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摘要:外泌体是细胞分泌到胞外环境的膜囊泡ꎬ是治疗脊髓损伤的一种新策略ꎮ 间充质干细胞分泌的外泌体在脊

髓损伤的治疗中具有抗凋亡、抗炎和促血管生成的作用ꎬ同时能促进神经细胞间的交流ꎬ并可作为外源性遗传物质

的载体ꎮ 与其亲代细胞相比ꎬ外泌体可穿越血脑屏障ꎬ更加稳定ꎬ降低了施用活细胞所固有的安全风险ꎮ
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１　 脊髓损伤研究的现状

脊髓损伤是脊柱损伤严重的并发症之一ꎮ
ＷＨＯ 数据显示ꎬ每年世界各国有 ２５ 万 ~５０ 万的人

遭受脊髓损伤ꎮ 引起脊髓损伤的主要原因是交通事

故、高空坠落和暴力损伤ꎮ 脊髓损伤常伴随瘫痪、大
小便失禁等并发症ꎬ给患者及其家庭带来巨大的经

济负担ꎮ 调查显示ꎬ脊髓损伤越来越年轻化ꎬ给社会

造成巨大压力ꎮ 但是ꎬ目前临床上缺乏有效的治疗

措施ꎮ 虽然科研工作者在脊髓损伤的治疗上已经做

了很多的探索ꎬ但是所有的方法都显示出了有限的

疗效ꎬ尤其是损伤后功能的恢复ꎮ 因此ꎬ脊髓损伤治

疗新策略的研究是很有必要的ꎮ

２　 细胞治疗潜在的机制

脊髓损伤治疗最大的挑战就是轴突的再生和重

新连接ꎮ 干细胞具有的强壮的增殖和分化潜能使得

干细胞移植技术在脊髓损伤的治疗中开辟了新天

地ꎮ 多潜能间充质干细胞(ｍｅｓｅｎｃｈｙｍａｌ ｓｔｅｍ ｃｅｌｌｓꎬ
ＭＳＣｓ)是由间充质干细胞和祖细胞组成的非造血细
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胞亚群ꎬ具有多能性特征ꎬ可以从骨髓、外周血、脐带

血、脂肪组织和皮肤等样本中获得ꎮ ＭＳＣｓ 作为细胞

治疗的来源ꎬ对于大鼠脊髓损伤的治疗具有较好的

疗效[１￣２]ꎮ 但是ꎬ干细胞的自体移植存在几个问题ꎬ
一是存活率低ꎮ 移植的细胞只有小部分能够存

活[３]ꎮ 二是具有产生肿瘤的风险ꎮ 长时间培养的

ＭＳＣｓ 由于染色体不稳定性增强可能会向永生化和

自主化转变ꎬ当注射到多器官的生物体中ꎬ可能会导

致肿瘤的生成[４]ꎮ 三是靶向性差ꎬ静脉内移植不能

定向到达损伤部位[５]ꎮ 如何能够扬长避短ꎬ既能使

用 ＭＳＣｓ 治疗脊髓损伤的优势又能避免它带来的弊

端呢?
间充质干细胞移植促进功能恢复不是因为分化

成损伤的组织ꎬ而是通过分泌营养因子和细胞因子

改善损伤微环境来间接地促进轴突的再生[６￣７]ꎮ
ＭＳＣｓ 通过旁分泌的方式分泌的小分子物质ꎬ如生长

因子、趋化因子、细胞因子和胞外微囊泡等ꎬ可以促

进细胞再生和血管生成[８]ꎮ

３　 ＭＳＣｓ 来源的外泌体(ＭＳＣｓ￣ｅｘｏｓｏｍｅｓ)
的形成与功能特点

　 　 ＭＳＣｓ 的治疗效果可能归因于其强大分泌可溶

性分子和外泌体的能力[７ꎬ９]ꎮ 外泌体是由许多细胞

类型分泌到细胞外环境中的直径为 ４０ ~ １００ ｎｍ 的

膜囊泡ꎮ 它们对应于内体隔室的内部囊泡、多泡体ꎬ
并在该细胞器与质膜胞外融合时释放ꎮ 在细胞内ꎬ
它们是在隔离特定蛋白质和脂质的过程中ꎬ通过内

体膜向内萌芽而形成的ꎮ 外泌体内包裹有蛋白质、
脂质和不同的核酸(ｍＲＮＡｓꎬ ｍｉＲＮＡｓꎬ ｌｎｃＲＮＡｓ) [１０]ꎮ
这些外泌体 ＲＮＡｓ 可以被不同的细胞摄取并可在靶

