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成纤维细胞重编程与创面修复的研究进展

刘高雨　 罗鹏　 史春梦

　 　 【摘要】 　 皮肤创面是最常见的临床病症之一ꎬ其修复结局包括再生性修复和纤维化修复ꎮ 纤维

化修复作为成体组织器官最主要的修复形式ꎬ不仅会导致组织器官功能障碍ꎬ影响美观和身心健康ꎬ
还加重了医疗经济负担ꎮ 在创面修复中ꎬ如何抑制纤维化修复和促进再生性修复ꎬ进一步保持受伤皮

肤的完整性和功能性一直是难题ꎮ 近年来ꎬ干细胞和重编程技术的发展为再生领域带来了概念性的

革新ꎮ 其中ꎬ成纤维细胞的重编程为难愈性创面的再生修复提供了新的技术支持ꎮ 本文将概述皮肤

成纤维细胞的生物学特点ꎬ并重点综述成纤维细胞的重编程在创面修复中的研究进展ꎮ
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　 　 皮肤作为人体最大的器官和防护的第一道屏障ꎬ极容易

受到损伤ꎮ 皮肤创面是最常见的临床病症之一ꎮ 皮肤创面

修复是一个由炎症期、增生期以及重塑期等组成的复杂生物

学过程ꎬ其修复结局包括纤维化修复和再生性修复[１] ꎮ 作为

成体器官最主要的修复形式ꎬ纤维化修复又称为瘢痕性修

复ꎬ主要由成纤维细胞过度激活分化为 α￣平滑肌动蛋白(α￣
ｓｍｏｏｔｈ ｍｕｓｃｌｅ ａｃｔｉｎꎬα￣ＳＭＡ)表达的肌成纤维细胞ꎬ并分泌沉

积细胞外基质所致ꎮ 瘢痕性修复可导致患者组织器官血液

循环不良、功能障碍ꎬ在影响美观和身心健康的同时也加重

了国家的医疗经济负担ꎮ 因此ꎬ寻找抑制纤维化修复和促进

再生性修复的新策略具有重要的意义[２] ꎮ
干细胞是一种具有自我更新和分化潜能的细胞ꎬ能对多

种组织器官的损伤、老化、退行性变进行再生性修复ꎬ也是再

生医学的核心ꎮ 然而ꎬ干细胞技术在实际应用中还面临着许

多难题ꎬ其获取不仅来源有限ꎬ对组织提供者创伤大ꎬ体外培
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养扩增困难ꎬ且受到医学伦理的限制ꎮ 细胞重新编程技术的

发展可以有效地解决上述难题ꎮ 细胞重新编程是指在不改

变基因序列的情况下ꎬ通过表观遗传修饰使终末分化的体细

胞直接重编程为全能细胞的过程ꎮ 诱导性重编程技术是细

胞重新编程的一项重大进展ꎬ为干细胞研究领域带来了概念

性的革新ꎮ 重编程分为 ３ 个阶段:启动阶段ꎬ体细胞表达受

到抑制ꎬ发生间质细胞到上皮细胞的转变ꎻ成熟阶段ꎬ多潜能

基因的子集开始表达ꎻ稳定阶段ꎬ完整的多潜能程序被激活ꎮ
细胞重新编程技术作为再生医学发展的基础和重要突破ꎬ目
前已经在皮肤、心脏、肝脏、视神经、听神经再生和胚胎发育

等领域得到广泛的关注和研究[３] ꎮ 成纤维细胞作为重编程

研究中最主要的细胞来源ꎬ可以诱导成类似胚胎干细胞ꎬ即
诱导成多功能干细胞(ｉｎｄｕｃｅｄ ｐｌｕｒｉｐｏｔｅｎｔ ｓｔｅｍ ｃｅｌｌｓꎬｉＰＳＣｓ)ꎮ
ｉＰＳＣｓ 可以进一步分化为成骨细胞、肌细胞、脂肪细胞、神经

细胞和内皮细胞ꎮ 此外ꎬ成纤维细胞还可以直接分化成另一

种成熟细胞ꎬ不经过 ｉＰＳＣｓ 中间状态ꎬ实现跨胚层分化及突

破发育谱系局限的过程ꎬ即直接重编程ꎮ 直接重编程保留了

起源细胞的表观遗传特征[４] ꎮ 有研究发现过表达 Ｍｅｆ２ｃ /
Ｇａｔａ４ / Ｔｂｘ５ / Ｈａｎｄ２ 转录因子可将心肌成纤维细胞重编程为

诱导心肌细胞ꎬ改善慢性心肌梗死的心脏功能ꎬ并逆转纤维
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化[５] ꎮ 本文将概述皮肤成纤维细胞的生物学特点ꎬ并综述成

