A BE2E 2025 4F 11 H 55 45 556 6 W
Current Immunology Vol.45 No.6 Nov. 2025

E AR B R EAEARERE

2B, AT, R
M RZFEZEE, #M 225001)

WE: EARERN AREAREARZ —, FERESULEEMAFENES. B4l M1 A E w40 i f M2 A B g
A, Hovh M2 S W A0 TE A R (0 SR 55 vh )43 M2a, M2b, M2c Fl M2d PO #1, M1 # B 40 i i IFN-y J LPS 3% .
BARE . WA Y R A K BB ; M2 BB B4 il iy 1L-4 ok 1L-13 300% , BA PRGN A 2RE . i
W LOARWE R 0 A B B v o R T R R I 1 T . I S R R A R AR T R R e AR (E S R Mk fE S Tl
VRS [R) 10 e 3 P A VRO W 20 B o 32 SR AR A L MR A A U R R A 3 b AR i A O [ I I A R B R Ak 6 R AT

LEIR, JF N5 5 WA AR TR 5 A B B AT A e ke REL B

KERIA . E MR AR AL s USRS AR MEIR; AR

HESES: R392.11 NHARER: A

g M7 S KRG b i G M6, B
WALIR ) AT T 2 i b, IR ZH A S A
B IR 4E , ELWR ANAE AEAS [F) AE PR SRR BT T, AR
OB G 25 B A WORR B8 S HE A B AR 10 72 Al i A2
. PR, S AR Y A2 £k T BB B A e 22 5 1Y
FLmIIRYT R

M1 2 I 2 A b = AR & 8 — S AL R
4 M (inducible nitric oxide synthase, iNOS)/—%
AL A (nitrogen monoxide, NO), & IFEFH T la
(hypoxia inducible factor 1a, HIF-1a) FII# . 3 #)
mTOR SR R /9 FIE s i M2 BB b 20 i i £k
F B R =R 1. MR S5 ER BRI 1k A O
[ adenosine 5 ~monophosphate ( AMP )-activated
protein kinase., AMPK | Hlid & 1k 9 it 14 1% 58 9 3%
1% % 1K v (peroxisome proliferator-activated recep-
tor Y, PPARY) FF IR # A F 19 b, X S Q& 12
F14) G 2 20 W 0 L A (] BB 5 v B R A AN [
BT RER A A A BRIE Bl . S0k 40 ML B AR R i B

i B 2025-04-12

ELSTIH: MK AARBEIESE (82174432); THE AAR ¥ L
(BK20211327); VL 75 & m & A R B % 5 & & KW H
(21KJA360004) ; VLIME T 3 TR h & 4% R4 Sk A (2022)5 M
K2 v A 35 H (2020)

EEBIN: T2 B(2003—), 2, ARRHE, MRS 2
B2 iIPRT

BIEEE . EMIF(E-mail: sncui@yzu.edu.cn)

NEHS: 1001-2478(2025)06-0736-06

Wik 200 i 11 B A0 T K HG 2 BB 78 1k i 0F 5 B R 15 DL 6 AT

1 HERS

1.1 HEEERR OWE AR B VR 0 ) R A e A
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] e 5 B DN Y Rk L (R TL-13 BRI, H
fift i FRAFAE 3 A CHEEE . 43 )02 O WE UG (hexoki-
nase, HK). %8 R W5 W BE 1. TN B9 PR L M2
(pyruvate kinase M2, PKM2), 55 &M, L
R B B i 1) G B PKM2 ., HK [T %5 E % & 15 Bt
RAEH . B A BFFIE S PKM2 A] 4 B s 5



VLWL, 45 0 240 M 3 20 A IR 42 AT 5 ik S

. 737 -

HIF-1a M1 STATS i ALA KB X 1 . JF HE
M HIF-la S5 7ERERA0M . ML265(—
Fpid L 755 PKM2 UM & PKM2 # 5 £ i)
INGEF I FD g AZ PKM2 B0, fff LPS i S
FEL W 200 L 0 ) 412 8 DXL 020, 9 T 1 3l ik ok
R 1 & R, T BB L4 3R AR B 1 1 (follistatin-like
protein 1. FSTLD) f& # PKM2 #f iz b 4% 5% { .
b PKM2 32 RAL UG 3R PRM2 AR 15 A T
Hom M1 Hefk, 008 SF I RE Ak 2k L R A A
FKW, FAMELLRYE PKM2 1y Cysd24 254, ]
it A AR T A i B O 55 5 4% M R R R Ok
b RAE RN R

I Mg 0 2 77 W) 3L IR — LA 2 — AR Al
PR, TEE RN, FLERAE S — R AR
Yy, 3 LR A A8t AL ) 7 A R g R i R b R 4
KHAEH, HEAFLR L3 M1 B W40 i 72 1k
e M2 RUREAR RS R E R M R AL, AT
it L N7 22 A A Y o B A BRSO
1.2 TCA fBIR TCA TE¥H K ATELRifkrh, 75X
AR, R 20k — R A A Y 4R AL B0 S A
R [ N A R BE 20 FR (oxaloacetic acid, OAA), T
OAA X5 5 —4F 1 BT A Cacetyl-coen-
zyme A, Acetyl-CoA) &, & MFr &R, Miire
ANEIR . AT fAEREN Y . TCA 18 2R 7= A i if J5 Al
SR B i FiR WEE 08— 4% FF R (nicotinamide adenine dinu-
cleotide, NADH ; i J5 RIGHRG 1/2 K7k 2 Flik Jit
¥ E ¥ H M (flavin adenine dinucleotide,
FADH, ; B % JRIEM Z A% 11 R 3 S 4O 7T LLEE 8 3]
HLF RS, JF X HE OXPHOS #1 ATP (928 i, M2
B g A0 i il g TCA E 35 1 OXPHOS Jy 41 4
16 SRR B2 . Br A 17 A4 . MHC 1T 3R 3K AR
GIENEESE RN 45 G

