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Research progress of exosomes in treating spinal cord injury

SHI Dong-ling” , HE Bing-gian, DAI Ling-hao
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Abstract; Exosomes are membrane vesicles secreted by cells into the extracellular environment. Exosomes are a

new cell component in the treatment of spinal cord injury. Exosomes are secreted by mesenchymal stem cells have

anti-apoptotic, anti-inflammatory and pro-angiogenic effects in the treatment of spinal cord injury, which play a

key role in nerve cell-cell communication and can delivery exogenous genetic material. Exosomes can penetrate

blood-brain barrier and are more stable than their parent cells, reducing the safety risks in the administration of

viable cells.
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