纤维细胞的重编程在创面修复中的最新研究进展ꎮ
一、成纤维细胞的基本特性

１.成纤维细胞来源及分类:成纤维细胞来源于胚胎的胚

层组织ꎬ是结缔组织中最常见的细胞类型ꎮ 皮肤成纤维细胞

可分为乳头状真皮成纤维细胞、网状真皮成纤维细胞和皮下

真皮成纤维细胞 ３ 个类型[６] ꎮ 胚胎干细胞和间充质干细胞

(骨髓、脂肪和脐带血等来源)也可以分化为成纤维细胞ꎮ
２.成纤维细胞在创面愈合中的功能:成纤维细胞是创面

愈合中最主要的修复细胞之一ꎬ其主要分为有助于再上皮化

和毛囊形成的真皮上谱系ꎬ和在受伤后可大量参与真皮修复

的真皮下谱系ꎮ 创伤早期的真皮修复主要是真皮下谱系的

成纤维细胞发挥作用ꎬ而后期的组织重塑ꎬ则主要靠真皮上

谱系的成纤维细胞完成ꎮ 成纤维细胞增殖能力强ꎬ具有趋化

性ꎮ 在创面微环境的多种细胞因子的驱动下ꎬ成纤维细胞可

迁移到伤口部位并转分化为肌成纤维细胞ꎬ释放促炎和促纤

维化细胞因子ꎬ加速伤口收缩ꎬ并与成纤维细胞相互作用ꎬ促
进成熟瘢痕中胶原蛋白等基质的合成ꎮ 此外ꎬ成纤维细胞在

创面修复时还会分泌多种细胞外基质ꎮ 这些细胞外基质不

仅能填充创面ꎬ促进伤口的再上皮化ꎬ还能为内皮细胞的再

生和血管新生提供空间支持[７] ꎬ加快创面愈合ꎮ
二、成纤维细胞可重编程为表皮干细胞

１.表皮干细胞的特性及其在创面愈合中的作用:表皮干

细胞是皮肤组织中的一类干细胞ꎬ具有自我更新、自我修复

和分化成多种表皮细胞的能力ꎮ 其主要分布在表皮层的基

底部ꎬ可以分化为角质细胞、色素细胞等多种细胞类型ꎬ表皮

干细胞被激活后ꎬ不仅能维持表皮细胞数量的平衡ꎬ还能协

助损伤的修复[８] ꎮ 表皮干细胞分泌的细胞因子ꎬ不仅能促进

细胞分化增殖ꎬ诱导趋化炎性细胞ꎬ还可调节细胞分裂和迁

移ꎬ进而影响创面愈合ꎮ 这类细胞因子在一定程度上也能抑

制成纤维细胞的生长ꎬ降低胶原纤维的合成ꎬ从而减少瘢

痕[９] ꎮ 研究发现 ｐ６３ 与 ｐ７３ 的协同调控ꎬ可使成人表皮干细

胞在应激后发挥功能ꎬ促进表皮伤口的愈合ꎬ并诱导角质形

成细胞编程ꎮ 在全层伤口中ꎬ毛囊和毛囊间表皮的细胞已被

证明可迁移到伤口部位ꎮ 皮肤受伤后基底层的表皮干细胞

可以介导皮肤再上皮化ꎬ防止屏障功能的丢失ꎮ
２.成纤维细胞重编程为表皮干细胞:Ｋｕｒｉｔａ 等[１０] 在体外

通过转导 ４ 种转录因子 ( ＤＮＰ６３Ａ、 ＧＲＨＬ２、 ＴＦＡＰ２Ａ 和

ＭＹＣ)将人成纤维细胞重编程为表皮干细胞ꎬ发现伤口驻留

间充质细胞的重编程能使伤口区域重新上皮化ꎬ从而减弱正

常愈合期的空间限制ꎬ促进内源性皮肤的再生ꎮ 这不仅为治

疗皮肤创伤提供了一个新的途径ꎬ还可能扩展到其他涉及组

织稳态和受损修复的疾病ꎮ 此外ꎬＹａｎｇ 等[１１] 发现ꎬｉＰＳＣｓ 可

分化成存在于毛囊隆突部位、影响毛囊生长和循环的表皮干

细胞ꎮ 这些细胞具有生成所有毛囊谱系的能力ꎬ进而重建毛

囊的上皮成分和滤泡间表皮ꎮ 有研究表明人表皮角质形成

细胞可重新编程生成人类汗腺ꎬ实现在结构和功能上治疗受

伤的皮肤组织ꎬ促进创面再生性修复[１２] ꎬ单因子乙二胺结合

小分子混合物可以促进重编程和再生汗腺细胞[１３] ꎮ
ＣＨＩＲ９９０２１、６１６４５２ 和 ＴＴＮＰＢ 等小分子可将人成纤维细胞

转化为上皮样细胞ꎬ Ｙ２７６３２、ＡＢＴ８６９ 和 ＳＡＧ 可进一步促进

上皮样细胞的产生ꎮ 这种改变上调了 ＫＲＴ８ꎬ ＫＲＴ１８ 和

ＫＲＴ１９ 等上皮细胞相关基因ꎬ并下调了成纤维细胞标记基

因[１４] ꎮ 白细胞介素 １１( ｉｎｔｅｒｌｅｕｋｉｎ￣１１ꎬＩＬ￣１１)能促进细胞重

编程ꎬ限制组织再生过程中纤维化瘢痕形成[１５] ꎮ
三、成纤维细胞可重编程为脂肪干细胞

