRR T8 4E
FHEERRAIEST , 47577 2L 0 22 1 L Ath 52 56 A R >k
G5 UE R FH T I R A 28 2 PR R 250k
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