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An update on the mechanism of neural stem cell

transplantation in the treatment of Alzheimer’s disease
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Abstract; At present, no effective sirategy exists to slow down the progression of Alzheimer’s disease (AD). A
deeper understanding of the pathogenesis of AD and the development of new therapeutic approaches are essential.
Stem cell transplantation for the treatment of neurodegenerative diseases is currently a research hotspot. Numerous
studies have suggested that neural stem cells (NSCs) can differentiate into functional neurons, replace dead neu-
rons, and form synaptic connections with adjacent surviving neurons, thereby achieving a therapeutic effect. In the-
ory, the use of NSCs to replace and restore damaged cholinergic neurons and synapses may provide a new therapeu-
tic option for AD. This review summarizes the recent preclinical research progress of NSC transplantation for the
treatment of AD.
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