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[ Abstract ] With the aging of the global population, the incidence of chronic wounds ( such as diabetic
foot ulcers, pressure injuries, venous ulcers ) is increasing year by year, which has become a major challenge
in clinical management, seriously compromising patient quality of life and imposing a heavy burden on the
healthcare system. In recent years, adipose-derived stem cells ( ADSCs ) have shown great potential in the field
of chronic wound therapy. However, the complex microenvironment of the wound seriously affects the survival
and function of ADSCs. To address this challenge, a variety of optimization strategies have emerged. This article
focuses on strategies to enhance the therapeutic efficacy of ADSCs for chronic wound treatment, systematically
reviewing recent research progress in different treatment strategies, including various pretreatment methods,
combination therapies with cytokines, and co-delivery systems utilizing biomaterials and tissue engineering.
Furthermore, it critically analyzes the underlying mechanisms, unique advantages, and limitations of each
strategy, aiming to provide a reference for advancing the clinical translation of ADSCs in chronic wound therapy.
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