１.脂肪干细胞的特性:脂肪组织来源干细胞( ａｄｉｐｏｓｅ￣
ｄｅｒｉｖｅｄ ｓｔｅｍ ｃｅｌｌｓꎬＡＤＳＣｓ)是一种具有自我更新能力和多向

分化潜能的干细胞ꎮ ＡＤＳＣｓ 可分化成表皮细胞ꎬ促进新生血

管的形成和皮肤创面的修复ꎮ 在伤口愈合过程中ꎬＡＤＳＣｓ 具

有很强的迁移能力ꎬ可以迅速聚集到受伤部位[１６] ꎬ通过下调

增生性瘢痕中的炎症因子来抑制Ⅰ型胶原和 α￣ＳＭＡ 的表

达ꎬ进而降低增生性瘢痕的形成[１７] ꎮ Ｋｉｍ 等[１８] 发现 ＡＤＳＣｓ
通过细胞间的直接接触和旁分泌细胞因子加速人成纤维细

胞增殖、迁移ꎬ同时促进纤连蛋白、Ⅰ型和Ⅲ型胶原蛋白的表

达ꎬ抑制基质金属蛋白酶￣ １(ｍａｔｒｉｘ ｍｅｔａｌｌｏｐｒｏｔｅｉｎａｓｅ １ꎬＭＭＰ￣１)
的表达ꎮ Ｎａｍｂｕ 等[１９] 证实 ＡＤＳＣｓ 可分泌有生物活性的血

管内皮生长因子、ＩＬ￣６、肝细胞生长因子、碱性成纤维细胞生

长因子等促进血管内皮的生长ꎮ Ｊｅｏｎｇ 等[２０] 将 ＡＤＳＣｓ 复合

成一种人工皮肤替代物治疗难愈性放射性损伤ꎬ最终使患者

创面完全愈合ꎮ
２.成纤维细胞重编程为脂肪干细胞及其在创面愈合中

的作用:在新生毛囊微环境中ꎬ骨形态发生蛋白信号通路和

脂肪相关转录因子被激活ꎬ成纤维细胞表达一些脂肪干细胞

的标志物ꎬ在一定条件下能被诱导分化为脂肪细胞ꎮ 同时ꎬ
成纤维细胞生长因子还能提高脂肪干细胞的分化潜能[２１] ꎮ
毛囊再生是皮肤脂肪再生的必要条件ꎬ再生毛囊策略可能使

患有脂肪缺乏疾病的患者受益[３] ꎮ 此外ꎬ新的脂肪细胞仅在

新的毛囊周围形成ꎬ说明皮肤创伤后有一个影响组织再生的

机会窗口ꎬ将肌成纤维细胞转化为脂肪干细胞ꎮ 值得注意的

是脂肪细胞还具有抗菌活性ꎬ脂肪生成障碍会导致皮肤感染

的机率增加[２２] ꎮ Ｆｒａｎｚ 等[２３]发现一旦脂肪细胞迁移到伤口

上ꎬ就会与血细胞、巨噬细胞协同合作清除伤口的细胞碎片

并封闭上皮伤口的缝隙ꎬ然后局部释放抗菌肽来修复伤口和

抵抗感染ꎮ 此外ꎬＡＤＳＣ 可诱导组织重建ꎬ改善皮肤再生ꎬ有
助于减缓瘙痒和调节炎症ꎬ其分泌的外泌体可在修复伤口的

同时治疗瘢痕并加速组织再生[２４] ꎬ而且具有高安全性、易获

得、易保存等优点[２５] ꎮ
四、成纤维细胞可重编程为 ｉＰＳＣｓ
１.ｉＰＳＣｓ 细胞的生物学特性:将 ４ 种转录因子(Ｏｃｔ３ / ４、

Ｓｏｘ２、ｃ￣Ｍｙｃ 和 Ｋｌｆ４ꎬ后简称 ＯＳＫＭ)转入小鼠成纤维细胞ꎬ可
得到类似胚胎干细胞生物学特性的细胞[２６] ꎮ 在重编程的早

期ꎬ开放的体细胞增强子迅速关闭(ｏｐｅｎ ｔｏ ｃｌｏｓｅｄꎬＯＣ)ꎮ 另

一方面ꎬＯＳＫＭ 直接打开封闭的多能性相关增强子(ｃｌｏｓｅｄ ｔｏ
ｏｐｅｎꎬＣＯ)以建立多能性网络ꎮ 分析 ＯＣ / ＣＯ 类别中的转录

因子结合基因序列ꎬ发现与多能性相关的转录因子基因序列

只出现在 ＣＯ 峰中ꎮ 其中ꎬＯＳＫＭ 是最丰富的多能性因子ꎬ与
报道的先驱功能一致ꎮ 其他多能性因子如 Ｔｃｆ / Ｔｆｃｐ２Ｌ１ /
Ｅｓｒｒｂ 仅在后期出现ꎮ Ｅｓｒｒｂ 将核心多能性因子 Ｏｃｔ４ / Ｓｏｘ２ 和

Ｎａｎｏｇ 募集到封闭染色质ꎬ激活胚胎干细胞超级增强子来提

高重编程效率[２７] ꎮ 此外ꎬ三甲基蛋白 Ｈ３ 赖氨酸 ９(ｈｉｓｔｏｎｅ
Ｈ３ ｌｙｓｉｎｅ９ ｔｒｉ￣ｍｅｔｈｙｌａｔｉｏｎꎬ Ｈ３Ｋ９ｍｅ３)是在多能因子介导的
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重编程或谱系重编程过程中形成的主要抑制性修饰[２８] ꎬ其
形成异染色质的能力可限制基因表达并阻止细胞命运的转