细胞内表达ꎬ同时外泌体作为信号分子的天然载体ꎬ
在细胞间交流中起着关键性的作用[１１]ꎮ 和移植

ＭＳＣｓ 相比ꎬＭＳＣｓ￣ｅｘｏｓｏｍｅｓ 可以通过血脑屏障ꎬ更容

易储存和移植ꎮ 多潜能间充质干细胞来源的外泌体

在多种疾病中都展现出治疗潜能ꎮ 在糖尿病小鼠的

模型中ꎬＭＳＣｓ￣ｅｘｏｓｏｍｅｓ 可以逆转海马中神经元和星

形胶质细胞的降解以及轴突的丧失[１２]ꎮ 在中枢神

经系统损伤模型中ꎬＭＳＣｓ￣ｅｘｏｓｏｍｅｓ 可促进皮质神经

元轴突的生长[１３]ꎮ 在大鼠的脑卒中模型中ꎬ全身给

予 ＭＳＣｓ￣ｅｘｏｓｏｍｅｓ 促进神经血管重塑和脑卒中后功

能恢复[１４]ꎮ 三维立体培养的人骨髓来源的 ＭＳＣｓ

显示出更多的外泌体分泌ꎬ并能促进创伤性脑损伤

大鼠的功能恢复[１５￣１６]ꎮ 这些结果均提示 ＭＳＣｓ￣ｅｘｏ￣
ｓｏｍｅｓ 可能是脊髓损伤的有希望的治疗工具ꎮ

４　 外泌体对于脊髓损伤的治疗

４􀆰 １　 ＭＳＣｓ￣ｅｘｏｓｏｍｅｓ 对于脊髓损伤的治疗作用

４􀆰 １􀆰 １　 ＭＳＣｓ￣ｅｘｏｓｏｍｅｓ 抗细胞凋亡作用:脊髓损伤

的病理生理学机制是很复杂的ꎬ包括细胞凋亡炎性

反应、血管损伤、兴奋毒性、流体￣解质紊乱、线粒体

功能障碍、钙和其他一些过程ꎮ 其中凋亡和炎性反

应是脊髓损伤继发性损伤的主要事件ꎮ 细胞凋亡主

要受上游 Ｂｃｌ￣２ 家族和下游 ｃａｓｐａｓｅ 家族的调控ꎬ其
中抗凋亡蛋白 Ｂｃｌ￣２ 和促凋亡蛋白 Ｂａｘ 是细胞凋亡

最常见的凋亡标志物ꎮ 采用尾静脉注射的方式将

１００ μｇ 外泌体总蛋白植入到 Ｔ１０ 打击模型的脊髓

损伤大鼠内ꎬ发现 ＭＳＣｓ￣ｅｘｏｓｏｍｅｓ 处理减少了脊髓

损伤后大鼠脊髓中 ＴＵＮＥＬ 阳性细胞的数量ꎮ 同时ꎬ
显著抑制促凋亡 Ｂａｘ 水平ꎬ而抗凋亡 Ｂｃｌ￣２ 水平上

调ꎮ 结果表明ꎬＭＳＣｓ￣ｅｘｏｓｏｍｅｓ 在脊髓损伤中起着抗

细胞凋亡的作用[１７]ꎮ
４􀆰 １􀆰 ２　 ＭＳＣｓ￣ｅｘｏｓｏｍｅｓ 抗炎作用:脊髓损伤后ꎬ血脑

屏障受到损坏ꎬ受伤的脊髓可以迅速被来自血液的

嗜中性粒细胞渗透ꎮ ＴＮＦ￣α 阳性和 ＩＬ￣１β 阳性细胞

在脊髓损伤后脊髓周围区域强烈上调[１８]ꎮ ＴＮＦ￣α
和 ＩＬ￣１β 是重要的炎性介质ꎬ可加强脊髓中的神经

细胞死亡ꎮ 尾静脉注射 ＭＳＣｓ￣ｅｘｏｓｏｍｅｓ 可显著下调

促炎性细胞因子(ＴＮＦ￣α 和 ＩＬ￣１β)蛋白质水平和上

调抗炎细胞因子(ＩＬ￣１０)蛋白质水平ꎬ在脊髓损伤后

发挥抗炎作用[１７]ꎮ
４􀆰 １􀆰 ３　 ＭＳＣｓ￣ｅｘｏｓｏｍｅｓ 促进血管生成作用:脊髓损

伤后脊髓血供迅速中断ꎮ 研究表明促进脊髓微血管

网络的血管生成和重建可以增强脊髓损伤后的功能

恢复ꎮ 在肢体、脑卒中等缺血性疾病模型中ꎬＭＳＣｓ￣
ｅｘｏｓｏｍｅｓ 显示出促进血管生成的能力ꎮ 在小鼠后

肢缺血模型中 ＭＳＣｓ￣ｅｘｏｓｏｍｅｓ 显著增强小鼠缺血

肢体的微血管密度[１９] ꎮ 在大鼠脑卒中缺血模型

中ꎬＭＳＣｓ￣ｅｘｏｓｏｍｅｓ 静脉注射增强了血管生成并改

善了功能恢复[１４]ꎮ 在大鼠脊髓损伤缺血模型中ꎬ尾
静脉注射 ＭＳＣｓ￣ｅｘｏｓｏｍｅｓꎬ脊髓灰质的前角有大量

ＰＣＮＡ / ＲＥＣＡ￣１ 阳性细胞增殖ꎬ暗示血管的生成ꎮ
但是ꎬ通过外泌体在损伤后 ３ ｄ 的血管生成的提高

０５８
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是否有助于功能恢复ꎬ还需要进一步的探索[１７]ꎮ
４􀆰 ２　 外泌体作为胞间通讯分子促进脊髓损伤后修

