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外泌体在急性肺损伤中的研究进展

李婧雯，李超乾

广西医科大学第一附属医院（广西南宁  530021）

  
急性肺损伤（A L I） /急性呼吸窘迫综合征

（ARDS）是一种常见的急危重症综合征，病死率高

达 35%-46%[1]。以失控的炎症反应和肺泡-毛细血管

屏障受损造成的弥漫性肺间质、肺泡水肿为主要特

征[2]。目前，ARDS 的主要治疗策略仍以机械通气、

体外膜肺氧合（ECMO）及限制性液体管理等支持

治疗为主 [ 3 - 4 ]，由于缺乏有效的治疗手段，大多数

ALI/ARDS 患者预后不良。近年来，外泌体领域迅

速发展，它们已被证明参与细胞信号转导、细胞间

通讯和相关生物学过程，在多种疾病的进展过程中

发挥至关重要的作用，外泌体作为新型生物标志物

和新疗法在 ALI/ARDS 中的应用受到了广泛关注。

本文就外泌体在 ALI/ARDS 发病机制、临床诊断及

潜在应用价值进行综述。  

1    外泌体概述

外泌体是细胞外囊泡（EVs）的一种，直径约为

30～150 nm，是由细胞质膜内陷形成的多囊泡体与

细胞膜融合后，以胞吐形式释放到细胞外基质的囊

泡[5]。外泌体可存在于多种体液中，例如支气管肺

泡灌洗液（BALF）、血液、痰液和尿液等。体内几

乎所有类型的细胞都可以分泌外泌体，包括干细

胞、肿瘤细胞和免疫细胞[6-8]。外泌体含有与母细胞

相关的蛋白质、核酸和脂质等多种生物学活性物

质，当它们从细胞中释放后通过内吞作用、直接与

细胞膜融合的方式被邻近或远处的细胞摄取，随后

释放其内容物调节受体细胞相关基因的表达，或与

靶细胞表面的特定受体相互作用并激活相关信号

通路，从而实现细胞间的通讯[9-11]。

外泌体在生理和病理状态下具有不同的生物

理化特性及功能，在各类疾病的发生发展过程中发

挥重要作用，包括心血管系统、呼吸系统以及一些

自身免疫性疾病等[12]。有研究者发现 BALF 中的外

泌体含有组织相溶复合体（MHC）Ⅰ类和Ⅱ类分子

并表达共刺激分子 CD86，这表明气道外泌体可能

参与抗原呈递、调控适应性免疫反应并介导共刺

激[13]。肺癌细胞来源的外泌体携带有多种免疫抑制

分子和因子，通过影响肿瘤微环境中的免疫效应细

胞功能，帮助肿瘤免疫逃逸[14-15]。来自肺部结构细

胞（内皮细胞和上皮细胞）和免疫细胞（巨噬细胞和

中性粒细胞）的外泌体，通过转移 miRNA、促炎细

胞因子等，促进气道重塑和纤维化，从而影响肺部

慢性炎症的发展 [16]。在气道和肺泡中，外泌体能够

维持肺部稳态，也能诱导促炎、促进抗原呈递，从

而参与调节肺部炎症和免疫应答。  

2    外泌体参与 ALI/ARDS 发病机制
  

2.1    外泌体对巨噬细胞的作用

ALI/ARDS 的特点之一是肺泡巨噬细胞的激

活，激活的巨噬细胞通过释放大量的炎症介质与相

应细胞表面受体结合，吞噬病原体及激活肺部其他

细胞，参与调控炎症反应和维持气道免疫平衡。

不同细胞来源的外泌体在被肺泡巨噬细胞摄

取后，可以引发炎症反应，导致急性肺损伤。Chen
等[17] 将单核细胞来源的外泌体作用于巨噬细胞发

现，外泌体 lncRNA CLMAT3 特异性靶向羧基末端

结合蛋白 2（CtBP2），CtBP2 和组蛋白乙酰转移酶

p300 与核转录因子-κB（NF-κB）组成转录复合物激

活巨噬细胞大量释放 IL-1β、IL-6、TNFα 等促炎性

细胞因子。此外，中性粒细胞的外泌体，通过传递

miR-30d-5p 也能激活 NF-κB 通路从而诱导巨噬细

胞极化和焦亡[18]。Liu 等[19] 发现肺泡上皮细胞外泌