化[２９] ꎬＴｆａｐ２ｃ、Ｄｐｐａ２ 和 Ｄｐｐａ４ 可以促进染色质打开并提高

重编程效率[３０￣３２] ꎮ 近年来ꎬ越来越多的研究聚焦于 ｉＰＳＣｓ 诱

导途径ꎮ ｉＰＳＣｓ 不仅具有自我更新的潜力还具有多能性ꎬ可
以分化成任何类型的成体细胞[３３] ꎬ并且 ｉＰＳＣｓ 来自于患者

自身ꎬ避免了免疫排斥的问题ꎬ使其在再生医学领域有广泛

的应用前景ꎮ 但是将 ｉＰＳＣｓ 直接进行细胞移植会增加成瘤

的风险ꎬ所以实践中大多采用 ｉＰＳＣｓ 的分化细胞ꎬ以降低其

致瘤性ꎮ
２.成纤维细胞重编程为 ｉＰＳＣｓ 及其在创面愈合中的作

用:ｉＰＳＣｓ 可以从人成纤维细胞重编程中获得ꎬ并且 ｉＰＳＣｓ 在

形态、增殖、表面抗原、基因表达、多能细胞特异性基因的表

观遗传状态和端粒酶活性等方面都与人胚胎干细胞相似ꎮ
Ｊｕｄｓｏｎ 等[３４]发现 ｍｉｃｒｏＲＮＡｓ 可以激活多能性相关基因ꎬ促
进 ｉＰＳＣｓ 细胞的形成ꎮ 在不添加任何转录因子的情况下ꎬ将
ｍｉＲ￣３０２ / ３６７ 转入成纤维细胞中可获得 ｉＰＳＣｓꎮ ｉＰＳＣｓ 可以

在含有胶原蛋白Ⅳ的培养基上连续应用维甲酸和骨蛋白ꎬ在
体外分化形成角质细胞ꎮ 角质细胞组成的角质层可以很好

地维持人体皮肤的完整性、保持人体内环境的稳定ꎬ而且角

质细胞也可以刺激成纤维细胞合成生长因子ꎬ进而以双重旁

分泌的方式刺激角质形成细胞的增殖ꎮ 此外ꎬ成纤维细胞可

以在角质形成细胞的调控下获得肌成纤维细胞表型ꎮ Ｙａｎｇ
等[１１]将 ｉＰＳＣｓ 诱分化为表皮干细胞ꎬ可以重建毛囊ꎮ Ｏｓｈｉｍａ
等[３５]认为毛囊具有自我更新和多向分化潜能ꎮ 另有研究表

明ꎬ人类 ｉＰＳＣｓ 来源的间充质干细胞释放的外泌体可以促进

胶原蛋白合成和血管生成从而加速创面愈合[３６] ꎮ
ｉＰＳＣｓ 衍生的分泌物可作无细胞疗法促进伤口愈合[３７] ꎬ

且体内重编程因子的瞬时诱导通过抑制转化生长因子￣β信

号通路减少成纤维细胞转分化为肌成纤维细胞ꎬ降低纤维化

活性并减少瘢痕组织的形成[３８] ꎮ Ｃｌａｙｔｏｎ 等[３９] 将 ｉＰＳＣ 衍生

的内皮细胞移植到糖尿病小鼠皮肤会加速伤口愈合ꎬ增加

ＣＤ３１ 和 Ｔｉｅ１ 等血管内皮标志物的表达以及胶原的沉积ꎮ
将 ｉＰＳＣ 来源的角质形成细胞移植到全层皮肤创面和烧伤创

面的小鼠模型上ꎬ有助于再上皮化和无瘢痕创面愈合[４０￣４１] ꎮ
Ｇｉｌｌ 等[４２]发现ꎬｉＰＳＣｓ 重编程可以使细胞在不丧失功能的情

况下恢复活力ꎬ即恢复衰老细胞的某些功能ꎬ且在疾病相关

的基因中发现衰老指标的逆转ꎮ 虽然真皮成纤维细胞的多

样性对诱导和重编程 ｉＰＳＣｓ 的效率有一定影响[４３] ꎬ但可以

采取添加维生素 Ｃ、ｐ５３、脾酪氨酸激酶抑制剂 Ｒ４０６ 等提高

重编程效率ꎮ 维生素 Ｃ 可通过刺激组蛋白去甲基化酶

ＫＤＭ３ / ４ 的活性ꎬ诱导 Ｈ３Ｋ９ｍｅ３ 去甲基化ꎬ提高体细胞重编

程效率ꎬ而小泛素化修饰则是通过下调成纤维细胞相关基因

Ｚｅｂ１ / Ｚｅｂ２ / Ｓｎａｉ１ 并 上 调 多 能 性 相 关 基 因 Ｎａｎｏｇ / Ｓａｌｌ４ /
Ｄｐｐａ３ / Ｎｒ０ｂ１ 的表达ꎬ提高重编程效率[２７] ꎮ