复

大脑的功能依赖于神经细胞之间的细胞间通

讯ꎮ 现在的体外证据表明ꎬ外泌体是由神经元以一

种取决于突触活性的方式释放的ꎮ 这些外泌体可以

被其他神经元重新摄取ꎮ 神经元分泌的外泌体中所

含的脂质、蛋白质和 ＲＮＡ 可直接改变摄取细胞中的

信号传导和蛋白质表达ꎮ 因此外泌体可以代表一个

理想的神经元间信号转移的机制[２０]ꎮ 除神经元外ꎬ
在中枢神经系统中ꎬ星形胶质细胞、小胶质细胞和少

突胶质细胞均可分泌外泌体ꎬ外泌体可以被其他神

经系统中的细胞摄取ꎬ进行细胞间交流[２０￣２２]ꎮ 脊髓

损伤后ꎬ中枢神经系统损伤再生困难ꎬ主要原因是胶

质疤痕的抑制ꎮ 磷酸酶和张力蛋白同系物( ｐｈｏｓ￣
ｐｈａｔａｓｅ ａｎｄ ｔｅｎｓｉｎ ｈｏｍｏｌｏｇｕｅｓꎬ ＰＴＥＮ)是一种抑癌

基因ꎬ是神经元再生的主要负调节因子ꎬ抑制其活

性一直被认为是脊髓损伤的治疗靶点ꎮ Ｇｏｎｃａｌｖｅｓ
ＭＢ 等[２３]利用神经元和胶质细胞间外泌体交流的特

性ꎬ使用视黄酸受体 β ( ｒｅｔｉｎｏｉｃ ａｃｉｄ ｒｅｃｅｐｔｏｒ ｂｅｔａꎬ
ＲＡＲβ) 拮抗剂处理神经元ꎬ神经元中 ＰＴＥＮ 活性由

于胞质磷酸化作用而降低ꎬ同时外泌体的分泌增加ꎮ
外泌体被星形胶质细胞摄取ꎬ导致增殖受阻ꎬ从而减

少胶质疤痕的形成ꎬ促进脊髓损伤后运动和感觉功

能的恢复ꎮ
４􀆰 ３　 外泌体作为 ｓｉＲＮＡ 载体促进脊髓损伤后修复

外泌体不仅可以作为体内物质的载体ꎬ同样可

作为外来物质的载体ꎬ比如载送外源性遗传物质ꎮ
外泌体介导的 ｓｉＲＮＡ 可以有效和特异性地到达中

枢神经系统ꎬ并产生效应[２４]ꎮ 中枢神经系统损伤

后ꎬ来源于创伤性脑损伤和脊髓损伤受试者的脑脊

液的外泌体中的炎性蛋白质表达增加ꎮ 炎性反应小

体相关蛋白会通过外泌体的方式被释放到脑脊液

中ꎬ包括凋亡相关点样蛋白 (ａｐｏｐｔｏｔｉｃ ｓｐｅｃｋ￣ｌｉｋｅ ｐｒｏ￣