体 miR-92a-3p 通过调控 NF-κB 通路促进巨噬细胞

活化并介导炎症。上皮细胞还可以分泌 IL-25 下调

肺泡巨噬细胞中的 Rab27a 和 Rab27b 的表达，从而

抑制巨噬细胞外泌体的释放以减轻 ALI[20]。另有研

究发现肺泡上皮细胞分泌的 CD74+ 外泌体对肺泡

巨噬细胞具有促炎和抗纤维化作用，而血管内皮细

胞分泌的 CD31+外泌体对肺泡巨噬细胞有抗炎和促
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纤维化作用，这是由外泌体携带的 miR-27b-3p 和

miR-223 分别介导的[21]。总的来说，外泌体在肺损

伤中对巨噬细胞不完全都是损伤作用，也具有保护

作用，这取决于其细胞来源类型及所含物质。

外泌体可以被分泌到各种液体中，包括血液，

研究发现在脂多糖（LPS）诱导的 ALI 小鼠外周血中

富含外泌体，血清来源的外泌体 miR-155，通过靶

向含 SH2 结构域的肌醇 5-磷酸酶 1（SHIP1）和细胞

因子信号传导抑制因子 1（SOCS1）促进巨噬细胞的

增殖和炎症反应[22]。另有研究表明，在急性胰腺炎

（AP）相关的 ALI 模型中，血浆来源的外泌体通过

激活巨噬细胞中的 NLRP3 炎症小体导致巨噬细胞

焦亡，触发炎症级联反应[23]。上述研究为循环外泌

体能够靶向肺泡巨噬细胞而引起肺损伤提供证据，

然而对于血源性外泌体的确切来源还尚未阐明，明

确这些外泌体的起源将有助于进一步了解外泌体

参与调节 ALI 的机制。  

2.2    外泌体对上皮细胞的作用

肺泡上皮细胞主要由Ⅰ型肺泡上皮细胞（AEC-
I）和Ⅱ型肺泡上皮细胞（AEC-II）组成。AEC-I 在

气体交换、免疫调节、水和离子转运等方面起着关

键作用。AEC-II 可以募集免疫效应细胞并分泌多

种抗菌肽来协调先天免疫，此外，AEC-II 具有增殖

及分化成 AEC-I 的能力，其合成的肺泡表面活性物

质可以维持肺泡表面张力[24-25]。

气道上皮是抵御外界环境的第一道防线，越来

越多的证据表明，在 ALI 发生时，外泌体可以引起

气道上皮功能失调。例如，脓毒症相关 ALI 患者的

外泌体 miR-1 298-5p 上调，通过抑制支气管上皮细

胞的增殖和诱导上皮细胞通透性增加引发肺部炎

症[26]。Yuan 等[27] 从 LPS 诱导的 ALI 小鼠模型中收

集 BALF，研究发现 BALF 来源的外泌体包含了参

与调节炎症的 miRNA 和细胞因子，且这些外泌体

可以通过影响支气管上皮细胞中紧密连接蛋白

（ZO-1）的表达来破坏结构屏障。推测这可能与在

感染、高氧等刺激后，肺内免疫细胞大量释放外泌

体到气道表面，导致免疫调节失衡有关[28]。在脓毒

症相关 ALI 大鼠模型中，肺泡巨噬细胞释放的外泌

体通过氨基肽酶 N（APN）与上皮表面受体 TLR4
结合导致支气管上皮细胞功能紊乱[29]。需要注意的

是，免疫细胞来源的外泌体对炎症微环境的调控是

双向的。一项研究报道，肺泡巨噬细胞释放的外泌

体和微囊泡中携带有 SOCS1 和 SOCS3，SOCS 蛋白

家族是 JAK-STAT 信号通路内源性抑制剂，当肺泡

上皮细胞摄取外泌体后，通过 SOCS1 阻止 STAT 信

号通路激活，从而抑制肺泡上皮细胞的炎症反应[30]。  

2.3    外泌体对内皮细胞的作用

来源于循环 EVs 可破坏内皮细胞，激活下游信

号通路，调节内皮细胞炎症、氧化应激和细胞凋

亡，导致肺血管严重渗出，进一步加重 ALI。Gao
等[31] 研究发现来自 ALI 大鼠的外泌体分泌 miR-1-
3p 至内皮细胞，上调的 miR-1-3p 通过靶向内质网