成纤维细胞的重编程为创面修复提供了新思路ꎬ合理利

用成纤维细胞的重编程ꎬ不仅可以使受创皮肤表面保持完

整ꎬ还为其功能的恢复提供了可能ꎮ 该技术既不涉及伦理问

题ꎬ还能解决人胚胎干细胞临床应用免疫排斥的难题ꎬ具有

一定的应用前景ꎮ 目前ꎬ通过纳米制造技术为重编程提供递

送平台和使用超声转染等可提高重编程效率和质量ꎬ但应用

成纤维细胞的重编程修复创面的技术仍不成熟[４４] ꎮ 最近对

多种广泛应用的 ｉＰＳＣｓ 细胞的遗传安全性检测表明ꎬ许多成

功建立的细胞在遗传特征上并不安全ꎬ无论采用何种体细胞

诱导方式ꎬ生成的 ｉＰＳＣｓ 细胞都存在着一定程度的遗传或表

观遗传异常改变[４５] ꎮ 总的来说ꎬ成纤维细胞的重编程在创

面修复研究中具有广阔的应用前景ꎬ虽然目前仍存在一些技

术难题和安全性问题ꎬ但相信随着技术的不断进步ꎬ其在临

床应用中会发挥越来越重要的作用ꎮ 期待在不久的将来成

纤维细胞的重编程技术能广泛应用于创面组织结构和功能

性的治疗ꎮ
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ｈｕｍａｎ ｅｐｉｔｈｅｌｉａｌ ｓｔｅｍ ｃｅｌｌｓ ｆｒｏｍ ｉｎｄｕｃｅｄ ｐｌｕｒｉｐｏｔｅｎｔ ｓｔｅｍ ｃｅｌｌｓ
[Ｊ] . Ｎａｔ Ｃｏｍｍｕｎꎬ ２０１４ꎬ ５: ３０７１.

[１２] 　 Ｓｕｎ Ｘꎬ Ｘｉａｎｇ Ｊꎬ Ｃｈｅｎ Ｒꎬ ｅｔ ａｌ. Ｓｗｅａｔ ｇｌａｎｄ ｏｒｇａｎｏｉｄｓ
ｏｒｉｇｉｎａｔｉｎｇ ｆｒｏｍ ｒｅｐｒｏｇｒａｍｍｅｄ ｅｐｉｄｅｒｍａｌ ｋｅｒａｔｉｎｏｃｙｔｅｓ
ｆｕｎｃｔｉｏｎａｌｌｙ ｒｅｃａｐｉｔｕｌａｔｅｄ ｄａｍａｇｅｄ ｓｋｉｎ[ Ｊ] . Ａｄｖ Ｓｃｉ (Ｗｅｉｎｈ)ꎬ
２０２１ꎬ ８(２２): ｅ２１０３０７９.

[１３] 　 Ｊｉ ＳＦꎬ Ｚｈｏｕ ＬＸꎬ Ｓｕｎ ＺＦꎬ ｅｔ ａｌ. Ｓｍａｌｌ ｍｏｌｅｃｕｌｅｓ ｆａｃｉｌｉｔａｔｅ ｓｉｎｇｌｅ
ｆａｃｔｏｒ￣ｍｅｄｉａｔｅｄ ｓｗｅａｔ ｇｌａｎｄ ｃｅｌｌ ｒｅｐｒｏｇｒａｍｍｉｎｇ [ Ｊ] . Ｍｉｌ Ｍｅｄ
Ｒｅｓꎬ ２０２２ꎬ ９(１): １３.

[１４] 　 Ｇｕａｎ Ｊꎬ Ｗａｎｇ Ｇꎬ Ｗａｎｇ Ｊꎬ ｅｔ ａｌ. Ｃｈｅｍｉｃａｌ ｒｅｐｒｏｇｒａｍｍｉｎｇ ｏｆ
ｈｕｍａｎ ｓｏｍａｔｉｃ ｃｅｌｌｓ ｔｏ ｐｌｕｒｉｐｏｔｅｎｔ ｓｔｅｍ ｃｅｌｌｓ[Ｊ] . Ｎａｔｕｒｅꎬ ２０２２ꎬ
６０５(７９０９): ３２５￣３３１.

[１５] 　 Ａｌｌａｎｋｉ Ｓꎬ Ｓｔｒｉｌｉｃ Ｂꎬ Ｓｃｈｅｉｎｂｅｒｇｅｒ Ｌꎬ ｅｔ ａｌ. Ｉｎｔｅｒｌｅｕｋｉｎ￣１１
ｓｉｇｎａｌｉｎｇ ｐｒｏｍｏｔｅｓ ｃｅｌｌｕｌａｒ ｒｅｐｒｏｇｒａｍｍｉｎｇ ａｎｄ ｌｉｍｉｔｓ ｆｉｂｒｏｔｉｃ
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ｓｃａｒｒｉｎｇ ｄｕｒｉｎｇ ｔｉｓｓｕｅ ｒｅｇｅｎｅｒａｔｉｏｎ[Ｊ] . Ｓｃｉ Ａｄｖꎬ ２０２１ꎬ ７(３７):
ｅａｂｇ６４９７.

[１６] 　 Ｍａｚｉｎｉ Ｌꎬ Ｒｏｃｈｅｔｔｅ Ｌꎬ Ａｄｍｏｕ Ｂꎬ ｅｔ ａｌ. Ｈｏｐｅｓ ａｎｄ ｌｉｍｉｔｓ ｏｆ
ａｄｉｐｏｓｅ￣ｄｅｒｉｖｅｄ ｓｔｅｍ ｃｅｌｌｓ (ＡＤＳＣｓ) ａｎｄ ｍｅｓｅｎｃｈｙｍａｌ ｓｔｅｍ ｃｅｌｌｓ
(ＭＳＣｓ) ｉｎ Ｗｏｕｎｄ Ｈｅａｌｉｎｇ[ Ｊ] . Ｉｎｔ Ｊ Ｍｏｌ Ｓｃｉꎬ ２０２０ꎬ ２１(４):
１３０６.