ｔｅｉｎ ｃｏｎｔａｉｎｉｎｇ ａ ｃａｓｐａｓｅ ｒｅｃｒｕｉｔｍｅｎｔ ｄｏｍａｉｎꎬ ＡＳＣ)、核
苷酸结合寡聚化结构域样受体蛋白 １ ( ｎｕｃｌｅｏｔｉｄｅ￣
ｂｉｎｄｉｎｇ ｏｌｉｇｏｍｅｒｉｚａｔｉｏｎ ｄｏｍａｉｎ￣ｌｉｋｅ ｒｅｃｅｐｔｏｒ ｐｒｏｔｅｉｎ １ꎬ
ＮＬＲＰ１) 和半胱天冬氨酸酶(ｃａｓｐａｓｅ￣１)ꎮ 研究者将

神经元来源的装载有抑制 ＡＳＣ 表达的 ｓｉＲＮＡ 的外

泌体经股动脉注射到脊髓损伤的大鼠体内ꎬ实验数

据显示来自神经元的外泌体可以通过血脑屏障ꎬ有
效的在体内递送货物ꎬ显著降低脊髓损伤后炎性反

应小体激活ꎬ并且降低了 ｃａｓｐａｓｅ￣１ 激活和ＩＬ￣１β的

加工[２５]ꎮ 因此ꎬ外泌体提供了一种新的治疗方法ꎬ
即基于 ＲＮＡ 的药物来阻断中枢神经系统损伤后的

炎性反应ꎮ

５　 结论和展望

外泌体作为一种新的治疗策略ꎬ对于脊髓损伤

的治疗展现出了一定的疗效ꎮ 与移植 ＭＳＣｓ 相比ꎬ
ＭＳＣｓ￣ｅｘｏｓｏｍｅｓ 具有体内存活期更长、低致癌性、高
传递效率的优势ꎮ 外泌体不仅可以通过血脑屏障进

入中枢神经系统ꎬ还可以通过基因修饰ꎬ提高治疗效

率ꎮ 虽然目前外泌体对于脊髓损伤治疗的直接报道

还比较少ꎬ但是种种特征显示外泌体对于脊髓损伤

的治疗研究前景很大ꎮ 在以后的研究中可关注以下

问题:第一ꎬ注意外泌体细胞来源和培养条件ꎮ 实验

已经表明外泌体的功能特性会受到细胞来源和培养

条件的影响ꎬ例如三维培养ꎮ 第二ꎬ外泌体是细胞间

的通讯分子ꎬ但是外泌体诱导的治疗效应所依赖的

营养活性机制尚不明确ꎮ 第三ꎬ外泌体以何种机制

透过血脑屏障ꎬ含有 ｓｉＲＮＡ 的外泌体如何特异性到

达靶细胞ꎬ以及哪些因素在脊髓损伤的治疗中起主

要作用等等ꎮ 总之ꎬ外泌体提供了脊髓损伤治疗研

究的新方向ꎮ
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