应激相关蛋白 1（SERP1）促进细胞凋亡和细胞骨架

收缩，增加单层内皮细胞的通透性和膜损伤，最终

导致 ALI。除 miRNAs 外， EVs 还携带有破坏内皮

屏障的蛋白。激活的焦亡相关蛋白 Gasdermin
D（GSDMD）会裂解释放其 30kDa N 末端结构域

（p30），GSDMD-p30 可以在细胞膜上形成孔隙，导

致细胞肿胀、细胞膜破裂、细胞死亡，在暴露于高

氧的大鼠血浆 EVs 中检测到 GSDMD-p30 增多，将

EVs 注射到新生大鼠体内，诱发了肺血管内皮细胞

死亡和炎症反应[32]。此外，Gambim 等[33] 研究表明

脓毒症患者血小板的外泌体具有超氧化物生成活

性，通过激活活性氧（ROS）、活性氮（RNS）生成，

诱导内皮细胞半胱氨酸蛋白酶-3（Caspase-3）活化

并促进内皮细胞凋亡。这些研究提示，外泌体可能

导致内皮功能障碍，引起血管病变，其中负载的生

物活性物质是其发挥作用的关键，调节外泌体中重

要蛋白或 miRNA 的表达可以恢复内皮细胞之间的

紧密连接，减少内皮细胞功能紊乱引起的肺损伤。

除此之外，外泌体还转运一些有利于减轻内皮细胞

介导肺损伤的蛋白。多配体蛋白聚糖-1（syndecan-1）
具有保护屏障和抑制炎症反应的潜力，负载

syndecan-1 的外泌体可以减轻 LPS 刺激后促炎细胞

因子的表达，改善小鼠肺微血管内皮细胞的通透

性[34]。  

2.4    外泌体对中性粒细胞的作用

在趋化因子的作用下大量中性粒细胞迅速募

集至肺损伤部位，中性粒细胞迁移时会释放有毒介

质，包括蛋白酶、ROS 和中性粒细胞胞外诱捕网

（NETs），这些介质在防御病原体的同时也会破坏

细胞间连接、引起细胞凋亡从而加重肺损伤[35]。有

研究发现，凝血酶诱导的血小板 EVs 通过直接作用

于 NETs，导致输血相关的 ALI[36]。从 LPS 刺激的血

小板中分离出的外泌体，通过高迁移率族蛋白

1（HMGB1）、miR-15b-5p、miR-378a-3p 激活中性粒

细胞内自噬相关的 Akt/mTOR 通路，诱导 NETs 形

成，促进脓毒症相关的 ALI[37]。这些研究表明血小

板可能通过其外泌体与活化的中性粒细胞相互作

用，诱导 NETs 形成，从而进一步加重肺损伤。最
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近的一项研究发现[38]，从肺组织分离出的 EVs 在骨