[１７] 　 杨玲玲ꎬ 黄悦ꎬ 王洪一ꎬ 等. 脂肪干细胞抑制炎症对缓解兔

耳增生性瘢痕形成效果研究[ Ｊ] . 临床军医杂志ꎬ ２０２２ꎬ ５０
(５): ５０３￣５０６ꎬ ５０９.

[１８] 　 Ｋｉｍ ＷＳꎬ Ｐａｒｋ ＢＳꎬ Ｓｕｎｇ ＪＨꎬ ｅｔ ａｌ. Ｗｏｕｎｄ ｈｅａｌｉｎｇ ｅｆｆｅｃｔ ｏｆ
ａｄｉｐｏｓｅ￣ｄｅｒｉｖｅｄ ｓｔｅｍ ｃｅｌｌｓ: ａ ｃｒｉｔｉｃａｌ ｒｏｌｅ ｏｆ ｓｅｃｒｅｔｏｒｙ ｆａｃｔｏｒｓ ｏｎ
ｈｕｍａｎ ｄｅｒｍａｌ ｆｉｂｒｏｂｌａｓｔｓ[Ｊ] . Ｊ Ｄｅｒｍａｔｏｌ Ｓｃｉꎬ ２００７ꎬ ４８(１): １５￣
２４.

[１９] 　 Ｎａｍｂｕ Ｍꎬ Ｋｉｓｈｉｍｏｔｏ Ｓꎬ Ｎａｋａｍｕｒａ Ｓꎬ ｅｔ ａｌ. Ａｃｃｅｌｅｒａｔｅｄ ｗｏｕｎｄ
ｈｅａｌｉｎｇ ｉｎ ｈｅａｌｉｎｇ￣ ｉｍｐａｉｒｅｄ ｄｂ / ｄｂ ｍｉｃｅ ｂｙ ａｕｔｏｌｏｇｏｕｓ ａｄｉｐｏｓｅ
ｔｉｓｓｕｅ￣ｄｅｒｉｖｅｄ ｓｔｒｏｍａｌ ｃｅｌｌｓ ｃｏｍｂｉｎｅｄ ｗｉｔｈ ａｔｅｌｏｃｏｌｌａｇｅｎ ｍａｔｒｉｘ
[Ｊ] . Ａｎｎ Ｐｌａｓｔ Ｓｕｒｇꎬ ２００９ꎬ ６２(３): ３１７￣３２１.

[２０] 　 Ｊｅｏｎｇ ＪＨ. Ａｄｉｐｏｓｅ ｓｔｅｍ ｃｅｌｌｓ ａｎｄ ｓｋｉｎ ｒｅｐａｉｒ[Ｊ] . Ｃｕｒｒ Ｓｔｅｍ Ｃｅｌｌ
Ｒｅｓ Ｔｈｅｒꎬ ２０１０ꎬ ５(２): １３７￣１４０.

[２１] 　 Ｓｈａｏ Ｙꎬ Ｃｈｅｎ ＱＺꎬ Ｚｅｎｇ ＹＨꎬ ｅｔ ａｌ. Ａｌｌ￣ ｔｒａｎｓ ｒｅｔｉｎｏｉｃ ａｃｉｄ ｓｈｉｆｔｓ
ｒｏｓｉｇｌｉｔａｚｏｎｅ￣ ｉｎｄｕｃｅｄ ａｄｉｐｏｇｅｎｉｃ ｄｉｆｆｅｒｅｎｔｉａｔｉｏｎ ｔｏ ｏｓｔｅｏｇｅｎｉｃ
ｄｉｆｆｅｒｅｎｔｉａｔｉｏｎ ｉｎ ｍｏｕｓｅ ｅｍｂｒｙｏｎｉｃ ｆｉｂｒｏｂｌａｓｔｓ[Ｊ] . Ｉｎｔ Ｊ Ｍｏｌ Ｍｅｄꎬ
２０１６ꎬ ３８(６): １６９３￣１７０２.

[２２] 　 Ｚｈａｎｇ ＬＪꎬ Ｇｕｅｒｒｅｒｏ￣ Ｊｕａｒｅｚ ＣＦꎬ Ｈａｔａ Ｔꎬ ｅｔ ａｌ. Ｉｎｎａｔｅ ｉｍｍｕｎｉｔｙ.
Ｄｅｒｍａｌ ａｄｉｐｏｃｙｔｅｓ ｐｒｏｔｅｃｔ ａｇａｉｎｓｔ ｉｎｖａｓｉｖｅ Ｓｔａｐｈｙｌｏｃｏｃｃｕｓ ａｕｒｅｕｓ
ｓｋｉｎ ｉｎｆｅｃｔｉｏｎ[Ｊ] . Ｓｃｉｅｎｃｅꎬ ２０１５ꎬ ３４７(６２１７): ６７￣７１.