M W3 40 v £ Bt T At 1 o, AT I TR 185
S TCA PRER, (HAZ G 3 h AF7E 2 AR S
O 9 2 5 AT B TR I A B (isocitric dehydrogenase,
IDH) i i 1k o 2 £ 75 7 A6 82 FR 28 BIK 3l 4 JE A ot
NO FIi7 51 B % (prostaglandin, PG) A i K 5% H11%
Bt & B (succinate dehydrogenase, SDH) ff 1k ZE &)
R A B B S8R AL R, il IDH (194
A P 25 A2 R A RE 1R R 1 45 1. A BRE R R H =X 2
T2 Wi R B 1[ aconitate decarboxylase 1, ACOD1;
WFR R LebL AR I B 28 N 225 36 A 1 2 1 (immuno-

responsive gene 1, IRGD) JM#Efb =4, HAHMA
Vg e, I SDH, DA {2 #F 5% B AR 3 614 75
TR 7 4 NO ) BUR 25 il 20k 1k i 7 1% 328 6k
(electron transport chain, ETC) & & # #it 20,
SDH ik 4iE # 2 W2 AE B B b B 25 5 3ok iR R
AL, T B LPS 35 5 9 HIF-1a B9 35 A1 1L-13
AR AR A RE S 1 R A

M2 BB W 20 % Ak i B2 b i) TCA 1 345 5¢
B, AR E AL TEIR AL W 1 R . A A BRI (gluta-
mine, Gln)2 TCA JE#H 44 T =70 Z —ny s I,
PRI Gln (6= 20 TCA 634, Gln 7E 2R
A T 2 2 I i I AR 365 O A &R (glutamic acid,
GlwMZ ., 1 Glu 754 & W M A 1 (glutamate
dehydrogenase 1, GLUDD WFEH T i — 516N
o~ % — 2 Ca-ketoglutaric acid, o-KG) #f A TCA
A, o« KG A #04 HIF-1o 1 IL-18 Y 4 5,
Gln/a-KG/ %4 Jumonji £5 )3 /9 % (1 3 (Jumonji
domain-containing protein D3, Jmjd3) &l % T 1L-4
P M2 E RN AL OGS, Jmjd3 By 4 il
A GSK-J4 1F 2 i Gln 5953 f# 8% Jmjd3 1% P
RHIES M2 REAE g R EN,
1.3 #if8 X #% (pentose phosphate pathway, PPP)
EwE RS LPS #1 TEN- I 3% {6 F
M, A ) M AL W AR A AL, T ARy M A
EL W20 M b TCA 1 24 080 553 1004 8% A 1 o, SLTRR ™
I, [F e PPP AR ACAE i, e o 1 RS
FIWEWE 1) 7 Ay i — 2D ORI 0 B W 40 B A A= &
B
1.4 HEERAEHEE WA LU A R R A
% ¥ (uridine diphosphate glucose, UDPG) I 4= i
W, [ B UDPG ) DL 45 4 B0 BE 52 1K P2Y 14
I3 A B A2 A AR T . B A e e 3l B
BRI, fik % UDPG-P2Y14 {5 5 i . AL
1% 4 /1 R 3Z /& B(retinoic acid receptor B, RARR) I+
P8 STATL (i 3R3E, {0 5 W20 o) 5 4 % AL Ak
I HLE I TR T 20 5 1 R 2 R W R 1 45 (T-cell
protein tyrosine phosphatase 45, TCPTP45) fi#
STATI1 iR AL, T 5 M1 A5 W 20 g 1Y 4 48
JR o 3 PR R E N UDP 4 45 85 19 A4 ik 12
o S UDPG-P2Y 14 {5 %5 i i 1] fE B A R T 2Tk
ST P ) HT B



PR 2% 2025, 45(6)

2 FA it

2.1 FA &8 (FA synthase, FAS) TFAS EI4HJig N
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TANK) 45 & # ® 1 ( TANK-binding kinase 1,
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Research progress on metabolic regulation of macrophage phenotype

JIANG Zhiyue, HE Jiali, CUI Shuna (School of Medicine, Yangzhou University, Yangzhou 225001,
China)

Abstract: Macrophages are innate immune cells that mainly play roles in antigen presentation and phagocytosis. Macrophages
are categorized to M1 and M2 types. M2 macrophages in different microenvironments can be further divided into 4 subtypes:
M2a, M2b, M2c, and M2d. M1 macrophages are induced by IFN-y and LLPS, which promote inflammation, inhibit microbial
and tumor growth while M2 macrophages are activated by 11.-4 or I.-13, and have anti-inflammatory activity, and their func-
tions include tissue homeostasis maintanence. immune regulation, phagocytosis, promoting angiogenesis, and influencing
tumor formation and progression. The special functions of various phenotypes of macrophages are mainly controlled by polariza-
tion signals, which can activate macrophages by upregulating different transcription programs. This review focuses on the rela-
tionships between the three metabolic pathways (sugar metabolism, lipid metabolism and amino acid metabolism) and the po-
larization of different macrophages which provides new solutions for diseases related to macrophage polarization.

Key words: macrophage phenotype polarization; metabolic regulation; glucose; fatty acids; amino acid