髓中积聚，在炎症条件下，肺部 EVs 通过传递双链

DNA 在体内和体外刺激骨髓中性粒细胞释放趋化

因子 CXCL1 和 CXCL2，增强中性粒细胞趋化性，

促进中性粒细胞募集至病灶区域，而在正常的小鼠

中没有检测到显着差异，这表明肺 EVs 不是直接诱

导中性粒细胞募集的因素，而是增强中性粒细胞响

应炎症信号的媒介。该项研究还进一步探究了肺

组织 EVs 的亲本细胞，通过对肺组织来源的 EVs
进行蛋白质组学和单细胞 RNA 测序分析，结果表

明肺组织 EVs 的主要来源是 II 型肺泡上皮细胞。  

3    外泌体在 ALI/ARDS 诊断价值

来自肺组织和细胞的外泌体携带有与肺损伤

相关的分子,在病理条件下，外泌体的数量或组成

会发生变化，这些变化可以作为 ALI/ARDS 的特征

信号在血液或 BALF 中检测到，这使得外泌体具有

成为疾病诊断生物标志物的潜力。

来自 BALF 的外泌体与 ARDS 的肺部损伤严重

程度存在一定的相关性[39]。有学者从 158 名 ARDS
患者 BALF 中分离出外泌体，通过分析外泌体水平

与临床数据之间的相关性，发现它与氧合指数（PaO2/
FiO 2）呈负相关，感染性病因引起的 ARDS 患者

BALF 外泌体水平高于没有感染性病因的患者，这表

明 BALF 外泌体的含量与病因和氧浓度密切相关[40]。

早期 ARDS 患者 BALF 中的分泌性磷脂酶 A2-ⅡA
蛋白（sPLA2-ⅡA）水平升高与疾病的临床严重程度

呈正相关，而 sPLA2-ⅡA 仅在早期 ARDS 的 BALF
外泌体中检测到，这提示其可能作为 ARDS 早期诊

断的标志物[41]。在一项关于血清外泌体 miRNAs 预

测严重社区获得性肺炎（SCAP）患者的 ARDS 的临

床研究中，ARDS 组的外泌体 miR-146a、miR-27a、
miR-126 和 miR-155 的表达水平显著高于非 ARDS
组，单个 miRNA 的曲线下面积（AUC）值在 0.592
和 0.779 之间,而联合 4 个 miRNA 的 AUC 大于任

何单个 miRNA（AUC=0.909，P<0.001，95% 置信区

间为 0.815～1），这提示 miR-126、miR-27a、miR-
146a 和 miR-155 的联合表达可用于预测 ARDS[42]。此

外，在脓毒症患者血清外泌体中 hsa_circRNA_104 484
和 hsa_circRNA_104 670 的表达增强，circRNA 可能

作为 ALI 发生的标志物[43]。另有研究从脓毒症患者

中分离了血浆外泌体，发现外泌体 CD63 水平的升

高与器官衰竭的严重程度相关，并且能预测脓毒症

重症患者的死亡率[44]。上述的研究表明，外泌体及

其内容物可应用于 ALI/ARDS 早期诊断和判断预

后，为尽早预警疾病风险，提供合适生物标志物。  

4    外泌体在 ALI/ARDS 治疗上的潜在应用
  

4.1    细胞来源的外泌体在治疗中的作用

目前，ARDS 的治疗主要为支持性措施，但基

于外泌体的治疗已经显现出了美好前景。其中，间

充质干细胞（MSCs) 来源广泛，其释放的外泌体在

ALI/ARDS 临床前研究中显示出良好的治疗效果。

例如，MSCs 来源的外泌体已被证明可以抑制肺组

织中巨噬细胞的聚集，抑制 IL-27 的分泌，降低肺

组织中促炎性细胞因子的水平并提高小鼠的生存

率[45]。Wei 等[46] 发现 MSCs 外泌体通过诱导体内自

噬，可以降低炎症因子的水平并抑制肺部炎症和氧

化应激。此外，在 ALI 小鼠模型中，MSCs 外泌体

将 miR-30b-3p 转移至Ⅱ型肺泡上皮细胞，通过下

调血清淀粉样蛋白 A3 （SAA3）促进细胞增殖并抑

制上皮细胞凋亡 [ 4 7 ]。MSCs 分泌的外泌体通过

PI3K/Akt 信号通路在体外和体内模型中减少了内

皮细胞的凋亡并减轻了血管的高渗透性[48]，对内皮

细胞产生保护作用。

随着新型冠状病毒肺炎（COVID-19）的爆发，

它已发展成为全球公共卫生紧急事件，严重的

COVID-19 感染可导致双侧间质性肺炎，常进展为

ARDS 和幸存者的肺纤维化。近年来，国内外已有

团队开展了 MSCs 外泌体用于治疗 COVID-19 的临

床研究并且疗效显著。在一项临床试验中，重症

COVID-19 患者接受了单次静脉注射骨髓来源的外

泌体治疗，结果显示外泌体改善了患者的缺氧症

状，同时减轻了细胞因子风暴和促进免疫重建，并

且无不良反应发生[49]。 无锡市第五人民医院采用

雾化吸入的方式，对 COVID-19 患者进行了脐带间

充质干细胞外泌体的治疗，外泌体治疗促进了肺部

病变的吸收并缩短了轻度 COVID-19 患者的住院

时间，该研究表明在感染早期雾化 MSCs 来源的外

泌体治疗可能对患者更有益。此外，雾化的方式可

直接将药物送到细支气管和肺泡中，更有利于药物

充分吸收，该试验还观察到雾化吸入 MSCs 来源的

外泌体的患者未诱发过敏反应，初步为以雾化方式

进行外泌体治疗的临床研究提供了参考数据[50]。

除了间充质干细胞外，其他细胞来源的外泌体

也在 ALI/ARDS 中发挥保护作用。有研究发现内皮

祖细胞（EPC）外泌体可以通过减少局部炎症细胞

因子、降低肺泡通透性和抑制中性粒细胞迁移来减

少 LPS 引起的 ALI[51]。另一项研究则表明 EPC 外泌

体可以通过增强 RAF/ERK 信号通路的表达以促进
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内皮细胞功能恢复，进而改善 ALI/ARDS 的预

