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Abstract Fat, as the largest secretory organ in the body, can regulate other tissues and organs by releasing
hormones and cytokines. In recent years, studies have found that adipose tissue can release the form of
exosomes, transmit signals to other tissues and organs through the circulation of body fluids, and regulate the
physiological functions of its target organs, such as regulating liver fat deposition, muscle glycogen synthesis,
angiogenesis, and damage repair. Such functions, for different target organs, exosomes will have different
effects. The homeostasis of the body is the result of interactions between tissues, and the discovery of exosomes
provides a stable material basis for the interaction of adipose tissue with other tissues, and the role of fat exosomes
still has many unknown effects. The identification of adipose tissue exosomes and the interaction of adipose
exosomes on the liver, muscle, and other tissues and organs from recent experimental reports were reviewed,
provide a theoretical basis for the study of fat exosomes, and better explore the mysteries of life.
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