[２３] 　 Ｆｒａｎｚ Ａꎬ Ｗｏｏｄ Ｗꎬ Ｍａｒｔｉｎ Ｐ. Ｆａｔ ｂｏｄｙ ｃｅｌｌｓ ａｒｅ ｍｏｔｉｌｅ ａｎｄ
ａｃｔｉｖｅｌｙ ｍｉｇｒａｔｅ ｔｏ ｗｏｕｎｄｓ ｔｏ ｄｒｉｖｅ Ｒｅｐａｉｒ ａｎｄ Ｐｒｅｖｅｎｔ Ｉｎｆｅｃｔｉｏｎ
[Ｊ] . Ｄｅｖ Ｃｅｌｌꎬ ２０１８ꎬ ４４(４): ４６０￣４７０.ｅ３.

[２４] 　 Ｋｗｏｎ ＨＨꎬ Ｙａｎｇ ＳＨꎬ Ｌｅｅ Ｊꎬ ｅｔ ａｌ. Ｃｏｍｂｉｎａｔｉｏｎ ｔｒｅａｔｍｅｎｔ ｗｉｔｈ
ｈｕｍａｎ ａｄｉｐｏｓｅ ｔｉｓｓｕｅ ｓｔｅｍ ｃｅｌｌ￣ ｄｅｒｉｖｅｄ ｅｘｏｓｏｍｅｓ ａｎｄ ｆｒａｃｔｉｏｎａｌ
ＣＯ２ ｌａｓｅｒ ｆｏｒ ａｃｎｅ ｓｃａｒｓ: ａ １２￣ｗｅｅｋ ｐｒｏｓｐｅｃｔｉｖｅꎬ ｄｏｕｂｌｅ￣ｂｌｉｎｄꎬ
ｒａｎｄｏｍｉｚｅｄꎬ ｓｐｌｉｔ￣ ｆａｃｅ ｓｔｕｄｙ [ Ｊ] . Ａｃｔａ Ｄｅｒｍ Ｖｅｎｅｒｅｏｌꎬ ２０２０ꎬ
１００(１８): ａｄｖ００３１０.

[２５] 　 谭景铭ꎬ 周胤朴. 脂肪干细胞外泌体应用于瘢痕治疗的研究

进展[Ｊ] . 医学研究生学报ꎬ ２０２２ꎬ ３５(６): ６６８￣６７２.
[２６] 　 Ｔａｋａｈａｓｈｉ Ｋꎬ Ｙａｍａｎａｋａ Ｓ. Ｉｎｄｕｃｔｉｏｎ ｏｆ ｐｌｕｒｉｐｏｔｅｎｔ ｓｔｅｍ ｃｅｌｌｓ

ｆｒｏｍ ｍｏｕｓｅ ｅｍｂｒｙｏｎｉｃ ａｎｄ ａｄｕｌｔ ｆｉｂｒｏｂｌａｓｔ ｃｕｌｔｕｒｅｓ ｂｙ ｄｅｆｉｎｅｄ
ｆａｃｔｏｒｓ[Ｊ] . Ｃｅｌｌꎬ ２００６ꎬ １２６(４): ６６３￣６７６.

[２７] 　 Ｌｉ Ｄꎬ Ｓｈｕ Ｘꎬ Ｚｈｕ Ｐꎬ ｅｔ ａｌ. Ｃｈｒｏｍａｔｉｎ ａｃｃｅｓｓｉｂｉｌｉｔｙ ｄｙｎａｍｉｃｓ
ｄｕｒｉｎｇ ｃｅｌｌ ｆａｔｅ ｒｅｐｒｏｇｒａｍｍｉｎｇ[Ｊ] . ＥＭＢＯ Ｒｅｐꎬ ２０２１ꎬ ２２(２):
ｅ５１６４４.

[２８] 　 Ｘｉｅ Ｘꎬ Ｊａｎｋａｕｓｋａｓ Ｒꎬ Ｍａｚａｒｉ ＡＭＡꎬ ｅｔ ａｌ. ｂｅｔａ￣ ａｃｔｉｎ ｒｅｇｕｌａｔｅｓ ａ
ｈｅｔｅｒｏｃｈｒｏｍａｔｉｎ ｌａｎｄｓｃａｐｅ ｅｓｓｅｎｔｉａｌ ｆｏｒ ｏｐｔｉｍａｌ ｉｎｄｕｃｔｉｏｎ ｏｆ
ｎｅｕｒｏｎａｌ ｐｒｏｇｒａｍｓ ｄｕｒｉｎｇ ｄｉｒｅｃｔ ｒｅｐｒｏｇｒａｍｉｎｇ[ Ｊ] . ＰＬｏＳ Ｇｅｎｅｔꎬ
２０１８ꎬ １４(１２): ｅ１００７８４６.

[２９] 　 Ｂａｌｍｅｒ Ｐꎬ Ｈａｒｉｔｏｎ ＷＶＪꎬ Ｓａｙａｒ ＢＳꎬ ｅｔ ａｌ. ＳＵＶ３９Ｈ２ ｅｐｉｇｅｎｅｔｉｃ
ｓｉｌｅｎｃｉｎｇ ｃｏｎｔｒｏｌｓ ｆａｔｅ ｃｏｎｖｅｒｓｉｏｎ ｏｆ ｅｐｉｄｅｒｍａｌ ｓｔｅｍ ａｎｄ ｐｒｏｇｅｎｉｔｏｒ
ｃｅｌｌｓ[Ｊ] . Ｊ Ｃｅｌｌ Ｂｉｏｌꎬ ２０２１ꎬ ２２０(４): ｅ２０１９０８１７８.