后 [ 5 2 ]。Jiang 等 [ 5 3 ] 发现内皮细胞外泌体通过转移

miR-125b-5p 可以抑制拓扑异构酶 IIα（TOP2A）的

表达，从而缓解肺损伤，而转染 miR-125b-5p 抑制

剂则逆转了外泌体这一作用。

近期的研究结果表明外泌体是 ALI/ARDS 患者

治疗的潜在候选药物，外泌体可以将 m R N A、

miRNA、蛋白质等转移到靶细胞和组织中，改变基

因表达，调节靶细胞的行为，以减轻 ALI/ARDS 的

炎症反应和细胞凋亡，改善内皮细胞功能以及修复

上皮损伤，在 ALI/ARDS 中发挥保护作用。  

4.2    作为物质载体的外泌体在治疗中的作用

外泌体体积小，且具有逃避吞噬、容易穿过呼

吸道内膜层等特性，可以作为肺部药物传递的载

体，实现靶向药物输送。越来越多的研究已经开发

出基于外泌体的药物递送治疗策略，miR-223-3p 是

炎症反应的一个有效调节器，在 LPS 刺激的 BALF
外泌体中 miR-223-3p 表达水平下调，通过构建负

载 miR-223-3p 的外泌体，可以有效抑制丝氨酸/苏
氨酸激酶 39 （STK39）的表达，促进肺泡巨噬细胞

自噬并缓解肺损伤[54]。晚期糖基化终末产物受体结

合肽（RBP）是一种抗炎肽，设计将 RBP 与外泌体

膜整体蛋白 Lamp2b 连接，把疏水性药物姜黄素包

裹到外泌体内，构建包含 RBP 和姜黄素的工程化

外泌体，外泌体可以被肺部吸收，提高了姜黄素和

RBP 的传递效率和抗炎效果[55]。通过技术手段将特

定 miRNA 按比例加载到特殊材质的纳米粒子中，

合成一种免疫抑制性外泌体模拟物，外泌体模拟物

可以以剂量依赖的方式保护内皮细胞、抑制炎症反

应和减轻脓毒症[56]。天然外泌体介导的药物递送具

有低毒性、低免疫原性的优势，工程化外泌体还可

以在此基础上提高药物负载效率、靶向能力、稳定

性等，将工程化外泌体用于 ALI/ARDS 的无细胞靶

向治疗是一种可行策略。

外泌体是细胞间通讯的重要介质，通过传递其

内容物（miRNA、蛋白质、mRNA 等）实现细胞间的

信号传递，外泌体已经开始作为 ALI/ARDS 的潜在

诊断生物标志物及治疗手段进入研究，是当前的研

究热点之一。

大量临床前研究已证明间充质干细胞来源的

外泌体具有调节免疫、减少炎症及修复组织的作

用，对 ALI 症状具有缓解治疗效果。此外，由于外

泌体具有低毒性、低免疫原性等独特的生物学特

性，外泌体可以用于靶向递送药物，通过生物工程

技术修饰外泌体负载药物，还可以人工处理其表面

特异性受体以将外泌体转移到靶细胞，这种利用外

泌体递送治疗药物的新方法在医学上具有巨大前景。

然而，要进一步实现基于外泌体的治疗策略

在 ALI/ARDS 中的临床转化仍具有挑战性，首先，

外泌体影响 ALI/ARDS 的机制尚不完全清楚，许多

机制还有待探索。第二，缺乏标准化的外泌体分离

技术、储存方法和质量把控，需要解决外泌体标准

化的问题以确保外泌体的质量及治疗效果。第三，

现阶段关于外泌体在 ALI/ARDS 中的探索主要集中

于基础研究，仍需要更多的基础实验和临床数据来

验证其应用于临床的安全性和有效性。
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