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[ Abstract] The prevalence of diabetes mellitus continues to exhibit a sustained upward trend,
accompanied by a concurrent rise in the incidence of diabetic microvascular complications. Conditions such
as diabetic foot and diabetic chronic ulcers have shown a marked increase in prevalence. Diabetic chronic
ulcers, characterized by prolonged therapeutic duration, not only significantly impair patients” quality of life
but also demonstrate crucial pathogenic mechanisms that play a pivotal role in disease progression. Notably,
vascular endothelial cells (VECs ) dysfunction serves as a central pathological event in the initiation
and development of vascular complications, rendering the elucidation of its underlying mechanisms
clinically significant. Therefore, hope to provide novel therapeutic targets and interventional strategies for

diabetic chronic ulcers by exploring systematic investigation into the molecular mechanisms underlying

VECs injury.
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Endothelial cell injury mechanism
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