[３０] 　 Ａｄａｃｈｉ Ｋꎬ Ｋｏｐｐ Ｗꎬ Ｗｕ Ｇꎬ ｅｔ ａｌ. Ｅｓｒｒｂ ｕｎｌｏｃｋｓ ｓｉｌｅｎｃｅｄ
ｅｎｈａｎｃｅｒｓ ｆｏｒ ｒｅｐｒｏｇｒａｍｍｉｎｇ ｔｏ ｎａｉｖｅ ｐｌｕｒｉｐｏｔｅｎｃｙ[Ｊ] . Ｃｅｌｌ Ｓｔｅｍ
Ｃｅｌｌꎬ ２０１８ꎬ ２３(２): ２６６￣２７５.ｅ６.

[３１] 　 Ｈｅｒｎａｎｄｅｚ Ｃꎬ Ｗａｎｇ Ｚꎬ Ｒａｍａｚａｎｏｖ Ｂꎬ ｅｔ ａｌ. Ｄｐｐａ２ / ４ ｆａｃｉｌｉｔａｔｅ
ｅｐｉｇｅｎｅｔｉｃ ｒｅｍｏｄｅｌｉｎｇ ｄｕｒｉｎｇ ｒｅｐｒｏｇｒａｍｍｉｎｇ ｔｏ ｐｌｕｒｉｐｏｔｅｎｃｙ[ Ｊ] .
Ｃｅｌｌ Ｓｔｅｍ Ｃｅｌｌꎬ ２０１８ꎬ ２３(３): ３９６￣４１１.ｅ８.

[３２] 　 Ｐａｓｔｏｒ ＷＡꎬ Ｌｉｕ Ｗꎬ Ｃｈｅｎ Ｄꎬ ｅｔ ａｌ. ＴＦＡＰ２Ｃ ｒｅｇｕｌａｔｅｓ
ｔｒａｎｓｃｒｉｐｔｉｏｎ ｉｎ ｈｕｍａｎ ｎａｉｖｅ ｐｌｕｒｉｐｏｔｅｎｃｙ ｂｙ ｏｐｅｎｉｎｇ ｅｎｈａｎｃｅｒｓ
[Ｊ] . Ｎａｔ Ｃｅｌｌ Ｂｉｏｌꎬ ２０１８ꎬ ２０(５): ５５３￣５６４.

[３３] 　 Ｇｏｒｅｃｋａ Ｊꎬ Ｋｏｓｔｉｕｋ Ｖꎬ Ｆｅｒｅｙｄｏｏｎｉ Ａꎬ ｅｔ ａｌ. Ｔｈｅ ｐｏｔｅｎｔｉａｌ ａｎｄ
ｌｉｍｉｔａｔｉｏｎｓ ｏｆ ｉｎｄｕｃｅｄ ｐｌｕｒｉｐｏｔｅｎｔ ｓｔｅｍ ｃｅｌｌｓ ｔｏ ａｃｈｉｅｖｅ ｗｏｕｎｄ
ｈｅａｌｉｎｇ[Ｊ] . Ｓｔｅｍ Ｃｅｌｌ Ｒｅｓ Ｔｈｅｒꎬ ２０１９ꎬ １０(１): ８７.

[３４] 　 Ｊｕｄｓｏｎ ＲＬꎬ Ｂａｂｉａｒｚ ＪＥꎬ Ｖｅｎｅｒｅ Ｍꎬ ｅｔ ａｌ. Ｅｍｂｒｙｏｎｉｃ ｓｔｅｍ ｃｅｌｌ￣
ｓｐｅｃｉｆｉｃ ｍｉｃｒｏＲＮＡｓ ｐｒｏｍｏｔｅ ｉｎｄｕｃｅｄ ｐｌｕｒｉｐｏｔｅｎｃｙ [ Ｊ ] . Ｎａｔ
Ｂｉｏｔｅｃｈｎｏｌꎬ ２００９ꎬ ２７(５): ４５９￣４６１.

[３５] 　 Ｏｓｈｉｍａ Ｈꎬ Ｒｏｃｈａｔ Ａꎬ Ｋｅｄｚｉａ Ｃꎬ ｅｔ ａｌ. Ｍｏｒｐｈｏｇｅｎｅｓｉｓ ａｎｄ
ｒｅｎｅｗａｌ ｏｆ ｈａｉｒ ｆｏｌｌｉｃｌｅｓ ｆｒｏｍ ａｄｕｌｔ ｍｕｌｔｉｐｏｔｅｎｔ ｓｔｅｍ ｃｅｌｌｓ [ Ｊ] .
Ｃｅｌｌꎬ ２００１ꎬ １０４(２): ２３３￣２４５.

[３６] 　 Ｚｈａｎｇ Ｊꎬ Ｇｕａｎ Ｊꎬ Ｎｉｕ Ｘꎬ ｅｔ ａｌ. Ｅｘｏｓｏｍｅｓ ｒｅｌｅａｓｅｄ ｆｒｏｍ ｈｕｍａｎ
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